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A s artificial intelligence (AI) affects our phys-
ical world, like driverless cars, robots, medi-
cal devices, and cyber physical systems, 
cybersecurity will enter those areas as well, 

and security and safety become increasingly entangled. 
That is, there is increasingly a potential for cyberse-
curity compromise to result in physical harm in the AI 

era, for example, manipulation of 
smart-building environments.

As such, the traditional divide- 
and-conquer approaches such as 
dividing the systems into sepa-
rate parts, examining safety and 
security piece by piece, and com-
bining the results no longer work. 
This creates the need, as explained 
by the National Academy of Engi-
neers,1 for a new understanding: 
“Engineers must recognize that a 
cybersecurity system’s success de-
pends on understanding the safety 
of the whole system, not merely 

protecting its individual parts.” This article offers three 
recommendations to address this need.

IT IS ABOUT INTERACTION, NOT THE UNION 
One aspect of AI safety research has focused on build-
ing robots and autonomous vehicles that do not collide. 
And AI security research has been focused on specific 
attacks, for example, input attacks that manipulate the 
data that is fed to the AI algorithm to affect the output of 
the system.
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To have safe and secure AI, we need to 
first understand complex interactions 
(for example, safet y–securit y, sof t-
ware–hardware, human–automation)  
and develop realistic computational 
models that recognize these interac-
tions and their interoperability issues. 
This requires a close collaboration 
between computer science and the 
broader engineering communities. So 
far, this has been limited to the collab-
oration between computer scientists 
and electrical and computer engineers, 
mainly their work on smart grids—
the digital technologies that allow for 
two-way communication between the 
utility and its customers, and the sens-
ing along the transmission lines. This 
unbalanced focus makes many of our 
critical physical infrastructures (for 
example, transportation and mechan-
ical systems, and critical buildings 
which are already in poor physical con-
dition with a C–rating from the Amer-
ican Society of Civil Engineers)2 easy 
targets for cyber criminals.

EMBRACE THE ENGINEERING 
NOTION OF SAFETY WITH 
AN EYE TO THE SECURITY 
MEASURES
Engineers have a long history of re-
search collaboration on reliability and 
safety. For example, electrical and com
puter engineers have built sensors 
and actuators that have significantly 
helped civil engineers to build intelli-
gent infrastructures and monitor their 
safety and structural health. Two ex-
amples are the Golden Gate Bridge 
in the United States, for permanent 
seismic monitoring applications, and 
Moori Tower in Japan, for limiting 
deflections of the structure during 
typhoon winds.3 But what are the rea-
sons behind their successful interdis-
ciplinary collaborations? Two import-
ant reasons are given.

First, engineers speak a common lan-
guage: mathematics. Teaching engineering 

students from various disciplines, I 
have noted that mathematical expla-
nation often steals their attention from 
the surrounding text that describes the 
problem and the solution, regardless of 
the title and the clarity of the text. They 
stay with this habit after graduation, 
even in dealing with nonengineers.

Second, engineers have developed 
modest and realistic expectations 
about safety. Engineers through ex-
perience have learned that instead of 
looking for perfect systems (for exam-
ple, safe for all purposes); they will de-
velop good-enough safe systems. That 
is, systems that would have increased 
safety are not worth the costs of reduc-
ing risk by restricting, or otherwise 
altering the service. Engineers use a 
probabilistic view of mathematical 
truth and social processes; very like 
the “social processes of mathematics 
to achieve successive approximations 

at understanding.”4 For example, to 
work with serviceability and safety 
issues, they define limit states: “con-
ditions beyond which a structure or 
member becomes unfit for service 
and is judged either to be no longer 
useful for its intended function (ser-
viceability limit state) or to be unsafe 
(strength limit state).”4 Then, they for-
mally define their problems in terms 
of limit-state functions by using prob-
abilistic models of computation.

Even engineering codes ref lect 
the system and probabilistic view of  
engineers on safety. One example is 
safety of elevators which comfortab
ly adapts the work of: The Structural 

Engineering Institute, The American  
Society of Civil Engineers, The Amer-
ican Society of Mechanical Engineers, 
and the Institute of Electrical and 
Electronic Engineers all working to-
gether to ensure user safety.5

This is quite different from the 
cybersecurity community, who over 
the past decades, has tried to develop 
perfectly reliable, dependable, trust-
worthy, safe systems, and use methods 
(for example, formal logic) to put a ver-
ified stamp on such systems.

