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Abstract

We investigate diffusion-driven flows in a parallel-plate channel domain with linear density
stratification, which arise from the combined influence of gravity and diffusion in density-
stratified fluids. We compute the time-dependent diffusion-driven flows and perturbed den-
sity field using eigenfunction expansions under the Boussinesq approximation. In channel
domain, the unsteady flow converges to a steady-state solution either monotonically or non-
monotonically (highly oscillatory), depending on the relation between the Schmidt number
and the non-dimensionalized stratified scalar diffusivity, while the flow in the half-space
inclined plane problem exhibits oscillatory convergence for all parameters. To validate the
Boussinesq approximation, we propose the quasi-Boussinesq approximation, which includes
transverse density variation in the inertial term. Numerical solutions show that the relative
difference between the Boussinesq and quasi-Boussinesq approximations is uniformly small.
We also study the mixing of a passive tracer induced by the advection of the unsteady
diffusion-driven flow and present the series representation of the time-dependent effective
diffusion coefficient. For small Schmidt numbers, the effective diffusion coefficient induced
by the unsteady flow solution can oscillate with an amplitude larger than the effective
diffusion coefficient induced by the long-time-limiting steady-state flow. Interestingly, the
unsteady flow solution can reduce the time-dependent effective diffusion coefficient tempo-
rally in some parameter regimes, below even that produced by pure molecular diffusion in
the absence of a flow. However, at long times, the effective diffusion is significantly enhanced
for large Péclet numbers.
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1. Introduction

Diffusion-driven flow is a boundary layer flow that results from the combined influence of
gravity and diffusion, which exists in the density-stratified fluids whenever the gravity field is
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not parallel to the solid boundary. The hydrostatic equilibrium in the density-stratified fluid
with diffusive solute requires two conditions. First, isopycnals should be perpendicular to
the direction of gravity. Second, the impermeable (i.e. no-flux) boundary condition requires
that the isopycnals must always be perpendicular to an impermeable boundary to ensure
that there is no diffusive flux normal to the boundary. Therefore, when the impermeable
boundary is not parallel to the direction of gravity, isopycnals can not be perpendicular
to both of them at the same time. The breaking of the hydrostatic equilibrium yields the
diffusion-driven flow.

The diffusion-driven flow is at the same scale as molecular diffusion due to the forma-
tion mechanism, and as such could lead to interesting dynamics on long time scales or on
small length scales. Therefore, the study of diffusion-driven flow historically was motivated
by understanding the transport and mixing over geological time scales such as the ocean
boundary mixing [28, 39| and salt transport in rock fissures [37, 20, 40, 29]. The recent
applications of diffusion-driven flow have been expanded in many areas. The potential
high-impact studies include the self-propulsion of immersed objects [25, 2|, the molecular
diffusivity measurement [1], the self-assembly of particles in a stratified fluid 7] and airflows
created by mushrooms for dispersing their spores [15].

We find two points that have not been addressed well in the literature. First, the
studies mentioned above mainly concern the long-time stationary configuration of the
diffusion-driven flow, but little is known about the transient dynamics at the earlier stage
of the diffusion-driven flow formation, which can play an important role in some parameter
regimes. Kistovich et al. [21] studied the transient diffusion-driven flow induced by the in-
clined plane using Fourier series expansion. The series representation of the flow converges
rapidly at fixed time, but suffers from non-uniformity in time as the truncations are all
unbounded as time grows. Harabin [19] presented a different perspective of the same prob-
lem. He derived the flow solution valid for all time scales using the Laplace transform and
demonstrate that the flow exhibits oscillatory behavior in its evolution for small Schmidt
(Prandtl) numbers.

Hence, the first goal of this study is to generalize those results to tilted parallel-plate
channel domain and to show how the flow properties change due to the boundary geome-
tries. We explicitly calculate the time-dependent flow solution and the perturbed density
field starting from a uniform linear density stratification using the eigenfunction expan-
sion. Interestingly, for the channel case, the time-dependent diffusion-driven flow exhibits
oscillations for some parameters and decays monotonically for other parameter combina-
tions. This is different from the flows in the inclined plane problem, which always includes
oscillating terms.

Second, the evolution of a passive scalar is crucial in numerous fields including microflu-
idics [3, 30], biology [22, 23|, and oceanography[32]. Using the steady diffusion-driven flow
solution, [37, 20] studied the optimal gap thickness and angle to maximize long time mixing
of a passive scalar advected by a steady flow arising in the tilted parallel-plate channel
domain. Intuitively, unsteady diffusion-driven flows generate different properties than their
steady counterparts, while they are less studied in the literature, and investigating them is
the second goal of this work. Using the time-dependent flow formula we derived, we calcu-
late the effective diffusion coefficient of the passive scalar, which is a fundamental quantity
to characterize the passive scalar distribution. Similar as in the steady case, the unsteady



diffusion-driven flow solution could significantly enhance the tracer dispersion. However,
in some parameter regimes, the unsteady flow solution introduces considerably large os-
cillations in the effective diffusion coefficient and can even decrease the mixing coefficient
temporally.

