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Abstract— Cortisol is a neuroendocrine hormone of
the hypothalamus-pituitary-adrenal (HPA) axis secreted
from adrenal glands in response to stimulation by

adrenocorticotropic hormone (ACTH) from the anterior
pituitary and corticotropin releasing hormone (CRH) from
the hypothalamus. Cortisol has multiple functionalities in
maintaining bodily homeostasis - including anti-inflammatory
influences - through its diurnal secretion pattern (which has
been studied extensively); its secretion is also increased in
response to major traumatic events such as surgery. Due to
the adverse health consequences of an abnormal immune
response, it is crucial to understand the effect of cortisol in
modulating inflammation. To address this physiological issue,
we characterize the secretion of cortisol using a high temporal
resolution dataset of ten patients undergoing coronary arterial
bypass grafting (CABG) surgery, in comparison with a control
group not undergoing surgery. We find that cortisol exhibits
different pulsatile dynamics in those undergoing cardiac
surgery compared to the control subjects. We also summarize
the causality of cortisol’s relationship with different cytokines
(which are one type of inflammatory markers) by performing
Granger causality analysis.

Clinical relevance— This work documents time-varying pat-
terns of the HPA axis hormone cortisol in the inflammatory
response to cardiac surgery and may eventually help improve
patients’ prognosis post-surgery (or in other conditions) by en-
abling early detection of an abnormal cortisol or inflammatory
response and enabling patient specific remedial interventions.

I. INTRODUCTION

Cortisol, a hormone of the hypothalamus-pituitary-adrenal
(HPA) axis, is important in many areas of physiology and
pathophysiology [1]. Its pulsatile secretion from the adrenal
glands is induced in response to the circulating adrenocorti-
cotropic hormone (ACTH) released by the anterior pituitary
gland, which in turn is stimulated by corticotropin releasing
hormone (CRH) released from the hypothalamus into the
anterior pituitary. HPA hormones interact through a sequence
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of cascaded feedback interactions resulting in downregula-
tion of precursor hormones by cortisol [2]. Such feedback
relationships have been recently exploited to deconvolve the
underlying pulsatile signaling that result in observed cortisol
levels [3]-[5].

Cortisol levels in healthy individuals show a circadian
rhythm that includes 15-22 secretory pulses during a 24-hour
period. Cortisol secretion is also altered by multiple factors,
including stress, consumption of coffee and alcohol, and
altered sleep. Abnormal cortisol secretion is associated with
diseases such as hypercortisolism, chronic fatigue syndrome,
fibromyalgia syndrome and Addison’s disease [6]-[8]. Corti-
sol is also involved in metabolism through interactions with
other hormones such as leptin, prolactin, growth hormone,
and thyroid hormones [9], [10]; it is a crucial mediator of the
human inflammatory response [11]. During challenges that
elicit a systemic inflammation response, specific kinds of
signaling proteins called cytokines are produced; they signal
the HPA axis to stimulate the production of cortisol, which
in turn downregulates the cytokines through its negative
feedback interaction [11], [12]. During cardiac surgery, the
observed plasma cortisol levels are many times higher than
during normal healthy functioning [13] and four cytokines
(interleukins IL6, IL8 and IL10) and tumor necrosis factor
(TNFa) have a major influence on the progress of the in-
flammatory response, and the patient’s prognosis [14]. Many
factors induce cytokine production including tissue injury
from surgery, the interaction of blood with extracorporeal
mechanical surfaces, altered plasma cation concentrations,
reperfusion ischemia, the stress experienced by the patient,
and medication administered to reduce both the pain and
the intensity of the inflammation response [13], [15], [16].
An uncontrolled inflammatory response has the potential to
cause a deterioration of patient health though sepsis, shock,
organ failure and may ultimately cause death [14], [17].
Efforts to modulate the inflammatory reaction has led to the
development of many corticosteroidal drugs to treat immune-
related conditions [18].

