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CYBERTRUST

A System
Engineering
Approach to Al

Security and Safety

Fariborz Farahmand®, Georgia Institute of Technology

This article sheds light on the need for the

computer science and the broader engineering

communities to collaborate on taking a
system engineering approach to artificial

intelligence security and safety. | offer three
recommendations to how to address this need.

s artificial intelligence (AI) affects our phys-
ical world, like driverless cars, robots, medi-
cal devices, and cyber physical systems,
cybersecurity will enter those areas as well,
and security and safety become increasingly entangled.
That is, there is increasingly a potential for cyberse-
curity compromise to result in physical harm in the Al
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era, for example, manipulation of
smart-building environments.

As such, the traditional divide-
and-conquer approaches such as
dividing the systems into sepa-
rate parts, examining safety and
security piece by piece, and com-
bining the results no longer work.
This creates the need, as explained
by the National Academy of Engi-
neers,! for a new understanding:
“Engineers must recognize that a
cybersecurity system's success de-
pends on understanding the safety
of the whole system, not merely
protecting its individual parts.” This article offers three
recommendations to address this need.

IT IS ABOUT INTERACTION, NOT THE UNION
One aspect of Al safety research has focused on build-
ing robots and autonomous vehicles that do not collide.
And Al security research has been focused on specific
attacks, for example, input attacks that manipulate the
data that is fed to the Al algorithm to affect the output of
the system.
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Tohavesafeandsecure Al,weneedto
first understand complex interactions
(forexample, safety-security, soft-
ware-hardware, human-automation)
and develop realistic computational
models that recognize these interac-
tions and their interoperability issues.
This requires a close collaboration
between computer science and the
broader engineering communities. So
far, this has been limited to the collab-
oration between computer scientists
and electrical and computer engineers,
mainly their work on smart grids—
the digital technologies that allow for
two-way communication between the
utility and its customers, and the sens-
ing along the transmission lines. This
unbalanced focus makes many of our
critical physical infrastructures (for
example, transportation and mechan-
ical systems, and critical buildings
which are already in poor physical con-
dition with a C-rating from the Amer-
ican Society of Civil Engineers)? easy
targets for cyber criminals.

EMBRACE THE ENGINEERING
NOTION OF SAFETY WITH
AN EYE TO THE SECURITY
MEASURES
Engineers have a long history of re-
search collaboration on reliability and
safety. For example, electrical and com-
puter engineers have built sensors
and actuators that have significantly
helped civil engineers to build intelli-
gent infrastructures and monitor their
safety and structural health. Two ex-
amples are the Golden Gate Bridge
in the United States, for permanent
seismic monitoring applications, and
Moori Tower in Japan, for limiting
deflections of the structure during
typhoon winds.3 But what are the rea-
sons behind their successful interdis-
ciplinary collaborations? Two import-
antreasons are given.

First, engineers speak a common lan-
guage: mathematics. Teaching engineering

students from various disciplines, I
have noted that mathematical expla-
nation often steals their attention from
the surrounding text that describes the
problem and the solution, regardless of
thetitleandthe clarity of the text. They
stay with this habit after graduation,
even in dealing with nonengineers.
Second, engineers have developed
modest and realistic expectations
about safety. Engineers through ex-
perience have learned that instead of
looking for perfect systems (for exam-
ple, safe for all purposes); they will de-
velop good-enough safe systems. That
is, systems that would have increased
safety are not worth the costs of reduc-
ing risk by restricting, or otherwise
altering the service. Engineers use a
probabilistic view of mathematical
truth and social processes; very like
the “social processes of mathematics
to achieve successive approximations

Engineering Institute, The American
Society of Civil Engineers, The Amer-
ican Society of Mechanical Engineers,
and the Institute of Electrical and
Electronic Engineers all working to-
gether to ensure user safety.”

This is quite different from the
cybersecurity community, who over
the past decades, has tried to develop
perfectly reliable, dependable, trust-
worthy, safe systems, and use methods
(for example, formal logic) to put a ver-
ified stamp on such systems.