This paper is organized as follows. In section 2, we formulate the governing equation for
the diffusion-driven flow and document the non-dimensionalization procedure. In section 3,
we derive the expression of the diffusion-driven flow and the coupled density perturbation.
In section 4, we study the effective diffusion coefficient of the passive scalar induced by
the diffusion-driven flow and explore the optimal parameters for enhancing or reducing the
effective diffusion coefficient.

2. Governing equation and nondimensionalization

2.1. Governing equation

There could be two different types of scalars in the system we consider: the stratifying
scalar, C' and a passive scalar T. The stratified scalar contributes to the density stratifi-
cation, which creates diffusion-driven flows. The system could also include passive scalars,
such as a fluorescent dye. The passive scalar will be passively advected by the fluid flow
without changing the velocity field. Both scalars satisfy the advection-diffusion equation
with no-flux boundary conditions, and the equation for the passive scalar takes the form

OT +u(x,t) - VT =k, AT, T(z,y,0) =T1(2,¥), T |ypundary = 0; (1)

where &, is the passive scalar diffusivity, 77(z, y) is the initial data, n is the outward normal
vector of the boundary. Figure 1 sketches two coordinate systems for a tilted parallel-plate
channel domain with a inclination angle 6 which satisfies 0 < 6 < 7. In this setup, x3-
direction is parallel to the direction of gravity, y;-direction is the longitudinal direction of
the channel. Q = {ys|ys € [0, L]} is the cross-section of the channel. The relation between

the lab frame coordinates (x1, z2, x3) and the coordinates (yi, 2, y3) is

m _ [ cos 0 sin@} {xl] o (2)

Y3 —sinf cosf| |z3

In (y1,ys,y3) coordinates system, the direction of gravity is (—sin#,0, — cos@).

We assume the fluid density linearly depends on the stratified scalar. For example, the
density of sodium chloride solution increases linearly as the concentration increases [18].
Therefore, the density field p and the fluid flow u; satisfies the incompressible Navier-Stokes
equation,

p(@tuz—l—uVuZ) :/LAui—axip—pgéig,, ui]aﬂ :O, 1= 1,2,3, V'UIO,
Op+u-Vp=rAp, Onplogg =0, pl, 0 =po —Tzs,

(3)

where §;; is the Kronecker delta, g(cm/s?) is the acceleration of gravity, I' (gram - em™*) is
the density gradient, p, (gram - em™1 - s71) is the dynamic viscosity, p (gram - em™1 - s72)
is the pressure and k, (cm?/s) is the molecular diffusivity of the stratified scalar. In this
study, we make the assumption that the background density function varies linearly with
height. This assumption is a local approximation to the scenario where the density function
changes slowly with respect to height. By assuming this linearity, we aim to simplify the
analysis while still capturing the essential behavior of the system.



Figure 1: Schematic showing the setup for the diffusion-driven flow problem.

2.2. Nondimensionalization

Since we are interested in the dispersion of the passive scalar, we use the diffusion time
scale of the passive scalar as the characteristic time scale of the whole system. With the
change of variables

L? wU Po

pop = p, /{—t’:t, Ly =z, Uu =u, Tp =p, Kpk =K, LFO T,
P
(4)
T(x,t)L* / Tr(x)dx = T'(x,t),
RxQ

we have

U U? U U
PO g gt + P - Vot = B A, — B 0,00 — pogp/Sis, i = 1,2,3,

L2 L’ i T T
L2
Z 9T + guV T = ZZ; AT, (5)
Kp
pOKpa U v o "‘JsﬁA /
t/ + Tu x/p L2 x/p .

We can drop the primes without confusion and obtain the nondimensionalized version

R R

—epﬁtuz + Repu . Vul = Aul - Bmzp - —e2p6¢3, 1= 1, 2, 3,

Pe, Fr

0T + Peyu- VT = AT, (6)

1
m—atp + Pesu - Vp = Ap,
2

where the non-dimensional parameters are the non-dimensionalized stratified scalar diffu-

sivity kg = 2=, Péclet number Pe, = % and Pe, = % Reynolds number Re = %,
P s
Froude number Fr = - and Schmidt number Sc = £ = Pe" If the scalar field is the
VgL POHP
temperature field, then &y, i = Pep is the Prandtl number.
p np Re



It is convenient to consider the problem in (y1, y2, y3) coordinate system. We denote v; as
the velocity component along the y;-direction. Since the initial condition and the boundary
condition are independent of ys, equation (1) and (6) becomes

1 R
p (—@vl + Rev10y,v1 + R6038y31}1> = Avy — 0y,p — F—ip sin 6,
r

Sc
1 Re
p gatvg + Rev10,v5 + Revsdy,vs | = Avg — Oyyp — ﬁp cos b, 7

0T + Pe,v - VT = AT,

1 .
H—ﬁtp +Pesv-Vp=2Ap,  ply e = po—Lo(y18in6 + ys cos o).
2
We next consider some combination of experimental physical parameters, which could
give us the order of magnitude of the non-dimensional parameters and help with the per-
turbation analysis. The scaling relation for the characteristic velocity and the physical
parameter varies for different boundary geometries. According to the formula in [28, 20|,

the characteristic velocity of steady diffusion-driven flow in the parallel-plate channel is
1 1

U=« (%)Z and the characteristic boundary layer thickness is L, = (f’t—g)j. In an ex-

periment with sodium chloride solution, the parameters could be g = 980 cm/s?, p = 0.01
gram/(cm.s), ks = 1.5 X 107 cm?/s, T' = 0.007 gram/cm?*, p = 1 gram/cm?®, we have
U = 0.00123353 cm/s, L, = 0.0121602 cm. If L = 0.1 cm, we have

R
Re =0.0123353, Pe, = 8.22353, Fr = 0.000124605, Sc = 1000, F—E; = 794468. (8)
r

For a larger channel width L =1 cm, we have

Re = 0.123353, Pe, =82.2353, Fr = 0.0000394036, Sc = 1000, R—i = 7.94468 x 10",

Fr
(9)
We can see that the Reynolds number is small, and the gravity term is important in the
governing equation.