The exact nature of pulsatile cortisol secretion during
health and disease has been studied using many meth-
ods [19]-[23]. The development of sparse deconvolution
algorithms has enabled detection of underlying secretory
pulses in the production of cortisol and other physiological
signals [6], [7], [10], [19] and has enabled mathematical
investigation of its interactions with other hormones, such
as leptin and growth hormone [3], [24]-[26]. In this work,



we seek to characterize the pulsatile production of cortisol in
patients undergoing cardiac surgery, as a first step to better
understand the physiology and design countermeasures to
improve medical outcomes for patients.

A. Dataset

We use data from the original, published clinical study
of ten male patients undergoing coronary arterial bypass
grafting (CABG) surgery [15]. The patients (aged 57-75
years, averaging 65 + 6.2) had elective surgery with median
sternotomy with or without cardiopulmonary bypass (five
each). For all the patients, surgery was scheduled at 08:00
AM and their blood was collected for later assay every ten
minutes via in-situ vascular catheters for twelve hours with
first sample times between 8.15 AM - 9:10 AM.

The data included plasma levels of ACTH, cortisol, and
cytokines (e.g., IL1a, IL2, IL4, IL6, IL8, IL10 and TNFa)
from blood sampling performed at ten-minute sampling
intervals for twelve hours. For more details on the experiment
and data collection, including the chemical assay analysis
procedures to obtain the final cortisol levels, we refer the
reader to [15]. The data of the control group comprising
three individuals not undergoing surgery used in [15] is
directly from an earlier study of healthy males [13], [27];
their eligibility included no history of trans-meridian travel
or usage of glucocorticoidal substances. Blood was collected
(for later plasma cortisol assay) every ten minutes for 24
hours, during which they were provided with three meals at
08:00 AM, 12.30 PM and 5:30 PM, and had the lights turned
off according to their regular daily routine, between 10:00
PM and 12:00 AM. The data of patients undergoing surgery
is over a duration of twelve hours, while that of control
subjects is over 24 hours; we therefore analyzed the latter
dataset only for data starting from 9:10 AM + 5 minutes
for 9 hours and 50 minutes, the longest overlapping time
window between patients and the control group. We note that
the surgery onset time for two patients at 8:58 AM preceded
this analysis period.

II. MODEL

In our work, we perform the modeling, deconvolution and
sparse pulsatile recovery of cortisol separately. At this level,
we seek to infer the stimulating pulses culminated from the
direct stimulation of the HPA axis by cytokines, as well
as the result of any medication. This model is similar to
prior work [10], and although minimal in its description
(as it does not account for other feedback pathways includ-
ing direct interactions with other hormones, cytokines and
medications), it helps infer the underlying secretory pulses
that cause the observed cortisol levels. This is intended as
a first step analysis with which to determine the timing,
amplitude and number of each stimulus, and determine the
causal interactions between other inflammatory markers and
HPA axis hormones.

We use the following second order ordinary differential
equation model to describe the cortisol de novo secretion

process during surgery, as in earlier work [6]:

i‘l(t) = —91x1(t) + u(t) (1)
(EQ(t) = 01x1(t) — 921’2(15) (2)
y(ti) = z2(ti) +me, 3)

where x1(t) is the cortisol produced in the adrenal glands,
xo(t) is the serum cortisol level infused from the adrenal
glands into the serum, u(t) = Zf\; qid(t — 7;) is the
train of underlying hormone secretory stimuli that result in
cortisol production in the adrenal gland, with ¢;, 7, and N
denoting respectively the amplitude, timing and total number
of the neural pulses. Here, N = 720, since we represent
cortisol with a one-minute time resolution. #; and 65 refer
to the rate of infusion of the cortisol produced in the adrenal
gland into serum, and the clearance rate from the serum,
respectively. The use of the rate parameters affords a time-
scale separation in our model accounting for the varying rates
of cortisol production in the adrenal gland and its subsequent
infusion into the blood, and its clearance from the body. The
measurements every ten minutes are represented in equation
(3). The sampled plasma level of cortisol is due to the time-
varying cortisol production in the adrenal gland infused into
the plasma and is subject to a measurement noise 7(t;).
Although earlier work [13] has hypothesized a potential basal
secretion associated with the immune challenge to account
for the increased cortisol secretion, we do not incorporate it
explicitly in our model. We assume that each measurement
is subject to an additive noise, modeled by an independent,
Gaussian distributed random variable.

