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Abstract— Emotional valence is difficult to be inferred since
it is related to several psychological factors and is affected
by inter- and intra-subject variability. Changes in emotional
valence have been found to cause a physiological response in
respiration signals. In this study, we propose a state-space model
and decode the valence by analyzing a person’s respiration
pattern. Particularly, we generate a binary point process based
on features that are indicative of changes in respiration pattern
as a result of an emotional valence response. High valence
is typically associated with faster and deeper breathing. As
a result, (i)depth of breath, (ii)rate of respiration, and (iii)
breathing cycle time are indicators of high valence and used
to generate the binary point process representing underlying
neural stimuli associated with changes in valence. We utilize an
expectation-maximization (EM) framework to decode a hidden
valence state and the associated valence index. This predicted
valence state is compared to self-reported valence ratings to
optimize the parameters and determine the accuracy of the
model. The accuracy of the model in predicting high and
low valence events is found to be 77% and 73%, respectively.
Our study can be applied towards the long term analysis of
valence. Additionally, it has applications in a closed-loop system
procedures and wearable design paradigm to track and regulate
the emotional valence.

I. INTRODUCTION

Human emotions are complex and difficult to interpret
because, unlike physiological signals such as Electrocar-
diogram (ECG) and Electroencephalogram (EEG), emotions
are psychological and immeasurable. In addition, emotion is
affected by a number of psychological, physiological, and
environmental factors that lead to high subject to subject
variability and a lack of an objective measure of emotion
[1]. Human emotion recognition is a crucial field of study
for understanding the mechanisms that drive emotion. It
has potential applications in developing actuators to regulate
emotions or collecting data in a study where objective
measures of emotion are required.

To simplify the diverse spectrum of human emotion, emo-
tions can be modeled on a two-dimensional plane consisting
of a measure of valence and arousal for each unique emotion
[2]–[4]. Valence refers to the degree of pleasantness or
unpleasantness associated with an emotion, while arousal
refers to the intensity of the emotion. [3]. In this study, the
emotional valence is the affective quality of interest. Previous
studies have found that certain physiological changes occur
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in response to emotional changes [5]. These changes can be
physiologically measured with common devices such as the
EEG, ECG, and respiration belts. Many studies have found
success using EEG signals to recognize emotions since an
EEG is a direct measure of central nervous system activ-
ity that is immediately affected by emotional changes [6].
However, EEGs are impractical for continuous monitoring
because of their susceptibility to artifacts and lack of porta-
bility [7]. In comparison, respiration activity is more practical
for continuous measurement and can contain information
indicative of emotional changes.

Respiration activity is typically measured through a respi-
ration belt around the abdomen. The belt measures changes
in the circumference of the abdomen in response to the
expansion and contraction of the lungs during a regular
breathing cycle. The resulting signal consists of repeating
waves representing the inhalation, exhalation, and breathing
cycle of the subject. Respiration differs from other physio-
logical signals since, despite respiration typically occurring
involuntarily, it can also be controlled voluntarily. During
involuntary respiration, the respiration waveforms are more
uniform, where certain qualities of respiration, such as
respiration rate and respiration depth, follow a Guassian
distribution around an individual-specific baseline. Voluntary
changes in respiration patterns occur in response to an
external stimulus. In the absence of confounding factors, an
emotional stimulus has been shown to cause changes in respi-
ration patterns [8]. For example, deep and fast breathing has
been shown to occur in response to excitement, while slow
and shallow breathing has been shown to occur in response
to negative emotion. These qualities of respiration in addition
to the feasibility of data collection make respiration activity
an invaluable predictor of emotional state.