3. Flow equation

The Boussinesq approximation is commonly employed in the analysis of buoyancy-driven
flow [11], as well as in previous studies of steady diffusion-driven flow [28, 39]. This ap-
proximation is valid when the relative change in density is small, i.e., d,p/p < 1, which
holds true for the above given parameters where the value is 0.007. Therefore, adopting
the Boussinesq approximation is a reasonable choice. The Boussinesq approximation states
that the density variation is only important in the buoyancy term,



1 Re .
20 (§8ﬂ)1 + Rev,0,y,v1 + Rev38y3v1) = Avy — Oy, p — —Frezpsm 0,
1 Re
00 §atfu3 + Rev10y,v3 + Revsdy,vs | = Avs — Oyp — @p cos 6, (10)

0T + Pe,v - VT = AT,

1 .

H—atp +Pesv-Vp=2Ap, ply 0 =po —To(y1sind + yscos o).
2

Notice that, in this setup, the flow is invariant under the translation in y;-direction.
Hence, we can assume the velocity only depends on ys. Then, the incompressibility d,,v; +
Oy,v3 = 0 becomes 0,,v, = 0 which implies v3 = 0. To further simplify the equations, we
introduce the density perturbation f(ys,t) which satisfies

p=po+ f(ys,t) — To(yi sin 6 + y3 cos h). (11)

We also write the pressure as p = py + p, where py balances the background density and
solves the equation

R
Oy Po = —F—; sinf(py — Lo(y1 sin + y3 cos 9)),

Re (12)
Oyspo = Tz 08 0(po — Loy sin O + y3 cos 6)).

Since the right hand side of the above equation is curl-free, the solution py exists. In fact,
we have

r r
Po= "3 (pgy3 cos 8 + poyy sin @ — Toyqy3 cos @ sin 6 — 703/% cos® ) — 703/% sin? 9> . (13)
T

Now, equation (10) becomes
. Re .
§p08tv1 = 8531)1 Y ﬁf sin @, U1|y3:0’1 =0, v, =0,
_ Re
0=— ySp—ﬁfcosﬁ, (14)

1 .
H—atf — 8§3f = Pe;Lovisin®, 9y, f|,,_o, =Tocosd, fl,_,=0.
2

Obviously, p can be a function of y3 only. Due to the non-dimensionalization, py = 1. We
obtain the following equation for analyzing

Re
2 : _ _
§at’01 - aygvl = _Frzfsm 0, Ul|y3:o,1 =0, Ul|t=0 =0,

15)
1 . (
K—Z(’?tf — ajsf = Pe,Lovisin®, 9y, f|,,_o, =Tocostd, fl,_,=0.
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Figure 2: (a) Normalized steady flow solution % for various parameter v. (b) The perturbed density field
fs for different ~.

We can decouple f and v; by differentiating the equation and obtain the following equations

1 1 I'gRePe; (sin 6 2
<Ii_at B 6133) (_at - 0§3> v =—— ( ) U1 U1|y3=0,1 =0, ol =0,
2

Sc Fr?
1 1 I'oRePe, (sinf 2
(gat - 853) (K_Qat B @i) f=-= FrQ( : o Ouflymor =Tocost,  fl,o=0.
(16)

To focus on the transient dynamics, we decompose the density perturbation and velocity
into the steady part and the transient part, namely, f = fs + f;, v1 = vs + v;. We first
consider the steady solution, which satisfies the following equation

RePe;, , . Re '
a;jgvs — ——rz (Sln 0)2 F(]Us; v8|y3:071 - 07 8331)3‘1/3:071 = WFO Slnecos 87 (17)
RePe, . 9
a;;fs = e (sin®)” Ty fs, 33,,£,,f$|y$:071 =Tycosd, 8;2]‘8‘%:071 =0,

We can solve it easily and obtain the solution

fo= [gcosB(cos(y(1 — y3)) cosh(yys) — cos(vyys) cosh(y(1 — y3)))
’ 7(sin(y) + sinh(7)) 7
_ 2y cot(f) sin(yys) sinh(y(1 — ys)) — sin(y(L — y3)) sinh(yys)

Pe; sin(7y) + sinh(7)

(18)

Vs )

1
. 2 i
where v = \/Li (W) 4, which is consistent with the steady solution presented in

[28, 20]. 7! indicates the thickness of the boundary layer. As shown in figure 2, both the
flow and the perturbed density are confined in a narrow region near the boundary for a
large v. In addition, both f and v; are odd functions with respect to y3 = %

