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Abstract— Leptin, a hormone secreted by adipose tissue, is
primarily responsible for inhibiting hunger and maintaining
energy balance. Improper leptin secretion may result in
hyperleptinemia (excess secretion of leptin) or leptin resistance,
both of which contribute to obesity. Diagnosing abnormal
leptin secretion may help treat this underlying cause of obesity.
Therefore, continuous monitoring of the level of leptin may
help characterize its secretion dynamics and also help devise
an appropriate treatment. In this research, we consider leptin
hormone concentration data taken over a 24 hour time period
from eighteen healthy premenopausal obese women before
and after treatment with a dopamine agonist, bromocriptine,
and deconvolve the observed leptin hormone levels to estimate
the number, timing, and magnitude of the underlying leptin
secretory pulses. We find that there is an overall decrease in
leptin secretion, particularly during sleep, but the changes in
the secretory and clearance rates, and the number of pulses
underlying the secretion process are not statistically significant.

Clinical relevance— This work seeks to understand the effect
of bromocriptine on leptin secretory dynamics and will help
further current understanding of the effect of bromocriptine in
relation to obesity.

I. INTRODUCTION

Leptin is a hormone that is responsible for inhibiting
hunger to maintain energy balance in the body. It is secreted
mainly by white adipose tissue, and the levels are highly
correlated with energy expenditure [1], and the amount of
body fat [2]. Leptin controls body fat levels by signaling the
brain about the current energy levels and inhibiting hunger
levels when energy is sufficient, which in turn reduces fat
storage in adipose tissue. Extended periods of fasting and
starvation decrease leptin levels and increase hunger [3]. On
the other hand, excessive food consumption causes increased
leptin levels and decreases hunger [3]. Studies have even
shown that decrease in leptin levels due to starvation can
inhibit the production of certain hormones, including low
reproductive, thyroid, and insulin-like growth factor (IGF)
hormones [4], [5]. Since changes in the leptin levels are
sensed by the central nervous system to modulate hunger
and satiation, the altered leptin secretion also has a direct
effect in driving obesity [6].
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Leptin’s role in energy intake and expenditure makes it a
particularly important hormone to study in relation to obesity.
In common obesity, leptin resistance or deficiency causes
leptin to lose its ability to signal in a negative feedback
manner to downregulate energy intake, causing obese pa-
tients to perpetually feel hungry [7]. In leptin resistance, a
build-up of leptin concentration levels with the severity of
obesity eventually compromises its ability to signal satiation
and regulate hunger [8]. Leptin deficiency, on the other
hand, can be congenital or activated by environmental factors
and occurs when the body is unable to produce sufficient
amounts of leptin or if the leptin signaling pathway is
compromised. This also results in a constant need for energy
intake and subsequently leads to obesity [9]. These factors
make understanding the dynamics of leptin and its effect
on hunger crucial for monitoring the health of patients and
devising treatments for obesity.

Bromocriptine is a dopamine agonist that is commonly
used to treat disorders of the neuroendocrine system and
many other diseases [10]. Importantly, its dopaminergic
effect directly decreases prolactin secretion, and hence, it is
used to treat hyperprolactinemia [11]. Previous investigations
to study the effect of bromocriptine on energy metabolism
have shown that the drug is capable of reducing blood
glucose and insulin levels [12]. In addition, bromocriptine
was found to significantly increase oxygen consumption and
energy expenditure in patients [12]. These clinical studies
motivate the investigation of the influence of bromocriptine
in obese patients, in relation to alterations in energy balance
and hunger. Understanding bromocriptine’s effect on leptin
secretion dynamics can reveal more about the impact of this
drug on leptin irregularities and thereby, obesity. In this work,
we use leptin concentration data from both before and after
bromocriptine treatment to determine the changes in leptin
secretion for healthy premenopausal obese women.