In the emotion recognition paradigm, clinical studies and
available datasets collect physiological signals from subjects
while emotions are elicited using visual and auditory stimuli.
In this study, we utilize the Multimodal Database for Affect
Recognition and Implicit Tagging (MAHNOB-HCI) database
[9]. The dataset consists of physiological measurements
taken from subjects in response to 20 movie and video
clips meant to elicit specific emotions. The valence and
arousal levels of subjects were self-reported after each clip
is shown. The authors of the dataset were able to achieve
a valence and arousal classification accuracy of 45.5% and
46.2%, respectively, using a support vector machine classifier
with features derived from physiological signals including
galvanic skin response, ECG, respiration, and skin tempera-
ture. Similarly, other studies have achieved high accuracy



in emotion recognition using machine learning and deep
learning methods. However, these studies do not provide a
continuous measure of valence or consider underlying neural
stimuli [5], [8].

In this study, we develop a state-space model similar to
[10]–[27] to relate emotional valence to deviations from
involuntary respiration patterns. For each respiration cycle,
we measure the depth of breath, derivative of respiration
amplitude (i.e. rate of respiration), and total respiration cycle
time. We represent the deviations from a Gaussian distri-
bution in these features as binary point processes for each
feature, in which impulses represent events indicative of high
valence over time. The point process approach is a common
method to model neural spiking activity and represents the
underlying neural stimuli driving the involuntary changes in
respiration immediately after an emotional stimulus. Several
studies have used a similar approach to relate underlying
neural stimuli to an unobserved process in the brain [3], [22],
[26]. A point process approach is ideal for respiration signals
since features are measured at discrete times corresponding
to the temporal location of each breath. In particular for each
breath, we make a point process by assigning a value of one
if both the respiration amplitude and respiration rate proba-
bilities or the respiration cycle time probabilities are below a
specified threshold probability value, or zero otherwise. We
use an Expectation-Maximization (EM) algorithm to decode
the valence state in relation to the high valence indicative
events. Eventually, we evaluate the decoded valence state
given the self-reported valence ratings from subjects.

II. METHODS

A. Dataset

The MAHNOB-HCI dataset consists of an emotion recog-
nition experiment and an implicit tagging experiment. For the
purposes of this study, we will only be analyzing data from
the first experiment. The experiment involved data collection
from 27 subjects. Subjects were shown 20 video clips meant
to elicit different emotional responses. During each trial
period where a video clip is shown, subjects are shown a
neutral clip meant to induce no emotion, the emotional clip,
and then self assess their emotions. During the experiment,
several physiological signals are measured such as ECG,
EEG, galvanic skin response, eye gaze, respiration, and skin
temperature. For each subject, the physiological measure-
ments are recorded over an approximately 50 minute period
in which the video clips are shown in a randomized order.
From the 27 subjects, we exclude subjects with incomplete
recordings from technical difficulties, significant measure-
ment noise, and those who did not consent to publishing.
We perform our analysis on the 14 remaining subjects.

B. Pre-Processing

The respiration signal is susceptible to noise, motion
artifacts, and wandering baselines that can impact analysis.
Similar to previous methods, noise and wandering baselines
are corrected using a Butterworth bandpass filter with cutoff
frequencies of 0.2 and 2 Hz [28]. This filter corrects the

baseline of the signal to zero and removes polynomial
trends from the respiration signal. The cutoff frequencies are
selected to remove high frequency sensor noise as well as
potential low frequency artifacts. Motion artifacts are present
in the respiration signals as irregular increases in respiration
amplitude in the order of 5-10 times the magnitude of a
typical breath in the same subject. Since the amplitude of
the normal signal differs greatly from the signal impacted
by motion artifacts, a moving average filter is implemented
on the signal to determine the locations at which a motion
artifact is likely occurring based on the magnitude of the
signal exceeding the feasible range of amplitudes. Once these
locations are detected, they are removed from the original
signal to limit the impact of motion artifacts on our analysis.