Given that the dataset reports the measured cortisol levels
with ten-minute sampling intervals, and we require our model
to perform sparse recovery of the neural pulses at a one-
minute sampling rate, we solve the system of equations
(1)-(2) and obtain the measurements at the 10-minute sam-
pling rate. Thus, the deconvolution algorithm serves two
purposes: recovery of the underlying secretory pulses, and
reconstruction of the smoothed cortisol levels at a higher
sampling frequency than afforded by the measurements. This
is especially crucial since the ability to infer the transient
temporal dynamics of the inflammatory response decreases
with larger sampling intervals [28].

The measurements at various time instants can be aggre-
gated in the following expression as in [3], which describes
the influence of the initial condition X4[0] = [0 y(t0)], the
underlying pulses u and the measurement noise 7:

y = FgX4[0] + Dgu+n 4

A. Deconvolution

In order to recover the underlying pulses and reconstruct
the cortisol signal at a higher time resolution than that
afforded by the measurement sampling interval, we formulate
a numerical optimization problem that seeks to minimize the
cost [3], [25]:

1
minimize 3 |ly — FoX4[0] — Doul3 o)



TABLE I: Infusion rate (), clearance rate (f3), number of non-zero elements, i.e., number of pulsatile secretory events
(|lul|o), sum of absolute values of the pulse amplitudes (||u||;) and energy of the pulsatile secretory events (||u||2) in patients
and control subjects, and multiple correlation coefficient (R?).

Subject Subject 01 02 [lu]lo [lu]|1 [lul|2 R?
No. Type (min~1!) || (min—!) || (Number) || (10* nM.min—1) || (10* nM.min—1)

1 Patient 0.06 0.014 12 0.42 0.14 0.94

2 Patient 0.13 0.006 10 0.25 0.08 0.99

3 Patient 0.03 0.008 7 0.30 0.12 0.99

4 Patient 0.11 0.010 11 0.26 0.09 0.96

5 Patient 0.10 0.005 8 0.22 0.08 0.98

6 Patient 0.14 0.010 8 0.24 0.09 0.96

7 Patient 0.03 0.009 6 0.34 0.16 0.97

8 Patient 0.11 0.007 10 0.27 0.10 0.99

9 Patient 0.12 0.003 10 0.18 0.06 0.97

10 Patient 0.05 0.011 10 0.45 0.16 0.99

Median Patients 0.10 0.008 10 0.27 0.094 0.98

Std. Dev. Patients 0.04 0.003 1.9 0.10 0.03 0.02

11 Control 0.10 0.014 9 0.18 0.06 0.78

12 Control 0.17 0.01 7 0.11 0.05 0.95

13 Control 0.15 0.009 6 0.08 0.035 0.93

Median Controls 0.15 0.010 7 0.11 0.05 0.93

Std. Dev. Controls 0.01 0.006 1.5 0.05 0.01 0.1

in order to solve for (i) the infusion and clearance rates
0 = [0, 6]T that determine Fy and Dy, and (ii) underlying
secretory stimuli u. We constrain this optimization problem
by specifying the maximum number of cortisol secretory
pulses in a day [3]. Due to the numerical complexity of the
optimization problem, we add a soft constraint on the total
number of underlying secretory pulses to impose a sparsity
criterion, thereby reformulating the cost to be minimized as

[3]:

S 1
minimize Jy(6,u) = §||y —FpX4[0] — Doul|3 + Alful[P
(6)
(7
where ) is a regularization parameter and p = 0.5 is chosen
to enforce the sparsity constraint. We have imposed three

constraints based on earlier work [3], [6] to ensure biological
plausibility of the solution. The first, C < b, with

subject to: CO <b, u>0, 0 < ||ug|| <11

-1 4 0
C=|-1 0 [,b=1]0 (8)
0 -1 0

ensures that the infusion rate is at least four times higher than
the clearance rate and that both the parameters are positive.
Additional constraints on the pulse train u enforces non-
negativity and an upper bound on the total number of the
recovered secretory events.