A. Dataset

Leptin data used in this investigation are from a pre-
viously published clinical study [12], [13] where plasma
levels of leptin were collected from eighteen healthy, obese
premenopausal women (BMI 30.1–40.5 kg/m2, mean age
37.5±1.7, ranging between 22–51 years). The subjects went
through initial medical screening for excluding those with
acute or chronic illness, under medication, with history of
drug abuse, or participation in another clinical trial, and other
confounding factors which may influence endocrine regula-
tion. In addition, all of the subjects were premenopausal with



regular menstrual cycles and the data was collected during
the early follicular phase of the menstrual cycle. Each subject
was studied twice with a 4-week interval between the two
studies. In the first study, all subjects were studied for a
24-hour period (starting at 9 AM) after 7 days of placebo
treatment. Hormone concentration levels were measured in
10-minute intervals throughout the study period. A eucaloric
diet and regular sleep schedules were also kept consistent
for all the subjects, where each subject was required to go
to sleep at 2300 h and woken up at 0730 h. In the second
study performed after 4 weeks, each subject was given a 2.5
mg bromocriptine dose twice a day for 7 days, and then 24-
hour blood sampling was performed in 10-minute intervals
again from 9 AM. Leptin concentrations were measured from
the blood samples using radioimmunoassay with a detection
limit of 0.5 ng/L.

II. MODEL

Hormone deconvolution methods developed over the past
decades have enabled analysis of hormone secretory charac-
teristics [14]–[20]. Recently, system-theoretic deconvolution
methods have been successfully used to mathematically
characterize the secretory behaviors of many hormones such
as cortisol [20]–[22], leptin [23], growth hormone [24]
etc. In a similar vein, we use a second-order state-space
model with physiological constraints to infer the nature of
secretory pulses that underlie leptin secretion throughout the
day. This model assumes a first-order kinetics for leptin
synthesis in adipose tissue and its subsequent diffusion into
the blood, followed by another first-order dynamics that
tracks its abundance in the blood, subject to clearance by
the renal system [25]. The dynamics of leptin secretion and
the discrete measurement sampling (y(ti) at time instants ti)
is given by:

dx1(t)

dt
= −θ1x1(t) + u(t) (Adipose Tissue) (1)

dx2(t)

dt
= θ1x1(t)− θ2x2(t) (Plasma) (2)

y(ti) = x2(ti) + v(ti), i = 1, . . . , N (3)

where x1 and x2 are respectively the instantaneous leptin
concentration in adipose tissue and plasma. θ1 and θ2,
respectively, represent the rate of infusion into plasma and
the rate of its renal clearance, and N is the total number of
measurements. The measurements at discrete time instants
are given by y(ti), and v(ti) is a term used to model noises
that cause imprecise measurements. In the dataset, leptin
levels were measured every ten minutes (Ty = 10 min) and in
our work, we recover its level every minute with yt0 denoting
the initial condition of the plasma leptin concentration by
recovering the underlying secretory stimuli at a one-minute
sampling interval (Tu = 1 min), for M samples (M =
1440 = 10N ). In this case, the discrete state x[k] at time
tk can be represented as follows x[k + 1] = Λx[k] + Γu[k],

where Λ = expATu, Γ =
Tu∫
0

exp(A(Tu − σ))Bdσ, where

u(t) =
∑N

i=1 qiδ(t − τi) with the measurement being

Fig. 1: Box plots of pre-treatment and post-treatment rates
of (a) infusion and (b) clearance for leptin shows the median
(red line) value, the lower (Q1) to upper (Q3) quartile range
(blue rectangle), and 9 to 91 percentile range (black line and
black dashed line) of the parameters.

y(tk) = Cx(tk) + η(tk), where η(tk) is an additive noise
term which we assume is Gaussian distributed. Therefore,
commensurate with the frequency of blood sampling, we
get Ty = LTu, where L = 10, and letting Ad = ΛL,
Bd = [ΛL−1Γ ΛL−2Γ ... Γ], ud[k] = [u[Lk] u[Lk +
1] ... u[Lk+L− 1]]T , ηd[k] = η[Lk] so that the solution to
the discrete state equation can be written as

xd[k] = Adxd[0] +Bdud[k] (4)
y[k] = Cxd[k] + ηd[k] (5)

Solving this equation and concatenating the values of mea-
surements, we write the following equation representing the
effect of initial condition y0 = xd[0], underlying secretory
pulses and the noise on the measured leptin levels:

y = Fθy0 + Dθu + η (6)