C. Feature Extraction and Point Process Generation

Features from the respiration signal should be extracted
based on the underlying physiology such that they can
be used to infer the valence level. Based on empirical
evidence and prior work [5], [8], we choose to monitor
the behavior of respiration amplitude, rate of respiration,
and total cycle time of respiration. We use the MATLAB
findpeaks function to detect the local maxima throughout
the respiration signal. The local minima found before and
after each peak correspond to the beginning of inhalation
and ending of exhalation, respectively. Respiration amplitude
is measured as the difference between the amplitude of the
peak and the amplitude of respiration when inhalation begins.
The total cycle time of respiration is defined as the length
of time between the beginning of inhalation and the end of
exhalation for a single breath. Here, the rate of respiration
refers to the derivative of the respiration amplitude signal.
The derivative of the signal represents the rate at which
inhalation and exhalation is occurring. For each respiration
wave, the respiration amplitude, cycle time, and number of
times the derivative of respiration exceeds a threshold within
a 2.5 second window before the wave are measured. We
also measure the number of times the derivative crossed the
threshold to remove extraneous derivative peaks from noise.
A 2.5 second interval was selected to allow us to consider
the rate of exhalation for the previous breath and the rate
of inhalation for the current breath while ignoring the rate
of inhalation of the previous breath, which has already been
considered. In other words, a 2.5 second interval is the largest
time interval in which no more than one pulse can occur.

A binary point process is created based on the features
measured at each respiration wave. Assuming that respiration
amplitude, rate of respiration, and cycle time are all Gaussian
distributed in the absence of an emotional stimulus, signif-
icant deviations from the Gaussian distribution can be seen
as a response to a stimulus. As a result, for each respiration
wave, the probability of a measured value occurring for
each feature is calculated using the Gaussian cumulative
distribution function. For each respiration wave, we generate
a binary impulse if both the respiration amplitude and deriva-
tive probabilities or the cycle time probabilities are below
a specified threshold probability value. The amplitude and



derivative features are considered together since they contain
overlapping information. The derivative feature consideration
removes peaks that are impacted by artifacts or noise, which
would not contain the rise in amplitude associated with
inhalation before. The cycle time is considered separately
from these features because it contains temporal information
measured from the raw respiration signal. The thresholds are
unique for each feature, are subject-specific, and have been
determined empirically. Specific thresholds are required to
consider the highly subjective emotional responses of each
individual. For example, a subject who is more susceptible
to physiological changes to emotion may show a 50%
increase in respiration amplitude, whereas a less susceptible
subject may only show a 30% increase. In other words, the
skewness from the Guassian distribution in the presence of
an emotional stimulus likely depends on the intensity of the
subject’s specific physiological response.
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Fig. 1: An example of detected locations in a sample respiration signal.
Red points represent the detected respiration peaks at the end of inhalation.
Green points represent the start of inhalation. Blue points represent the end
of exhalation.

D. State-Space Model

The state-space model relates the binary point process
of high valence indicative impulses to a predicted valence
state of the subject [29]. We first bin the time axis of the
respiration signal into 2.5 second duration intervals (please
see II-C). Using the point process generated based on the
extracted features, each bin is assigned a value of 1 or 0
based on the presence of a peak. Using the state-space model
for point-processes [19], we estimate a continuous valence
level throughout the duration of the signal. The state-space
model consists of two equations: A state equation describing
the latent valence state and an observation equation relating
the observed binary pulses to the state equation. We assume
that a Gaussian state equation best describes the latent state
and a Bernoulli probability model describes the presence of
peaks in individual bins as shown in [3], [4], [15]–[18]. We
analyze the data from the perspective of an ideal observer,
having knowledge of the entire signal, to estimate the valence
state at each bin. The valence state equation is described as
a random walk through time as follows:

zk = zk−1 + ϵk (1)

where ϵj ∼ N (0, σ2
ϵ ) is the process noise.

