
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
https://doi.org/10.1090/jams/1030
Article electronically published on August 11, 2023

INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY

BRYNA KRA, JOEL MOREIRA, FLORIAN K. RICHTER, AND DONALD ROBERTSON

Contents

1. Introduction 1
2. Preliminaries 4
3. A discussion of B1 + B2 ⊂ A 8
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1. Introduction

Szemerédi [28], settling a longstanding conjecture of Erdős and Turán, proved
that every set of natural numbers with positive upper density contains arbitrarily
long arithmetic progressions. Since that work, a variety of generalizations have
appeared, guaranteeing the existence of various finite patterns in sufficiently large
sets of integers. Among the notable achievements are the multidimensional gen-
eralization of Furstenberg and Katznelson [14], the polynomial generalization of
Bergelson and Leibman [3], and the groundbreaking theorem of Green and Tao [16]
on arithmetic progressions in primes.

Erdős and Graham [7] conjectured that sets of natural numbers with positive
upper density contain not only finite arithmetic configurations, but various infinite
ones as well. In particular, Erdős conjectured that any set with positive upper
density contains a sumset B1 + B2 = {b1 + b2 : b1 ∈ B1, b2 ∈ B2} of two infinite
sets B1, B2 ⊂ N. Under the stronger assumption that the density exceeds 1/2,
this conjecture was proven in [5]. In full generality, it was resolved in [26], using
a combination of combinatorial analysis, non-standard analysis, and an ergodic
structural result. A more streamlined and purely ergodic proof was subsequently
given by Host in [17].

We are concerned here with a natural generalization of this result to higher
orders. To be precise, we focus on the question of whether sets with positive upper
density must contain for each k ∈ N a sumset

B1 + · · · + Bk = {b1 + · · · + bk : b1 ∈ B1, . . . , bk ∈ Bk},

Received by the editors June 3, 2022, and, in revised form, March 28, 2023.
2020 Mathematics Subject Classification. Primary 05D10, 11B13, 37A05; Secondary 11B30.
The first author was supported by National Science Foundation grant DMS-205464. The fourth

author was supported by EPSRC grant V050362.

c⃝2023 American Mathematical Society

1

Licensed to Northwestern Univ. Prepared on Mon Apr 22 15:49:33 EDT 2024 for download from IP 129.105.81.53.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://www.ams.org/jams/
https://www.ams.org/jams/
https://doi.org/10.1090/jams/1030


2 B. KRA, J. MOREIRA, F. K. RICHTER, AND D. ROBERTSON

where B1, . . . , Bk ⊂ N are infinite. Our main result gives a positive answer to
this question under the more general assumption of positive upper Banach density,
which we phrase in terms of Følner sequences. Recall that a Følner sequence in N
is any sequence Φ = (ΦN )N∈N of finite subsets of N satisfying

(1.1) lim
N→∞

|(ΦN − t) ∩ ΦN |
|ΦN | = 1

for all t ∈ N, where ΦN − t denotes the shift {x ∈ N : x + t ∈ ΦN}. For example

ΦN = {LN , LN + 1, . . . , MN − 1}
defines a Følner sequence whenever MN − LN → ∞ as N → ∞. A set A ⊂ N has
positive upper Banach density if there is a Følner sequence Φ such that

(1.2) lim
N→∞

|A ∩ ΦN |
|ΦN | > 0.

With this definition, we are ready to state our main theorem, which answers [26,
Question 6.3].

Theorem 1.1. If A ⊂ N has positive upper Banach density then for every k ∈ N
there are infinite sets B1, . . . , Bk ⊂ N with B1 + · · · + Bk ⊂ A.

We believe that this result and its antecedents [5, 17, 26, 27] are the first to
guarantee infinite arithmetic configurations in all sets of positive upper Banach
density. The latter papers [5,17,26] all relied on a method introduced in [5] (see [5,
Proof of Theorem 3.2] and [26, Proposition 2.5]) to construct two-fold sumsets
B1 + B2 within positive density sets using a variant of an intersectivity lemma of
Bergelson [1, Theorem 1.1]. This technique played a particularly important role in
[17,26], where it was used to transfer the combinatorial problem of finding sumsets
in sets of positive density into an ergodic theoretic problem of set recurrence in
measure preserving dynamical systems. Although this approach works well when
dealing with two-fold sumsets B1 + B2, it is not clear how to extend it to find
B1 + · · · + Bk in sets of positive density when k ! 3. For this reason, it is not
clear how to generalize the proofs in [17,26] to produce a proof of Theorem 1.1. We
overcome this obstacle by introducing a new approach that is distinct from existing
methods. The remainder of this section is dedicated to outlining this approach and
summarizing its key elements.

The central idea behind our proof of Theorem 1.1 is to connect k-fold sumsets
in the integers with points in certain 2k-fold joinings of measure preserving systems
that have highly structured recurrence properties. These joinings – known as cube
systems – were introduced in [18] to give an algebraic characterization of the limiting
behavior of the multiple ergodic averages introduced by Furstenberg [12] in his proof
of Szemerédi’s theorem via ergodic theory. Moreover, they are used to define the
dynamical counterpart of the Gowers uniformity norms, making them indispensable
tools for studying higher order recurrence in dynamical systems.

The density assumption (1.2) provides, via a classical construction of Fursten-
berg, a dynamical system (X, µ, T ), a clopen set E ⊂ X satisfying µ(E) > 0, and
a point a ∈ X generic for µ such that

(1.3) A = {n ∈ N : Tna ∈ E}.

Writing !k" = {0, 1}k, we consider the 2k-fold self-product X!k" equipped with the
2k-fold product transformation T !k". We connect k-fold sumsets to certain special
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points in X!k". We refer to such points as k-dimensional Erdős cubes, and they
form the bridge between additive combinatorics and ergodic theory in our work. In
the case k = 2 the definition is relatively easy to state.

Definition 1.2. A point (x00, x01, x10, x11) ∈ X!2" is a 2-dimensional Erdős cube
if, with respect to the transformation T × T , the forward orbit of (x00, x01) visits
every neighborhood of (x10, x11) infinitely often, and the forward orbit of (x00, x10)
visits every neighborhood of (x01, x11) infinitely often.

For k ! 3 the definition becomes more technical, requiring additional nota-
tion, and is deferred to Definition 4.1 in Section 4. If (x00, x01, x10, x11) is a 2-
dimensional Erdős cube, it can be shown that for any neighborhood U of x11 the
set {n ∈ N : Tnx00 ∈ U} contains B1 + B2 for infinite sets B1, B2 ⊂ N. Thus,
to prove Theorem 1.1 for k = 2 it suffices to find a 2-dimensional Erdős cube
(x00, x01, x10, x11) with x00 = a and x11 ∈ E, where a and E are as in the above
construction of Furstenberg, as then A contains B1+B2 for infinite sets B1, B2 ⊂ N
by (1.3). This approach leads to a new proof of Erdős’s conjecture, different from
those given either in [26] or in [17].

For larger k, the story is the same: if (x0⃗, . . . , x1⃗) ∈ X!k" is a k-dimensional
Erdős cube then for any neighborhood U of x1⃗ the set {n ∈ N : Tnx0⃗ ∈ U}
contains B1 + · · · + Bk for infinite sets B1, . . . , Bk ⊂ N. The main idea behind our
proof of Theorem 1.1 is to build for every k ∈ N a k-dimensional Erdős cube with
prescribed first and last coordinates. In realizing it, the theory of cube systems
plays an important role.

Cube systems, which we review in Section 5, enjoy several auspicious properties
we exploit in our proof. Foremost, they provide for each k ∈ N a 2k-fold joining
µ!k" of µ called the k-dimensional cubic measure, which possesses exceptional sym-
metry: there is a natural group of symmetries acting on X!k" that fixes the first
coordinate of X!k", commutes with T !k", and preserves the measure µ!k". Using
these symmetries it is not hard to prove that µ!k"-almost every point is an Erdős
cube. To additionally prescribe the first and last coordinates, we use a disintegra-

tion t (→ σ!k"
t of the cubic measure µ!k" over the projection from X!k" to its first

coordinate. From this perspective, if σ!k"
a -almost every point is an Erdős cube then

we have an abundance of Erdős cubes with first coordinate equal to a, and this
would suffice for proving Theorem 1.1.

Unfortunately, the general theory of disintegrations only provides a measure σ!k"
t

for µ-almost every point t ∈ X, and so a priori there is no guarantee that σ!k"
a is

well-defined for a given point a ∈ X. By passing to an extension of the measure
preserving system (X, µ, T ) we can assume that the factor maps defining certain
structural factors, the pronilfactors, are not just measurable, but are actually con-
tinuous. This allows us to make use of topological properties of these factors. The
bulk of our technical work is showing that this additional topological input im-

plies the existence of an ergodic decomposition x (→ λ!k"
x of the cubic measure µ!k"

that is not just measurable but actually continuous. We use this decomposition to

define σ!k"
t for every point t ∈ X in such a way that σ!k"

t is invariant under the
above-mentioned symmetries of µ!k" and pushes forward to µ on the last coordinate.

This allows us to prove that σ!k"
a -almost every point is an Erdős cube whenever a is

generic for µ. The existence of a k-dimensional Erdős cube (x0⃗, . . . , x1⃗) with x0⃗ = a
and x1⃗ ∈ E now follows readily, yielding a proof of Theorem 1.1.
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The relevance of cube systems to finding sumsets in positive density sets high-
lights some surprising parallels between dynamical approaches to Szemerédi’s the-
orem and our approach to proving Theorem 1.1: finding (k + 1)-term arithmetic
progressions and finding k-fold sumsets in a set of positive upper density rely on
the same algebraic structures provided by the k-step pronilfactors that arise in the
structure theory of measure preserving systems.

Structure of the paper: Section 2 is a preparatory section that covers preliminaries
from ergodic theory needed in the proof of Theorem 1.1. Depending on the reader’s
background in ergodic theory, this section may be skimmed through or skipped.

In Section 3, we carry out our proof of Theorem 1.1 in the special case k = 2. We
treat this case separately to illustrate our method for the approach to the general
case. The remainder of the paper is devoted to the generalization of this proof to
higher orders.

In Section 4 we formulate our main technical result, Theorem 4.4, which states
that k-dimensional Erdős cubes with first coordinate prescribed and last coordinate
in any fixed set of positive measure exist. The deduction of Theorem 1.1 from
Theorem 4.4 is carried out in Section 4.2.

In Section 5 we recall the theory of cubic measures and pronilfactors, and prove
every measure preserving system has an extension with continuous factor maps to
its pronilfactors. We also state Theorem 5.9 and show how it implies Theorem 4.4.
In Section 5.4, we also explain the relation between our new notion of Erdős cubes
and the already established notion of dynamical cubes introduced in [18, 21].

The proof of Theorem 5.9 is carried out in Sections 6 and 7. The first step is
to show the existence – using crucially the continuous factor maps to pronilfactors

in the hypothesis of Theorem 5.9 – of an ergodic decomposition x (→ λ!k"
x of the

measure µ!k" that is continuous, and this is carried out in Theorem 6.5. This
decomposition is in turn used in Section 7.1 to construct a disintegration of µ!k"

over the projection to the first coordinate. In Section 7.2, these components are
assembled to complete the proof of Theorem 5.9.

The use of cube systems to find infinite patterns in sets of positive upper Banach
density opens new avenues of research, and we discuss some open questions and
potential extensions of our work in Section 8.

For reference, we include a summary of the chain of implications used in the
proof of Theorem 1.1.

Theorem 7.5 Theorem 5.9 Theorem 4.4 Theorem 1.1Sec. 7.1 Sec. 5.2 Sec. 4.2

Theorem 7.5 is proved in Section 7.

2. Preliminaries

In this section we collect preliminary definitions and results from ergodic theory
that we use throughout the paper.

Topological systems. By a topological system, we mean a pair (X, T ) where X is a
compact metric space and T : X → X is a homeomorphism. We write O(x, T ) =
{Tnx : n ∈ Z} for the orbit of x ∈ X under T and

ω(x, T ) =
⋂

n∈N
{T j(x) : j ≥ n}
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INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY 5

for the set of forward limit points of x under T . In other words, y ∈ ω(x, T ) means
that there is a strictly increasing sequence c : N → N with T c(n)(x) → y as n → ∞.
Note that x need not belong to ω(x, T ). The topological system (X, T ) is transitive
when there is a point a ∈ X, called a transitive point, whose orbit O(a, T ) is dense
in X. A topological system (X, T ) is minimal if every point is transitive, and the
system is distal if

inf{d(Tnx, Tny) : n ∈ N} > 0

for all x ̸= y ∈ X, where d is the metric on X.

Measure preserving systems. By a system, we mean a triple (X, µ, T ) where (X, T )
is a topological system and µ is a T -invariant Borel probability measure on X. This
means µ(T−1D) = µ(D) for all Borel sets D ⊂ X. We stress that all our measure
preserving systems have an underlying topological structure. Whenever f : X → Y
is measurable and µ is a Borel measure on X the push forward of µ under f is the
measure fµ on Y defined by (fµ)(D) = µ(f−1D).

Factor maps. We make use of two different types of factor maps between systems.

Definition 2.1 (Measurable factor map). For a system (X, µ, T ) we say that the
system (Y, ν, S) is a measurable factor of (X, µ, T ) if there is a measurable map
π : X → Y , the measurable factor map, such that πµ = ν and (S◦π)(x) = (π◦T )(x)
for µ-almost every x ∈ X.

Definition 2.2 (Continuous factor map). A system (Y, µ, S) is a continuous factor
of a system (X, µ, T ) if there is a continuous and surjective map π : X → Y , the
continuous factor map, with πµ = ν and (S ◦ π)(x) = (π ◦ T )(x) for all x ∈ X.

We caution the reader that the distinction between Definitions 2.1 and 2.2 is
important throughout the sequel, and reassure the reader that we always specify
measurable or continuous, as appropriate.

Generic points and support of a measure. We write C(X) for the space of complex
valued continuous functions on the compact metric space X, and write M(X) for
the space of Borel probability measures on X equipped with the weak* topology.
The support of a Borel probability measure µ on a compact metric space X is the
smallest closed, full measure subset supp(µ) of X.

Recall that a Følner sequence is a sequence Φ = (ΦN )N∈N of finite subsets of N
satisfying (1.1). We stress that all Følner sequences used in this paper are in N,
and not in Z, despite the fact that all our systems are invertible.

Definition 2.3 (Generic points). For a system (X, µ, T ) and a Følner sequence Φ,
the point x ∈ X is generic for µ with respect to Φ, written x ∈ gen(µ,Φ), if

lim
N→∞

1

|ΦN |
∑

n∈ΦN

f(Tnx) =

∫

X
f dµ

for every f ∈ C(X). We write x ∈ gen(µ) and say x is generic for µ if

lim
N→∞

1

N

N∑

n=1

f(Tnx) =

∫

X
f dµ

for all f ∈ C(X).
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Lemma 2.4. Fix a system (X, µ, T ) and a Følner sequence Φ. If x ∈ gen(µ,Φ)
and y ∈ supp(µ), then y ∈ ω(x, T ).

Proof. Fix a compatible metric on X and write B(y, r) for the open ball centered
at y of radius r. For every ε > 0, there exists a non-negative f ∈ C(X) with f = 1
on the ball B(y, ε/2) and f = 0 outside B(y, ε). Now y ∈ supp(µ) implies

∫

X
f dµ > 0

and since x ∈ gen(µ,Φ) there are infinitely many n ∈ N with Tnx ∈ B(y, ε). "

Conditional expectation. Fix a system (X, µ, T ). Whenever A is a sub-σ-algebra
of the Borel σ-algebra on X, every f ∈ L2(X, µ) has a conditional expectation on
A which we write E(f | A) and define to be the orthogonal projection in L2(X, µ)
of f on the closed subspace of A-measurable functions. We most often apply this
when A is the σ-algebra of T -invariant sets, which we denote I.

We also need to condition on a factor. Let (Y, ν, S) be a measurable factor of
(X, µ, T ) via a measurable factor map π. Put A = {π−1(F ) : F ⊂ Y Borel}. Given
f ∈ L2(X, µ) we write E(f | Y ) for the conditional expectation E(f | A). and with
the usual identification we may think of E(f | Y ) as an element of L2(Y, ν). The
following properties of the conditional expectation are standard and are made use
of occasionally.

• E(Tf | Y ) = E(f | Y ) ◦ T for every f ∈ L2(X, µ).

•
∫

X
E(f | Y ) · E(g | Y ) dµ =

∫

X
E(f | Y ) · g dµ for all f, g ∈ L2(X, µ).