USE CAUSAL ABSTRACTION 
FOR SYSTEM APPROACHES
Undoubtedly, AI has made an amaz-
ing progress in this century. It has 
already enabled us to do many things 
that we were not able to do before, for 
example, pattern recognition. But AI 
systems are not yet able to form hu-
manlike abstractions in precise levels 

that we would need in taking a system 
approach. For example, deep learn-
ing models can give us ground-truth 
knowledge of the causal relationships 
bet ween all their components, and 
can answer very abstract, high-level  
questions, for example, “what is?” ques-
tions. But they cannot answer “what 
if?” and “why?” questions.

To present their system view on 
complex interactions, engineers and 
computer scientists must present their 
intuitive view of a system as a collec-
tion of interacting agents at different 
levels of abstractions. To realize these 
abstractions, they also need tools that 
can help them with computational  

To present their system view on complex 
interactions, engineers and computer scientists 

must present their intuitive view of a system  
as a collection of interacting agents at different 

levels of abstractions. 
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explanation of their views. To address 
these needs, I recommend causal ab-
straction, a general framework for ex-
planation methods in AI. Its basic op-
eration is intervention, which we can 
express using notation from Pearl.6 
Many popular behavioral and inter-
vention-based explanation methods 
in AI can be explicitly understood as 
a special case of causal abstraction. 
Next, I provide a brief overview of 
Pearls’ approach to causal abstraction 
in different levels, using do-operator 
and rules of do-calculus, and then  
present a simplified example.

Do-operator
Do-operator signifies that we are deal-
ing with an intervention rather than 

a passive observation. Do-operator is 
different from the classical operators 
that we use in the standard language 
of probability.

›› Observational P(y|x) answers 
what is the distribution of Y 
given that we observe X variable 
takes value x.

›› Interventional P(y|do(x)) answers 
what is the distribution of Y if we 
were to set the value of X to x.

Rules of do-calculus
Do-calculus, a calculus for probabilistic 
and causal reasoning (in Pearl’s words, 
“machinery of causal calculus”6) is an 
axiomatic system for replacing probabil-
ity formulas containing the do-operator 

with ordinary conditional probabilities. 
It uses three rules as follows:

›› Rule 1 helps us to ignore obser-
vations. It says when we observe 
a variable W that is irrelevant to 
Y (possibly conditional on other 
variables Z), then the probability 
distribution of Y will not change.

›› Rule 2 helps us to exchange 
actions with observations. It says 
if a set Z of variables blocks all 
backdoors from X to Y, that is, 
any path from X to Y that starts 
with an arrow pointing into X, 
then conditional on Z, do (X) is 
equivalent to observe (X).

›› Rule 3 helps us to ignore actions. 
It says we can remove do (X) from 
P(y|do(x)) in any case when there 
are no causal paths from X to 
Y. That is, if we do something 
that does not affect Y, then the 
probability distribution of Y will 
not change.

Three-level causal hierarchy
Table 1 outlines the three-level causal 
hierarchy, together with the charac-
teristic questions that can be answered 
at each level:

›› Level 1, association, invokes 
purely statistical relationships, 
defined by the naked data. Que-
ries at this layer are placed at the 
bottom level in the hierarchy 
because they only present asso-
ciations and not causal relations.

›› Level 2, intervention ranks higher 
than association because it in-
volves not just observing  
“what is” but changing what  
we observe.

›› Level 3, counterfactuals is the 
highest level of the hierarchy 
because it subsumes inter-
ventional and associational 
questions.

A simplified example
“There is significant value in docu-
menting and tracking AI failures in 
sufficient detail to understand their 

TABLE 1. Pearl’s three-level causal hierarchy.

Level Typical activity Typical questions

1. Association:  
P(y|x)

Seeing (observing a certain 
phenomenon unfold)

What is? How would seeing X 
change my belief in Y ?

2. Intervention:  
P(y|do(x), z)

Doing (acting in the world 
to bring about some state of 
affairs)

What if?
What if I do X?

3. Counterfactuals:  
P(yx|x',y')

Imagining (thinking about 
alternative ways the world 
could be)

Why? Was it X that caused Y ? 
What if I had acted differently?