We define the total number of bins as K and index each
bin as k = 1, 2, 3. . .K, where K is the duration of the

entire respiration signal divided by the bin size. For the
observation equation, we use sk to represent the presence
of a peak in each bin. sk follows a Bernoulli distribution
where sk = 1 if bin k contains a peak and sk = 0 in
the absence of a peak. We define qk as the probability of
a peak occurring in bin k. For the state equation, we define
zk as the latent valence state at bin k. Since the changes in
respiration pattern are indicative of changes in valence state,
the probability qk depends on the state zk. Given an arbitrary
value of valence state zk, the observation equation describes
the probability of observing sk using a Bernoulli distribution
as such P (sk|qk) = qskk (1−qk)

1−sk , where qk is defined by
the logistic equation [3], [4], [29]:

qk =
1

1 + e−(α+zk)
(2)

The value of α depends on the random probability that a
peak occurs in a bin at the start of the experiment. It can
be estimated using (2) by assuming z0 = 0 and finding q0
empirically by calculating the proportion of high valence
events to all breaths.

Based on the binned point process, we observe S1:K =
{s1, s2, ..., sK}, which indicates the presence of a peak at
each bin. The goal is to estimate the valence state Z =
{z1, z2, ..., zK} and σ2

ϵ in order to estimate qk for each bin.
Since z is unobserved and σ2

ϵ is a parameter, we can use the
expectation maximization algorithm to estimate both z and
σ2
ϵ .

E. Valence State Estimation

The estimation step contains a filter algorithm that calcu-
lates the valence state estimate of the subject and a fixed
interval smoothing algorithm to refine the estimate based
on the ideal observer’s perspective [20], [30]. The filter
algorithm estimates the valence state zk|k given S1:k, with
σ2
ϵ being replaced by its maximum likelihood estimate. The

fixed interval smoothing estimates zk|K given S1:K , again
with the maximum likelihood estimate of σ2

ϵ . We use a
Gaussian approximation for the point process observations to
design the filter [20], [30]. We define qk|k as the probability
of a peak occurring given observations until bin k and qk|K
as the probability of a peak occurring given all observa-
tions throughout the duration of the signal. The expectation
maximization algorithm is further detailed in the following
sections.

F. Expectation Step

Given S1:K , zk, σ2(l)
ϵ , and zl0, we compute the expectation

of all data log likelihood at iteration l + 1, where l is the
iteration number of the algorithm.

Forward Filter: We estimate the state zk|k and the variance
σ2
k|k, given σ

2(l)
ϵ and z

(l)
0 , using a recursive filter. This algo-

rithm is derived from the maximizing posterior probability
of the Kalman filtering algorithm as described in [31], [32].
The algorithm is described as:

zk|k−1 = zk−1|k−1 (3)

σ2
k|k−1 = σ2

k−1|k−1 + σ2
ϵ (4)
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Fig. 2: A sample binary process generated from a respiration signal.
Respiration amplitude, respiration derivative, and cycle time are shown. The
green markers indicate the presence of a high valence indicative event. The
red lines indicate the thresholds for the features to be considered a high
valence indicative event. The last plot depicts the generated binary point
process based on the events of the individual features. A point is generated
if an event is detected in both the amplitude and derivative features or the
cycle time feature.

zk|k = zk|k−1 + σ2
k|k−1

[
sk − 1

1 + e−(α+zk|k)

]
(5)

σ2
k|k =

[
1

σ2
k|k−1

+
e(α+zk|k)

[1 + e−(α+zk|k)]2

]−1

(6)

for k = 1, 2, ...,K. The initial conditions for the algorithm
are z0 = z

(l)
0 and σ2

0|0 = σ
2(l)
ϵ . Since the term zk|k appears

on either side of (6) and the equation is non-linear, it can be
solved using Newton’s method.

Backward Filter: Based on the posterior mode estimate of
zk|k and the variance σ2

k|k, we use a fixed-interval smoothing
algorithm to compute zk|K and σ2

k|K . The fixed interval
smoother is described as follows:

Ak =
σ2
k|k

σ2
k+1|k

(7)

zk|K = zk|k +Ak(zk+1|K − zk+1|k) (8)

σ2
k|K = σ2

k|k +A2
k(σ

2
k+1|K − σ2

k+1|k) (9)

For k = K − 1,K − 2, ..., 1, where the initial conditions are
zK|K and σ2

K|K .