We refer to [9, Chapter 5] for further background.

Disintegrations. We make significant use of disintegrations of measures over factors.
Fix a system (X, µ, T ) and a probability space (Ω, ν). Whenever we have a map
ω (→ µω from Ω to M(X) with the properties

• ω (→ µω(F ) is measurable for every Borel F ⊂ X

•
∫

X
f dµ =

∫

Ω

∫

X
f dµω dν(ω) for all measurable and bounded f : X → C

we call ω (→ µω a disintegration of µ. The following result says every measurable
factor map gives rise to a disintegration that agrees with the conditional expectation
on the factor.

Theorem 2.5 (Disintegrations over factor maps, see for example [9, Theorem
5.14]). If π : (X, µ, T ) → (Y, ν, S) is a measurable factor map, then there exists a
disintegration y (→ µy of µ defined on (Y, ν) such that

E(f | Y )(y) =

∫

X
f dµy

for ν-almost every y ∈ Y , whenever f : X → C is measurable and bounded. Fur-
thermore, if y (→ ηy is another such disintegration then ηy = µy for ν-almost every
y ∈ Y .

Ergodicity and ergodic decompositions. Given a topological system (X, T ) we say
that a T -invariant Borel probability measure µ on X is ergodic if every Borel set
D satisfying T−1(D) = D has µ(D) ∈ {0, 1}. A system (X, µ, T ) is ergodic if µ is
ergodic for the topological system (X, T ).
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INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY 7

We make use of two versions of the pointwise ergodic theorem. Assume (X, µ, T )
is a system. Write I for the σ-algebra of T -invariant Borel sets. For every f in
L1(X, µ) the convergence

lim
N→∞

1

N

N∑

n=1

f(Tnx) = E(f | I)(x)

holds for µ-almost every x ∈ X. Moreover (see, for example [24, Section 1]), every
Følner sequence has a subsequence Φ with the following property: for every f in
L1(X, µ) the convergence

lim
N→∞

1

|ΦN |
∑

n∈ΦN

f(Tnx) = E(f | I)(x)

holds for µ-almost every x ∈ X. We make use of the following standard corollary
of the pointwise ergodic theorem.

Corollary 2.6. Assume (X, µ, T ) is an ergodic system. Every Følner sequence has
a subsequence Φ such that µ(gen(µ,Φ)) = 1.

There is a sense in which every system can be decomposed into ergodic systems.

Definition 2.7 (Ergodic decomposition). Let (X, µ, T ) be a system. An ergodic
decomposition of µ is a disintegration x (→ µx of µ defined on (X, µ) such that for
every measurable and bounded f : X → C,

∫

X
f dµx = E(f | I)(x)

holds for µ-almost every x ∈ X.

Theorem 2.8 (Existence of ergodic decompositions, see for example [9, Theorem
6.2]). Every system (X, µ, T ) has an ergodic decomposition x (→ µx, satisfying the
following properties.

• If x (→ νx is another ergodic decomposition of (X, µ, T ), then µx = νx for
µ-almost every x ∈ X.

• We have ∫

X
f dµ =

∫

X

(∫

X
f dµx

)
dµ(x)

for every bounded and measurable f : X → C.
• For µ-almost every x ∈ X, the measure µx is T -invariant and ergodic.

Corollary 2.9 is an immediate consequence of the pointwise ergodic theorem and
Theorem 2.8.

Corollary 2.9. Fix an ergodic decomposition x (→ µx of a system (X, µ, T ). Then
µ-almost every x ∈ X is generic for µx.

Furstenberg’s correspondence principle. The proof of our main theorem uses a gen-
eral method for transferring combinatorial problems into dynamical ones known as
Furstenberg’s correspondence principle. It first appeared in Furstenberg’s ergodic
proof of Szemerédi’s theorem [12,13], and has since formed the basis for numerous
applications of ergodic theory to combinatorics and number theory. For our pur-
poses we need a variant of Furstenberg’s original method, which we state and prove
(see, for example, [2, Proposition 3.1]).
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Theorem 2.10. Let A ⊂ N and suppose Φ is a Følner sequence in N such that the
limit

(2.1) δ = lim
N→∞

|A ∩ ΦN |
|ΦN |

exists. There exist an ergodic system (X, µ, T ), a clopen set E ⊂ X, a Følner
sequence Ψ in N, and a point a ∈ gen(µ,Ψ) such that µ(E) ! δ and

(2.2) A = {n ∈ N : Tna ∈ E}.

Proof. Let X = {0, 1}Z denote the set of all bi-infinite binary sequences, en-
dowed with the product topology, and write T : {0, 1}Z → {0, 1}Z for the shift
map (Tx)(n) = x(n+1). We can associate to the subset A ⊂ N a point a ∈ {0, 1}Z

that represents A via

a(n) =

{
1 if n ∈ A,

0 otherwise.

The set E = {x ∈ X : x(0) = 1} is a clopen subset of X and, by construction, (2.2)
is satisfied. Let µ′ be any weak* accumulation point of the sequence

N (→ µN =
1

|ΦN |
∑

n∈ΦN

δT na

of measures, where δx denotes the Dirac measure at x. Observe that

µN (E) =
|A ∩ ΦN |

|ΦN |
and hence µ′(E) = δ by (2.1). Although µ′ is not necessarily ergodic with respect to
T , since it is T -invariant and by the ergodic decomposition there exists an ergodic
T -invariant Borel probability measure µ on X with µ(E) ! µ′(E) = δ. Without
loss of generality, we can assume that µ is supported on the orbit closure of a
because µ′ is. By [13, Proposition 3.9], there exists a Følner sequence Ψ in N such
that a ∈ gen(µ,Ψ), finishing the proof. "

3. A discussion of B1 + B2 ⊂ A

In this section we present our proof of Theorem 1.1 in the case k = 2. This
section is not logically necessary for the full proof of Theorem 1.1, but we hope
this separate, unadorned treatment of our argument clearly introduces the main
ideas behind our approach as preparation for the proof in the general case. For
convenience, let us formulate the statement that we aim to prove as a separate
theorem.

Theorem 3.1. If A ⊂ N has positive upper Banach density then there are infinite
sets B1, B2 ⊂ N with B1 + B2 ⊂ A.

The first step in our proof of Theorem 3.1 is to recast the problem in dynamical
terms using Theorem 2.10. Doing so paves the way for the language and tools of
ergodic theory on which our argument relies.

Theorem 3.2 (Dynamical reformulation). Let (X, µ, T ) be an ergodic system and
let E ⊂ X be a clopen set with µ(E) > 0. If a ∈ gen(µ,Φ) for some Følner sequence
Φ, then there exist strictly increasing sequences c1, c2 : N → N such that

(3.1) lim
j→∞

lim
m→∞

T c1(j)+c2(m)a ∈ E and lim
m→∞

lim
j→∞

T c1(j)+c2(m)a ∈ E.
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INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY 9

Proof that Theorem 3.2 and Theorem 3.1 are equivalent. First we deduce Theorem
3.2 from Theorem 3.1. Fix an ergodic system (X, µ, T ), a clopen set E with µ(E) >
0, and a ∈ gen(µ,Φ) for some Følner sequence Φ. The assumption that a is generic
for µ along Φ lets us deduce that the set

{n ∈ N : Tna ∈ E}

has positive upper Banach density. It then follows from Theorem 3.1 that there
are infinite sets B1, B2 ⊂ N with B1 + B2 ⊂ {n ∈ N : Tna ∈ E}. We draw from
these sets strictly increasing sequences c1, c2 : N → N with T c1(j)+c2(m)a ∈ E for
all j, m ∈ N so that, after passing to suitable subsequences such that all the limits
involved exist, (3.1) follows immediately.

To deduce Theorem 3.1 from Theorem 3.2, fix A ⊂ N with positive upper Banach
density. Theorem 2.10 yields an ergodic system (X, µ, T ), a point a ∈ gen(µ,Φ) for
some Følner sequence Φ, and a clopen set E with µ(E) > 0 such that

{n ∈ Z : Tna ∈ E} = A.

It follows from Theorem 3.2 that there are strictly increasing sequences c1, c2 : N →
N such that (3.1) holds.

We now apply alternately the limits in (3.1) to construct subsequences b1, b2 of
c1, c2 such that b1(j) + b2(m) ∈ {n ∈ N : Tna ∈ E} for all j, m ∈ N. Begin by
selecting b1(1) in {c1(j) : j ∈ N} such that

lim
m→∞

T b1(1)+c2(m)a ∈ E.

Then let b2(1) from {c2(m) : m ∈ N} satisfy b1(1)+ b2(1) ∈ {n ∈ N : Tna ∈ E} and

lim
j→∞

T c1(j)+b2(1)a ∈ E.

Next, we take b1(2) > b1(1) to be any element in {c1(n) : n ∈ N} with the property
that b1(2) + b2(1) ∈ {n ∈ N : Tna ∈ E} and

lim
m→∞

T b1(2)+c2(m)a ∈ E.

Thereafter, we take b2(2) from {c2(n) : n ∈ N} with b1(1) + b2(2), b1(2) + b2(2) ∈
{n ∈ N : Tna ∈ E} and

lim
j→∞

T c1(j)+b2(2)a ∈ E.

Continuing this procedure by induction yields strictly increasing sequences b1, b2 :
N → N with T b1(j)+b2(m)a belonging to E for all j, m ∈ N. Since A = {n ∈ Z :
Tna ∈ E}, we conclude b1(j) + b2(m) ∈ A for all j, m ∈ N, finishing the proof. "

Remark 3.3. When a ∈ supp(µ) there is a strictly increasing sequence b : N → N
and some c ∈ N with

{b(i1) + · · · + b(in) + c : i1 < · · · < in ∈ N, n ∈ N} ⊂ A,

which is to say that A contains a shift of an IP set, a significantly stronger conclusion
than that of Theorem 3.1. We stress that there is no reason to expect that a belongs
to supp(µ), and in fact it is known that not every set with positive upper density
contains a shift of an IP set. In such cases, necessarily a /∈ supp(µ), and this
introduces new complications in our proofs.
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10 B. KRA, J. MOREIRA, F. K. RICHTER, AND D. ROBERTSON

The remainder of this section is dedicated to proving Theorem 3.2 using the tech-
niques of ergodic theory. In fact, we prove a stronger result: under the hypotheses
of Theorem 3.2 there exist strictly increasing sequences c1, c2 : N → N such that
the double limits in (3.1) not only belong to E but are also equal to one another,
that is,

(3.2) lim
j→∞

lim
m→∞

T c1(j)+c2(m)a = lim
m→∞

lim
j→∞

T c1(j)+c2(m)a.

To better analyze this transposition of limits, it is convenient to keep track of the
intermediate limit points. For this purpose, when (3.2) holds we introduce the
notation

x00 = a,

x01 = lim
m→∞

T c2(m)a,

x10 = lim
j→∞

T c1(j)a,

x11 = lim
j→∞

lim
m→∞

T c1(j)+c2(m)a = lim
m→∞

lim
j→∞

T c1(j)+c2(m)a.

In terms of this notation (3.2) is equivalent to the following identities:

(3.3)
lim

j→∞
(T × T )c1(j)(x00, x01) = (x10, x11),

lim
m→∞

(T × T )c2(m)(x00, x10) = (x01, x11).

Following the notation introduced in [18], we write !1" = {0, 1} and !2" =
{00, 01, 10, 11}. Tuples (x00, x01, x10, x11) ∈ X!2" for which (3.3) holds are cen-
tral to our approach and we formalize them as follows.

Definition 3.4 (2-Dimensional Erdős cubes). Given a topological system (X, T )
we call any point x = (x00, x01, x10, x11) ∈ X!2" satisfying (3.3) for some strictly
increasing sequences c1, c2 : N → N a 2-dimensional Erdős cube.

Observe that Definition 3.4 matches Definition 1.2. Indeed, (3.3) is equiva-
lent to the assertion that the forward orbit of (x00, x01) visits every neighborhood
of (x10, x11) infinitely often, and that the forward orbit of (x00, x10) visits every
neighborhood of (x01, x11) infinitely often. This can also be written as

(3.4) (x10, x11) ∈ ω((x00, x01), T × T ) and
(
x01, x11

)
∈ ω

(
(x00, x10), T × T

)
.

We think of the coordinates x00, x01, x10, x11 in a 2-dimensional Erdős cube as
forming the vertices of a square

x00 x10

x01 x11

c1

c2
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INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY 11

and the sequences c1, c2 : N → N as describing iterations of T × T at which the left
and bottom sides approximate the right and top sides respectively.

We can now state the main dynamical theorem of this section, which is a
strengthening of Theorem 3.2.

Theorem 3.5 (Existence of 2-dimensional Erdős cubes). Assume (X, µ, T ) is an
ergodic system, a ∈ gen(µ,Φ) for some Følner sequence Φ, and E ⊂ X is an open
set with µ(E) > 0. There exists a 2-dimensional Erdős cube (x00, x01, x10, x11) ∈
X!2" with x00 = a and x11 ∈ E.

Although it can already be inferred from our discussion, we include a quick and
self-contained proof of the fact that Theorem 3.5 implies Theorem 3.2.

Proof that Theorem 3.5 implies Theorem 3.2. If (x00, x01, x10, x11) is a 2-dimen-
sional Erdős cube then, by definition, there exist increasing sequences c1, c2 : N → N
such that

lim
n→∞

T c1(n)x00 = x10, and lim
m→∞

T c2(m)x10 = x11.

Since x00 = a and x11 ∈ E, we conclude that

lim
m→∞

lim
n→∞

T c1(n)+c2(m)a ∈ E.

Similarly, we have

lim
m→∞

T c2(m)x00 = x01 and lim
n→∞

T c1(n)x01 = x11,

which implies

lim
n→∞

lim
m→∞

T c1(n)+c2(m)a ∈ E.

This completes the proof of (3.1). "

Before embarking on the proof of Theorem 3.5, which involves finding an Erdős
cube with prescribed first and last coordinates, we explain why there is a natural
abundance of Erdős cubes when these extra restrictions are omitted. A key role is
played by the cubic measures, which are special measures introduced in [18] to ana-
lyze multiple ergodic averages. We recall the definition of one- and two-dimensional
cubic measures (the definition for higher dimensions is given in Section 5.1).

Definition 3.6 (1-Dimensional cubic measure). Let (X, µ, T ) be an ergodic system.
The measure µ!1" = µ×µ on X!1" is the 1-dimensional cubic measure of (X, µ, T ).
It gives rise to the 1-dimensional cube system (X!1", µ!1", T !1"), where T !1" = T×T .

Fix an ergodic decomposition y (→ (µ!1")y of µ!1" using Theorem 2.8. As stip-
ulated in Section 2, we view ergodic decompositions as disintegrations over the
invariant factor, which means y (→ (µ!1")y is a µ!1"-almost everywhere defined map
on X!1" satisfying

(3.5) µ!1" =

∫

X!1"
(µ!1")y dµ!1"(y),

and there is a full µ!1"-measure set of y ∈ X!1" for which (µ!1")y is T !1"-invariant
and ergodic and y is generic for (µ!1")y.
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12 B. KRA, J. MOREIRA, F. K. RICHTER, AND D. ROBERTSON

Definition 3.7 (2-Dimensional cubic measure). Given an ergodic system (X, µ, T )
and an ergodic decomposition y (→ (µ!1")y of µ!1", the 2-dimensional cubic measure
of (X, µ, T ), denoted by µ!2", is the measure on X!2" defined by

(3.6) µ!2" =

∫

X!1"
(µ!1")y × (µ!1")y dµ!1"(y).

Writing T !2" = T × T × T × T , the system (X!2", µ!2", T !2") is the 2-dimensional
cube system associated to (X, µ, T ).

In general, the measure µ!2" is not equal to the product measure µ!1" × µ!1",
but it is still invariant under the diagonal transformation T !2" = T × T × T ×
T . Particularly important to our discussion is the fact that µ!2" possesses special
symmetries. Consider the permutation on the set !2" given by 00 (→ 00, 01 (→ 10,
10 (→ 01, and 11 (→ 11. This permutation naturally induces a map φ : X!2" → X!2"

defined by

(3.7) φ(x00, x01, x10, x11) = (x00, x10, x01, x11).

One can show that φ is always an automorphism of the 2-dimensional cube sys-
tem (X!2", µ!2", T !2"), which means that φ commutes with T !2" and preserves the
measure µ!2", i.e.,

(3.8) φ(µ!2") = µ!2".