USE CAUSAL ABSTRACTION

FOR SYSTEM APPROACHES

Undoubtedly, AI has made an amaz-
ing progress in this century. It has
already enabled us to do many things
that we were not able to do before, for
example, pattern recognition. But Al
systems are not yet able to form hu-
manlike abstractions in precise levels

To present their system view on complex
interactions, engineers and computer scientists
must present their intuitive view of a system
as a collection of interacting agents at different
levels of abstractions.

at understanding.” For example, to
work with serviceability and safety
issues, they define limit states: “con-
ditions beyond which a structure or
member becomes unfit for service
and is judged either to be no longer
useful for its intended function (ser-
viceability limit state) or to be unsafe
(strength limit state).” Then, they for-
mally define their problems in terms
of limit-state functions by using prob-
abilistic models of computation.

Even engineering codes reflect
the system and probabilistic view of
engineers on safety. One example is
safety of elevators which comfortab-
ly adapts the work of: The Structural

that we would need in taking a system
approach. For example, deep learn-
ing models can give us ground-truth
knowledge of the causal relationships
between all their components, and
can answer very abstract, high-level
questions, for example, “what is?” ques-
tions. But they cannot answer “what
if?” and “why?” questions.

To present their system view on
complex interactions, engineers and
computer scientists must present their
intuitive view of a system as a collec-
tion of interacting agents at different
levels of abstractions. To realize these
abstractions, they also need tools that
can help them with computational
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TABLE 1. Pearl’s three-level causal hierarchy.

It uses three rules as follows:
Typical activity Typical questions

1. Association:
Plylx)

2. Intervention:
Plyldo(x), 2)
affairs)
3. Counterfactuals:
Ply,Ix.y')

could be)

Seeing (observing a certain
phenomenon unfold)

Doing (acting in the world
to bring about some state of

Imagining (thinking about
alternative ways the world

What is? How would seeing X
change my beliefin Y'?

What if?
What if I do X?

Why? Was it X that caused Y ?
What if | had acted differently?

explanation of their views. To address
these needs, I recommend causal ab-
straction, a general framework for ex-
planation methods in Al Its basic op-
eration is intervention, which we can
express using notation from Pearl.
Many popular behavioral and inter-
vention-based explanation methods
in Al can be explicitly understood as
a special case of causal abstraction.
Next, I provide a brief overview of
Pearls’ approach to causal abstraction
in different levels, using do-operator
and rules of do-calculus, and then
present a simplified example.

Do-operator
Do-operator signifies that we are deal-
ing with an intervention rather than

(a) (b)
FIGURE 1. Difference between studying (a) observed data, (b) using conditioning, and
(c) intervening, using do-operator.

a passive observation. Do-operator is
different from the classical operators
that we use in the standard language
of probability.

» Observational P(y|x) answers
what is the distribution of Y
given that we observe X variable
takes value x.

» Interventional P(y|do(x)) answers
what is the distribution of Y if we
were to set the value of X to x.

Rules of do-calculus

Do-calculus, a calculus for probabilistic
and causal reasoning (in Pearl’s words,
“machinery of causal calculus”) is an
axiomatic system for replacing probabil-
ity formulas containing the do-operator

()
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with ordinary conditional probabilities.

» Rulelhelps us toignore obser-
vations. It says when we observe
avariable W thatisirrelevant to
Y (possibly conditional on other
variables Z), then the probability
distribution of Y will not change.

» Rule 2 helpsusto exchange
actions with observations. It says
ifa set Z of variables blocks all
backdoors from X to Y, that s,
any path from X to Y that starts
with an arrow pointing into X,
then conditional on Z, do (X) is
equivalent to observe (X).

» Rule 3 helps ustoignore actions.
It says we can remove do (X) from
P(y|do(x)) in any case when there
are no causal paths from X to
Y. That is, if we do something
that does not affect Y, then the
probability distribution of Y will
not change.

Three-level causal hierarchy

Table 1 outlines the three-level causal
hierarchy, together with the charac-
teristic questions that canbe answered
ateach level:

» Level 1, association, invokes
purely statistical relationships,
defined by the naked data. Que-
ries at this layer are placed at the
bottom level in the hierarchy
because they only present asso-
ciations and not causal relations.

» Level 2, intervention ranks higher
than association because it in-
volves not just observing
“what is” but changing what
we observe.

» Level 3, counterfactualsis the
highest level of the hierarchy
because it subsumes inter-
ventional and associational
questions.