G. Maximization Step

In the maximization step, the expected value of the
complete data log likelihood is maximized according to the
following:

σ2(l+1)
ϵ =

2

K + 1

[
K∑

k=2

(σ2
k|K + z2k|K)−

K∑
k=2

(Aσk|K + zk|Kzk−1|K)

]

+
1

K + 1

[
3

2
(σ2

1|K + z21|K)− (σ2
K|K + z2K|K)

]
(10)

z
(l+1)
0 =

1

2
z1|K (11)

The expectation maximization algorithm iterates between
the E and M steps until the convergence of parameters.
A change of variables formula is used on the Gaussian
probability density function with mean zk|j and variance σ2

k|j
to determine the probability density for qk, where j = k for
the forward filter and j = K for the backward filter, as
shown below [19]:

f(q|α,zk|j , σ2
k|j) =

1√
2πσ2

k|jq(1− q)

× exp

{
−1

2σ2
k|j

[
− zk|j + log

q

(1− q)eα

]}
(12)

From (12), we can compute confidence intervals to deter-
mine, from an ideal observer’s perspective, if a given peak
occurred due to more than just random chance.

H. Valence Index and Threshold Determination

During feature extraction and generation of the point
process, we use thresholds to determine whether an observed
feature is a significant deviation from a Gaussian distribution.
These thresholds have to be selected for each subject to
minimize the error between the predicted valence index and
self-reported valence ratings of the subject throughout the
respiration recording. We define the predicted valence index
as p(xk > xmedian), which provides a continuous value for
the valence index in terms of the state’s deviation from its
median value. In other words, the predicted valence index
represents the probability that the events are occurring due
to more than just random probability [3].

To compare the predicted valence index to the self-
reported valence ratings, the self-reported valence ratings
have to be converted into a continuous valence rating. First,
for each subject, we normalize and rescale valence ratings
on a scale of 0 to 1. We set the continuous valence rating
equal to the value of the normalized valence rating at the
intervals in which the corresponding video clip is shown.
During periods between clips, the valence rating is linearly
interpolated to create a continuous rating over time. Even
though we perform interpolation, the true valence rating at
these points is unknown, though the rating is expected to
decrease in the absence of an emotional stimulus.

We consider the first 25% of the respiration signal for
threshold determination and use the remaining 75% of the
signal to test the algorithm. To determine optimal thresh-
old values, mean-squared error is calculated between the
continuous self-reported valence rating and the predicted
valence index. For each unique configuration of threshold
values, a unique point process is generated and valence state
is estimated after the EM algorithm. We then calculate the
valence index and associated error. Over all configurations of
thresholds, we minimize the error to find the ideal thresholds
that would cause the predicted valence index to best represent



Fig. 3: Valence state estimation performed on subject 1. The subplots, in order, represent the pre-processed respiration signal, the binary point process,
the estimated valence state, the predicted valence index, and the normalized and interpolated self-reported valence rating. The red intervals indicate the
periods in which video clips are shown to subjects. High valence periods are shown in green for both valence index and self-reported rating. Low valence
periods are indicated in red.

the self-reported valence rating. Using the thresholds found
from the first portion of the signal, valence estimation is then
performed for the entire signal.