A proof of this permutation symmetry of µ!2" is given in [20, Proposition 8.8].
Next, we describe the connection between cubic measures and Erdős cubes. We

begin with the combinatorially uninteresting case of 1-dimensional Erdős cubes.
These are the points x ∈ X!1" for which there is a strictly increasing sequence
c1 : N → N with

lim
n→∞

T c1(n)(x0) = x1.

In view of Lemma 2.4, if x0 ∈ gen(µ,Φ) and x1 ∈ supp(µ) then the pair (x0, x1) is
a 1-dimensional Erdős cube. After passing to a subsequence of Φ if necessary, the
set gen(µ,Φ)× supp(µ) has full measure with respect to µ!1" by Corollary 2.6. This
proves that µ!1"-almost every point in X!1" is a 1-dimensional Erdős cube.

The extra symmetry provided by (3.8) allows us to supplement the previous
argument to produce 2-dimensional Erdős cubes.

Proposition 3.8. Let (X, µ, T ) be an ergodic system. Then µ!2"-almost every
x ∈ X!2" is a 2-dimensional Erdős cube.

Proof. Fix an ergodic decomposition y (→ (µ!1")y of µ!1". Since (µ!1")y is ergodic
for µ!1"-almost every y ∈ X!1" we can repeat the previous argument for finding
1-dimensional Erdős cubes to show that (µ!1")y × (µ!1")y gives full measure to

(3.9)
{

(x00, x01, x10, x11) ∈ X!2" : (x10, x11) ∈ ω((x00, x01), T × T )
}

for µ!1"-almost every y ∈ X!1". It is then immediate from (3.6) that µ!2" gives full
measure to (3.9). We now use (3.8). It follows that (3.9) and its inverse image under
φ both have full measure with respect to µ!2". Since x ∈ X!2" is a 2-dimensional
Erdős cube if and only if x and φ(x) belong to (3.9), we conclude that µ!2"-almost
every point is a 2-dimensional Erdős cube. "
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INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY 13

We now embark on the discussion of the more delicate issue of producing Erdős
cubes with prescribed first coordinate. Once this is in hand, the proof of Theo-
rem 3.5 is straightforward.

In view of Proposition 3.8, we can attempt to obtain Erdős cubes with a pre-
scribed first coordinate by disintegrating µ!2" with respect to the projection
(x00, x01, x10, x11) (→ x00 from X!2" to its first coordinate. Since the coordinate
projection x (→ x00 is a measurable factor map from (X!2", µ!2", T !2") to (X, µ, T ),
we can apply Theorem 2.5 to obtain a disintegration of µ!2" over this map: a

collection of measures σ!2"
t on X!2" defined for µ-almost every t ∈ X. Any such

disintegration satisfies

µ!2" =

∫

X
σ!2"

t dµ(t),

which, combined with Proposition 3.8, shows σ!2"
t -almost every point is a 2-

dimensional Erdős cube for µ-almost every t ∈ X. In fact

σ!2"
t ({x ∈ X!2" : x00 = t}) = 1

for µ-almost every t, and we conclude that for µ-almost every t ∈ X there are
2-dimensional Erdős cubes x ∈ X!2" with x00 = t. It can also be shown that the
push forward of σ!2"

t to the last coordinate via the map x (→ x11 is equal to µ for
µ-almost every t, and therefore one can find for µ-almost every t ∈ X an Erdős
cube x with x00 = t and x11 ∈ E.

Unfortunately, this argument is not enough to prove Theorem 3.5 because The-

orem 2.5 only defines σ!2"
t for µ-almost every t ∈ X: the measure σ!2"

a might not

be defined. Thus, to proceed this way we must first define σ!2"
t for every point

t ∈ X. We are able to do this when the system (X, µ, T ) admits a continuous
factor map to a certain measurable factor of the ergodic system (X, µ, T ) called its
Kronecker factor. Informally, it is the largest factor of (X, µ, T ) that is isomorphic
to a rotation on a compact abelian group.

Definition 3.9 (Group rotation). A system (Z, m, R) is a group rotation if Z is a
compact abelian group, m is its Haar measure, and the transformation R has the
form R(z) = z + α for some fixed α ∈ Z.

Theorem 3.10. Fix an ergodic system (X, µ, T ). There is an ergodic group rotation
(Z, m, R) that is a measurable factor of (X, µ, T ) with the property that, for every
f, g in L∞(X, µ), we have

lim
N→∞

1

N

N∑

n=1

f(Tnx0) · g(Tnx1) = lim
N→∞

1

N

N∑

n=1

TnE(f | Z)(x0) · TnE(g | Z)(x1)

for µ × µ-almost every (x0, x1) ∈ X × X.

Proof. This is a consequence of the pointwise ergodic theorem applied to T × T
together with the description [13, Lemma 4.21] of the projection onto the invariant
factor in a product system. "

We refer to the group rotation factor (Z, m, R) of (X, µ, T ) in Theorem 3.10 as
the Kronecker factor of (X, µ, T ). Theorem 3.10 gives only a measurable factor map

to the Kronecker factor, but to define σ!2"
t for all t ∈ X it turns out that we need

this factor map to be continuous. Fortunately, we can always pass to an extension
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14 B. KRA, J. MOREIRA, F. K. RICHTER, AND D. ROBERTSON

of our ergodic system having that property. We prove this at the end of the section,
continuing for the moment under the assumption that (X, µ, T ) has its Kronecker
factor (Z, m, R) as a continuous factor via a continuous factor map π. Under this
assumption we are able to improve upon Theorem 2.8: we give a disintegration of
µ!1" that is defined on all of X!1", continuous, and an ergodic decomposition of
µ!1". This result is the main technical step in the proof of Theorem 3.5.

Proposition 3.11. Let (X, µ, T ) be an ergodic system and assume there is a con-
tinuous factor map π to its Kronecker factor (Z, m, R). There exists a continuous

map x (→ λ!1"
x from X!1" to M(X!1") with the following properties.

(i) The map x (→ λ!1"
x is an ergodic decomposition of µ!1" as in Definition 2.7.

(ii) We have that λ!1"
x = λ!1"

y whenever
(
π(x0),π(x1)

)
=

(
π(y0),π(y1)

)
.

(iii) For all x ∈ X!1", we have that T !1"λ!1"
x = λ!1"

T !1"(x)
= λ!1"

x .

(iv) For all x ∈ X and all Borel F ⊂ X, we have that λ!1"
x (X × F ) = µ(F ).

Remark 3.12. Note that any ergodic decomposition of µ!1" satisfies properties (ii)

through (iv) for almost all x, y ∈ X!1"; the fact that x (→ λ!1"
x satisfies these

properties for all x, y ∈ X!1" is what makes it special. We refer to x (→ λ!1"
x as a

continuous ergodic decomposition, and discuss the general case in Section 6.

Proof of Proposition 3.11. Apply Theorem 2.5 to get a disintegration z (→ ηz of µ
over the continuous factor map π from (X, µ, T ) to its Kronecker factor (Z, m, R).
Define

(3.10) λ!1"
x =

∫

Z
ηz+π(x0) × ηz+π(x1) dm(z)

for every x ∈ X!1".
We first note that for each x ∈ X!1" the measures ηz+π(x0) and ηz+π(x1) are

defined for m-almost every z ∈ Z and therefore (3.10) is well-defined. To prove

that x (→ λ!1"
x is continuous first note that uniform continuity implies

(v, w) (→
∫

Z
f(z + w) · g(z + v) dm(z)

from Z to C is continuous whenever f, g : Z → C are continuous. An approximation
argument then gives continuity for every f, g ∈ L2(Z, m). In particular,

x (→
∫

Z
E(f | Z)(z + π(x0)) · E(g | Z)(z + π(x1)) dm(z)

from X!1" to C is continuous whenever f, g : X → C are continuous, which in turn
implies continuity of (3.10).

To prove that x (→ λ!1"
x is an ergodic decomposition we calculate

∫

X!1"

∫

Z
ηz+π(x0) × ηz+π(x1) dm(z) dµ!1"(x)

=

∫

Z

∫

X
ηz+π(x0) dµ(x0) ×

∫

X
ηz+π(x1) dµ(x1) dm(z),

which is equal to µ!1" because both inner integrals are equal to µ. We conclude
that

(3.11) µ!1" =

∫

X!1"
λ!1"

x dµ!1"(x),
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INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY 15

which shows x (→ λ!1"
x is a disintegration of µ!1".

We are left with verifying that
∫

X!1"
F dλ!1"

x = E(F | I)(x)

for µ!1"-almost every x ∈ X!1" whenever F : X!1" → C is measurable and bounded.
Recall that I denotes the σ-algebra of T !1"-invariant sets. Fix such an F . It follows
from the pointwise ergodic theorem that

lim
N→∞

1

N

N∑

n=1

F (Tnx0, T
nx1) = E(F | I)(x)

for µ!1"-almost every x = (x0, x1) ∈ X!1". We therefore wish to prove that

∫

X!1"
F dλ!1"

x = lim
N→∞

1

N

N∑

n=1

F (Tnx0, T
nx1)

holds for µ!1"-almost every x ∈ X!1".
By an approximation argument it suffices to verify that

(3.12)

∫

X!1"
f ⊗ g dλ!1"

x = lim
N→∞

1

N

N∑

n=1

f(Tnx0) · g(Tnx1)

holds for µ!1"-almost every x ∈ X!1" whenever f, g belong to L∞(X, µ).
In fact, in view of Theorem 3.10, only the conditional expectations of f and g

on the Kronecker factor contribute to the right-hand side. We therefore have for
any f, g ∈ L2(X, µ) that

lim
N→∞

1

N

N∑

n=1

f(Tnx0) · g(Tnx1) = lim
N→∞

1

N

N∑

n=1

E(f | Z)(Tnx0) · E(g | Z)(Tnx1)

for µ!1"-almost every x ∈ X!1". Now

lim
N→∞

1

N

N∑

n=1

φ(Tnz0) · ψ(Tnz1) =

∫

Z
φ(s + z0) · ψ(s + z1) dm(s)

for any φ,ψ in L2(Z, m) using properties of rotations on a compact abelian group.
Taking φ = E(f | Z) and ψ = E(g | Z) gives

lim
N→∞

1

N

N∑

n=1

E(f | Z)(Tnx0) · E(g | Z)(Tnx1) =

∫

X!1"
f ⊗ g dλ!1"

x

for µ!1"-almost all x ∈ X!1". As a consequence we have for every f, g ∈ L2(X, µ)
that ∫

X!1"
f ⊗ g dλ!1"

x = E(f ⊗ g | I)(x)

for µ!1"-almost every x ∈ X!1", proving property (i).
It is immediate from (3.10) that π(x0) = π(y0) and π(x1) = π(y1) together imply

the measures λ!1"
x and λ!1"

y are equal, verifying property (ii).

Licensed to Northwestern Univ. Prepared on Mon Apr 22 15:49:33 EDT 2024 for download from IP 129.105.81.53.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



16 B. KRA, J. MOREIRA, F. K. RICHTER, AND D. ROBERTSON

Property (iii) follows from Theorem 2.8 and the continuity of x (→ λ!1"
x . Finally,

property (iii) follows from

λ!1"
x (X × F ) =

∫

Z
ηz+π(x0)(X) · ηz+π(x1)(F ) dm(z) =

∫

Z
ηz(F ) dm(z) = µ(F )

because z (→ ηz is a disintegration of µ. "

We next use Proposition 3.11 to define the measures σ!1"
t directly for every point

t ∈ X, dispensing with our direct application of Theorem 2.5.

Definition 3.13. Fix an ergodic system (X, µ, T ) with a continuous factor map to
its Kronecker factor and let λ!1" : X!1" → M(X!1") be the disintegration given by

Proposition 3.11. We define a measure σ!2"
t on X!2" by

(3.13) σ!2"
t =

∫

X
δ(t,x) × λ!1"

(t,x) dµ(x)

for all t ∈ X.

For the rest of the section all references to measures σ!2"
t are made with respect

to Definition 3.13. The following properties of the measures σ!2"
t are essential for

producing Erdős cubes with prescribed coordinates. Writing F ∗ : X!2" → X!2"\{00}

for the projection

(3.14) F ∗(x00, x01, x10, x11) = (x01, x10, x11),

note in particular the last property, which allows us to make certain statements

about σ!2"
t -almost every point even when t does not lie in the support of µ.

Theorem 3.14. Let (X, µ, T ) be an ergodic system and assume there is a contin-

uous factor map π to its Kronecker factor. Then the map t (→ σ!2"
t is continuous,

gives full measure to {x ∈ X!2" : x00 = t}, satisfies

(3.15)

∫

X
σ!2"

t dµ(t) = µ!2"

and the following properties.

(i) The push forward T !2"σ!2"
t equals σ!2"

T (t) for every t ∈ X.

(ii) The push forwards F ∗σ!2"
t and F ∗σ!2"

s are equal whenever π(t) = π(s).

Remark 3.15. In analogy to Remark 3.12, let us point out that any decomposition
of µ!2" with respect to the first coordinate satisfies properties (i) and (ii) for almost

all t ∈ X. The fact that t (→ σ!2"
t satisfies these properties for all t ∈ X is what

distinguishes it from a generic disintegration.

Proof of Theorem 3.14. The fact that the set of points in X!2" whose first coordi-

nate equals t has full measure with respect to σ!2"
t is immediate from (3.13). To
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prove (3.15) we calculate
∫

X
σ!2"

t dµ(t) =

∫

X

∫

X
δ(t,s) × λ!1"

(t,s) dµ(t) dµ(s)

=

∫

X!1"
δ(t,s) × λ!1"

(t,s) dµ!1"(t, s)

=

∫

X!1"

(∫

X!1"
δ(u,v) × λ!1"

(u,v) dλ!1"
(t,s)(u, v)

)
dµ!1"(t, s)

=

∫

X!1"

(∫

X!1"
δ(u,v) × λ!1"

(t,s) dλ!1"
(t,s)(u, v)

)
dµ!1"(t, s)

=

∫

X!1"
λ!1"

(t,s) × λ!1"
(t,s) dµ!1"(t, s) = µ!2",

where the fourth equality follows from

λ!1"
(t,s)({(u, v) : λ!1"

(t,s) = λ!1"
(u,v)}) = 1

for µ!1"-almost every (t, s), which in turn is a consequence of part (iii) of Proposi-

tion 3.11 and ergodicity of λ!1"
(t,s) for µ!1"-almost every (t, s). "

We have reduced the proof of Theorem 3.5 to the statement that σ!2"
a -almost

every point is an Erdős cube. The proof of Proposition 3.8 made essential usage of
the fact that µ!2" was symmetric with respect to the permutation map (3.7). Our

penultimate ingredient in the proof of Theorem 3.5 is that the measures σ!2"
t have

the same symmetries.

To prove that all of the measures σ!2"
t have the desired symmetries we need to

be able to deduce that a property holds for all σ!2"
t if it holds for µ-almost every

t ∈ X. It is not enough for us that the map t (→ σ!2"
t is continuous, as we are

particularly interested in σ!2"
a and in the most challenging situations the point a

does not belong to supp(µ). Indeed, when a does belong to the support of µ one
can prove Theorem 3.5 relatively easily as in that case one can verify (a, a, a, a) is

a 2-dimensional Erdős cube. Fortunately, the projections F ∗σ!2"
t only depend on

the value of π(t). We thus are able to apply Lemma 3.16 to make deductions about

σ!2"
t for all points t ∈ X.

Lemma 3.16. Let π : (X, µ, T ) → (Y, ν, S) be a continuous factor map and assume
that supp(ν) = Y . Then the only set F ⊂ X that is closed, has full measure and
satisfies

a ∈ F and π(b) = π(a) =⇒ b ∈ F

is F = X.

Proof. Since F = π−1(π(F )) we conclude that the compact set π(F ) has full mea-
sure. But ν has full support, so π(F ) = Y . "

Recall the maps φ : X!2" → X!2" of (3.7) and F ∗ of (3.14).