In healthy individuals, the total number of cortisol pulses
has been determined in earlier work to be 15-22 per day [2],
[3]. In the present case, it is unclear what the upper bound
must be, under the conditions of cardiac surgery. Given the
higher observed levels of cortisol in patients (in comparison
to that measured in the control group) [15] and based on the
maximum number of underlying secretory events inferred
in healthy (female) subjects in prior studies [3], [7], the

maximum number of recovered pulses is chosen to be 15
pulses over the 12-hour sampling period of data collection.
Prior work has suggested that the number of underlying
pulses in patients undergoing surgery is lower [13], even if
overall levels of cortisol are higher, and we expect our sparse
deconvolution algorithm to resolve this. We initialize the rate
parameters by first sampling a uniform random variable w €
[10~%, 0.8] and then setting [0} 62] = [w w/4]. We perform
a spline interpolation to determine the value of any missing
data points in the dataset. The optimization problem is solved
using a coordinate descent approach involving the FOCUSS+
and GCV algorithms [3], [29], [30] to obtain the infusion
and clearance rates, as well as to recover the underlying
secretory pulses. This step is run for 200 iterations to ensure
robustness of solutions, and the optimal set of underlying
secretory pulses and parameters are finally obtained from
this set. A more detailed discussion of this algorithm can
be found in [3], [25]. Since the dataset reports the unit of
cortisol levels in nM, we divided the cortisol levels by 10
to recover the underlying secretory pulses. After performing
deconvolution, we converted the cortisol levels and secretory
amplitudes back to nM and nM.min~!, respectively. This
step is not required when using the original algorithm for
cortisol data in pg/dl unit [3].

B. Granger causality analysis between cortisol and cy-
tokines

We perform Granger causality test [31] to understand
the causal interactions between cortisol and each of the
cytokines from [15], for the 12 hour data collection period.
We determine whether the linear relationship given below
between the two physiological signals under consideration,
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(d) Control Subject 11

Fig. 1: Cortisol deconvolution results for three patients [panels (a), (b), (c)] undergoing coronary arterial bypass grafting
(CABG) surgery and a control subject [panel (d)]. Figure depicts the cortisol levels measured every ten minutes (black
*), cortisol levels reconstructed every minute using our analysis (blue line) and the calculated timing and amplitude of
underlying secretory pulses (pink bars) for (a) patient 1 (b) patient 4 (c) patient 2 (d) control subject 11. The duration of
surgery for patients is annotated in green. The data for patients starts within a ten minute interval centered at 9:10 AM + 5
minutes and data for the control group starts at 9:10 AM. Note the different y-axis scales for each panel, with higher overall
and maximal values for the patients compared with the control.

say ya and yp, is valid with statistical significance:

Na, B

> Bays(ts —5) + eltr)
j=1
©)
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tr) = Z aayalte —J) +
j=1

Here, y4 at time instant ¢; is represented as a linear
combination of its past values, the past values of yp, with
N4 4 and N4 p denoting the lag parameters and e(t)
representing an error term. If at least one of the coefficients
Ba; is non-zero with statistical significance, then we say
that yp causes y 4. In our analysis, we consider the causality
relationships between the reconstructed cortisol levels with
those of cytokines obtained from [15]. This is since, (i) raw
measurements are subject to stochasticity from imprecise
measurements, (ii) the dataset contains only a few mea-
surements to allow for direct causality analysis based on
them, and (iii) the hormone reconstruction using our methods
retain physiological plausibility even in this simple setting.
We set the range of N4 4 and Ny p to be a maximum
of thirty minutes and calculate the lag parameters’ exact
value determined by minimization of the Akaike Information
Criterion (AIC) by using the MATLAB function gctest [32].
This gives us an optimal model that minimizes the residual
error over the lag parameters. Then, gctest is employed to
solve the hypothesis testing problem.