When the channel gap thickness approach to the infinity, the system should asymptoti-



cally converge to the case with the inclined plane. Indeed, as v — 0o, we have

e " cos(7y)

fs = =Ty cos ————=,
~
19
27 cot(f) e sin(yy) (19)
Vs = )
Pe, 23

where is consistent with the solution presented in [28].
The transient part of the density perturbation f; satisfies the equation

1 ) 1 ) T'gRePe, (sin §)° B
((SC@ ayg) </§2 at 0y5> ‘|‘ FI‘2 ft — 07 (20)

ay2ft|y3:071 = 07 ft’t:() = _fs-

We need one more condition to determine the solution. From (K—lzat — 8;3) f = Pe;['yvy sinb,
we have (é@t —8§3> f‘t:O = 0 which implies H—Zatft = 8§3ft‘t:0 + 02, fs = 0. To

shorten the expression, we denote ¢y = 1, \g = 0 and ¢, = V2cosnmy, ¢, = V2sinnmy,
A\, = n?m2, n > 1 as the eigenfunctions and eigenvalues of the Laplace operator in the cross
section of the parallel-plate channel with no-flux boundary condition and pure absorbing
boundary condition, respectively. To be more specific, (A, — A)¢, =0, 0,9, o, =0 and
(A= A)pn, =0, ¢, o, = 0. Either {¢,},~ or {¢,},=, U{1} form an orthogonal basis on

1
the cross section  with respect to the inner product (f(ys),g(ys)) = [ f(ys)g(ys)dys. For

0
the velocity, we prefer to use ¢, since the linear combination of them satisfies the boundary
condition automatically. With the same argument, we prefer to use ¢, to represent the
perturbed density field. The straightforward calculation yields

ft - i <f5’ ¢"> ¢n(y3)€_%(8c+ﬁ2)/\nt (COsh (%Tﬂf) + %j—@) sinh (%)) )

n=1

an = /(Sc — Ky)2A2 — 167*Scs, (21)

(o) = V2 cos @ ((—1)" — 1) (sin(7) (72n? — 292) + sinh(7) (272 4 72n?))
v (4~* 4 m4n?) (sin(y) + sinh(7y)) '

Then the cosine expansion of v; is available from the relation (15). We can obtain the
sine expansion of the velocity using the same strategy. The transient part of the velocity
component in y; direction satisfies the equation

1 ) 1 ) ToRePe, (sinf)®\
<(scat a%) (@at a%) * Fr? v =0, (22)

Vtlysmo1 =0, Vilig = —s.

We need one more condition to determine the solution. Based on (&at — 853) v = —% fsind,
we have (&@ — 853) U‘t:o = 0 which implies éatvth:O = 8§3Ut|t:0 + 8531)5 = 0. We have

8



the series representation

= —1(Sotr ant An (Sc + ko) . ant
== D )l H T (con (%) + 252 (%))

_ 2ycot(f) 2v/21y% ((—1)" 4 1) n(cos(y) — cosh(y))
Pe, (47* + 7min?) (sin(y) + sinh(y))

<Us, ¢n> =

In a system with the inclined plane, the transient part of the diffusion-driven flow decays
algebraically and exhibits oscillation behavior for all Schmidt numbers [19]. Unlike the
semi-infinite domain, here, the transient part of the flow vanishes exponentially. Moreover,
v; can be a monotonic function for some parameters and oscillatory for other parameter
combinations. For instance, in the limiting case Sc = oo, we have

ft = - Z e_tm (%4'/\”) ¢n(y3) <fsa ¢n> )
- (24)

U=~ i e_mz(%‘*‘)‘n) ‘Pn(y?)) <U5, SOn> .

n=1

In this case, a, is a real number for all n. Since (vg, p,) is positive definite, v; = v, + vy
converges to the steady solution v, monotonically.
When Sc = ko, we have a simpler expression

3 ~Ank2 A
fo=- Z (o dn) In(ys)e ™" (COS (27%Kat) + 5 sin (2725215)) ,

= (25)
v Z (Vs Pn) Pn(ys)e " | cos (297hat) + An sin (27%kot)

n=1 T " 2,}/2 .

In this case, a,, is a pure imaginary number for all n and the flow solution includes oscillatory
terms. It is easy to show that the oscillation terms only appear if a? < 0 for some n, which
can only happen when the parameters satisfy

Ko (874 + 4/4798 + miyint + 7r4n4>

Ko (874 — 44/478 4+ miyint + 7r4n4> q
< e <

IneZt
’ min4 min4

(26)
The inclined plane can be considered as a tilted parallel-plate channel domain with the
infinite channel width. As the channel width L increases, Pe; and « increases. For a large
v, we have the asymptotic expansion

Ko (874 — 4478 + miyint + 7T4n4) ot L0
mind 1674 T

Ko (874 + 4+/478 + miyind + 7r4n4>

1672 ko .
I Y + 2k + 0O (7 ) .
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Figure 3: Panel (a) The transient part of the diffusion-driven flow provided in equation (23). We use the
terms with n < 200 in the series. We verify the truncation error is small enough by doubling the number
of terms. Panel (b) The unsteady diffusion-driven flow solution. The parameters are Sc = ko = 1074,
v =127, Pe, =1,0 = 7.