Corollary 3.17. Let (X, µ, T ) be an ergodic system and assume there is a contin-

uous factor map π to its Kronecker factor. For every t ∈ X the push forward φσ!2"
t

is equal to σ!2"
t .
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Proof. By continuity, the set

H = {t ∈ X : φσ!2"
t = σ!2"

t }

is closed. We wish to prove it has full measure. To do so we show that t (→ φσ!2"
t

is a disintegration of µ!2" and appeal to uniqueness in Theorem 2.5. To see this,
calculate ∫

X

∫

X!2"
f00 ⊗ f01 ⊗ f10 ⊗ f11 dφσ!2"

t dµ(t)

=

∫

X

∫

X!2"
f00 ⊗ f10 ⊗ f01 ⊗ f11 dσ!2"

t dµ(t)

=

∫

X!2"
f00 ⊗ f10 ⊗ f01 ⊗ f11 dµ!2"(t)

and note that φµ!2" = µ!2" by (3.8). Since the map φ commutes with the projection
(x00, x01, x10, x11) (→ x00 onto the first coordinate we certainly have

(φσ!2"
t )({x ∈ X!2" : x00 = t}) = 1

for every t ∈ X. It follows from uniqueness in Theorem 2.5 that µ(H) = 1.
Since H has full measure, it follows that the closed set

H ′ = {t ∈ X : F ∗(φσ!2"
t ) = F ∗(σ!2"

t )}
is also of full measure. Since F ∗ and φ commute we conclude that whenever t ∈ H ′

and π(t) = π(s) one also has s ∈ H ′. Applying Lemma 3.16 gives H ′ = X. Since

σ!2"
t = δt × F ∗σ!2"

t for all t we are done. "

Our last ingredient is that σ!2"
t -almost every point x ∈ X!2" is generic for λ!2"

x

along some Følner sequence. It is a special case of Theorem 7.6, which we state and
prove in Section 7.2. The proofs of the two results are essentially the same, relying

only on the continuity and equivariance of t (→ σ!2"
t and basic facts from measure

theory and ergodic theory. To avoid repetition, we omit the proof of the following
version, which is all we need for Theorem 3.5, and refer the reader to the proof of
Theorem 7.6 in Section 7.2.

Lemma 3.18. Let (X, µ, T ) be an ergodic system and assume there is a continuous
factor map to its Kronecker factor. Fix a ∈ gen(µ,Φ) for some Følner sequence
Φ. Then there exists a Følner sequence Ψ such that for µ-almost every x ∈ X the

point (a, x) is generic for λ!1"
(a,x) along Ψ.

We are now ready to prove Theorem 3.5 under the additional assumption that
(X, µ, T ) has a continuous factor map to its Kronecker factor (Z, m, R). In fact,
all we need to do is emulate the proof of Proposition 3.8 but with µ!2" replaced by

σ!2"
a .

Proof of Theorem 3.5, assuming a continuous factor map. We must produce an
Erdős cube in X!2" whose first coordinate is a and whose last coordinate belongs
to E.

From Proposition 3.11 we know each of the measures λ!1"
x has µ as its second

marginal. In particular λ!1"
x (X × E) = µ(E) for all x ∈ X!1". It follows that

σ!2"
t (X × X × X × E) = µ(E) > 0
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for all t ∈ X. It is also immediate that σ!2"
t -almost every x ∈ X!2" has t as its first

coordinate. It therefore suffices to prove that σ!2"
a -almost every point is an Erdős

cube, as then there must be at least one whose first coordinate equals a and whose
last coordinate lies in E.

Corollary 3.17 tells us that σ!2"
a and its push forward φσ!2"

a are equal. In light of

this symmetry, it suffices to show that for σ!2"
a -almost every point x ∈ X!2" there

exists an increasing sequence c : N → N such that

lim
n→∞

T c(n)(x00, x01) = (x10, x11),

because then it follows from φσ!2"
a = σ!2"

a that σ!2"
a -almost every (x00, x01, x10, x11)

is an Erdős cube. This is equivalent to showing that for µ-almost every x ∈ X and

δ(a,x) × λ!1"
(a,x)-almost every (x00, x01, x10, x11) ∈ X!2" there is some c : N → N with

lim
n→∞

T c(n)(x00, x01) = (x10, x11)

due to the description of σ!2"
a given in Theorem 3.14. Note that the set of x ∈ X for

which (a, x) is generic for λ!1"
(a,x) along some Følner sequence has full measure with

respect to µ, due to Lemma 3.18. For any such x, the orbit of the point (a, x) under

T ×T accumulates at any point in supp(λ!1"
(a,x)). Since the set {(a, x)}× supp(λ!1"

(a,x))

has full measure with respect to δ(a,x) × λ!1"
(a,x), this finishes the proof. "

To complete the proof of Theorem 3.5, and hence the proof of Theorem 3.1, we
address the assumption that (X, µ, T ) has a continuous factor map to its Kronecker
factor. In doing so, the following result is vital.

Proposition 3.19. Assume (X, µ, T ) is an ergodic system and a ∈ X is transitive.
Assume (Z, m, R) is a group rotation and that there is a measurable factor map ρ
from (X, µ, T ) to (Z, m, R). Then there are a point z̃ ∈ Z and a Følner sequence
Ψ such that

lim
N→∞

1

|ΨN |
∑

n∈ΨN

f(Tna) g(Rnz̃) =

∫

X
f · (g ◦ ρ) dµ

for all f ∈ C(X) and all g ∈ C(Z).

Proof. This is a special case of [19, Proposition 6.1] restated in our terminology. "

The existence of the point z̃ guaranteed by Proposition 3.19 allows us to produce
continuous factor maps to structured factors that a priori only have measurable
factor maps. The analog of this construction for k-fold sumsets – in which Kronecker
factors are replaced with pronilfactors – is carried out in Section 5.2.

Proposition 3.20. Assume (X, µ, T ) is an ergodic system and that a ∈ gen(µ,Φ)
for some Følner sequence Φ and that a is transitive. There are an ergodic system
(X̃, µ̃, T̃ ), a Følner sequence Ψ, a point ã ∈ gen(µ,Ψ), and a continuous factor map
π1 : X̃ → X with π1(ã) = a such that (X̃, µ̃, T̃ ) has a continuous factor map to its
Kronecker factor.

Proof. Let π : X → Z be a measurable factor map from (X, µ, T ) to its Kronecker
factor (Z, m, R). Consider the transformation T̃ = T×R on the product X̃ = X×Z.
Let π1(x, z) = x and π2(x, z) = z denote the two coordinate projections. Let µ̃

Licensed to Northwestern Univ. Prepared on Mon Apr 22 15:49:33 EDT 2024 for download from IP 129.105.81.53.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



20 B. KRA, J. MOREIRA, F. K. RICHTER, AND D. ROBERTSON

be the push forward of µ under the map ρ : X → X̃ defined by ρ(x) = (x,π(x)).
Note that (X, µ, T ) and (X̃, µ̃, T̃ ) are isomorphic via the map ρ and hence have
isomorphic Kronecker factors. Thus π2 is a continuous factor map from (X̃, µ̃, T̃ )
to its Kronecker factor. There exist, by Proposition 3.19, a point z̃ ∈ Z and a
Følner sequence Ψ such that ã = (a, z̃) is generic for µ̃ along Ψ. Since π1 : X̃ → X
is continuous and π1(ã) = a, we are done. "

Proof of Theorem 3.5 (in full generality). Suppose (X, µ, T ), E ⊂ X, and a ∈ X
are as in the hypothesis of Theorem 3.5. We first replace X with the closure X ′ of
{Tn(a) : n ∈ Z}. Since a ∈ gen(µ,Φ), we have that µ(X ′) = 1 and µ(E ∩ X ′) > 0.
Thus (X ′, µ, T ) is an ergodic system in which the point a is transitive and the set
E′ = X ′ ∩E is open in X ′ and has positive measure. We thus proceed assuming a
is transitive in (X, µ, T ).

Let (X̃, µ̃, T̃ ), π1 : X̃ → X, and ã ∈ X̃ be as guaranteed by Proposition 3.20.
Define Ẽ = π−1

1 (E). Since (X̃, µ̃, T̃ ) admits a continuous factor map onto its
Kronecker factor and Theorem 3.5 has already been proven for such systems, there
exists a 2-dimensional Erdős cube x̃ ∈ X̃!2" with x̃00 = ã and x̃11 ∈ Ẽ. Since
π1 : X̃ → X is continuous, the quadruple

x =
(
π1(x̃00),π1(x̃01),π1(x̃10),π1(x̃11)

)

is an Erdős cube in X!2" with x00 = a and x11 ∈ E, finishing the proof. "

4. Erdős cubes

In the previous section we defined 2-dimensional Erdős cubes, which played via
Theorem 3.5 a vital role in our proof of the k = 2 case of Theorem 1.1. The purpose
of this section is to generalize the notion of Erdős cubes to higher dimensions. We
then formulate the main dynamical result of this paper, Theorem 4.4, which is
a natural extension of Theorem 3.5. At the end of this section we prove that
Theorem 4.4 implies Theorem 1.1.

4.1. Defining Erdős cubes. For k ∈ N, define the k-dimensional cube to be
{0, 1}k and denote it by !k". An element of !k" is written as ϵ = ϵ1 · · · ϵk, usually
without any commas or parentheses other than when this may create ambiguity.
We enumerate the elements of !k" in lexicographic order. For our purposes, the
most relevant feature of the ordering is that the first element is 0⃗ = 0 · · · 0 and the
last element is 1⃗ = 1 · · · 1. For example, the elements of !3" listed in order are:
000, 001, 010, 011, 100, 101, 110, 111.

For any set X, a point x ∈ X!k" is written as x = (xϵ : ϵ ∈ !k"), again enumer-
ating the indices in lexicographic order. For clarity, when we write x ∈ X!k" as
a 2k-tuple indexed by !k", we separate the entries with commas. By convention,
when we write X!0", we mean just X.

A face of !k" is a subset of !k" determined by fixing a single coordinate. These
play a particular role in our analysis, making use of the elementary observation that
the complement of such a face is also a face, and we refer to this as the opposite
face. There are k pairs of opposite faces in !k". For each 1 ≤ i ≤ k write F ix for
the ith upper face of x ∈ X!k" and Fix for the ith lower face of x. Formally, these
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belong to X!k−1" and are defined for x ∈ X!k" as follows:

F ix = (xϵ : ϵi = 1) (ith upper face of x),

Fix = (xϵ : ϵi = 0) (ith lower face of x).

Write also F ∗x for the point

(4.1) F ∗x = (xϵ : ϵ ̸= 0⃗)

in X!k"\{0⃗}.
For example, if k = 2 then a point x = (x00, x01, x10, x11) ∈ X!2" has two lower

faces, F1x = (x00, x01) and F2x = (x00, x10), and two upper faces, F 1x = (x10, x11)
and F 2x = (x01, x11). We also have F ∗(x) = (x01, x10, x11). When k = 3 the lower
faces of

x = (x000, x001, x010, x011, x100, x101, x110, x111) ∈ X!3"

are

F1x = (x000, x001, x010, x011),

F2x = (x000, x001, x100, x101),

F3x = (x000, x010, x100, x110),

and the corresponding upper faces are

F 1x = (x100, x101, x110, x111),

F 2x = (x010, x011, x110, x111),

F 3x = (x001, x011, x101, x111),

respectively. As a visual aid, we can think of a point in X!3" as being represented
by a 3-dimensional cube:

x000

x001

x010

x011

x100

x101

x110

x111

This geometric interpretation of points in X!3" motivates our use of terminology.
Whenever T is a homeomorphism of X, we write T !k" for the homeomorphism

of X!k" defined by

(T !k"x)ϵ = T (xϵ)

for all x ∈ X!k" and ϵ ∈ !k". Note that if x ∈ X!k" we can apply T !k−1" to any of
the upper and lower faces of x.
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A permutation φ of {1, . . . , k} induces a map (φϵ)i = ϵφ(i) from !k" to !k" that,
by an abuse of notation, we also denote by φ. With a further abuse of notation we
also use φ to denote the map X!k" → X!k" it induces via

(4.2) (φx)ϵ = xφ(ϵ)

for all ϵ ∈ !k". See (3.7) for an example of a two dimensional permutation. For
each 1 ≤ i ≤ k write φi for the permutation that exchanges 1 with i and fixes all
other points. One then has

(4.3) F 1(φix) = F ix and F1(φix) = Fix

for all 1 ≤ i ≤ k. The maps φ are referred to as permutations of digits in [20,
Chapter 6].

Mimicking the case k = 2, a k-dimensional Erdős cube is a point x ∈ X!k"

thought of as forming the vertices of a k-dimensional cube, with the property that its
lower faces dynamically approximate their corresponding upper faces. The formal
definition is as follows.

Definition 4.1 (Erdős cubes). Fix a compact metric space X and a homeomor-
phism T of X. A point x ∈ X!k" is a k-dimensional Erdős cube if

(4.4) F ix ∈ ω(Fix, T !k−1")

for each 1 ≤ i ≤ k.

Note that (4.4) simply says there exists a strictly increasing sequence ci : N → N
such that

lim
n→∞

(T !k−1")ci(n)(Fix) = F ix

holds. Even though we are working with an invertible map T : X → X, we require
in the definition of an Erdős cube that F ix is an accumulation point of the forward
iterates of Fix under T !k−1".

We refer to them as cubes because of their connection to cube systems and since
they form a natural subclass of the dynamical cubes (see Definition 5.10) introduced
in [21] in the study of topological pronilfactors. In Section 5.4 we describe the
relations among various notions of cubes, including examples and non-examples of
these objects.

Lemmas 4.2 and 4.3 are useful properties that follow immediately from the def-
initions of Erdős cubes and the permutations in (4.3).

Lemma 4.2. Let (X, T ) be a topological system and let k ∈ N. A point x ∈ X!k"

is a k-dimensional Erdős cube if and only if

φix ∈ {y ∈ X!k" : F 1y ∈ ω(F1y, T !k−1")}

for all 1 ≤ i ≤ k.

Lemma 4.3. Assume (X, T ) is a topological system and that x ∈ X!k" is a k-
dimensional Erdős cube. Then F i(x) and Fi(x) are (k − 1)-dimensional Erdős
cubes for all 1 ≤ i ≤ k.

Theorem 4.4 is the main dynamical result of this paper. It extends Theorem 3.5
and, as we show in Section 4.2, implies our main combinatorial result Theorem 1.1
for multiple sumsets.
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Theorem 4.4. Assume (X, µ, T ) is an ergodic system, that a ∈ gen(µ,Φ) for some
Følner sequence Φ in N, and that E ⊂ X satisfies µ(E) > 0. For every k ∈ N there
is a k-dimensional Erdős cube x ∈ X!k" with x0⃗ = a and x1⃗ ∈ E.

4.2. Theorem 4.4 implies Theorem 1.1. In this subsection we use Theorem 4.4
to prove Theorem 1.1. Our method streamlines and generalizes the proof that
Theorem 3.5 implies Theorem 3.1 that we have seen in Section 3. We need to set up
some terminology. Given ϵ = (ϵ1, . . . , ϵk) ∈ !k", denote by ϵ̄ ∈ !k" the complement
(1 − ϵ1, . . . , 1 − ϵk). Let x ∈ X!k" be an Erdős cube and let E ⊂ X be an open
set such that x1⃗ ∈ E. Let B1, . . . , Bk ⊂ N. We say that (B1, . . . , Bk) is (x, E)-
acceptable if for any b = (b1, . . . , bk) ∈ B1 × · · ·×Bk and any ϵ = (ϵ1, . . . , ϵk) ∈ !k",

(4.5) T ϵ̄·bxϵ ∈ E,

where ϵ̄ · b = ϵ̄1b1 + · · · + ϵ̄kbk. Note in particular that

B1 + · · · + Bk ⊂ {n : Tnx0⃗ ∈ E}

whenever (B1, . . . , Bk) is (x, E)-acceptable by taking ϵ = 0⃗ in (4.5). To prove
Theorem 1.1, we make use of Lemma 4.5 as an iterative step.

Lemma 4.5. Let k ∈ N, let (X, T ) be a topological dynamical system, let x ∈ X!k"

be an Erdős cube, and let E ⊂ X be an open set with x1⃗ ∈ E. Assume (B1, . . . , Bk)
consists of finite sets and is (x, E)-acceptable. Fix i ∈ {1, . . . , k}. There exists
c ∈ N\Bi such that, letting B′

i = Bi ∪ {c} and B′
j = Bj for all j ̸= i, the tuple(

B′
1, . . . , B

′
k

)
is still (x, E)-acceptable.

Proof. Fix i ∈ {1, . . . , k}. Given ϵ ∈ !k" with ϵi = 0, let η(ϵ) ∈ !k" be the element
that differs from ϵ only on the ith coordinate. Define

Hϵ =
⋂

b∈B1×···×Bk

T−η(ϵ)·bE

for each ϵ ∈ !k" with ϵi = 0. In view of (4.5), we have that xη(ϵ) ∈ Hϵ whenever

ϵi = 0. Since x is an Erdős cube, F ix ∈ ω(Fix, T !k−1"), and so in particular there
exists c ∈ N\Bi such that

(4.6) for all ϵ ∈ !k", ϵi = 0 ⇒ T cxϵ ∈ Hϵ.

