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Abstract— Major bodily trauma such as cardiac surgery
elicits (in response to tissue injury and other exogenous
surgical factors) a whole-body inflammation response during
which specialized signaling proteins called cytokines are
synthesized and invoke multiple defense mechanisms. Many
proinflammatory and anti-inflammatory cytokines such
as interleukins (IL) and tumor necrosis factor (TNF) are
produced to initiate bodily repair. Due to the adverse
health consequences, including mortality, of a maladaptive
cytokine response, understanding their complex dynamics
using system-theoretic modeling and analysis may pave the
way for controlling the inflammatory response which may
eventually improve medical outcomes for patients. To this end,
we use clinical data from ten patients undergoing coronary
arterial bypass graft surgery to study the response of four
cytokines (IL6, IL8, IL10, TNFα) and the neuroendocrine
hormone cortisol. We perform deconvolution to obtain the
secretory pulses underlying their pulsatile production and
analyze causal interactions, mathematically uncovering some
interactive relationships found in previous experimental studies.

Clinical relevance— This work is a first step towards a
mechanistic inference of the inflammatory response to surgery
that could eventually help control the inflammatory response
and could inform medical interventions to improve patient
outcomes.

I. INTRODUCTION

When the body is disturbed from its systemic equilibrium
(e.g., due to bacterial or viral infections, injury or surgery),
the immune system initiates the production of proteins called
cytokines that play a crucial role in signaling the disturbance
to the brain and other cells, so that other physiological
responses can occur to restore the body to a healthy state
[1], [2]. For instance, injury due to small tissue wounds
results in the local inflammation response, during which the
cytokines signal the presence of injury, regulate the transport
of extracellular matter such as collagen, alter the proliferation
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and migratory rate of cellular active matter to promote wound
healing; they act in mostly autocrine (signaling the cell that
produced it) or paracrine (signaling the cells in the vicinity
of the cell that produced it) fashion [3]. In the case of a
systemic threat such as infection or surgery, a commensu-
rate systemic (i.e., whole-body) inflammatory response is
invoked. This involves the localized and systemic production
of cytokines which then circulate in the blood (similar to
hormone circulation) and stimulate the hormones in the
hypothalamus-pituitary-adrenal (HPA) axis resulting in the
production of corticotropin releasing hormone (CRH) in the
hypothalamus, then adrenocorticotropic hormone (ACTH),
an anterior pituitary hormone, and finally cortisol from the
adrenal glands [1]. ACTH and cortisol promote protective
inflammatory response [1], [4], [5].

Cytokines exhibit pleiotropy (i.e., a single cytokine may
have more than one function) and redundancy (i.e., many
cytokines can share function), as part of a robust inflam-
matory response [6]. The immune response elicited during
bodily threats is still specific to the nature of the threat. This
specificity is produced by the signaling mechanism as well
as the relative abundance of each cytokine in the vicinity of
the injury or threat [1]. The cytokines are capable of binding
to the receptors in the target to enhance the target cell’s func-
tionalities (“normal signaling”), while trans-signaling enables
the modulation of the target cells’ ability to bind to other
cytokines [2]. Through stimulation of the hormones of the
HPA axis, cytokines mediate the acute phase response that
involves fever, anorexia, production of specialized proteins
and changes in plasma cation concentrations. A balance
between the cytokines and regulating hormones is necessary
to ensure that the immune response is appropriate [1].

In the presence of an adverse stimulus, cytokines are
produced in larger quantities - up to a thousand-fold more
and may cause health complications [4], [5]. For example,
patients with auto-immune disorders are most likely to
have post-pericardiotomy syndrome after undergoing cardiac
surgery [7], [8]. Recent work has revealed the role played by
cytokine storm in patients after infection with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [9], [10].
In both cases, the patient prognosis is crucially dependent
on whether or not there is a dysregulated inflammatory
response. Despite the extensive research on the versatile
nature of cytokine actions in mediating the bodily inflam-
matory response, the dearth of high resolution longitudinal
data under many disease conditions means that little is
known on the temporal and causal interactions between the



different cytokines and between the cytokines and cortisol.
For instance, some studies on the inflammatory response
during cardiac surgery include fewer than ten measurements
over a 24-hour period [11]; such infrequent sampling creates
a loss of crucial information on the temporal evolution of
the inflammatory response [12]. Given the many harmful
side effects of an abnormal inflammatory response such
as organ failure, sepsis, shock and potentially death, it is
crucial to understand their dynamics to enable early detection
and mitigation of adverse outcomes including prolonged
hospitalization [13]. Therefore, in this work we seek to
quantify cytokine and cortisol responses to cardiac surgery
using mathematical models.