A. Deconvolution

In order to recover the leptin secretory pulses as well as the
rate parameters governing its temporal dynamics, we perform
deconvolution by taking into account our model of leptin
synthesis and clearance. We cast the process of identifying
the parameters θ1, θ2 together with sparse secretory pulses
u to explain the observed leptin levels as an optimization
problem subject to constraints that ensure physiological
plausibility. Leptin secretion, like that of other hormones,
is known to be sparse, with about 20-40 hormone pulses
occurring in a day [26]. This sparsity criterion is imposed as a
constraint on the total number of underlying secretory events.
To account for alterations in leptin secretory activity before
and after treatment with bromocriptine, we consider an upper
bound of 45 for the subjects in this study, out of the 1440
time instants over which we determine the secretory events.
We add constraints on the infusion and clearance rates: (i)
θ1 ≥ 0, θ2 ≥ 0 to impose positivity of these parameters and
(ii) we also assume that the infusion rate is greater than or
equal to the clearance rate, i.e., θ1 ≥ θ2. This formulation
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(a) Subject 7: Deconvolved Leptin Pre-Treatment

(a) Subject 12: Deconvolved Leptin Pre-Treatment

(d) Subject 12: Deconvolved Leptin Post-Treatment

(d) Subject 7: Deconvolved Leptin Post-Treatment
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(b) Quantile-Quantile Plot

(e) Quantile-Quantile Plot

(c) Residuals

(f) Residuals

(c) Residuals(b) Quantile-Quantile Plot

(e) Quantile-Quantile Plot (f) Residuals

Fig. 2: Leptin deconvolution results for both pre-treatment and post-treatment are shown for subject 7 (I) and subject 12 (II).
(a) depicts the leptin deconvolution results including leptin concentration (black), recovered pulses (pink), and reconstructed
signal (blue). (b) depicts the quantile-quantile plots which represents the relationship between the measured data and the
reconstructed leptin signal. (c) shows the residuals plot indicating the model’s estimation error plotted against samples from
a normal distribution. (d) - (f) represent the deconvolution results performed for post-treatment in the same subject.

is similar to the deconvolution of leptin [25], cortisol [20]–
[22], [27], [28], electrodermal activity [22], [23], [29]–[34],
and growth hormone [24] in earlier work and is subject to
the same computational complexity as those.

To estimate the model parameters, we follow the method
used in [20], and formulate an optimization problem:

minimize ∥y − Fθy0 − Dθu∥22 (7)
subject to: 20 ≤ ∥u∥0 ≤ 45, u ≥ 0, Cθ ≤ b (8)

where C =

[
−1 −1 0
1 0 −1

]′
, b =

[
0 0 0

]′
.

Here, the constraints on the recovered secretory pulses refer
to the non-negativity of pulse amplitudes and the rate pa-
rameters, and ensure that the infusion rate is higher than the
clearance rate. This optimization problem to simultaneously
find the parameters and the sparse stimuli in general is com-

putationally complex [20]. We therefore solve a relaxation
of the original optimization problem as follows:

min Jλ(θ,u) =
1

2
∥y − Fθy0 − Dθu∥22 + λ∥u∥pp (9)

u(l+1) = argmin
u≥0

Jλ

(
θ(l),u

)
(10)

θ(l+1) = argmin
Cθ≤b

Jλ

(
θ,u(l+1)

)
(11)

B. Optimization
We solve this optimization problem using the FOCUSS+

algorithm [35] and subsequently FOCUSS+ together with
Generalized Cross Validation (GCV) [36]. In this method, the
values of λ and u are iteratively updated until convergence
is achieved, with GCV additionally enabling the sparsifica-
tion of the recovered stimuli by refining the regularization



parameter λ which tunes the sparsity of u in relation to the
residual error of the reconstructed signal.

We use the GCV technique for updating the regularization
term [36]. The GCV function is defined as:

G(λ) =
N ∥(I −Hλ) yθ∥2

(trace (I −Hλ))
2 (12)

where N is the number of data points, Hλ =

DθPuDT
θ

(
DθPuDT

θ + λI
)−1

is the influence matrix, follow-
ing [20]. A summary of the algorithm is as follows [20],
where yθ denotes the residual error y − Fθy0:

1.P (r)
u = diag

(∣∣∣u(r)i

∣∣∣2−p
)

2. u(r+1) = P
(r)
u DT

θ

(
DθP

(r)
u DT

θ + λ(r)I
)−1

yθ

3. u(r+1)
i ≤ 0 → u

(r+1)
i = 0

4. λ(r+1) = argmin
0≤λ≤λmax

G(λ)

5. Iterate until convergence
θ1 and θ2 are initialized using a uniform random variable

w sampled from the interval [8.3× 10−4, 1], where θ1(0) =
5θ2(0) = w. To account for inter-subject variability in leptin
secretion dynamics, for each subject, we begin with an initial
trial of λmax = 10. Then, we decrease λmax by a factor of
ten until we observe a high-fidelity fit of the leptin data,
without overfitting. The λmax values used for each subject
is reported in Table I.

