1	Postsynaptic receptors regulate presynaptic transmitter stability
2	through trans-synaptic bridges
3	Swetha K. Godavarthi ^{1,2*} , Masaki Hiramoto ³ , Yuri Ignatyev ⁴ , Jacqueline B. Levin ⁵ , Hui-quan
4	Li ^{1,2} , Marta Pratelli ^{1,2} , Jennifer Borchardt ⁶ , Cynthia Czajkowski ⁶ , Laura N. Borodinsky ⁵ , Lora
5	Sweeney ⁴ , Hollis T. Cline ³ , Nicholas C. Spitzer ^{1,2*}
6	¹ Neurobiology Department, University of California San Diego, USA
7	² Kavli Institute for Brain & Mind, University of California San Diego, USA
8	³ Neuroscience Department, The Scripps Research Institute, La Jolla CA, USA
9	⁴ Institute of Science and Technology Austria, Austria
10	⁵ Department of Physiology & Membrane Biology, Shriners Hospital for Children, Northern
11	California; University of California Davis, School of Medicine, USA
12	⁶ Neuroscience Department, University of Wisconsin Madison, USA
13	Corresponding authors: Swetha K. Godavarthi- skgodavarthi@ucsd.edu and Nicholas C
14	Spitzer- nspitzer@ucsd.edu
15	
16	Preprint: A version of the manuscript is deposited as a preprint at bioRxiv (doi
17	- https://doi.org/10.1101/2022.09.10.507343)
18	
19	Classification: Major category - Biological Sciences; Minor category - Neuroscience
20	
21	Keywords : Transmitter receptors, neurotransmitters, transmitter stability, transmitter selection,
22	synapse, trans-synaptic bridges, motor neurons, acetylcholine receptors, GABA receptors,
23	neuromuscular junction

Abstract

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here we show that blockade of endogenous postsynaptic acetylcholine receptors at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic GABAA receptors in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both acetylcholine receptors and GABA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these trans-synaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.

Significance Statement

Sites of presynaptic neurotransmitter release are tightly correlated with the postsynaptic expression of cognate neurotransmitter receptors. At the same time, many neurons express more than one neurotransmitter and their synaptic partners express more than one population of transmitter receptors. It is essential for information transfer at synapses that transmitters and receptors are matched. Failure to achieve a transmitter-receptor match would cause failure of synaptic transmission. Using pharmacological, immunocytochemical, neurophysiological and molecular

methods, we show that postsynaptic neurotransmitter receptors are necessary and sufficient to achieve the stabilization of their cognate neurotransmitter in the presynaptic neuron. This retrograde signal from different receptors is mediated by physical bridges of proteins involving synapse adhesion molecules. These trans-synaptic bridges specify neurotransmitter identity.

Introduction

Postsynaptic cells differentiate morphologically in response to presynaptic signals. For example, filopodia on the dendrites of cultured mouse hippocampal pyramidal neurons respond to release of glutamate from developing axons, leading to physiological and morphological maturation (1). Dendrites of mouse cortical pyramidal neurons in acute brain slices respond to extracellularly uncaged glutamate or GABA by forming spines that express glutamate or GABA receptors (2, 3). Muscle cells respond to the release of agrin from motor neurons by clustering acetylcholine receptors (4). Cultured skeletal muscle cells respond to cultured glutamatergic neurons by forming functional glutamatergic synapses (5). Also, when neurotransmitters switch, the postsynaptic cells respond to the newly expressed transmitter by expressing a matching receptor (6–9). Conversely, presynaptic cells respond to retrograde signaling by endocannabinoids and neurotrophins, which regulate many functions in the nervous system (10, 11). During synapse development, retrograde signaling by postsynaptic neurotransmitter receptors regulates presynaptic neurotransmitter identity (12). It is unclear whether retrograde signaling regulates neurotransmitter stabilization after synapses have been established.

Glutamate and GABA are transiently expressed in *Xenopus* motor neurons at neural plate and early neural tube stages (13). Following formation of the neuronuscular junction, motor neurons lose

these neurotransmitters and the cholinergic phenotype appears (13–15). In loss-of-function and gain-of-function experiments, we took advantage of the presence of the canonical transmitter, acetylcholine, and the earlier transient expression of glutamate and GABA during development, to address the role of postsynaptic receptors in transmitter stabilization. We demonstrate that retrograde signaling by postsynaptic transmitter receptors is necessary and sufficient to stabilize expression of their cognate transmitter in presynaptic motor neurons and that this retrograde signaling is blocked by disruption of receptor-specific trans-synaptic bridges.