II. INFLAMMATION RESPONSE DURING CORONARY
ARTERIAL BYPASS GRAFTING

Coronary arterial bypass grafting (CABG) surgery is a
procedure performed to remedy arterial blockage. During
surgery, the inflammatory response is initiated by many
surgical factors including tissue injury, the interaction of
tissues and blood with extracorporeal mechanical devices,
ischemia and reperfusion injury invoking a systemic inflam-
matory response. Four cytokines - interleukins (IL) 6, 8,
10 and tumor necrosis factor (TNF) α - have been noted
for their correlation with patient prognosis and duration of
hospitalization in surgery [14], [15]. Of these, IL6, IL8
and TNFα are proinflammatory and interact to enhance
each others’ functions, while IL10 is an anti-inflammatory
cytokine capable of autoregulation as well as downregulation
of the proinflammatory cytokines. We consider the time
evolution of these four cytokines together with cortisol which
plays an important role in downregulating the inflammatory
response [16], to identify their pulsatile signaling and per-
form causality analysis.

A. Dataset

The dataset of cytokines and cortisol levels is from the
original, previously published clinical study of ten patients
undergoing CABG surgery from [4]. Ten male patients (ages
57-75 years, averaging 65±6.2 years) underwent elective
surgery with median sternotomy with or without cardiopul-
monary bypass (5 each). For all the patients, surgery was
scheduled at 08:00 AM and their inflammatory marker levels
were sampled every ten minutes with the first sample for all
patients in the time window 8:15 AM - 9:10 AM via in-
situ vascular catheters for twelve hours. The data comprised
several markers of inflammation including serum levels of
ACTH, cortisol, and cytokines such as interleukins (IL1α,
IL2, IL4, IL6, IL8, IL10) and TNFα. For more details on
the experiment and data collection including the chemical
assay analysis procedures, we refer the reader to [4]. This
dataset did not include data from healthy control subjects.

III. MODEL

System-theoretic modeling of complex physiological pro-
cesses offer a tractable solution for identifying the macro-
scopic dynamics of these processes [17], [18]. Such models

have been used to understand the dynamics of neuroen-
docrine hormones (including cortisol [19]–[22], leptin [23]
and growth hormone [24], [25]) and electrodermal activity
[26]–[29]. We take a similar approach to modeling cytokine
dynamics and propose second order system-theoretic model
to capture the kinetics of each cytokine separately. At this
stage, we assume that the cytokines are produced indepen-
dently of each other, and stimulated by a single stimulus,
combining the influence of all surgical factors including
anesthesia, and anti-inflammatory treatment. Rather than in-
cluding explicit interactions between cytokines, we choose to
perform deconvolution to recover all the underlying secretory
pulses that result in the observed cytokine dynamics, which
is presumably a culmination of the localized inflammation
due to tissue injury, systemic inflammatory response through
cascaded feedback interactions between each of them, and
the influence of aforementioned surgical factors. The goal of
this model-based analysis is two-fold: (i) characterization of
the cytokine expression through identification of underlying
secretory events as a marked point process and (ii) determi-
nation of a model-based physiologically plausible smoothed
cytokine data as a continuous function of time, allowing
for causality analysis. These are important first steps for
analyzing the inflammatory response of cytokines in relation
to each other, and to ensure that the effect of measurement
noise is mitigated in analysis, as is often the practice in
generative model-based smoothing [30]. The dynamics of
each cytokine can be written as

ẋ1(t) = −ζIx1(t) + u(t) (1)
ẋ2(t) = ζIx1(t)− ζCx2(t) (2)

where x1(t) is the cytokine produced locally at the site of
inflammation, x2(t) is the measured serum cytokine level,
u(t) =