A simplified example

“There is significant value in docu-
menting and tracking Al failures in
sufficient detail to understand their
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root causes, and to put pro-
cesses and practices in place
toward preventing similar prob-
lems in the future.”’ This ex-
ample shows a simplified ap-
plication of causal abstraction,
at different levels, using do-op-
erator, and rules of do-calculus
ininvestigating the cause ofan
autonomous vehicle accident.
Assume a team of three ex-

K Cyberattack Y
. (Latent Variable) A\

to drive a car with a suspi-
cious emergency braking
system in traffic. There-
fore, our engineers need
to predict quantitatively
the results of an inter-
vention, that is, a Level-2
action, without actually

' performing it.
\ Figure 1(c), versus Fig-
< ure 1(b), shows the Level-2

perts, including a cybersecurity
expert, a computer engineer,

Faulty Brake

A4

Reaction to Obstacle

work of our engineers on
intervening, versus condi-

Collision

and a mechanical engineer are
investigating the cause of an
autonomous vehicle accident.
The computer engineer and the

FIGURE 2. A graphical model representing the relationships
among emergency braking, reaction to obstacle, collision, and
cyberattack.

tioning. In Figure 1(c), en-
gineers are not restricting
the data to specific subsets.
In do (Faulty Brake = 1)

mechanical engineer are con-
sidering an emergency braking system
called Faulty Brake, as the probable
cause of the accident. It was expected
to react to the obstacle and perform an
immediate and heavy braking maneu-
ver, but it did not. They present some
data that indicates some other cars
that have used Faulty Brake were also
involved in similar accidents.

Figure 1(a) shows their population
(observed data) including two sub-
populations, where Faulty Brake = 0
(shown in blue) is the subpopulation
of the vehicles that did not use Faulty
Brake, and Faulty Brake = 1 (shown
in purple) is the subpopulation of
the vehicles that used Faulty Brake.
Figure 1(b) shows the process of condi-
tioning on Faulty Brake =1 and get-
ting the purple subset on the top, or
conditioning on Faulty Brake = 0 and

getting the blue subset on the bottom.
But the reality is that by conditioning
they are just restricting the data to
specific subsets of the data.

Now assume the cybersecurity ex-
pert informs our engineers of the pos-
sibility of cyberattacks shown in the
dotted circle in Figure 2 that could
influence both emergency braking
functionality and the collision. But
he does not provide any data. If our
engineers can conduct randomized
controlled experiments, known as
the golden standard of statistics, they
can address this concern. But unfor-
tunately, many questions donotlend
themselvestorandomized controlled
experiments. We cannot control the
weather, so we cannot randomize the
variables that affect wildfires. Simi-
larly, our engineers cannot ask people

2.

Reaction
to Obstacle

P (Collision | do (Faulty brake), Reaction to Obstacle)
P((Reaction to Obstacle | do (Faulty brake).

(1)
Z Z P ( Collision | Reaction to Obstacle, Faulty Brake")
Fauly Reaction P(Faulty Brake") P (Reaction to Obstacle| Faulty Brake).
Brake' to Obstacle

(2)

(in purple), they investi-
gate what it would be like for vehicles
in the population to use Faulty Brake.
And similarly, for do (Faulty Brake =
0), they investigate what it would be
for every vehicle in the population
which did not use Faulty Brake.

To address the concern about the
possibility of cyberattacks, our engi-
neers need to use do-operator to assess
P((Collision|do(Faulty Brake)). That is,
the probability of collision given the
autonomous vehicle had used Faulty
Brake. Using probability axioms, this
query can be expanded as shown in (1)
at the bottom of the page.

Without available data to use
do(Faulty Brake), our engineers can
apply do-calculus rules to eliminate
do-operators, and answer the query,
using standard probability opera-
tors, as shown in (2) at the bottom of
the page.

Do-calculus that was used in this
example is just one example of the
tools that can be used by cybersecurity
and safety experts to facilitate collabo-
ration with other experts, for example,
engineers and policy and behavioral
scientists. Other possible tools are
probabilistic model checking (an ex-
tension of model checking techniques
to probabilistic systems), and proba-
bilistic programming (an extension of
probabilistic graphical models, leverag-
ing concepts from programming lan-
guage research).
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ntegrating safety and security with

Al is achievable and critical. My

three recommendations: 1) It is
about the interaction, not the union.
2) Embrace the engineering notion
of safety with an eye to the security
measures. 3) Use causal abstraction for
system approaches are offered as one
possible approach for success. Bring
on the collaborators.
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