We claim that with this choice of c the tuple (B′
1, . . . , B

′
k) in the statement of the

lemma is (x, E)-acceptable. Let ϵ ∈ !k" and b ∈ B′
1× · · ·×B′

k. If ϵi = 1 or if bi ̸= c,
then (4.5) holds automatically. If ϵi = 0 and bi = c, then (4.6) and the definition

of Hϵ imply T cxϵ ∈ T−η(ϵ)·bE as the ith coordinate of η(ϵ) is 0. In other words,

T c+η(ϵ)·bxϵ ∈ E, but since c + η(ϵ) · b = ϵ̄ · b, this is precisely (4.5). "

Corollary 4.6. Let (X, T ) be a topological dynamical system, let x ∈ X!k" be an
Erdős cube, and let E ⊂ X be an open set with x1⃗ ∈ E. Then there exist infinite
sets B1, . . . , Bk ⊂ N such that (B1, . . . , Bk) is (x, E)-acceptable.

Proof. The tuple (∅, . . . , ∅) is vacuously (x, E)-acceptable for any x, E. Iterating
Lemma 4.5 gives the corollary. "

We are now ready to prove Theorem 1.1.

Licensed to Northwestern Univ. Prepared on Mon Apr 22 15:49:33 EDT 2024 for download from IP 129.105.81.53.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



24 B. KRA, J. MOREIRA, F. K. RICHTER, AND D. ROBERTSON

Proof of Theorem 1.1. Let A ⊂ N have positive Banach upper density. By The-
orem 2.10, there exist an ergodic system (X, µ, T ), a point a ∈ X, a clopen set
E ⊂ X, and a Følner sequence Φ such that µ(E) > 0, A = {n ∈ N : Tna ∈ E}, and
a ∈ gen(µ,Φ). By Theorem 4.4, there exists an Erdős cube x ∈ X!k" with x0⃗ = a
and x1⃗ ∈ E. By Corollary 4.6, there exist infinite sets B1, . . . , Bk ⊂ N such that
(B1, . . . , Bk) is (x, E)-acceptable. Thus

B1 + · · · + Bk ⊂ {n ∈ N : Tnx0⃗ ∈ E} = A

by taking ϵ = 0⃗ in (4.5). "

5. Cube systems and pronilfactors

Our main result - Theorem 4.4 - is that Erdős cubes with prescribed first coordi-
nate exist under certain assumptions. In fact, we are only able to prove this directly
when the system (X, µ, T ) has continuous factor maps to certain structured factors
known as pronilfactors. The proof of Theorem 4.4 then follows in general from the
fact that every ergodic system (X, µ, T ) has an extension with such factor maps.
In this section we recall what we need from the theory of pronilfactors and prove
that every ergodic system has an extension as described above. We conclude with
some discussion on the relationship between Erdős cubes and other types of cubes
in the dynamics literature. The material of Section 5.4 is not needed for the proof
of Theorem 4.4.

5.1. Cubic measures and structured factors. Let (X, µ, T ) be an ergodic sys-
tem. It was important in Section 3 to have an ergodic decomposition of µ!1" = µ×µ.
As discussed in Section 1, the appropriate generalization of µ × µ for the proof of
Theorem 1.1 in general is the cubic measures µ!k" whose definition we recall. We
remark that while we refer to these measures and other objects as various types
of cubes and use associated geometric terminology, such as faces or sides, these
objects should more properly be referred to as parallelograms in two dimensions or
as parallelepipeds in higher dimensions.

For each k ∈ N, the k-dimensional cube system (X!k", µ!k", T !k") is the system
defined on the product space X!k" endowed with the transformation T !k" = T ×
· · · × T , the product taken 2k times, and equipped with the measure µ!k" defined
inductively by

(5.1) µ!k+1" =

∫

X!k"
(µ!k")x × (µ!k")x dµ!k"(x),

where x (→ (µ!k")x is an ergodic decomposition of µ!k". Note that

(X!1", µ!1", T !1") = (X × X, µ × µ, T × T )

by our assumption that (X, µ, T ) is ergodic, but when k > 1 the measure µ!k" is
generally not equal to the product measure µ!k−1"×µ!k−1". Lemma 5.1 states that
µ!k" is invariant under the maps φ : X!k" → X!k" induced by permutations φ of
{1, . . . , k} as defined in (4.2).

Lemma 5.1 ([20, Proposition 8, Chapter 8]). Fix k ∈ N. For every permutation
φ of {1, . . . , k} the push forward φµ!k" is equal to µ!k".

We also need later the following description of µ!k".
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Lemma 5.2. For every k ∈ N, we have

µ!k+1" =

∫

X!k"
δx × (µ!k")x dµ!k"(x).(5.2)

Proof. Using the ergodic decomposition

µ!k" =

∫

X!k"
(µ!k")x dµ!k"(x),

we have that
∫

X!k"
δx × (µ!k")x dµ!k"(x) =

∫

X!k"

∫

X!k"
δy × (µ!k")y dµ!k"

x (y) dµ!k"(x).

Since x (→ (µ!k")x is the ergodic decomposition of µ!k", for µ!k"-almost every x ∈
X!k" and (µ!k")x-almost every y ∈ X!k", we have that (µ!k")y = (µ!k")x. Thus, for
µ!k"-almost every x ∈ X!k" it follows that
∫

X!k"
δy × (µ!k")y d(µ!k")x(y) =

∫

X!k"
δy × (µ!k")x d(µ!k")x(y) = (µ!k")x × (µ!k")x

and so (5.1) and (5.2) define the same measure. "

Our proof of Proposition 3.11 needs the system (X, µ, T ) to have a contin-
uous factor map to its Kronecker factor, and it is essential in the proof that
functions on the Kronecker factor describe the invariant σ-algebra of the system
(X!1", µ!1", T !1"). The appropriate generalization of Kronecker factor is the k-step
pronilfactor of (X, µ, T ) and the structure theory of measure preserving systems
tells us that functions on pronilfactors can be used to describe the invariant σ-
algebra of (X!k", µ!k", T !k"). To formally state this in the form we need, we recall
some details about nilsystems.

If G is a k-step nilpotent Lie group and Γ is a discrete cocompact subgroup of
G, then the compact manifold X = G/Γ is a k-step nilmanifold. The group G acts
on X by left translation, and there is a unique Borel probability measure µ on X
that is invariant under this action, called the Haar measure.

If g ∈ G is a fixed element, T : X → X is the map x (→ gx, and µ is the Haar
measure, then (X, µ, T ) is a k-step nilsystem. It is a classical result that for all k-
step nilsystems (X, µ, T ) the properties (i) minimal; (ii) transitive; (iii) ergodic; (iv)
uniquely ergodic are equivalent. (See [20, Theorem 11, Chapter 11] for a summary
and discussion.)

The connection between µ!k" and k-step nilsystems is phrased in terms of certain
seminorms #·#k+1 on L∞(X, µ) introduced by Host and Kra [18]. For our purposes
we only need the connection below between these seminorms and the measure µ!k".
The theory of these seminorms can be found in [20]. To fully explain the connection
we need to discuss inverse limits of systems. Suppose for each j ∈ N we have a
system (Xj , µj , Tj), and suppose there are continuous factor maps πj : Xj → Xj−1

for all j > 1. Then there exists a unique inverse limit (X, µ, T ) which is a system
admitting continuous factor maps ψj : X → Xj such that πj ◦ ψj = ψj−1 for every
j > 1, and such that

⋃

j∈N
C(Xj) ◦ ψj
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is dense in C(X). Additionally, whenever each of the systems (Xj , µj , Tj) is ergodic,
so is the inverse limit (X, µ, T ). (See for example [20, Section 6, Chapter 3] for the
details.)

Theorem 5.3. Fix an ergodic system (X, µ, T ). For every k ∈ N there is a system
(Zk, mk, T ) with all the following properties.

• The system (Zk, mk, T ) is an inverse limit of ergodic k-step nilsystems.
• There is a measurable factor map ρk from (X, µ, T ) to (Zk, mk, T ).
• For any f ∈L∞(X, µ) we have #f#k+1 =0 if and only if f and L∞(Zk, mk)◦
ρk are orthogonal in L2(X, µ).

Proof. This is a combination of Theorem 2 in Chapter 16, Theorem 7 in Chapter 9,
and the discussion at the beginning of Section 3.1 in Chapter 13 of [20]. "

Definition 5.4. Whenever (X, µ, T ) is ergodic, we call the system (Zk, mk, T )
satisfying the conclusion of Theorem 5.3 the k-step pronilfactor of (X, µ, T ).

The role of the k-step pronilfactor in the proof of Theorem 4.4 is analogous to
the role of the Kronecker factor in the proof of Theorem 3.5.

5.2. Continuous factor maps to pronilfactors. It is crucial for the proof of
Proposition 3.11 that the system (X, µ, T ) has a continuous factor map to its Kro-
necker factor. In this section we explain how to arrive at this situation via an
extension procedure that holds in the more general setting of pronilfactors.

Definition 5.5. Given an ergodic system (X, µ, T ) and k ∈ N, let (Zk, mk, T ) be
its k-step pronilfactor. We say that (X, µ, T ) has topological pronilfactors if for
every k ∈ N there is a continuous factor map πk : X → Zk.

Remark 5.6. It follows from a careful analysis of our proof of Theorem 1.1 that, to
find k-dimensional Erdős cubes, it suffices to have a continuous factor map to the
k-step pronilfactor. However, there is no loss in assuming that we have topological
pronilfactors for all k ∈ N, and this simplifies the terminology.

Note that not every system has topological pronilfactors. In fact, there are
systems (see [22] or [6]) with non-trivial Kronecker factor but no continuous eigen-
functions, which precludes the existence of a continuous factor map to a non-trivial
Kronecker system. We handle such systems using Proposition 5.7, which allows us
to associate with every ergodic system a larger system that has topological pronil-
factors and which plays a role analogous to that played by Proposition 3.19 in
Section 3.

Proposition 5.7. Assume (X, µ, T ) is an ergodic system and a ∈ X is transitive.
Assume (Z, S) is a topological system that is distal and that m is an S-invariant
measure on Z. Assume also that there is a measurable factor map ρ from (X, µ, T )
to (Z, m, S). Then there are a point z̃ ∈ Z and a Følner sequence Ψ such that

(5.3) lim
N→∞

1

|ΨN |
∑

n∈ΦN

f(Tna) g(Snz̃) =

∫

X
f · (g ◦ ρ) dµ

for all f ∈ C(X) and all g ∈ C(Z).

Proof. This is a restatement of [19, Proposition 6.1] in our terminology. "
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Lemma 5.8. Fix an ergodic system (X, µ, T ) and a transitive point a ∈ X. There
are an ergodic system (X̃, µ̃, T̃ ) with topological pronilfactors, a Følner sequence
Ψ, a point ã ∈ gen(µ̃,Ψ) and a continuous factor map π : X̃ → X with π(ã) = a.
Moreover (X, µ, T ) and (X̃, µ̃, T̃ ) are measure theoretically isomorphic systems.

Proof. For each k ∈ N, we apply Theorem 5.3 to (X, µ, T ) to obtain the k-step
pronilfactor (Zk, mk, T ) of (X, µ, T ). It is an inverse limit of ergodic k-step nilsys-
tems and there is a measurable factor map ρk : (X, µ, T ) → (Zk, mk, T ). Define
(Z, m, S) to be the system where

Z =
∏

k∈N
Zk,

m is the push forward of µ under the measurable map ρ defined by

ρ(x) = (ρk(x) : k ∈ N)

for all x ∈ X, and S is the product transformation. Note that S is distal on Z and
that ρ is a measurable factor map from (X, µ, T ) to (Z, m, S). We can therefore
apply Proposition 5.7 to obtain some point z̃ ∈ Z and a Følner sequence Ψ such
that (5.3) holds for all f ∈ C(X) and all g ∈ C(Z). Write ã = (a, z̃) and T̃ = T ×S.
Note that (5.3) implies ã ∈ gen(µ̃,Ψ), where µ̃ is the push forward of µ under the
map x (→ (x, ρ(x)). Take X̃ to be the orbit closure of ã in X×Z and let π : X̃ → X
be the projection on the first coordinate.

The maps x (→ (x, ρ(x)) and (x, z) (→ x are almost sure inverses of one an-
other and therefore the systems (X, µ, T ) and (X̃, µ̃, T̃ ) are measure theoretically
isomorphic. In particular, it follows that (X̃, µ̃, T̃ ) is ergodic and that its k-step
pronilfactor is isomorphic to (Zk, mk, T ) for each k ∈ N. Thus the map (x, z) (→ zk

is a continuous factor map from (X̃, µ̃, T̃ ) to its k-step pronilfactor. "
The upshot is that Theorem 5.9 implies Theorem 4.4.

Theorem 5.9. Assume (X, µ, T ) is an ergodic system with topological pronilfac-
tors, that a ∈ gen(µ,Φ) for some Følner sequence Φ and that E ⊂ X satisfies
µ(E) > 0. For every k ∈ N there is a k-dimensional Erdős cube x ∈ X!k" with
x0⃗ = a and x1⃗ ∈ E.

Proof that Theorem 5.9 implies Theorem 4.4. Assume (X, µ, T ) is an ergodic sys-
tem, that a ∈ gen(µ,Φ) for some Følner sequence Φ, and that E ⊂ X has positive
measure. Fix k ∈ N. We wish to apply Lemma 5.8 and for this we need the point
a to be transitive. We therefore replace X with the closure X ′ of {Tn(a) : n ∈ Z}.
Since a ∈ gen(µ,Φ), we must have µ(X ′) = 1 and µ(E ∩ X ′) > 0. Thus (X ′, µ, T )
is an ergodic system in which the point a is transitive and the set X ′ ∩E has pos-
itive measure. Apply Lemma 5.8 to (X ′, µ, T ) to get a system (X̃, µ̃, T̃ ), a Følner
sequence Ψ, a point ã ∈ gen(µ̃,Ψ), and a continuous factor map π from (X̃, µ̃, T̃ )
to (X ′, µ, T ). Set Ẽ = π−1(X ′ ∩ E).

Now apply Theorem 5.9 to get an Erdős cube x̃ ∈ X̃!k" with x̃0⃗ = ã and x̃1⃗ ∈ E.
It is immediate that π(x̃) is an Erdős cube whose first coordinate is a and whose
last coordinate belongs to E. "
5.3. Nilcubes. We now turn to an issue in the proof of Theorem 1.1 for k ≥ 3 that
is not apparent in the case k = 2 discussed in Section 3. To prove Proposition 3.11

we defined for every point x ∈ X!1" a measure λ!1"
x on X×X with various properties.
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In the next section we define measures λ!k"
x on X!k" to prove Theorem 1.1 in general.

However, even when (X, µ, T ) has topological pronilfactors, we are not able to define

λ!k"
x for all x ∈ X!k". In preparation for the next section, we define the space that

is the domain of the map x (→ λ!k"
x . To do so, we recall the definition of dynamical

cubes from [21].

Definition 5.10 (Dynamical cubes). For a topological system (X, T ), we define
the set of k-dimensional dynamical cubes Q!k"(X, T ) to be the orbit closure of the
diagonal points under the face transformations. Formally

Q!k"(X, T ) = {(T ϵ·nx : ϵ ∈ !k") : x ∈ X and n ∈ Zk}

with the closure taken in X!k" and ϵ · n = ϵ1n1 + · · · + ϵknk for ϵ ∈ !k" and n ∈ Zk.

In our setting we only have a single transformation on a given topological system,
so we write Q!k"(X) instead of the more cumbersome Q!k"(X, T ). For example,
Q!2"(X) is the closure of

{(x, Tnx, Tmx, Tm+nx) : m, n ∈ Z and x ∈ X}

in X!2".

Theorem 5.11 ([20, Theorem 8, Chapter 12]). Assume (Z, m, T ) is an ergodic k-
step nilsystem. Then (Q!k"(Z), T !k", m!k") is a k-step nilsystem, and in particular
m!k"(Q!k"(Z)) = 1.

Definition 5.12 (Nilpotent cubes). For an ergodic system (X, µ, T ) with topolog-
ical pronilfactors, we define the set of k-dimensional nilcubes to be

N!k"(X) = (π!k"
k )−1(Q!k"(Zk)),

where (Zk, mk, T ) is the k-step pronilfactor of (X, µ, T ) and πk : X → Zk is the
associated continuous factor map.

It is the set N!k"(X) that plays the role of the domain for the map x (→ λ!k"
x

we introduce in Section 6. The following basic properties of N!k"(X) are used
frequently.