∑N
i=1 qiδ(t− τi) is the train of secretory pulses that

result in cytokine production, with qi, τi and N denoting
respectively the amplitude, timing and total possible number
of discrete stimulatory events. Here, N = 720 for the
recovery of underlying stimulatory events with over the
12-hour duration. ζI and ζC refer to the rates of infusion
and clearance of cytokine in the plasma. The measurements
obtained every ten minutes are given by

y(ti) = x2(ti) + ηti (3)

where the sampled serum contains the time-varying cytokine
level and is subject to a measurement noise η(ti). We assume
that the measurement noise at each instant is an independent,
Gaussian distributed random variable. Note that in our model,
we do not explicitly account for a basal cytokine production.
We solve the system of equations (1) and (2) to obtain the
measurements every ten minutes, by taking into account the
effect of initial cytokine levels and the series of secretory
stimuli. Denoting the system matrices

A =

[
−ζI 0
ζI −ζC

]
, B =

[
1
0

]
, C = [0 1] (4)
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(a) Patient 1 - IL6
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(b) Patient 10 - IL6
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(c) Patient 3 - IL6
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(d) Patient 1 - IL8
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(e) Patient 10 - IL8
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(f) Patient 3 - IL8
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(g) Patient 1 - TNFα
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(h) Patient 10 - TNFα
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(i) Patient 3 - TNFα
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(j) Patient 1- IL10
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(k) Patient 10 - IL10
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(l) Patient 3 - IL10

Fig. 1: Cytokine deconvolution results for patient 1, 10 and 3 for proinflammatory cytokines (IL6, IL8, TNFα) and anti-
inflammatory cytokine (IL10) for 720 minutes starting from first sample times ranging between 8:15 AM - 9:10 AM. Figure
depicts the cytokine levels measured every ten minutes (black *), cytokine levels reconstructed every minute using our
analysis (blue line) and the estimated underlying secretory pulses (pink bars). The duration of surgery is annotated in green.

and denoting the one minute sampling interval Tu, we can
write

x(tk+1) = Λx(tk) + Γu(tk) (5)

Λ = exp (ATu), Γ =
Tu∫
0

exp(A(Tu−σ))Bdσ, where u(t) =∑N
i=1 qiδ(t− τi) with the measurement being

y(tk) = Cx(tk) + η(tk) (6)

Therefore, commensurate with the frequency of blood sam-
pling, the measurement intervals Ty = LTu, where L = 10.
Letting Ad = ΛL, Bd = [ΛL−1Γ ΛL−2Γ ... Γ], ud[k] =
[u[Lk] u[Lk + 1] ... u[Lk + L − 1]]T , ηd[k] = η[Lk], the
multi-rate system can be written as

xd[k + 1] = Adxd[k] +Bdud[k] (7)
y[k] = Cxd[k] + ηd[k] (8)

Finally, we write the measurement equations at each discrete
measurement instant given by

y[k] = F [k]xd[0] +D[k]u+ ηd[k] (9)

where F [k] = CAk
d , D[k] =

C[Ak−1
d Bd Ak−2

d Bd . . . Bd 0 . . . 0] (with the
last N − kL entries being zero due to causality),

u = [ud[0] ud[1] ... ud[M − 1]]T . Letting Xd[0] = [0 yt0 ]
T ,

and concatenating the outputs and the matrices, we get
y = [y[0] ...y[M − 1]]T , Fζ = [F [0] F [1] ... F [M − 1]]T ,
Dζ = [D[0] ... D[M − 1]]T , and the measurement noise
η = [η[1] ... η[M ]]T , so that the measurements are given by

y = FζXd[0] + Dζu + η (10)

A. Deconvolution

We perform deconvolution to quantify the timing and am-
plitude of the underlying secretory pulses and reconstruct the
cytokine data at a one-minute time resolution by formulating
a least squares optimization problem that seeks to minimize
the cost based on the previously published algorithm [24]:

Jλ(ζ,u) =
1

2
||y − FζXd[0]− Dζu||22 + λ||u||pp (11)

subject to: Cζ ≤ b, u ≥ 0, 0 ≤ ||u||0 ≤ 20 (12)

where λ is a regularization parameter and p = 0.5 is chosen
to enforce the sparsity constraint. We have imposed three
constraints based on earlier work [20] to ensure biological
plausibility of the solution. The first, Cζ ≤ b, with

C =

[
−1 −1 0
1 0 −1

]T
, b = [0 0 0]T (13)



TABLE I: Infusion rate (ζI , min−1), clearance rate (ζC , min−1), number of secretory pulses (||u||0) underlying the cytokine
production, and multiple correlation coefficients (R2) of the fit for IL6 and IL8.