I. Model Accuracy
The accuracy of the valence estimation is determined

by identifying whether the estimation properly identified
periods of high and low valence in the subjects. This is
done by categorizing each bin in the valence index and self-
reported valence rating as either high valence, low valence,
or neither. In the self-reported valence rating, valence was
considered to be high if the index was above 0.8, and low
if the index was below 0.2. These thresholds were selected
empirically to represent periods of very high or very low
valence throughout the duration of the recordings. For the
valence index, valence was considered to be high if the
index was above 0.9, and low if the index was below 0.1.
These thresholds are selected because the index represents
the probability of belonging in either state. We use stricter
definitions for high and low valence events to identify only
the extremes of valence with high certainty, since only these
periods would be significant enough to alert the user in the
implementation of a control system for valence. Accuracy,
sensitivity, and specificity are calculated based on whether
each high valence period was properly identified by the
estimation. For the purposes of accuracy calculations, the
periods between clips are ignored. In addition, if the subject
had a valence rating drastically conflicting with the expected
valence response from a video (i.e. positive valence response
to a horror movie clip) according to experimental setup,
these portions are corrected to the expected response of the
clip. These calculations are then repeated to determine if low
valence periods were properly predicted in the valence index.

III. RESULTS

Sample results for peak detection, as well as detection of
the beginning and end of breaths, are shown in Fig 1. The
cycle time is the time interval between the local minimum
detected on either side of a respiration peak. For this subject,
the respiration pattern contains additional waveform prior to
each breath. In this case, the start of inhalation is considered
to be at the start of this smaller wave.

Fig 2 shows a binary point process generated for a given
respiration signal based on the three features. A separate
binary point process is generated for each feature by marking
the points at which the feature exceeds the threshold value.
These point processes are combined to generate the final
binary point process. The binary point process for each
individual feature is also shown. For the respiration ampli-
tude feature, the depth of each breath is measured based on
the difference between the amplitude at the start and end
of inhalation, rather than just the amplitude at the end of
inhalation. For the respiration derivative feature, a point is
generated when the derivative exceeds the threshold a certain
number of times (See Section IIH). This number limit is
set to avoid extraneous derivative spikes not belonging to
a breath that can be observed in the plot. The cycle time
is shown as a continuous value of the change in cycle time
corresponding to the most recent breath. A point is generated
where the cycle time increases above the threshold. The
resulting combined binary process contains the events that
occurred in both the respiration amplitude and derivative
features or only the cycle time feature.

Fig 3 shows the valence state estimation results for one
subject. The pre-processed respiration signal, the binary point
point process, the estimated state, the estimated valence



index, and the self-reported valence ratings are shown. Con-
fidence intervals for state estimation are also shown in blue.
The red intervals within each plot denote the intervals in
which video clips are shown to the subject. The valence
rating is converted into a continuous value for comparison
to the predicted valence index. This is done by setting the
continuous valence rating to the self-reported scores during
clips and linearly interpolating for valence values between
clips. This transformation allows us to directly compare the
valence index to the self-reported scores.

The accuracy of the model in predicting high valence
and low valence events was found to be 77% and 73%,
respectively. The sensitivity and specificity for high valence
prediction was 0.47 and 0.85, while the sensitivity and
specificity of low valence prediction was 0.21 and 0.92.

Subject Participant Low Valence High Valence
Accuracy Accuracy

1 1 72.58% 78.34%
2 3 92.15% 71.17%
3 4 86.91% 79.55%
4 5 63.19% 93.28%
5 6 76.84% 65.55%
6 8 58.51% 73.94%
7 9 77.38% 81.46%
8 10 90.48% 76.25%
9 15 52.50% 84.53%

10 16 99.70% 67.83%
11 18 83.33% 79.53%
12 19 72.48% 65.92%
13 20 59.27% 86.18%
14 21 58.55% 74.43%

TABLE I: High and Low Valence Estimation Accuracy for all
subjects. Participant Number corresponds to the numbering of subjects in
the MAHNOB-HCI database.

IV. DISCUSSION AND CONCLUSIONS

Respiration peak amplitude, rate of respiration, and respi-
ration cycle time appear to be indicators of high valence. For
most subjects, during high valence periods, there would be
a very high density of pulses in the binary point process as
shown in Fig 3. In some cases, there is also a high density
of pulses found in the intervals between video clips being
shown. This observation could be a result of the subject’s
valence being unreported during these intervals, and the
subject could have had an emotional response during this
resting period. We have also observed that the respiration
signal is more prone to motion artifacts between clips that
could attribute to this observation.