Lemma 5.13. Assume the ergodic system (X, µ, T ) has topological pronilfactors.
Then N!1"(X) = X!1".

Proof. Fix a continuous factor map π from (X, µ, T ) to its Kronecker factor
(Z, m, T ). Since the Kronecker factor is an ergodic group rotation every point
therein has dense orbit, and Q!1"(Z) = Z!1". Thus N!1"(X) = (π!1")−1(Q!1"(Zk) =
(π!1")−1(Z!1") = X!1". "

Lemma 5.14. Assume the ergodic system (X, µ, T ) has topological pronilfactors.
Then N!k"(X) is closed,

(5.4) Q!k"(X) ⊂ N!k"(X)

for all k ∈ N, and µ!k"(N!k"(X)) = 1.

Proof. Fix k ∈ N. Write π for the continuous factor map from (X, µ, T ) to its
k-step pronilfactor (Z, m, T ). The first property is immediate, as π!k" is continuous
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and Q!k"(Z) is closed. The containment (5.4) holds for the following reason: if
x ∈ Q!k"(X) is a limit point of the sequence

n (→ (xn, T a(n)xn, T b(n)xn, T a(n)+b(n)xn),

then π(x) is a limit point of

n (→
(
π(xn), T a(n)(π(xn)), T b(n)(π(xn)), T a(n)+b(n)(π(xn))

)
.

The calculation

µ!k"(N!k"(X)) = µ!k"((π!k")−1Q!k"(Z)) = m!k"(Q!k"(Z)) = 1

gives the last property by Theorem 5.11. "
5.4. Comparing cubes. We compare Erdős cubes, nilcubes, and dynamical cubes.
The material of this section is not needed later on, but is included to clarify the
main objects studied.

Definition 5.15. For a topological system (X, T ), we define the set of k-dimen-
sional Erdős cubes E!k"(X) to be the collection of all k-dimensional Erdős cubes
x ∈ X!k" (see Definition 4.1).

Lemma 5.16. Assume that (X, T ) is a topological system. Then for all k ∈ N, we
have that E!k"(X) ⊂ Q!k"(X).

Proof. We proceed by induction on k. When k = 1, an Erdős cube is of the form
(x, y) with T c(n)x → y as n → ∞ for an increasing sequence c : N → N. Since
(x, T c(n)x) ∈ Q!1"(X) for every n ∈ N, it is immediate that (x, y) ∈ Q!1"(X).

For the inductive step, fix an Erdős cube x ∈ X!k". Recall that F1x ∈ X!k−1"

is the projection of x onto its first lower face. Since F1x is an Erdős cube (see
Lemma 4.3), we have that F1x ∈ Q!k−1"(X) and therefore (F1x, (T !k−1")nF1x) ∈
Q!k"(X) for all n ∈ N. Since F 1x is a limit point of

{
(T !k−1")nF1x : n ∈ N

}
and

Q!k"(X) is closed, we are done. "
Note that it does not follow from the definition that the collection of Erdős cubes

is closed, while it is incorporated into the definition of dynamical cubes that this
collection is closed. Moreover, an Erdős cube is defined in terms of forward orbits
under the appropriate cubic transformations, while the definition of a dynamical
cube allows both forward and backward orbits. This difference is motivated by the
intended application of the existence of Erdős cubes to find patterns in a set of
positive upper density in the positive (and not all) integers. However, even were
we to extend the definition of an Erdős cube to allow two sided orbits, they would
still not define the same object as the dynamical cubes. We include some examples
to illustrate these differences.

Example 5.17. Set X = {0, 1}Z endowed with the shift map T . There exists
x ∈ X such that

(5.5) (x,12Z,13Z,15Z)

belongs to Q!2"(X) but not to E!2"(X). Take a(n) = 810n and b(n) = 910n. Let

x(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

12Z(i) if i ∈ [a(n), a(n) + n] for some n,

13Z(i) if i ∈ [b(n), b(n) + n] for some n,

15Z(i) if i ∈ [a(n) + b(n), a(n) + b(n) + n] for some n,

0 otherwise.
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Then (x, 12Z, 13Z, 15Z) is a limit of (x, T a(n)x, T b(n)x, T a(n)+b(n)x). However (5.5)
is not an Erdős cube, as 15Z does not lie in the orbit closure of 12Z.

Even in well-behaved, familiar systems, such as an algebraic skew product, we
may not have equality between the two notions of cubes.

Example 5.18. Consider the skew-product T : (x, y) (→ (x +α, y + x) on X = T2,
where α is irrational. Then

(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
∈ X4 belongs to

Q!2"(X) if and only if x1 + x4 = x2 + x3 (this can be seen by computing the orbit
of a point (x′, y1) with x′ close to x1 and rationally independent from α). However,
the point

(
(0, 0), (0, 0), (0, 0), (0, 1/2)

)
∈ X4 is not in E!2"(X).

We have the containments

E!k"(X) ⊂ Q!k"(X) ⊂ N!k"(X)

for all k ∈ N whenever (X, µ, T ) is an ergodic system with topological pronilfactors.
Examples 5.17 and 5.18 show that the first containment is proper in general, even
if we were to adjust the definition to make use of the full (backwards and forwards)
orbit. For ergodic nilsystems, and more generally for distal systems, it turns out
that the closure of the k-dimensional Erdős cubes equals the set of k-dimensional
dynamical cubes.

Theorem 5.19. Let (X, T ) be a distal topological system and let k ∈ N. Then

Q!k"(X) = E!k"(X).

Proof. Define

P = {(x, y) : x ∈ Q!k−1"(X), y ∈ ω(x, T !k−1")}

and note that Lemma 4.2 implies

E!k"(X) ⊃
k⋂

i=1

φi(P ),

where φi is the permutation of {1, . . . , k} that exchanges 1 and i.
We use induction to check that for any x ∈ X and n ∈ Zk, the point (T ϵ·nx :

ϵ ∈ !k") is in P . Indeed, when k = 1, since (X, T ) is distal it is a disjoint union of
minimal systems by [11, Theorem 3.2]. Restricting to one of these minimal systems,
we have that (a, Tna) ∈ P for all a ∈ X and all n ∈ Z, as the forward orbit of any
a is dense. The inductive step follows because each power (X!k", T !k") of a distal
system is also distal. It follows that Q!k"(X) ⊂ P and hence Q!k"(X) ⊂ φi(P ) for
any i ∈ {1, . . . , k}, as Q!k"(X) is invariant under φi. Therefore

Q!k"(X) ⊂
k⋂

i=1

φi(P ) ⊂ E!k"(X) ⊂ Q!k"(X)

and we conclude that Q!k"(X) = E!k"(X). "

In general, an ergodic system (X, µ, T ) having topological nilfactors need not
have Q!k"(X) = N!k"(X). Examples illustrating this are given in [29, Example 3.6]
and [4, Section 3.2].
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6. A continuous ergodic decomposition

The rest of the paper is dedicated to the proof of Theorem 5.9. The first step
is to generalize Proposition 3.11 to higher dimensions by describing an ergodic
decomposition for the cube systems (X!k", µ!k", T !k") that is compatible with the
topology.

Definition 6.1. Given a system (X, µ, T ), we say that a map x (→ µx from X to
M(X) is a continuous ergodic decomposition if it is continuous and is an ergodic
decomposition in the sense of Definition 2.7.

Note that, in view of Theorem 2.8, a continuous ergodic decomposition, if it
exists, is unique on supp(µ). However, a continuous ergodic decomposition can be
extended from supp(µ) to the whole space X in an arbitrary manner (as long as
continuity is preserved).

Lemma 6.2. A system (X, µ, T ) admits a continuous ergodic decomposition if and
only if for every f ∈ C(X), the conditional expectation E(f | I) on the σ-algebra
of T -invariant sets agrees µ-almost everywhere with a continuous function.

Proof. If x (→ µx is a continuous ergodic decomposition, then for any f ∈ C(X)
the function

x (→
∫

X
f dµx

is continuous, and ∫

X
f dµx = E(f | I)(x)

for µ-almost every x ∈ X, by definition. Conversely, if for every f ∈ C(X) there
exists g ∈ C(X) such that E(f | I) and g agree µ-almost everywhere, then the
measures µx defined by

∫
X f dµx := g(x) define a continuous ergodic decomposition.

"
We now give some examples to clarify the notion of a continuous ergodic decom-

position.

Example 6.3. Take X = R2/Z2 and define T by T (x, y) = (x, y + x). The Haar
measure µ on X is T -invariant but is not ergodic. In this system, every point is
generic for some ergodic measure, but the function that associates to each point
the ergodic measure it is generic for is not a continuous function. To remedy this
issue, let m denote the Lebesgue measure on [0, 1) and, for each (x, y) ∈ X, define
the measure µ(x,y) = δx m, where δx denotes as usual the Dirac point mass at x.

The map (x, y) (→ µ(x,y) from X to the space M(X) of Borel probability mea-
sures on X is continuous. Furthermore, µ(x,y) is ergodic for T whenever x is ir-
rational, in particular it is ergodic for µ-almost every (x, y) ∈ X. Finally, since∫

X µ(x,y) dµ(x, y) = µ, the assignment (x, y) (→ µ(x,y) is a continuous ergodic de-
composition of µ.

Example 6.4. For our second example fix α ∈ R\Q and define T on X = R4/Z4

by
T (x, y, w, z) = (x + α, y + x, w + α, z + w)

for all (x, y, w, z) ∈ X. The Haar measure µ on T4 is T -invariant but not ergodic,
as the set

Xβ = {(x, y, w, z) ∈ X : w − x = β}
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is T -invariant for every β ∈ R/Z. Note that ψβ : R3/Z3 → Xβ by

(x, y, z) (→ (x, y, x + β, z)

defines an isomorphism between (Xβ, T ) and (T3, Sβ), where

Sβ(x, y, z) = (x + α, y + x, z + x + β)

on R3/Z3. It can be checked that the Haar measure m on T3 is ergodic for Sβ for
almost every β ∈ R/Z. The map (x, y, w, z) (→ µ(x,y,w,z) := ψw−x(m) assigning
to (x, y, w, z) the push forward of m under ψw−z is a continuous map from X to
M(X). Moreover, µ(x,y,w,z) is T -ergodic for µ-almost every (x, y, w, z) ∈ X and
forms a disintegration of µ, showing that (x, y, w, z) (→ µ(x,y,w,z) is a continuous
ergodic decomposition of µ.

Note that T is a self-product of the map (x, y) (→ (x + α, y + x) on R2/Z2 and
that the Haar measure ν on T2 is ergodic for T . This disintegration is therefore an
example of a continuous ergodic decomposition of ν!1" = ν × ν.

Recall that, given a system (X, µ, T ) with topological pronilfactors, we denote
by Zk the k-step pronilfactor and by πk : X → Zk the (continuous) factor map.

Recall also that N!k"(X) = (π!k"
k )−1(Q!k"(Zk)) is closed and T !k"-invariant, and

that µ!k"(N!k"(X)) = 1, so that (N!k"(X), µ!k", T !k") is a system. In particular, the
support of µ!k" is contained in N!k"(X).

Theorem 6.5. Assume that (X, µ, T ) is an ergodic system with topological pronil-
factors. For every k ∈ N there is a unique continuous ergodic decomposition

x (→ λ!k"
x of the system (N!k"(X), µ!k", T !k") such that

(6.1) π!k"
k (x) = π!k"

k (y) ⇒ λ!k"
x = λ!k"

y

for all x, y ∈ N!k"(X).

We noted that it follows from Theorem 2.8 that continuous ergodic decomposi-
tions are uniquely defined on the support of the measure being decomposed. Yet in
the most interesting situations, our point a is outside the support of µ and there-
fore all points x ∈ X!k" whose first coordinate equals a are outside supp(µ!k").
However, the ergodic decomposition in Theorem 6.5 is defined on N!k"(X), which
contains points with any prescribed first coordinate (this follows from the fact that
our system has topological pronilfactors).

The remainder of this section is devoted to proving Theorem 6.5. We start by
applying a theorem of Leibman to establish Theorem 6.5 for ergodic nilsystems,
and then make use of inverse limits and the Host-Kra structure theorem to prove
the general case.

Theorem 6.6 (Leibman [23, Theorem 2.2]). Let (Z, m, T ) be a nilsystem with
Z = G/Γ and π : G → Z the natural map. Let V be a connected subnilmanifold of
Z and let K be a connected component of π−1(V ). There is a subnilmanifold Y of Z
with the following property: for m-almost every z ∈ V we have {Tnz : n ∈ Z} = aY
whenever π(a) = z and a ∈ K.

Using Theorem 6.6 we deduce that every nilsystem admits a continuous ergodic
decomposition.

Lemma 6.7. Every nilsystem (Z, m, T ) admits a continuous ergodic decomposition
ξ : Z → M(Z).
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Proof. Let us first assume that Z is connected. Once we have established the claim
for connected Z, we then derive the general case using basic properties of nilsystems.

Write Z = G/Γ where G is a nilpotent Lie group and Γ a discrete and co-
compact subgroup of G, and let π : G → Z denote the natural factor map from
G onto Z. Let G◦ denote the identity component of G and note that G◦Γ = G
because Z = G/Γ is connected. Applying Theorem 6.6 with V = Z and K = G◦

gives a subnilmanifold Y of Z and a set W ⊂ G◦ of full measure in G◦ with the
following property: for every g ∈ W we have

{Tnπ(g) : n ∈ Z} = gY.

In particular, we have that g1Y = g2Y whenever g1, g2 ∈ W with π(g1) = π(g2).
Define the map ξ̃ : G◦ → M(Z) as ξ̃(g) = µgY , where µgY denotes the Haar measure
of the subnilmanifold gY . Note that (gY, T ) is a transitive nilsystem whenever
g ∈ W , and hence µgY is ergodic. Moreover π(g) is generic for ξ̃(g). We claim that

(6.2) ξ̃(gγ) = ξ̃(g), for all g ∈ G◦, for all γ ∈ Γ◦,

where Γ◦ = G◦ ∩ Γ. By the conclusion of Theorem 6.6 it follows that ξ̃(gγ) = ξ̃(g)
for any g ∈ W and any γ ∈ Γ◦ with gγ ∈ W , because π(g) = π(gγ) and hence
gY = gγY . In other words, we have that (6.2) holds for all γ ∈ Γ◦ and all
g ∈ W ∩ Wγ−1. Since ξ̃ : G◦ → M(Z) is a continuous map and W ∩ Wγ−1 is a
dense subset of G◦ (because W ∩ Wγ−1 has full measure), we conclude that (6.2)
holds for all g ∈ G◦ and all γ ∈ Γ◦ as desired. Finally, (6.2) implies that the map ξ̃
descents to a map ξ on the quotient G◦/Γ◦. Since G◦/Γ◦ and G/Γ are isomorphic,
we can view ξ as a map on Z = G/Γ and we are done.

We are left to deal with the case when Z is not connected. In this case, by
compactness, the nilmanifold Z has finitely many connected components, which we
denote by Z1, . . . , Zr. Let mi denote the Haar measure on Zi and observe that
m = 1

r (m1 + · · · + mr).
Since T maps connected components to connected components, there exists a

permutation τ : {1, . . . , r} → {1, . . . , r} such that TZi = Zτ(i). Since any permuta-
tion on r symbols satisfies τ r! = Id, we have T r!Zi = Zi for every i ∈ {1, . . . , r}. In
particular, the triple (Zi, mi, T r!) is a connected nilsystem. Hence, there exists a
continuous map ξi : Zi → M(Zi) such that z (→ ξi,z is an ergodic decomposition of
mi with respect to the transformation T r!, and mi-almost every z ∈ Zi is generic
for ξi,z for all i ∈ {1, . . . , r}. Let Ui denote the set of points in Zi that are generic
for ξi,z (under T r!) and let U = U1 ∪ · · · ∪ Ur; then let Y ⊂ Z be the set of points
whose entire orbit is contained in U and note that m(Y ) = 1. For z ∈ Y ∩ Zi we
have an explicit description of ξi,z as

ξi,z = lim
N→∞

1

N

N∑

n=1

δT nr!z

and in particular T (ξi,z) = ξτ(i),Tz.
For every z ∈ Z, let iz be the unique number in {1, . . . , r} such that z ∈ Ziz .

Consider the map z (→ ξz given by

ξz =
1

r!

r!∑

j=1

T j(ξiz,z)
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and note that it is continuous. Moreover, each z ∈ Y is generic for ξz under T , which
immediately implies that ξz is T -invariant, ergodic, and that

∫
Z ξz dm = m. "

It now follows that ergodic nilsystems satisfy the conclusion of Theorem 6.5.