Sub ζI ζC ||u||0 R2 ζI ζC ||u||0 R2

No. (IL6) (IL6) (IL6) (IL6) (IL8) (IL8) (IL8) (IL8)
1 0.10 0.04 20 0.98 0.32 0.01 17 0.95
2 0.14 0.01 18 0.99 0.16 0.008 17 0.98
3 0.10 0.02 18 0.99 0.12 0.06 16 0.98
4 0.19 0.007 18 0.99 0.18 0.003 11 0.98
5 0.23 0.01 19 0.98 0.10 0.02 14 0.96
6 0.02 0.016 13 0.99 0.27 0.003 9 0.94
7 0.16 0.007 16 0.99 0.31 0.003 13 0.95
8 0.16 0.01 18 0.99 0.03 0.005 11 0.93
9 0.23 0.03 19 0.95 0.25 0.01 17 0.90
10 0.03 0.016 18 0.99 0.25 0.005 13 0.97

Median 0.15 0.014 18 0.99 0.22 0.006 13.5 0.95
Std. Dev. 0.07 0.01 1.9 0.02 0.10 0.004 2.9 0.03

TABLE II: Infusion rate (ζI , min−1), clearance rate (ζC , min−1), number of secretory pulses (||u||0) underlying the cytokine
production, and multiple correlation coefficients (R2) of the fit for TNFα and IL10.

Sub ζI ζC ||u||0 R2 ζI ζC ||u||0 R2

No. (TNFα) (TNF α) (TNFα) (TNFα) (IL10) (IL10) (IL10) (IL10)
1 0.10 0.03 17 0.84 0.08 0.02 20 0.99
2 0.09 0.02 18 0.98 0.06 0.02 16 0.98
3 0.16 0.01 18 0.96 0.08 0.02 17 0.98
4 0.06 0.008 12 0.90 0.13 0.013 12 0.97
5 0.05 0.014 13 0.97 0.04 0.03 13 0.99
6 0.10 0.004 7 0.89 0.16 0.02 10 0.98
7 0.18 0.002 7 0.85 0.08 0.03 20 0.98
8 0.10 0.002 7 0.93 0.07 0.01 13 0.99
9 0.32 0.014 18 0.86 0.11 0.05 19 0.99

10 0.22 0.003 10 0.92 0.27 0.008 16 0.90
Median 0.10 0.01 12.5 0.91 0.08 0.02 16 0.98

Std. Dev. 0.08 0.008 4.80 0.05 0.07 0.01 3.5 0.03

ensures that the infusion rate is greater than the clearance rate
and both the parameters are positive. Additional constraints
on the pulse train u ensures that the recovered pulses are non-
negative and their total number does not exceed 20 over the
12 hour duration to balance fidelity of fit to the measurement
data and sparsity (20 secretory events over 720 minutes).
We use a coordinate descent approach to find the minimum
cost for a prescribed value of λ using the discrete update
equations:

u(k+1) = argmin Jλ(ζ
k,u(k)) (14)

subject to: Cζ ≤ b,u ≥ 0, 0 ≤ ||u||0 ≤ 20

ζ(k+1) = argmin Jλ(ζ
k,uk+1) (15)

The rate parameters for each cytokine were initialized by
first sampling a uniform random variable w in the interval
[8.3×10−4, 1] and then setting ζ = [w w/4]. We perform a
spline interpolation to determine the value of any missing
data points in the original dataset. Then, the non-convex
optimization problem [31] is solved stage-wise to determine
the rate parameters and the underlying pulses: initially the
FOCUSS+ algorithm is used to obtain optimized u and ζ
values using the following update equations [32]. Letting
λmax = 0.1, for r = 1, 2, ..., 30:

1. P(r)
u = diag(||u(r)

i |2−p)

2. λ(r) =

(
1−

||yζ − Dζu(r)||2
||yζ ||2

)
λmax, λ(r) > 0

3. u(r+1) = P(r)
u DT

ζ

(
DζP(r)

u DT
ζ + λ(r)I

)−1

(y−FζXd[0])