The valence index calculated based on the latent valence
state appears to correlate to the self-reported valence ratings
provided by most subjects. However, the quality of correla-
tion varies greatly among different subjects. In more strongly
correlated subjects, the predicted valence can capture faster
changes in valence (i.e. a brief period of high valence
between extended periods of low valence) and even depicts a
drop in valence between clips being visible as shown in the
estimation for Subject 1 in Fig 3. In moderately correlated
subjects, the predicted valence follows general trends in
valence (extended periods of high or low valence), but fails
to capture faster changes in valence. In weakly correlated

subjects, the predicted valence appears to be slow changing
and typically within the neutral valence range. This could be
a result of these subjects providing a large number of neutral
valence ratings, or the features not being good indicators
of valence in these specific subjects. In all subjects, the
predicted valence significantly deviates from the reported
valence during fast changes in valence in some clips. During
these fast changes, the incorrect estimate continues to follow
the general trend in valence rather than an abrupt change.

The accuracy of the model in predicting high valence
periods validates the potential applications of the model in
monitoring the valence state. The high specificity values
indicate that when the valence index is above 0.9, the
subject is very likely to be experiencing high valence. In
comparison, the low valence event prediction yielded lower
accuracy values. However, this could be a result of the
valence index reaching the lower threshold less frequently.
This model seeks to predict high valence from increases
in depth of breath and rate of respiration. These features
could be less effective in determining the lower end of the
valence spectrum since we are not measuring reductions in
respiration amplitude that could be more indicative of low
valence. The model also has a significantly lower sensitivity
than specificity. This could be a result of stricter thresholds
for high and low valence period determination in the valence
index. These thresholds were stricter to only identify the
extreme valence periods. However, the self-reported ratings
contained longer and more frequent high and low valence
periods than the index, resulting in a high specificity but
low sensitivity. These periods could also be affected by the
subject’s interpretation of the valence rating or individual
bias. It should also be noted that the self-reported rating
could be inaccurate in representing the subject’s true valence
level since the ratings are interpolated from only 20 ratings.

The accuracy of the predicted valence also depends on the
accuracy of the self-reported valence ratings. Self-reported
ratings could be subject to bias and have high subject
variability [1]. In some cases, subjects would provide only
high or low valence ratings but fail to provide neutral ratings.
In other cases, subjects provided mostly neutral ratings with
few ratings in either extreme. Normalizing the self-reported
ratings can correct for this issue in some subjects, but a
true accuracy of the predicted valence cannot be determined
without an objective measure of valence.

From a physiological perspective, respiration peak ampli-
tude, rate of respiration, and respiration cycle time appear
to be indicators of high valence. High valence is associated
with deep and faster breathing [5], [8]. During deep breaths,
the respiration amplitude would increase as the abdomen
expands further due to the increase in air volume. During
faster breathing, the rate of inhalation and exhalation would
increase to compensate for the increased amplitude. This
physiological response to an emotional stimulus is captured
in our features as deviations from the typical physiological
behavior. It should also be noted that these features could
only be indicative of high valence, which would explain the
decrease in quality of estimation as the subjects’ valence



rating fluctuates.
The accuracy of the model makes it ideal for continuous

monitoring of valence over extended periods. In a practical
application to continuously estimate valence, the valence pa-
rameter estimation would have to be performed in batches of
∼ 3 minute intervals. Threshold estimation would have to be
performed for one batch per subject given that self-reported
valence levels are also provided. In the future, this model
can be improved by implementing a more complex filter that
incorporates the amplitude of impulses. The amplitude values
can also contain information that would make the estimate
more robust to minor changes in valence. The model can
be further improved by incorporating other physiological
signals that have shown to be predictors of emotion to
improve the quality of prediction. Future directions for this
project can also include incorporating it with previous work
performed with predicting arousal as in [3], [4] to estimate
a two-dimensional emotion state including both valence and
arousal.
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