Lemma 6.8. Let (Z, m, T ) be an ergodic nilsystem. For every k ∈ N there is a

continuous ergodic decomposition z (→ ξ!k"
z of the system (Q!k"(Z), m!k", T !k").

Proof. Fix k ∈ N. By Theorem 5.11, it follows that (Q!k"(Z), T !k") is a nilsystem
and that the measure m!k" is equal to the Haar measure on Q!k"(Z). Thus the
conclusion follows from Lemma 6.7. "

Next, we need a version of Lemma 6.8 for topological inverse limits of nilsystems.

Lemma 6.9. Suppose for each j ∈ N we have a system (Xj , µj , Tj) admitting a
continuous ergodic decomposition, and suppose there are continuous factor maps
πj : Xj+1 → Xj. Then the inverse limit (X, µ, T ) admits a continuous ergodic
decomposition.

Proof. Recall that we have continuous factor maps ψj : X → Xj satisfying πj ◦ψj =
ψj−1. In view of Lemma 6.2, for each j ∈ N and f ∈ C(Xj), the function E(f | Ij)
is µj-almost everywhere continuous, and hence the function E(f ◦ ψj | I) = E(f |
Ij) ◦ ψj is µ-almost everywhere continuous. Since

⋃

j∈N
C(Xj) ◦ ψj

is dense in C(X), using the converse direction of Lemma 6.2 we conclude that
(X, µ, T ) admits a continuous ergodic decomposition. "
Corollary 6.10. Let k ∈ N and let (Z, µ, T ) be an inverse limit of ergodic k-
step nilsystems. Then the system (Q!k"(Z), µ!k", T !k") admits a continuous ergodic
decomposition.

Proof. Suppose that (Z, µ, T ) is the inverse limit of a sequence of ergodic, k-step
nilsystems (Zj , mj , Tj). Then a routine check shows that (Q!k"(Z), µ!k", T !k") is

the inverse limit of the sequence (Q!k"(Zj), m
!k"
j , T !k"

j ). The conclusion now follows
by combining Lemmas 6.8 and 6.9. "
Lemma 6.11. Let (X, µ, T ) and (Y, ν, S) be systems and suppose χ : X → Y is
a factor map. If ν is ergodic and x (→ µx is an ergodic decomposition of µ, then
χ(µx) is equal to ν for µ-almost every x ∈ X.

Proof. As χ is a factor map and almost-every µx is T -invariant, almost every χ(µx)
is S-invariant. The fact that ∫

X
µx dµ(x) = µ

implies ∫

X
χ(µx) dµ(x) = ν

is an ergodic decomposition of µ. Ergodicity of ν then implies that χ(µx) = ν for
µ-almost every x ∈ X. "

We have now assembled the tools to prove Theorem 6.5.
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Proof of Theorem 6.5. Fix a system (X, µ, T ) with topological pronilfactors and fix
k ∈ N. To keep notation simple, and just throughout this proof, we denote by
(Z, m, T ) the k-step pronilfactor of (X, µ, T ), and let π : X → Z be the continuous

factor map. We also write η = π!k" = π!k"
k for the map η : X!k" → Z!k" that applies

π coordinatewise.
We begin by noting that if a continuous ergodic decompositions of the system

(N!k"(X), µ!k", T !k") satisfying (6.1) exists, then by Lemma 3.16 applied to the
factor map η, it must be unique.

Apply Corollary 6.10 to get a continuous ergodic decomposition z (→ ξ!k"
z from

Q!k"(Z) to M(Q!k"(Z)). For each x ∈ N!k"(X) define a measure λ!k"
x on X!k" by

(6.3)

∫

X!k"

⊗

ϵ∈!k"
fϵ dλ!k"

x =

∫

Z!k"

⊗

ϵ∈!k"
E(fϵ | Z) dξ!k"

η(x)

whenever f = (fϵ)ϵ∈!k" ∈ C(X)!k". Since the right hand side of (6.3) depends on x
only through η(x), it is clear that (6.1) holds.

We are left with showing that x (→ λ!k"
x is a continuous ergodic decomposition.

Write I!k" for the σ-algebra of Borel measurable and T !k" invariant subsets of
X!k".

Claim 1. For any f ∈ C(X)!k" we have

(6.4) E
(⊗

ϵ∈!k"
fϵ | I!k"

)
(x) = E

( ⊗

ϵ∈!k"
E(fϵ | Z) ◦ π | I!k"

)
(x)

for µ!k"-almost every x ∈ X!k".

To see this, note that the difference between the two sides of (6.4) can be written
as a sum of 2k terms of the form E(

⊗
ϵ∈!k" gϵ | I!k") where at least one of the gϵ

satisfies E(gϵ | Z) = 0.
Applying the Cauchy-Schwarz-Gowers inequality [20, Theorem 13, Chapter 8]

gives

∥∥∥∥∥∥
E
(⊗

ϵ∈!k"
gϵ | I!k"

)
∥∥∥∥∥∥

2

µ!k"

=

∣∣∣∣∣∣

∫

X!k"
E
(⊗

ϵ∈!k"
gϵ | I!k"

)
· E

(⊗

ϵ∈!k"
gϵ | I!k"

)
dµ!k"

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

X!k+1"

⊗

ϵ∈!k"
gϵ ⊗

⊗

ϵ∈!k"
gϵ dµ!k+1"

∣∣∣∣∣∣
≤

∏

ϵ∈!k"
#gϵ#2

k+1

and note that #g#k+1 = 0 if and only if E(g | Z) = 0 by Theorem 5.3 because
(Z, m, T ) is the k-step pronilfactor of (X, µ, T ). This completes the proof of Claim 1.

Claim 2. Letting I!k"
Z denote the σ-algebra of T !k"-invariant subsets of Q!k"(Z),

we have that

E
( ⊗

ϵ∈!k"
E(fϵ | Z) ◦ π | I!k"

)
= E

( ⊗

ϵ∈!k"
E(fϵ | Z) | I!k"

Z

)
◦ η.
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To check this, note that for any g ∈ L2(Q!k"(Z), m!k"), the pointwise ergodic
theorem and the fact that η is a factor map imply that

E(g | I!k"
Z ) ◦ η = lim

N→∞

1

N

N∑

n=1

g ◦ Tn ◦ η = lim
N→∞

1

N

N∑

n=1

g ◦ η ◦ Tn = E(g ◦ η | I!k").

If

g =
⊗

ϵ∈!k"
E(fϵ | Z),

then

g ◦ η =
⊗

ϵ∈!k"
E(fϵ | Z) ◦ π,

completing the proof of Claim 2.

Since z (→ ξ!k"
z is an ergodic decomposition of m!k", combining Claim 2 with

Claim 1, it follows that the definition in (6.3) of λ!k"
x defines an ergodic decompo-

sition of µ!k".
We are left with showing that the mapping x (→ λ!k"

x is continuous, and to do so
it suffices to show that for any f ∈ C(X)!k" the function

x (→
∫

X!k"

⊗

ϵ∈!k"
fϵ dλ!k"

x

is continuous.

Claim 3. For p = 2k, the function θ : Lp(Z, m)!k" → L∞(Z, m) given by

(6.5) θ(g)(z) =

∫

Z!k"

⊗

ϵ∈!k"
gϵ dξ!k"

z

is continuous.

To see this, since z (→ ξ!k"
z is an ergodic decomposition of m!k", Lemma 6.11

(applied to the projections Z!k" → Z) together with Lemma 3.16 implies that

every projection of ξ!k"
z equals m for every z ∈ Q!k"(Z).

Now given g, g̃ ∈ Lp(Z, m)!k", if there exists ω ∈ !k" such that gϵ = g̃ϵ for all
ϵ ∈ !k"\{ω}, then by Holder’s inequality

∥θ(g) − θ(g̃)∥L∞(m) #
∏

ϵ̸=ω

∥gϵ∥Lp(m) · ∥gω − g̃ω∥Lp(m).

This implies that θ is continuous, completing the proof of Claim 3.
Using the definition (6.3), the fact that E(fϵ | Z) ∈ L∞(Z, m) ⊂ Lp(Z, m)

and that η : N!k"(X) → Q!k"(Z) is continuous, it suffices to show that for any
g ∈ Lp(Z, m)!k" the function θ(g) defined by (6.5) is continuous.

Note that for g ∈ C(Z)!k" we have θ(g) ∈ C(Z), since the map z (→ ξ!k"
z is

continuous. Therefore, continuity of θ, the fact that C(Z) is a closed subset of
L∞(Z, m) and the fact that C(Z)!k" is dense Lp(Z, m)!k", together implies that
θ(g) ∈ C(Z) for any g ∈ Lp(Z, m)!k". "
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Corollary 6.12. Let (X, µ, T ) be an ergodic system with topological pronilfac-

tors, let k ∈ N and let x (→ λ!k"
x be the continuous ergodic decomposition of

(N!k"(X), µ!k", T !k") provided by Theorem 6.5. Then

λ!k"
T !k"x

= λ!k"
x = T !k"(λ!k"

x )

for every x ∈ N!k"(X).

Proof. We claim that both assignments x (→ λ!k"
T !k"x

and x (→ T !k"(λ!k"
x ) are con-

tinuous ergodic decompositions of (N!k"(X), µ!k", T !k") satisfying (6.1). In view of
the almost everywhere uniqueness of ergodic decompositions we can then invoke

Lemma 3.16 to conclude that λ!k"
T !k"x

= λ!k"
x = T !k"(λ!k"

x ) for any x ∈ N!k"(X).

To prove the claim, note that for any continuous function f ∈ C(N!k"(X)) we
have ∫

N!k"(X)
f dλ!k"

T !k"x
= E(f | I!k")(T !k"x) = E(f | I!k")(x)

for µ!k"-almost every x ∈ X!k", where the last equality follows from the fact that

I!k" is the σ-algebra of T !k"-invariant sets. This implies that x (→ λ!k"
T !k"x

is an

ergodic decomposition of µ!k". Similarly,
∫

N!k"(X)
f dT !k"(λ!k"

x ) = E(T !k"f | I!k")(x) = E(f | I!k")(x),

showing that x (→ T !k"(λ!k"
x ) is also an ergodic decomposition. Continuity follows

from the fact that x (→ λ!k"
x is continuous and (6.1) follows from the fact that

π : X → Z is a factor map. This finishes the proof. "
Corollary 6.13. For every x ∈ N!k"(X) and every coordinate projection X!k" →
X, the push forward of λ!k"

x is the measure µ.

In other words, Corollary 6.13 says that for every x ∈ N!k"(X) the measure λ!k"
x

is a 2k-fold self-joining of µ.

Proof. By Theorem 6.5, we have that x (→ λ!k"
x is an ergodic decomposition, and

so Lemma 6.11 (applied to the projections X!k" → X) gives us the statement for
µ!k"-almost every x ∈ X!k". Combining this fact with (6.1) and using Lemma 3.16
it follows that the conclusion holds for every x ∈ N!k"(X). "

7. Proof of Theorem 5.9

Throughout this section, whenever we are given an ergodic system (X, µ, T )

with topological pronilfactors, we use λ!k"
x to denote the measures constructed in

Theorem 6.5.

7.1. An explicit disintegration over the first coordinate. In this section
we use the continuous ergodic decomposition obtained in the previous section to
construct a concrete disintegration of µ!k" with respect to the projection x (→ x0⃗

from X!k" to the first coordinate. The results in this section constitute general
versions of Theorem 3.14 and Corollary 3.17. Recall the map F ∗ : X!k" → X!k"\{0⃗}

defined in (4.1) that forgets the 0⃗ coordinate, in the sense that x = (x0⃗, F
∗x) for

every x ∈ X!k" = X × X!k"\{0⃗}.
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Theorem 7.1. Assume that (X, µ, T ) is an ergodic system with topological pronil-

factors. For every k ∈ N and every t ∈ X, there exists a measure σ!k"
t on X!k"

such that the following hold.

(S1). For all t ∈ X, we have that supp(σ!k"
t ) ⊂ N!k"(X).

(S2). The measures satisfy

(7.1) σ!1"
t = δt × µ; σ!k+1"

t =

∫

N!k"(X)
δx × λ!k"

x dσ!k"
t (x)

for all t ∈ X.

(S3). The map t (→ σ!k"
t is both continuous and a disintegration of the measure

µ!k".
(S4). For all t ∈ X, we have that σ!k"

t ({x ∈ X!k" : x0⃗ = t}) = 1.

(S5). For all t, s ∈ X, whenever πk(t) = πk(s) then we have that F ∗σ!k"
t =

F ∗σ!k"
s .

For the remainder of the section, whenever (X, µ, T ) is an ergodic system with

topological pronilfactors, we let σ!k"
t denote the measures that are guaranteed to

exist by Theorem 7.1.

Proof. The proof is by induction on k. We begin by defining σ!1"
t = δt × µ for

all t ∈ X. It is straightforward to verify t (→ σ!1"
t is a continuous map from X

to M(X!1") and a disintegration of µ!1" = µ × µ. We also have x0 = t for σ!1"
t -

almost every point and F ∗σ!1"
t = µ for all t ∈ X. It follows from Lemma 5.13 that

N!1"(X) = X!1" for all t ∈ X. Thus (S1) through (S5) hold when k = 1.

Suppose by induction that for some k ≥ 1 we have a measure σ!k"
t ∈ M(X!k")

for every t ∈ X satisfying properties (S1) through (S5). We may then define

σ!k+1"
t =

∫

N!k"(X)
δx × λ!k"

x dσ!k"
t (x)

for every t ∈ X. This establishes (S2) for k + 1, and we are left with verifying the
other properties.

Continuity of x (→ λ!k"
x and t (→ σ!k"

t gives continuity of t (→ σ!k+1"
t . It is a

disintegration of µ!k+1" by the calculation
∫

X
σ!k+1"

t dµ(t) =

∫

X

∫

N!k"(X)
δx × λ!k"

x dσ!k"
t (x) dµ(t)

=

∫

N!k"(X)
δx × λ!k"

x dµ!k"(x)

= µ!k+1"

which uses induction for the second equality and Lemma 5.2 for the third. This
shows that (S3) holds.

To prove (S4) note that, since σ!k"
t -almost every point x satisfies x0⃗ = t, we can

write

σ!k+1"
t = δt ×

∫

N!k"(X)
δF∗x × λ!k"

x dσ!k"
t (x)

which implies σ!k+1"
t -almost every point x satisfies x0⃗ = t.
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Next we establish (S5). Since σ!k"
t -almost every point x ∈ N!k"(X) can be

written as x = (t, F ∗x), we have

F ∗σ!k+1"
t =

∫

N!k"(X)
δF∗x×λ!k"

(t,F∗x) dσ!k"
t (x) =

∫

F∗(N!k"(X))
δy ×λ!k"

(t,y) d(F ∗σ!k"
t )(y).

Using (6.1), it follows that if πk(t) = πk(s) then λ!k"
(t,y) = λ!k"

(s,y) whenever y ∈
X!k"\{0⃗} and (t, y) ∈ N!k"(X). Using the induction hypothesis it follows that

F ∗σ!k+1"
t = F ∗σ!k+1"

s , establishing (S5).
Finally, we need to verify that (S1) holds. Since µ!k+1"(N!k+1"(X)

)
= 1 by

Lemma 5.14, the fact that t (→ σ!k+1"
t is a disintegration of µ!k+1" gives that

σ!k"
t (N!k+1"(X)) = 1 for µ-almost every t. Now Lemma 5.14 also states N!k+1"(X)

is closed so
{ν ∈ M(X!k+1") : ν(N!k+1"(X)) = 1}

is closed. Continuity of t (→ σ!k+1"
t then gives σ!k"

t (N!k+1"(X)) = 1 for every
t ∈ supp(µ). We conclude that the set

{t ∈ X : σ!k+1"
t (N!k+1"(X)) = 1}

satisfies the hypothesis of Lemma 3.16 and is therefore equal to X. This establishes
(S1). "

Corollary 7.2. Assume (X, µ, T ) is an ergodic system with topological pronilfac-
tors. For every t ∈ X and every coordinate projection X!k" → X other than

projection to 0⃗, the push forward of σ!k"
t equals µ.

Proof. This follows by combining the definition (7.1) of σ!k"
t with Corollary 6.13.

"

Corollary 7.3. Assume (X, µ, T ) is an ergodic system with topological pronilfac-
tors. For every k ∈ N, every permutation φ on {1, . . . , k}, and every t ∈ X we

have φσ!k"
t = σ!k"

t where φσ!k"
t is the push forward of σ!k"

t under the map defined
in (4.2).