Therefore, in the large channel width limit, we observe the oscillation for all Sc, which is
consistent with the conclusions for the inclined plane problem [19].

Next, we seek the parameters for observing pronounced oscillations in the time-dependent
flow solution. The flow transient time scale (set by the longest lived mode) is W The

dn . We are interested in maxi-
16v4Scka—(Sc—kg)2m?

mizing the number of oscillations in this time interval which can be done by maximizing the

2(Sctro)m> , which is the number of periods that we
167%Scra—(Sc—kg)2ms

can observed within the transient time scale. In fact, when Sc = kg, this quantity reaches
its maximum value Z—i Figure 3 shows the evolution of the time-dependent diffusion-driven
flow solution with Sc = k5. The transient part of the flow v, is large near the boundary
at a short time scale and then has oscillations with a relatively smaller amplitude. The
oscillation amplitude is comparable to the magnitude of the steady solution. Therefore,
from panel (b) of figure 3, we can see that the full flow solution has visible fluctuations. We
remark that small values of Sc and ko are possible if the stratified scalar is the temperature
and the passive scalar is the salt solute, since the thermal diffusivity for liquid metals are
generally of the order of 1 cm?/s whereas the salt diffusivity is at the order of 107> cm?/s.

Lastly, the original coupled equations for the velocity and perturbed density involve
elliptic operators and first-order time derivatives, and at first glance, may appear similar
to elliptic equations. However, the decoupled system (20) reveals a hyperbolic equation
with a second-order time derivative, leading to distinct properties compared with elliptic
equations. To illustrate the different, we compare equation (20) with the case of a second or-
der diffusion problem with a Laplace-Beltrami operator using eigenfunction expansion with
modes, ¢,(y)e *!. According to the Sturm-Liouville theory, the eigenfunction expansion
has temporally decaying modes indexed by the well-ordered eigenvalues of a one-dimensional
Laplace-Beltrami operator, \, < A,.1. For each mode, \,, the associated eigenfunction,
on(y) has exactly n — 1 zeros, (notice that the higher dimensional results are different [5]).
Interestingly, the operator in equation (20) doesn’t have this property. For example, when

period of the associated oscillating term is

ratio of these two time scales

10



ko =1, 7 =3, Sc = 15, the coefficients of ¢;(y3) = V2 cos(mys) and py(ys) = V2 cos(2mys)
in equation (23) are, respectively,

648 81w
N (2 100 t) (1 648 s8lrl )
+cos| =A/— — —¢ ,

<US7 ()01> € 20 817r4 2 5 100
\/ 100

29 h 3247?4

(0, o) e E ™ sin ( 2V ©eoun (L, f32AT0 648,

Vs, e cosh [ = - —
72 5,2t ot 2V 25 5

(28)

291 (% 5247r —@—115“2)t
~ (v, ©2) e
10 3247'r4
7(; 32474
+0O e \?V ® ERinE , t— .

Since —% ~ —5.42828 and ; % — 88 Lgr? ~ —4.88442, the coefficient of y, decays

slower than the coefficient of ; at long times, but has more spatial oscillations.

3.1. Quasi Boussinesq approximation

In the preceding section, we demonstrated how the Boussinesq approximation can sim-
plify the problem and capture the nontrivial dynamics of the system, enabling us to obtain
an exact solution for the unsteady shear flow. This approximation assumes a constant den-
sity function, denoted by py, in the time derivative term in equation (7). To further improve
our understanding and capture more comprehensive behavior, we introduce an alternative
approximation in this subsection that accounts for density variations in the y3 direction,
namely,

1 Re .
(po + f(ys, t) — Toys cos ) <§8tv1 + Rev,0y,v1 + Revgay3vl> = Avy — Oy, p — F2Psin g,

R
ezpcos 0,

1
(po + f(y3, t) — F0y3 COS 9) <§aﬂ)3 + Rem@ylvg -+ Rev38y3v3> = Al)g — 8y3p — ﬁ

&,T + Pe,v - VT = AT,

1 .
/i—atﬂ + Pe,v - Vp = Ap, p’ly‘—)oo = po — L'o(y18in 60 + y3 cos 0).
2
(29)
This is a valid approximation when 0 < 1, as p = pg + f(ys3,t) — Foys cos . This approxi-
mation retains the most advantages of the Boussinesq approximation in analysis. First, we
can still find the solution that only depends on y3, resulting the following equation:
1
Sc (

H—2<9tf — 05 f = Pe,Lgu; sin6, Oys flyy—o1 = TocosO,  fl,_o =0

Re . .
1+ f —Toyscosb) Oy — 053211 = —Ff sin 6, vl|y3:071 =0, vl,.o=0,
g (30)

11



Figure 4: The relative difference between the solution of equation (15) and the solution of equation (31)
with 6 = 7 in panel (a) and § = J5 in panel (b). The rest parameters are v = 1, g = 1, 52 = 1, Sc = 1. The
relative difference is defined as W,{%ﬁ)’ where f; denotes the solution of equation (15) and fo denotes
the solution of equation (31)

Here, pg is set to 1 due to non-dimensionalization. Second, we can also decouple f and v,
by differentiating the equation and obtain the following equation

& (14 f —Toyscosf 1
(SC( / 5 ol )at—aja) (K—Qat—a;)f:—m‘*f,

Oy fl,—01 = Tocos®,  fl,_,=0.