4. u(r+1)
i ≤ 0 → u(r+1)

i = 0
5. After completing more than half of the total iterations,

if ||u(r+1)||0 > 20, select the largest 20 values from
u(r+1) and set the rest to zero

6. Update ζ using equation (15)
7. Iterate

In the second stage, the generalized cross validation [33]
together with FOCUSS+ is used to obtain the final solution,
where the initial pulses and rate parameters are set to
the value obtained from the solution to the first stage of
FOCUSS+ algorithm and the regularization parameter is
updated as the solution to minimizing the following term:

G(λ) =
Nd(I − Hλ)yζ

(trace(I − Hλ))2
(16)

Here, Nd is the number of data points, and Hλ is the
influence matrix, which in our algorithm is

Hλ = DζP(r)
u DT

ζ

(
DζP(r)

u DT
ζ + λ(r)I

)−1

(17)
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Fig. 2: Granger causality analysis of deconvolved cytokines is depicted for each patient. The four red nodes (from top node,
clockwise) refer to the cytokines TNFα, IL6, IL10 and IL8. The directed graph shows the directionality of the statistically
significant causal relationships using the edge arrows and the optimal lag parameters are indicated as edge weights. The
range of significance values are indicated in subtitles for each patient.

This step is run for 200 iterations and the optimal set of
pulses and infusion and clearance rate parameters are ob-
tained based on the cost criterion. A more detailed discussion
of this algorithm can be found in [24]. To numerically
stabilize this algorithm, we first re-scaled the cytokine levels,
dividing them by 10. We then transformed the cytokine levels
back to the original units after performing deconvolution
analysis to recover the underlying secretory events.

B. Granger causality analysis between cytokines

After performing deconvolution to obtain estimates of both
the cytokine levels and the underlying secretory pulses at
a one-minute sampling rate, we perform Granger causality
test [34] between all possible pairs of cytokines to determine
dyadic causal interactions between them. Since any interac-
tions between the cytokines and feedback loops involving
the HPA axis are captured by means of the secretory stimuli
u and we do not explicitly model any interactions between
the cytokines, we perform pairwise tests to uncover patient-
specific relationships. For two signals of types A and B
whose measurements are given by yA and yB , we test the
validity of a causal model of the form:

yA(tk) =

NA,A∑
j=1

αA,jyA(tk − j) +

NA,B∑
j=1

βA,jyB(tk − j) + ϵ(tk)

(18)

Here, the signal yA at time instant tk is represented as a linear
combination of two components: the past values of the same
signal denoted as {yA(tk − j)}NA,A

j=1 , and the past values of
yB denoted as {yB(tk − j)}NA,B

j=1 , where NA,A and NA,B

are the number of terms of the respective signal history that
are used to test the causality, and ϵ(tk) represents an error
term. We use the MATLAB function gctest [35] to perform

this causality test. If the signals can be represented with at
least one of the coefficients βA,j non-zero with statistical
significance, then we say that yB causes yA. We set the
range of NA,A and NA,B to be a maximum of 30 minutes
and construct a linear model of the form 18 to fit the data.
Then, we use the minimization of the Akaike Information
Criterion (AIC) to calculate the optimal lag parameter.

IV. RESULTS AND DISCUSSION

We performed the deconvolution analysis to quantify the
timing and amplitude of the underlying secretory pulses
stimulating the production of all four cytokines for all ten
patients. The algorithm recovered the cytokine levels with
high fidelity: of the total 40 deconvolutions performed, all
but five had multiple correlation coefficients greater than 0.9,
with the lowest being 0.84. The recovered infusion and clear-
ance rate parameters, and total number of pulses recovered
are listed in Table I and II. We show three representative
results in Fig. 1 based on three subject classifications based
on the HPA axis response in [5], since this was used to
predict subjects with the greatest inflammatory response in
their work.