Proof. Fix k ∈ N and fix a permutation φ of k digits. Let σ̃!k"
t := φσ!k"

t for every

t ∈ X. We claim that the measures σ̃!k"
t satisfy properties (S3) through (S5) of

Theorem 7.1.
Recall from Lemma 5.1 that φµ!k" = µ!k"; therefore t (→ σ̃!k"

t is a disintegration

of µ!k" and we obtain (S3) for σ̃!k"
t . Since the set {x ∈ N!k"(X) : x0⃗ = t} is

invariant under φ, we immediately obtain (S4) for σ̃!k"
t as well. Finally, since the

map φ : X!k" → X!k" does not involve the first coordinate, we have that F ∗ρ = F ∗ρ̃
if and only if F ∗φρ = F ∗φρ̃ for any measures ρ and ρ̃ on X!k". Thus in particular

we deduce that the measures σ̃!k"
t also satisfy (S5).

In view of conditions (S3) and (S4), both t (→ σ!k"
t and t (→ σ̃!k"

t satisfy The-

orem 2.5. From the uniqueness in that theorem it follows that σ!k"
t = σ̃!k"

t for
µ-almost every t ∈ X. Using continuity from (S3) and combining it with (S5), we

can now apply Lemma 3.16 to conclude that σ!k"
t = σ̃!k"

t for all t ∈ X. "

We also need equivariance of the disintegration t (→ σ!k"
t with respect to T !k".
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Corollary 7.4. Assume (X, µ, T ) is an ergodic system with topological pronilfac-

tors. For every k ∈ N and every t ∈ X, we have T !k"σ!k"
t = σ!k"

T (t).

Proof. The case k = 1 is immediate as

T !1"σ!1"
t = T !1"(δt × µ) = δT (t) × µ = σ!1"

T (t)

for all t ∈ X. The proof in general is by induction, using the calculation

T !k+1"σ!k+1"
t =

∫

N!k+1"(X)
T !k"δx × T !k"λ!k"

x dσ!k"
t (x)

=

∫

N!k+1"(X)
δT !k"(x) × λ!k"

T !k"(x)
dσ!k"

t (x)

=

∫

N!k+1"(X)
δx × λ!k"

x d(T !k"σ!k"
t )(x) = σ!k+1"

T (t)

which employs Corollary 6.12. "
7.2. The existence of Erdős cubes. We start by reformulating Theorem 5.9 in

terms of the measure σ!k"
a .

Theorem 7.5. Assume that (X, µ, T ) is an ergodic system with topological pronil-
factors and that a ∈ gen(µ,Φ) for some Følner sequence Φ. For every k ∈ N,

σ!k"
a -almost every x ∈ N!k"(X) is a k-dimensional Erdős cube.

Proof that Theorem 7.5 implies Theorem 5.9. Fix an ergodic system (X, µ, T ) with
topological pronilfactors, let a ∈ gen(µ,Φ) for some Følner sequence Φ, let E ⊂ X

with µ(E) > 0 and let k ∈ N. By Theorem 7.5, we have that σ!k"
a -almost every

x ∈ N!k"(X) is a k-dimensional Erdős cube. Since σ!k"
a -almost every point satisfies

x0⃗ = a by (S4) and σ!k"
a pushes forward to µ on the last coordinate by Corollary 7.2,

we can in particular choose a k-dimensional Erdős cube with x0⃗ = a and x1⃗ ∈ E. "
The remainder of this section is devoted to the proof of Theorem 7.5, and for

this we need one last ingredient: that σ!k"
a -almost every point x is generic for λ!k"

x

along some Følner sequence. This is the only place in the proof of Theorem 4.4
where the assumption a ∈ gen(µ,Φ) is used.

Theorem 7.6. Assume that (X, µ, T ) is an ergodic system with topological pronil-
factors and that a ∈ gen(µ,Φ) for some Følner sequence Φ. For each k ∈ N, there
exists a Følner sequence Ψ such that

σ!k"
a ({x ∈ N!k"(X) : x ∈ gen(λ!k"

x ,Ψ)}) = 1

holds.

Proof. Using Corollary 2.9 and Property (S3) of Theorem 7.1, we get

(7.2) σ!k"
b ({x ∈ N!k"(X) : x ∈ gen(λ!k"

x )}) = 1,

for µ-almost every b ∈ X. In particular, we can fix b ∈ supp(µ) satisfying (7.2). By
Lemma 2.4, we can choose a sequence (s(n))n∈N of integers such that T s(n)a → b as

n → ∞. As the map t (→ σ!k"
t is continuous, it follows that we have the convergence

of the measures

(7.3) (T !k")s(n)σ!k"
a → σ!k"

b as n → ∞
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via Corollary 7.4.
Fix a sequence of functions G1, G2, · · · ∈ C(X!k") that is dense in C(X!k") with

respect to the supremum norm. From (7.2) the set of points x ∈ N!k"(X) that are

generic for λ!k"
x has full σ!k"

b measure. By the monotone convergence theorem, for
every m ∈ N there exists N(m) ∈ N such that the set

A(1)
m =

{
x ∈ N!k"(X) : max

1!j!m

∣∣∣∣
1

N(m)

N(m)∑

n=1

Gj((T
!k")nx) −

∫

X!k"
Gj dλ!k"

x

∣∣∣∣ #
1

m

}

satisfies σ!k"
b (A(1)

m ) ! 1 − 1/2m.

Let εm > 0 and take A(2)
m to be the set of points in X!k" whose distance from

some point in A(1)
k is strictly less than εm. Choosing εm sufficiently small, it follows

that

max
1!j!m

∣∣∣∣∣∣
1

N(m)

N(m)∑

n=1

Gj

(
(T !k")nx

)
−
∫

X!k"
Gj dλ!k"

x

∣∣∣∣∣∣
# 2

m

for all x ∈ A(2)
m . Since A(1)

m is closed and A(2)
m is open (both as subsets of X!k"), by

Urysohn’s lemma there exists a continuous function φm : X!k" → [0, 1] satisfying

φm(x) =

{
1 for all x ∈ A(1)

m ,

0 for all x /∈ A(2)
m .

Passing to a subsequence of (s(n))n∈N if needed and using the convergence of the
measures in (7.3), we can further assume that

∣∣∣∣
∫

X!k"
(T !k")s(n)φm dσ!k"

a −
∫

X!k"
φm dσ!k"

b

∣∣∣∣ #
1

2m
.

It follows that

σ!k"
a

(
(T !k")−s(m)A(2)

m

)
!

∫

X!k"
(T !k")s(m)φm dσ!k"

a !
∫

X!k"
φm dσ!k"

b − 1

2m

! σ!k"
b (A(1)

m ) − 1

2m
! 1 − 1

2m−1
.

Let Y denote the set of all points in the support of σ!k"
a that belong to all but

finitely many (T !k")−s(m)A(2)
m , m ∈ N. By the Borel-Cantelli lemma, Y has full

σ!k"
a -measure. For any x ∈ Y and cofinitely many m ∈ N, we have

max
1!j!m

∣∣∣∣
1

N(m)

N(m)∑

n=1

Gj

(
(T !k")n+s(m)x

)
−
∫

X!k"
Gj dλ!k"

(T !k")s(m)x

∣∣∣∣ #
3

m
.

Since λ!k"
(T !k")s(m)x

= λ!k"
x by Corollary 6.12, the conclusion follows with the Følner

sequence Ψm = {s(m), s(m) + 1, . . . , s(m) + N(m)}. "
We can now prove Theorem 7.5. In the language of Section 5.4, we show that

σ!k"
a (E!k"(X)) = 1. Although this may appear similar to (S1) in Theorem 7.1, we

cannot prove it so simply because the set E!k"(X) is in general not closed.

Proof of Theorem 7.5. We must show that σ!k"
a -almost every point x is a k-dimen-

sional Erdős cube. In view of Lemma 4.2 and Corollary 7.3, it suffices to show that

for σ!k"
a -almost every (x, y) ∈ N!k"(X) we have y ∈ ω(x, T !k−1"). Using Lemma 2.4,
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the proof is finished if we show that σ!k"
a -almost every (x, y) ∈ N!k"(X) satisfies both

y ∈ supp(λ!k−1"
x ) and x ∈ gen(λ!k−1"

x ,Ψ) for a Følner sequence Ψ.

Since λ!k−1"
x

(
supp(λ!k−1"

x )
)

= 1 for every x ∈ N!k−1" it follows that the set

A1 =
{
(w, y) ∈ N!k"(X) : y ∈ supp(λ!k−1"

w )
}

satisfies
(
δx × λ!k−1"

x
)
(A1) = 1 for every x ∈ N!k−1"(X). From the construction

in (7.1) of σ!k"
a we conclude that σ!k"

a (A1) = 1, and hence that σ!k"
a -almost every

(x, y) ∈ N!k"(X) satisfies y ∈ supp(λ!k−1"
x ).

Finally, we apply Theorem 7.6 (with k − 1 in the place of k) to find a Følner
sequence Ψ such that the set

A2 =
{
x ∈ N!k−1"(X) : x ∈ gen(λ!k−1"

x ,Ψ)
}

has σ!k−1"
a (A2) = 1. Using again (7.1) we conclude that σ!k"

a (A2×X!k−1") = 1, and

hence that σ!k"
a -almost every (x, y) ∈ N!k"(X) satisfies x ∈ gen(λ!k−1"

x ,Ψ). This
concludes the proof. "

8. Open questions

8.1. Combinatorics. Our first question is a natural extension of our main result.

Question 8.1. Given A ⊂ N with positive upper Banach density, are there infinite
sets B1, B2, B3, . . . such that for every k ∈ N we have B1 + · · · + Bk ⊂ A?

We note that the same question with each Bi being finite (even if arbitrarily
large) is easy: simply iterate the fact that whenever d(A) > 0, for any m ∈ N we
can find integers n1, . . . , nm such that d

(
(A − n1) ∩ · · · ∩ (A − nm)

)
> 0.

On the other hand, it is important that we only consider the initial sums B1 +
· · · + Bk, as parity issues prevent more general sums, such as Bi + · · · + Bk, to
being all contained in A (this can be readily seen by taking A to be the set of odd
numbers and each Bj to be a singleton). While this simple example illustrates this
phenomenon convincingly, one can also fabricate examples which are aperiodic, and
in general it is not clear what are the exact obstructions. The answer may depend
on the precise pattern we are trying to find, so we formulate only a simple case of
this general question.

Question 8.2. Which sets A ⊂ N with dΦ(A) > 0 for some Følner sequence Φ
contain B1 ∪ B2 ∪ (B1 + B2) for some infinite sets B1, B2 ⊂ N?

For example, does it suffice that 1A − dΦ(A) is a weak mixing function along Φ
in the sense of [26, Definition 3.17]?

Under the assumption of the Hardy-Littlewood k-tuplets prime conjecture,
Granville [15] shows that the primes contain B1+B2 for infinite sets B1, B2 ⊂ N, but
an unconditional proof is still unknown (see [26, Question 6.4]). Keeping in mind
the heuristic that the primes behave pseudo-randomly, we record the following.

Question 8.3. Given A ⊂ N, which notions of pseudo-randomness suffice for A to
contain B1 + B2 for infinite sets B1, B2 ⊂ N?

More generally, which other notions of largeness on a set A imply that it contains
a sumset B + C?

Question 8.4 is inspired by the main result from [25].

Licensed to Northwestern Univ. Prepared on Mon Apr 22 15:49:33 EDT 2024 for download from IP 129.105.81.53.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY 43

Question 8.4. Given a finite partition N = A1 ∪ · · · ∪ Ar, are there infinite sets
B1, B2 ⊂ N and a color A ∈ {A1, . . . , Ar} such that (B1 + B2) ∪ (B1B2) ⊂ A?

Question 8.4 was also asked by Erdős in [8, Page 58]. An affirmative answer to
the significantly weaker question where |B1| = |B2| = 1 is given in [25]. The case
|B1| = 2 and |B2| = 1 also follows from the results in that paper, but already the
case |B1| = |B2| = 2 seems to be out of reach.

8.2. Dynamics. Lemma 6.7 asserts that any nilsystems possesses a continuous
ergodic decomposition. This naturally leads to Question 8.5.

Question 8.5. What other classes of systems always possesses a continuous ergodic
decomposition?

A natural class to consider, which extends the class of nilsystems, is distal sys-
tems. However, for distal systems the answer to Question 8.5 turns out to be
negative, as Furstenberg [10] exhibited a skew-product (x, y) (→ (x + α, y + h(x))
which is topologically minimal but not uniquely ergodic. Taking a non-ergodic
measure on such system, there can be no continuous ergodic decomposition, since
the only continuous invariant functions are constant, contradicting Lemma 6.2.

Another natural class to consider, which extends the class of nilsystems, is the
class of horocycle flows on homogeneous spaces. Given their algebraic origin, it is
possible that a continuous ergodic decomposition always exists.

8.3. Amenable groups. The proof given in [26] for the two-fold sumset holds in
an arbitrary amenable group. While our proof of Theorem 1.1 does not hold in this
generality due to the reliance on the structure theory for cube systems, the new
proof of the case k = 2 in Section 3 does, and may lead to the answers of some
questions in this direction that have previously been out of reach.

Recall that a countable group G is amenable if there is a sequence (ΦN )N∈N of
finite subsets of G such that

lim
N→∞

|ΦNg ∩ ΦN |
|ΦN | = 1,(8.1)

lim
N→∞

|ΦN ∩ gΦN |
|ΦN | = 1(8.2)

both hold for all g ∈ G. Any such sequence is called a two-sided Følner sequence
on G. In [26, Theorem 1.3] it was proved that if A ⊂ G satisfies

(8.3) lim sup
N→∞

|A ∩ ΦN |
|ΦN | > 0

for a two-sided Følner sequence (ΦN )N∈N, then A contains the product BC = {bc :
b ∈ B, c ∈ C} of two infinite sets B, C ⊂ G. It is natural to ask whether the same
is true for k-fold products.

Question 8.6. Let G be an amenable group, let k ∈ N and let A ⊂ G satisfy (8.3)
with respect to some two-sided Følner sequence. Do there always exist infinite sets
B1, . . . , Bk ⊂ G such that B1 · · · Bk ⊂ A?

In non-commutative groups we are interested in two-sided versions of Question
8.6, and which of the assumptions (8.1), (8.2) are necessary for various types of
product sets to be found in all positive density sets.
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Question 8.7. Let G be an amenable group and let A ⊂ G satisfy (8.3) with
respect to some two-sided Følner sequence. Does A necessarily contain BC ∪ CB
for infinite sets B, C ⊂ G?

Question 8.8. Let G be an amenable group. Which of the assumptions (8.1), (8.2)
on a sequence (ΦN )N∈Φ of finite subsets of G guarantee every A ⊂ G satisfying
(8.3) contains a product set BC for infinite sets B, C ⊂ G?

8.4. Ultrafilters. Ultrafilters on the natural numbers were a key tool in [26] and
so we enquire here about a strengthening of Theorem 3.1 in those terms. One can
use ultrafilters on N to characterize when a set A ⊂ N contains B+C with B, C ⊂ N
infinite in terms of the associative operation

p + q = {A ⊂ N : {n ∈ N : A − n ∈ q} ∈ p}
on the set of all ultrafilters. Indeed, the set A ⊂ N contains a sumset if and only if
one can find non-principal ultrafilters p and q with A belonging to both p + q and
q + p. We remark that, using ultrafilter limits, the notion of an Erdős cube arises
naturally from this characterization.

Question 8.9. Is it true that for any A ⊂ N with positive upper Banach density
there exist non-principal ultrafilters p and q with p + q = q + p containing A?

One could generalize Question 8.9 to ask about a strengthening of Theorem 1.1
in terms of ultrafilters, and even further to generalizations of the questions in Sec-
tion 8.3.
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[7] P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number
theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement
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MR592420

Licensed to Northwestern Univ. Prepared on Mon Apr 22 15:49:33 EDT 2024 for download from IP 129.105.81.53.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=809951
https://mathscinet.ams.org/mathscinet-getitem?mr=2138068
https://mathscinet.ams.org/mathscinet-getitem?mr=1325795
https://mathscinet.ams.org/mathscinet-getitem?mr=3986331
https://mathscinet.ams.org/mathscinet-getitem?mr=3361013
https://mathscinet.ams.org/mathscinet-getitem?mr=3908764
https://mathscinet.ams.org/mathscinet-getitem?mr=592420


INFINITE SUMSETS IN SETS WITH POSITIVE DENSITY 45
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