(31)

Once we have obtained the perturbed density field, we can use it to compute the velocity
field with equation (30). The steady-state solutions of equations (15) under the Boussinesq
approximation is the same as the solution of equation (30), but their transient dynamics
differ. Due to the nonlinearity of the problem, it is difficult to find an exact analytical
solution of equation (30), and here we numerically compute the solutions using NDSolve in
Mathematica. We plot the relative difference between the solutions obtained from equations
(15) and (30) in Figure 4. For both large and small inclination angles, the relative differences
of the perturbed density field is around 10~*, demonstrating that the system dynamics are
not significantly affected by the transverse density variation in the time derivative term of
the governing equation in this parameter regimes. This demonstrates the validity of the
Boussinesq approximation for small angles.

4. Dispersion induced by the unsteady diffusion-driven flow

In this section, we focus on the evolution of passive scalar under the advection of the
unsteady diffusion-driven flow. The well-known Taylor dispersion [31, 4] shows that as
the flow acts to smear out the concentration distribution in the direction of the flow, it
enhances the dispersion rate of the concentration distribution at which it spreads in that
direction. Additionally, many approaches demonstrated that the distribution of a diffusing
passive tracer under the shear flow advection is approximately governed by a diffusion
equation with an effective diffusion coefficient at long-times, such as Hermite polynomial
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series expansion [10], homogenization theory [38, 8], Aris moment approach [4, 34, 33, 12],
center manifold theory [24, 36, 14| and the moment reconstruction [13, 6].

We first formulate the approximation theory of the Taylor dispersion. The reader can
find more details in [14]. The effective equation for the governing equation of passive scalar
(6) at long times is

T + Pey010,, T = keg(t)00 T, ke = 1+ Pe, (01T1), (32)
where 77 is the solution of the auxiliary problem

@Tl — 8§3T1 = Pep<U1 — 171), Tl(yg, 0) = 0, 5’y3T1] 0. (33)

ys=0,1 —

2
If the initial condition of the passive scalar is a Gaussian function T'|,_, = ﬁe_%, then

we have the exact formula for the variance
t
Var(T)(t) = Var(T)(0) + 2 / Kt (s)ds. (34)
0
For general initial conditions, we have more exponential decaying terms in the variance
formula. Equation 34 is a valid approximation at long times. The exact variance formula

can be found in [34, 33].

Using the relation between the flow and density perturbation (15), we have

10,1, — 02 f,

OTh = (9;3T1 = Pep ( Pe Iy sin 6

+ 'US> s Tl(y;g, O) = O, 8y3T1|y3:071 =0. (35)

The solution is

— sy Pn bn 1 — e A
T1 = Pepz (% + <Us, ¢n> <+)) (bny (36>
n=1 § "
where
_ 2ycot(d) V29 ((=1)" = 1) (sin(y) (29° + 7°n?) + sinh(y) (27* — 7*n°))
Y (4" + w'n®) (sin(y) + sinh(7)) |
by = — (7 (@} — a2 (S¢* + i (=312 — 2S¢ +4))) +

Koty (A2 (kg +Sc —2)2 —a2)

ka1 5S¢ t n : t n
o~ At (ai <— cosh (%)) — a? )\, (3k2 + Sc — 2) sinh (%)

t
+ap\2 (Sc2 + Ko (—3Kky — 2Sc + 4)) cosh <%>

123 (S — ra) (k2 + S — 2) (ks + Sc) sinh (%”) >> .
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Then, we have the series representation of the effective diffusion coefficient

fs;¢n 1_ e_A"t
Keff = 1+ Pe Z (Pe T sm@b” + <’Usa¢n> A,

Ko+Sc

<f87 (bn) ez . tay, (Zi + )‘i ("i% - 802) tay,
- h{— h (=2 :
X <<U5, ¢n> PGSFO <in 0 SIn 5 2/£2a/n —+ )\n cos 5

(38)
To understand the contribution from the transient part of the flow solution, we compare
it with the effective diffusion coefficient induced by the steady flow solution,

> 1 —e Mt
Reff s = 1 + Pei Z <Us’ ¢n>2 <)\—) 9 (39>
n=1 n
and the long time limit of the effective diffusion coefficient
Pe? cot?(0)

5 . . .
Ker(00) = 1+ 2P (sim(7) + sinh(7))2 (5 sin(2y) + 6 sin(y) sinh(y)+

5 cos(y) sinh(7y) + y(cosh(27y) — cos(27)) — 5 cosh()(sin(y) + sinh(v))) .

(40)

As an example, in a realizable experiment of sodium fluorescein diffusing in stratified sodium
chloride solution, the parameters could be g = 980 cm/s?, u = 0.01 gram/(cm.s), T' = 0.007
gram/cm?, p = 1 gram/cm?®, 6 = 7. The diffusivity of sodium fluorescein is ry = 4.2 x 1076
cm? /s 9], and the diffusivity of sodium chloride is k3 = 1.5 x 107> ¢cm?/s [35]. Based on the
formula of the effective diffusivity, we have keg(00) = 6.958 for L = 0.1 cm, keg(00) = 13.103
for L = 1 cm. The difference between the diffusivities of passive scalar and stratified scalar
could be much larger in temperature stratified experiments, where the enhanced effective
diffusivity will be more significant.