FIGURE 1. Difference between studying (a) observed data, (b) using conditioning, and 
(c) intervening, using do-operator.
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root causes, and to put pro-
cesses and practices in place 
toward preventing similar prob-
lems in the future.”7 This ex-
ample shows a simplified ap-
plication of causal abstraction, 
at different levels, using do-op-
erator, and rules of do-calculus 
in investigating the cause of an 
autonomous vehicle accident.

Assume a team of three ex-
perts, including a cybersecurity 
expert, a computer engineer, 
and a mechanical engineer are 
investigating the cause of an 
autonomous vehicle accident. 
The computer engineer and the 
mechanical engineer are con-
sidering an emergency braking system 
called Faulty Brake, as the probable 
cause of the accident. It was expected 
to react to the obstacle and perform an 
immediate and heavy braking maneu-
ver, but it did not. They present some 
data that indicates some other cars 
that have used Faulty Brake were also 
involved in similar accidents.

Figure 1(a) shows their population 
(observed data) including two sub-
populations, where Faulty Brake = 0 
(shown in blue) is the subpopulation 
of the vehicles that did not use Faulty 
Brake, and Faulty Brake = 1 (shown 
in purple) is the subpopulation of 
the vehicles that used Faulty Brake.  
Figure 1(b) shows the process of condi-
tioning on Faulty Brake = 1 and get-
ting the purple subset on the top, or 
conditioning on Faulty Brake = 0 and 

getting the blue subset on the bottom. 
But the reality is that by conditioning 
they are just restricting the data to 
specific subsets of the data.

Now assume the cybersecurity ex-
pert informs our engineers of the pos-
sibility of cyberattacks shown in the 
dotted circle in Figure 2 that could 
inf luence both emergency braking 
functionality and the collision. But 
he does not provide any data. If our 
engineers can conduct randomized 
controlled experiments, known as 
the golden standard of statistics, they 
can address this concern. But unfor-
tunately, m a ny ques t ion s do not lend 
themselves to randomi z e d cont r ol le d 
experiments. We cannot control the 
weather, so we cannot randomize the 
variables that affect wildfires. Simi-
larly, our engineers cannot ask people 

to drive a car with a suspi-
cious emergency braking 
system in traffic. There-
fore, our engineers need 
to predict quantitatively 
the results of an inter-
vention, that is, a Level-2 
action, without actually  
performing it.

Figure 1(c), versus Fig-
ure 1(b), shows the Level-2 
work of our engineers on 
intervening, versus condi-
tioning. In Figure 1(c), en-
gineers are not restricting 
the data to specific subsets. 
In do (Faulty Brake = 1)  
(in purple), they investi-

gate what it would be like for vehicles 
in the population to use Faulty Brake. 
And similarly, for do (Faulty Brake = 
0), they investigate what it would be 
for every vehicle in the population 
which did not use Faulty Brake.

To address the concern about the 
possibility of cyberattacks, our engi-
neers need to use do-operator to assess 
P((Collision|do(Faulty Brake)). That is, 
the probability of collision given the 
autonomous vehicle had used Faulty 
Brake. Using probability axioms, this 
query can be expanded as shown in (1) 
at the bottom of the page.

Wit hout ava i lable data to use 
do(Faulty Brake), our engineers can 
apply do-calculus rules to eliminate 
do-operators, and answer the query, 
using standard probability opera-
tors, as shown in (2) at the bottom of 
the page.

Do-calculus that was used in this 
example is just one example of the 
tools that can be used by cybersecurity 
and safety experts to facilitate collabo-
ration with other experts, for example, 
engineers and policy and behavioral 
scientists. Other possible tools are 
probabilistic model checking (an ex-
tension of model checking techniques 
to probabilistic systems), and proba-
bilistic programming (an extension of 
probabilistic graphical models, leverag-
ing concepts from programming lan-
guage research).

FIGURE 2. A graphical model representing the relationships 
among emergency braking, reaction to obstacle, collision, and 
cyberattack.
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Integrating safety and security with 
AI is achievable and critical. My 
three recommendations: 1) It is 

about the interaction, not the union. 
2) Embrace the engineering notion 
of safety with an eye to the security 
measures. 3) Use causal abstraction for 
system approaches are offered as one 
possible approach for success. Bring 
on the collaborators. 
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