III. RESULTS AND DISCUSSION
In this study, plasma leptin concentration levels were

successfully deconvolved to retrieve the underlying secretory
pulse timings and magnitudes using the proposed algorithm.
A summary of the rate parameters, recovered number of
pulses and the coefficient of determination (R2) are reported
in table I. We see that the total number of recovered pulses
satisfied the cardinality constraint, and were between 20-
45, as set in the algorithm. Moreover, the rate parameters
satisfied the constraint that the infusion rate be higher than
the rate of clearance. The statistics of the rate parameters
across all subjects is shown in the box plots in Figure 1. The
deconvolution results for two subjects both pre-treatment and
post-treatment are shown in Figure 2. The quantile-quantile
plots show that the residuals in the recovered signal follow an
approximately normal distribution, indicating a good fit. The
deconvolution results all follow the physiological constraints
that the infusion rate is greater than the clearance rate, and
the number of pulses recovered for each subject satisfy the
criterion of being within 45 leptin secretion pulses, as can
be seen in table I.

The relatively high values of the multiple correlation co-
efficients (R2 > 0.90 for all subjects) between the recovered
signals based on the secretion pulses and the experimental
data indicate that our method is capable of estimating leptin
secretion information that is both physiologically plausible
and accurate. Leptin secretion events appear to follow a cir-
cadian rhythm with leptin levels typically increasing during
the sleep period, though there is high subject variability
in terms of the number of pulses, pulse magnitude, and

infusion/clearance rates. We also calculated other metrics
considered typically in literature, including the number of
pulses (during wake, sleep, and total hours of study), the sum
of pulse amplitudes (during wake, sleep, and total duration
of the study), mean leptin levels over the time intervals, and
the area under the curve during wake, sleep or the total 24
hours.

We performed paired Wilcoxon signed rank test to ex-
amine differences induced by bromocriptine treatment in
each of these metrics. The Wilcoxon signed-rank test is a
non-parametric test used to determine statistical differences
between two populations with paired observations [37]. The
summary of the statistics from this study in Table II suggests
a statistically significant change of mean leptin secretion
profile due to bromocriptine treatment and the leptin area
under the curve during sleep. We did not find any significant
change in the remaining metrics. Given the complex nature
of interactions between the various hormones and the fact
that other metabolic markers were shown in previous studies
to be improved due to treatment with bromocriptine, it is
possible that these observations may be better explained
by considering the totality of the changes in all the other
measured hormones induced by bromocriptine [13]. For
example, bromocriptine has been shown to decrease prolactin
levels and has been used to treat hyperprolactinemia [11].
The assessment of its influence on neuroendocrine function
will address the overall effect of bromocriptine in these obese
patients.

Based on our deconvolution results, it appears that plasma
leptin concentrations follow both fast and slow dynamics
in these subjects. Previous studies have also shown that
leptin plays a key role in maintaining sleep cycles and leptin
deficiencies can cause dysregulation in the sleep cycle [38].
Our analysis (table II) shows a marked difference during
sleep in the area under leptin curve. It is possible that
models that can incorporate aspects of both dynamics make
for a better model of leptin secretion. To obtain further
insight, it will be useful to measure and analyze plasma
leptin concentration levels retrieved from healthy non-obese
individuals.

IV. CONCLUSION AND FUTURE WORK

In this research, we modeled the leptin secretory process
by second-order dynamics and used a coordinate descent
approach to perform deconvolution, parameter estimation,
and recovery of the sparse stimuli underlying leptin secretion.
From the results of our deconvolution analysis, we found
that overall leptin secretion decreased on average across
all subjects, as was the leptin area under the curve during
sleep, but did not find other significant markers of altered
leptin secretion that could be attributed to treatment with
bromocriptine. We intend to extend this work in the future
in two directions. The first is to incorporate our observations
of fast and slow processes governing leptin secretion, which
happens from adipose tissues throughout the body, and
expand the model to include them. The second is a combined
analysis of interactions between the various hormones, such



TABLE I: Parameters governing leptin production before (pre) and after (post) treatment with bromocriptine: infusion rate
θ1, clearance rate θ2, number of secretory pulses ||u||0, multiple correlation coefficient R2, and λmax.