Panel (a) in figure 5 shows the effective diffusion coefficient induced by the unsteady
flow present in figure 3, where the passive scalar molecular diffusivity is much smaller than
the stratified scalar diffusivity. We can see that the effective diffusion coefficient induced
by the steady flow converges to the limiting value at the passive scalar diffusion time scale
t = 1, while the effective diffusion coefficient induced by the unsteady diffusion-driven flow
persists huge oscillations with the amplitude that is around twice of the limiting value at
relatively larger time scales. Panel (b) in figure 5 shows the effective diffusion coefficient
when the molecular diffusivity of passive scalar and stratified scalar are same. In this case,
the effective diffusion coefficients induced by the steady and unsteady flow solution are
closer. Interestingly, instead of enhancing the effective diffusion coefficient, the unsteady
flow solution temporally reduces the effective diffusion coefficient below 1. In contrast, the
steady flow creates dispersion enhancement for all parameters, which can be easily verified
from equation (39). Additionally, we emphasize this dispersion reducing phenomenon is
not observed in the scalar transport with single-frequency time-varying periodic shear flows
[34, 33, 12]. We think this reduction is due to the interaction of different modes in the
space-time decomposition of the shear flow. In the appendix, we present a simple shear
flow example that consists of two modes and can reduce the dynamic effective diffusion
coefficient below 1 at the earlier stages of the evolution.
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0 20 40 60 80 100

Figure 5: Effective diffusion coefficient for various parameters. The red solid line indicates the time depen-
dent effective diffusion coeflicient induced by the unsteady diffusion driven flow. The formula is provided
in equation (38). The blue dashed line is the effective diffusion coefficient contributed by the steady part
of the flow which is calculated by equation (39). The black dash-dot curve is the long time limit of the
effective diffusion coefficient. The formula is provided in equation (40). Panel (a): The parameters are
Sc=ke=10"% y=127m, Pe, =Pey; =1, 0 = %+ The corresponding velocity field is presented in figure 3.
Panel (b): The parameters are Sc = 50, ko =1, v =5, Pe, =Pe, =1, 0 = 7.

To further understand this phenomenon, we are interested in the dependence of the
minimum effective diffusion coefficient min, keg(¢; Sc,y) and the time for reaching its min-
imum value t,,;, = argmin,keg(t; Sc,7y) on Sc and y. We numerically search the minimum
value and the results are summarized in figure 6. We have several observations. First,
in this parameter regime, as ko decreases, min, g. (min; ke) decreases and ¢, increases,
which implies the dispersion reducing phenomenon is more significant for small 9, namely,
when the passive scalar diffusivity is larger than the stratified scalar diffusivity. Second,
min, ke (t; Sc, y) is considerably less than 1 for moderate v (10 ~ 20) and is closer to 1 for
large .

Next, we focus on the dispersion enhancement at long times. First, we consider the
dependence of the enhancement on the parameter v. We have the asymptotic expansion of
the effective diffusion coefficient for large and small ~,

Pe? cot?(6 5
Ker(00) =1 + pTQ() <1 ~ 5 + (9(6_7)) .Y — 00,
’ (41)
PeZ cot?(d) [ A8 2879~
. =1 P — O (73 — 0.
Rer(00) =1+ —5 <22680 1os6as2100 T O 00 )) 7

These asymptotic expansions suggest that the effective diffusion coefficient is bounded by
Pe?J cot?(6) K2 cot(6)
Pe? Kp
L — oo. When the channel width is small, the diffusion-driven flow is too weak to enhance
the scalar dispersion. When the channel width is large, the diffusion-driven flow is confined
in the region near the boundary and is not efficient to transport the scalar located far away
from the boundary. Figure 7 shows the enhanced effective diffusion coefficient as a function
of v with Pe, = 1. As we expected, the enhanced effective diffusion coefficient is zero

when v = 0, and converges to one as v increases to infinity. This analysis shows that the

In fact, v — 0 as the channel width L vanishes and v — oo as
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Figure 6: The first row shows the minimum value of the effective diffusion coefficient min; g (t) for (v, Sc) €

(0, 120] x
the minimum value min, g, (min Keg) in this parameter regime.

(0,400], three different ro, # = 5 and Pe, = Pe; = 1. The black dot indicates the location of
The optimal parameters for reaching

min, sc (ming Kegr) are v = 12.9407 and Sc = 58.5349 for ko = 0.25, v = 11.6999 and Sc = 166.6348 for
ko =1,y =10.16 and Sc = 400 for ko = 4. The second row shows ¢y, for kg reaching the minimum
value. We use the terms with n < 259 in the series.
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Figure 8: keg — 1 against the inclination angle . The parameters are Pe, = Pe;, = 1. In panel (a), y1 = 1,
in panel (b) 11 = 10.

dispersion of the stratified scalar can at most be doubled in the presence of diffusion-driven
flow. In contrast, the effective diffusion coefficient of the passive scalar could be significantly
enhanced by the diffusion-driven flow when the passive scalar diffusivity x, is much smaller
than the stratified scalar diffusivity s, namely, Pe, > Pe;.