The cytokine levels and the underlying secretory pulses
are plotted for three patients in Fig. 1; for these patients,
the cytokine levels significantly increased post-surgery. For
patient 3 in Fig. 1 (l), IL10 peaked during surgery and di-
minished in the hours thereafter, earlier than other cytokines
for this and other patients. The patterns of pulse amplitudes
varied across all patients and all cytokines. IL6 and IL10
had had a median of 18 and 16 secretory pulses underlying
their production across all ten patients respectively, while
IL8 and TNFα had medians of 13.5 and 12.5 (Table I, II).
The infusion rates of IL6 and IL8 showed higher medians,



while the median values of rate of infusion of TNFα and
IL10 were comparatively less. The median clearance rates
showed considerable variability for all four cytokines. The
standard deviations of the metrics (Table I, II) were similar
for all cytokines; relative to the median value, these values
showed larger variability, though. Despite the variability in
the recovered secretory events, we observe that for patient
3, the largest amplitude secretory event for IL6, IL8 and
TNFα occurs post-surgery at around 360 minutes, and is
followed by a smaller secretory response from IL10. The
largest amplitude secretory event for IL10 for this patient at
180 minutes occurs during surgery and is accompanied by
smaller secretory events in the proinflammatory cytokines.
For patient 1, concomitant large amplitude pulses were
observed just before 300 minutes for the proinflammatory
cytokines, corresponding to peaking TNFα, together with
a corresponding secretory event for IL10. For patient 10,
such co-occurring pulses were not prominently seen for
proinflammatory cytokines but IL8 and IL10 showed such
a pulse during surgery shortly before 180 minutes.

The co-occurrence of cytokine response events may shed
light on the intricate feedback mechanisms involved in
modulating the immune response. We summarize these rela-
tionships using the results of the dyadic Granger causality
analysis between the cytokines are shown in Figure 2.
Crucially, all patients showed a causal relationship between
IL6 and IL8, seven patients between IL6 and TNFα, six
patients between IL6 and IL10, seven patients between IL8
and IL10, nine patients between IL8 and TNFα, and six
patients between TNFα and IL10; some of these interactions
are hypothesized in literature [1], [2]. We note that the
directionality of these causal relationships are not uniform
across all the patients. For example, seven patients had
IL8 causing IL6, while others had the directionality of this
relationship reversed. Bidirectional relationships recovered in
some subjects between IL8 and IL10 in three patients, IL8
and TNFα in three patients and IL6 and TNFα in one patient
indicate the possible existence of feedback relationships in
these patients [34]. Note that in this analysis, we only test
whether the null hypothesis that the coefficients βA,j are
all zero can be rejected or not. In future work, we will
expand this and explore the exact nature of this causality
relationship, to distinguish stimulatory and inhibitory feed-
back signaling [27]. Although we have identified models
for each individual cytokine secretory process, we have not
delineated the differences between an individual cytokine
expression based on the stimulatory effect of other cytokines
or the influence exogenous factors such as anesthesia and
medication through an increase in the anti-inflammatory
action. Therefore, in addition to the causality analysis based
on the cytokine levels, we plan to determine the causality
of the underlying secretory events [36] and infer models for
cytokine interactions in future work. We expect that more
data on the surgical factors will help refine these models for
the complex cytokine response.

V. CONCLUSIONS AND FUTURE WORK

In this research, we have investigated the response of
cytokines and have performed deconvolution to estimate
the rate parameters governing their production and clear-
ance in individuals who are undergoing cardiac surgery.
The recovered pulses and the reconstructed cytokine levels
indicate statistically significant dyadic interactions, although
they were not present uniformly across all patients. Note
that (i) our model structure means that we only observe the
overall effect of the complex feedback interactions between
cytokines and hormones. Therefore, we expect that a more
mechanistic model that explicitly accounts for feedback
interactions will help explain these observations. (ii) Some
relationships had lag terms nearly equal to the maximum
specified value; these relationships must be investigated with
different maximum limits on the lag parameter in future
work. In future work, we intend to investigate the models
that incorporate hypothesized positive and negative feedback
interactions between IL6, IL8, IL10, TNFα, together with
ACTH and cortisol, and perform concurrent deconvolution to
infer the state of inflammation of patients. Extension of the
causality analysis to include multilateral interactions between
the inflammatory markers will also help test the validity
of hierarchical models hypothesized for cytokine production
during surgery. This line of work could eventually help
in informing medical interventions to ensure a controlled
inflammatory response, thereby improving medical outcomes
for patients suffering from many conditions.
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