Sub θ1 θ2 ||u||0 ||u||0 R2 λmax θ1 θ2 ||u||0 ||u||0 R2 λmax

No. (pre) (pre) (pre) (pre) (pre) (pre) (post) (post) (post) (post) (post)
(min−1) (min−1) (sleep) (min−1) (min−1) (sleep)

1 0.1008 0.0067 38 13 0.9740 1 0.1348 0.0063 39 14 0.9354 1
2 0.0606 0.0121 42 14 0.9715 1 0.1169 0.0069 40 13 0.9706 1
3 0.0647 0.0122 42 13 0.9558 1 0.1050 0.0067 42 14 0.9555 1
4 0.1229 0.0059 40 15 0.9644 1 0.1027 0.0060 42 14 0.9836 1
5 0.1547 0.0061 40 13 0.9780 1 0.1244 0.0048 36 12 0.9863 1
6 0.2007 0.0035 37 14 0.9776 1 0.0653 0.0106 45 16 0.9752 0.1
7 0.1026 0.0049 32 10 0.9297 1 0.0562 0.0102 45 14 0.9578 0.1
8 0.0445 0.0091 41 15 0.9852 0.1 0.1068 0.0051 38 12 0.9526 0.1
9 0.0620 0.0147 44 15 0.9830 1 0.0543 0.0116 40 12 0.9833 1

10 0.2188 0.0049 33 11 0.9047 1 0.0360 0.0064 35 13 0.9651 0.1
11 0.1191 0.0049 38 14 0.9712 1 0.1305 0.0053 34 13 0.9657 1
12 0.1008 0.0065 42 14 0.9810 1 0.1008 0.0051 41 14 0.9834 1
13 0.1165 0.0075 40 13 0.9790 1 0.0529 0.0092 42 15 0.9894 0.1
14 0.1008 0.0046 39 15 0.9553 1 0.0362 0.0056 26 10 0.9683 1
15 0.0561 0.0113 45 17 0.9811 0.1 0.0601 0.0087 41 15 0.9720 0.1
16 0.1036 0.0068 39 13 0.9592 1 0.1008 0.0065 40 15 0.9731 1
17 0.1392 0.0026 29 10 0.9393 1 0.0304 0.0060 24 9 0.9485 1
18 0.1008 0.0069 40 15 0.9683 1 0.1181 0.0066 40 13 0.9641 1

TABLE II: Results of paired Wilcoxon signed rank test for measures of leptin secretion pre- and post- treatment with
bromocriptine

Parameter Mean ± S.D. Mean ± S.D. p-value
(pre-treatment) (post-treatment)

Infusion rate θI (min−1) 0.1094± 0.0470 0.0851± 0.0355 0.2311
Clearance rate θC (min−1) 0.0073± 0.0033 0.0071± 0.0021 0.7439
No. of pulses ||u||0 (sleep) 13.5556± 1.8222 13.2222± 1.7675 0.6146
No. of pulses ||u||0 (wake) 25.3889± 2.7255 25.1111± 4.2272 0.5100
No. of pulses ||u||0 (total) 38.9444± 4.1084 38.3333± 5.6776 0.3500

Sum of pulse amplitudes ||u||1 (sleep) (ng/L.min−1) 2.8788± 9.3062 2.0019± 4.6279 0.8438
Sum of pulse amplitudes ||u||1 (wake) (ng/L.min−1) 366.7855± 243.4978 317.1822± 146.8222 0.1701
Sum of pulse amplitudes ||u||1 (total) (ng/L.min−1) 369.6643± 248.1543 319.1841± 149.6031 0.1841

Leptin area under curve (sleep) (ng/L.min) 1.9634× 103 ± 620.2569 1.7787× 103 ± 630.0866 0.0386
Leptin area under curve (wake) (ng/L.min) 2.8792× 103 ± 922.7463 2.6264× 103 ± 918.3443 0.0582
Leptin area under curve (total) (ng/L.min) 4.8426× 103 ± 1.5336× 103 4.4050× 103 ± 1.5293× 103 0.0526

Leptin mean (sleep)(ng/L) 37.6857± 11.9106 34.1768± 12.1042 0.0386
Leptin mean (wake) (ng/L) 31.2321± 10.0016 28.4845± 9.9624 0.0582
Leptin mean (total) (ng/L) 33.5910± 10.6348 30.5651± 10.6123 0.0526

Leptin mean profile (across all subjects) - - <0.01

as growth hormone, which regulates body fat mass and
lipolysis [13].
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