Second, we consider the dependence of effective diffusion coefficient on two different
Péclet numbers. The shear flow enhanced effective diffusion coefficient of a passive scalar
is proportional to the square of the Péclet number Pe,, which has been demonstrated by
many methods such as homogenization theory [38, 8], Aris moment approach [4, 34, 33, 12].
All formulae of the effective diffusion coefficient (38), (39) and (40) are consistent with this
conclusion. In contrast, the effective diffusion has a much more complicated dependence
upon the stratified scalar’s Peclet number, Pes, as is clear from the formula given in (40).

Third, we study the dependence of the effective diffusion coefficient on the inclination
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Figure 9: The optimal inclination angle 6y for inducing the maximum effective diffusion coefficient as a
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1

angle. For fixed Péclet numbers and v, = NG (_RePesFo

1
o )4, we have

Pe? V362
. -1 P 1 95/2 0
Rer(20) =1+ 5o <22680 roEn)). 00

Pey (0~ 5)° (5

Ref(00) = 1+ 27, P —sin (27;) + 5 cos (1) sinh (7;) — 5cosh (1) (sin (1) + sinh (7))

2

3
671 sin (1) sinh (1) + 71 + (cosh (2y1) — cos (271))) + O (9 — g) , 00—

T
§.
(42)
Figure 8 plots the enhanced effective diffusion coefficient as a function of the inclination
angle 6. The enhanced effective diffusion coefficient vanishes at = 0 and 7, which is
consistent with the asymptotic expansions (41). The shape of this curve depends on the
value of ;. It is symmetric when 7, is small, and skewed when ~; is large. Numerical
calculation shows that the enhanced effective diffusion coefficient reaches the maximum
value keg ~ 0.0000109356 at 8 ~ 0.783409 < 7 when 1 = 1, and reaches the maximum value
Kef = 13.6319 at 6 ~ 0.110802 when 7, = 10 . Figure 9 shows the optimal inclination angle
Oy for inducing the maximum effective diffusion coefficient as a function of the parameter
v1. For small v;, the optimal inclination angle is around ¢ = 7 ~ 0.785398 which can
be seen from equation (41). As 7 increases, the optimal inclination angle decreases. The
dependence of the enhanced effective diffusion coefficient on the inclination angle and the
parameter 7, is summarized in figure 10.

5. Conclusion and discussion

Here we have explored the diffusion-driven flow in the tilted parallel-plate channel do-
main with a linear density stratification along with the effective mixing of a diffusing passive
scalar advected by this flow. Exact expressions for the flow were derived using an eigen-
function expansion, where it was established that the unsteady flow converges to the steady
solution monotonically or oscillatory depending on the relation between the Schmidt num-
ber and the non-dimensionalized diffusivity. We demonstrated that when ks = Sc, we have
the most observable oscillations in the flow evolution. We then calculated the exact scalar
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Figure 10: The enhanced effective diffusion coeflicient as a function of the inclination angle and the param-
eter 1. The red solid line indicates the optimal inclination angle 6y for inducing the maximum effective

diffusion coeflicient when the parameter v; = % (%

)% is given. The parameters are Pe, = Pe; = 1.
distribution variance evolution and effective diffusion coefficient for the passive scalar. The
formula demonstrates that the diffusion-driven flow could significantly enhance the effective
diffusion coefficient of the scalar, especially when the molecular diffusivity of the passive
scalar is much smaller than the stratified scalar diffusivity. This enhancement could have
potential applications in geophysics and in microfluidics. We discovered a nonlinear de-
pendence between the enhanced effective diffusion coefficient and the Péclet number of the
stratified scalar, which is different from the typical quadratic scaling relation for the passive
scalar in a shear flow.

Future work includes several directions. First, the steady diffusion-driven flow has been
studied in many different boundary geometries [17, 27, 26, 16]. We are interested in in-
vestigating the time-dependent solution in those domains. Second, the current analysis
assumes a linear stratification to simplify the calculation. In future work, we are interested
in analyzing the flow and scalar evolution using full numerical simulations to further explore
the validity of the Boussinesq approximation. Third, the diffusion-driven flow might exist
in the presence of other external force fields as long as the direction of the external force
field is not parallel to the impermeable boundary. One possible external force field is the
electric field, and therefore we expect the diffusion-driven flow could be observed in some
electrohydrodynamic problems.
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Appendix A. Reduction of the effective diffusion coefficient

We present a simple shear flow that explicitly demonstrates a case in which the dy-
namic effective coefficient can be less than one on transient timescales. When v(y,t) =
V2cos Ty (e — e7t), the solution of equation (33) is

e (e(ﬂ”)t (72— 2) (—et) + 72 — 1) — 1)

2 — 3m2 4 7t

(A.1)

T, =

)
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The effective diffusion coefficient is given by

e~ (et — 1) (D (w2 — 2) et 72 — 1) — 20 + 3)
2—-3m2+ 7 '

(A.2)

K/eff(t) =1- PGIQ)

When Pe, = 1, keg(1) ~ 0.986359 < 1, namely, the longitudinal dispersion is temporally
reduced by this time-dependent shear flow.
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