ITII. RESULTS AND DISCUSSION

We performed deconvolution for all ten patients undergo-
ing surgery (numbered 1-10) for the 12 hour duration and for
the three control subjects (numbered 11-13) over 24 hours
of data collection, with the maximum number of underlying
secretory events set to 15 and 22 respectively for patients
and controls. We perform our analysis over a 9 hour 50
minute time window starting from 9:10 AM =+ 5 minutes,
the longest overlapping time window across all patients and
control subjects. The infusion and clearance rate parameters
as well as the number of recovered underlying secretory
pulses over this time period are shown in Table I, and
representative results of the cortisol deconvolution and the
recovered underlying secretory pulses are presented in Figure
1. The number of recovered secretory pulses for patients
ranges between 7-12 with a median value of 10 while the
control subjects all have this number less than 10. The levels
of cortisol in patients are comparatively higher, and continue
to rise in the hours after surgery. For the control subjects,
we observe a median value of 7 underlying secretory pulses
for the same time duration, with lower levels of cortisol.

For patients undergoing cardiac surgery, the median infu-
sion and clearance parameters were lower than for controls
(Table I). In case of patient 1, we observe large amplitude
secretory pulses (pink bars) at the corresponding rise times
of the cortisol levels (black dots representing measured data,
blue line representing the reconstructed cortisol levels at
one-minute sampling rate), followed by some smaller pulses
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Fig. 2: Causality analysis for deconvolved cortisol and cytokines (inflammatory markers). Each panel depicts the statistically
significant causal relationships between cortisol (blue node) and different cytokines (red nodes) obtained from performing
Granger causality test as a directed graph with edge weights portraying the optimal lag parameter in minutes and arrows
indicating directionality of this relationship. The four inflammatory cytokines tested are proinflammatory interleukins (IL6,
IL8) and TNFq, and anti-inflammatory interleukin (IL10). Range of significance values of recovered relationships are

indicated for each patient.

that result in slower cortisol clearance. In patient 4, the
secretory pulse amplitudes were smaller in comparison to
patient 1, which eventually decreased towards the end of
the analysis period. For patient 2, we noticed secretory
pulses with smaller inter-arrival times and similar amplitudes
in comparison to the control subject. We find that the
norms of the secretory pulses, 0-norm (||u||o, indicating the
number of secretory events), 1-norm (||u||; indicating the
sum of underlying secretory event amplitudes) and 2-norm
(||ull2, indicating the energy of the signal) also indicate
comparatively higher cortisol secretory burst amplitudes for
patients undergoing surgery compared to control subjects.
The median 1-norm and 2-norm of the secretory pulses are
at least doubled for patients (Table I).

The results of Granger causality test between the recon-
structed cortisol and the inflammatory cytokine levels from
[15] are shown in Figure 2; the causality relationship is
shown by means of a directed graph, and the lag parameter
(in minutes) in the aforementioned expression is represented
as edge weights in Figure 2. Here, we consider the proin-
flammatory interleukins (IL6, IL8) and TNF « and the anti-
inflammatory interleukin (IL10). All lag parameters were
below 30 except for the IL10-cortisol and TNFa-cortisol
relationships for patient 2. Six patients show a statistically
significant causal relationship between cortisol and IL10,
both of which serve to diminish the relative abundance
of proinflammatory cytokines, although the directionality
of this relationship is not uniform across these subjects.
Seven patients show a direct relationship with IL6, six
with IL8 and six with TNFa. Patient 3 showed no causal
relationships in our analysis. Patients 2, 5 and 6 showed

a direct relationship between cortisol and all the cytokines.
Bidirectional relationships between IL10 and cortisol were
recovered for five subjects, between TNFa and cortisol for
two subjects and between IL6 and cortisol for one subject,
indicating the presence of feedback relationships.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have quantified cortisol patterns over
a near-ten-hour period for ten patients undergoing cardiac
surgery and three controls. We observe using our minimal
model that patients exhibited altered cortisol secretion due to
surgery, with higher amplitudes of the underlying secretory
pulses. After characterizing the observed cortisol levels in
[15] using secretory events recovered in our deconvolu-
tion analysis, we also investigated the causality of cortisol
interactions with the inflammatory cytokines. We plan to
incorporate the dynamics of ACTH to perform concurrent
deconvolution so that the response of the HPA axis, and
sensitivity of cortisol production to secreted ACTH may
shed light on the mediatory role played by the HPA axis
hormones in the observed inflammatory response. Further
work should also quantify the relationship between these
results and clinical outcomes.
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