Results

Blocking endogenous acetylcholine receptors at the neuromuscular junction

We first tested whether blockade of acetylcholine receptors (AChR) at cholinergic neuromuscular junctions in *Xenopus* larvae affects the expression of acetylcholine in motor neurons. To achieve local unilateral inhibition of AChR, we implanted 120 µm diameter agarose beads containing AChR antagonists, pancuronium or curare, or saline into developing mesoderm at 19 hours post fertilization (hpf) for drug delivery by diffusion (6, 9, 13) (**Fig. 1***A*). We immunostained wholemounts of larvae for choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine (ACh), and for synaptic vesicle protein 2 (SV2), a marker of nerve terminals, to determine the capacity for ACh synthesis in nerve terminals in the myocommatal junctions at the boundaries between chevrons of myocytes. We then compared the percentage labelled area of ChAT-stained nerve terminals adjacent to pancuronium beads to the percentage labelled area of ChAT-stained terminals adjacent to saline beads in sibling larvae (**Fig. 1B-E, left**). We also compared the SV2-stained percentage labelled area of the same nerve terminals adjacent to pancuronium beads to SV2-stained percentage labelled area of the same nerve terminals adjacent

to saline beads (Fig. 1B-E, right). At 2 days post fertilization (dpf), the areas of ChAT and SV2 staining in larvae with beads containing pancuronium were not different from the staining in saline bead controls and larvae not implanted with beads (Fig. 1B and E and SI Appendix Fig. S1A). Unaltered SV2 and ChAT expression at 2 dpf suggests that pancuronium beads have not affected assembly of the neuromuscular junctions. Neuromuscular junctions have been assembled by 1dpf, but not before, as evidenced by the presence of cholinergic mEPPs and EPPs in myocytes (14, 15) and confirmed in recordings from larvae at this age (SI Appendix Fig. S2A-D). By 3 dpf, the percentage labelled area of ChAT-stained nerve terminals adjacent to pancuronium beads decreased to 19% of saline controls with no change in staining for SV2 (Fig. 1C and E and SI Appendix Fig. S3). Because loading of a transmitter into synaptic vesicles by transporter proteins is an essential component of a transmitter phenotype, we examined the expression of VACHT, the vesicular ACh transporter. Staining for VACHT was reduced to 40% of saline controls at 3 dpf, with no change in staining for SV2 (SI Appendix Fig. S1B). By 4 dpf the staining for ChAT had fallen to 5% of saline controls in response to either pancuronium or curare (Fig. 1D and E and SI Appendix Fig. S1C, D), while SV2 staining was 73% of saline controls (Fig. 1E and Table S1). Reduction of SV2 staining likely reflects withdrawal of nerve terminals (16, 17). We observed similar loss of ChAT staining when beads contained 5 µM pancuronium (Fig. S3), a concentration which blocks only postsynaptic myocyte AChR and spares presynaptic neuronal AChR (18). These results suggest that the loss of ChAT precedes the loss of SV2 and show that blockade of postsynaptic AChR impairs the stability of ChAT expression.

113

114

115

112

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Normally, embryonic *Xenopus* motor neurons express glutamate in their cell bodies at 1 dpf (13), which can potentiate ACh release at nerve terminals (19). The level of glutamate decreases by 2

dpf as ChAT begins to be detected (13) and by 3 dpf glutamate is no longer observed immunohistochemically in most neurons (13). Blockade of AChR with pancuronium led to increased expression of a vesicular glutamate transporter (VGLUT1) in motor neuron terminals at 4 dpf (Fig. 1F), suggesting the stabilization of a glutamatergic phenotype. The expression of VGLUT1 in motor neuron terminals was accompanied by a corresponding increase in expression of glutamatergic AMPA and NMDA receptor subunits in myocytes adjacent to these terminals (Fig. 1G and H), with staining patterns similar to those observed at earlier stages of development (6). Intracellular recordings from these myocytes at 4 dpf, when beads have lost most or all of their pancuronium, yielded two classes of miniature endplate potentials (mEPPs), characterized by blockade by different antagonists, rise and decay times, and frequencies (Fig. 11-K and 0-0). Mean frequency overall was 0.57±0.07 sec⁻¹. Rapid rise-rapid decay mEPPs with a mean frequency of 0.47±0.07 sec⁻¹ were blocked by NBQX, indicating that they depended on AMPA receptors. The mEPPs remaining after the NBQX block had slower rise and decay times typical of AChR, a mean frequency of 0.07±0.00 sec⁻¹ and were blocked by the additional application of pancuronium. mEPPs in control larvae implanted with a saline bead had a mean frequency of $1.03\pm0.07~{\rm sec^{-1}}$ and were blocked by pancuronium (Fig. 1L-M and R). Because quantal content is proportional to mEPP frequency (20, 21), the higher frequency of glutamatergic mEPPs than cholinergic mEPPs may indicate larger evoked glutamate release in response to ACh receptor blockade, which is a feature of homeostatic presynaptic scaling (22, 23). The local block of AChR did not result in immunostaining for GABA in motor neuron terminals (SI Appendix Fig. S1E), in agreement with earlier reports that the number of neurons expressing glutamate, but not GABA or glycine, increases following a reduction in neuronal activity (6, 24). These results show that local block of ACh receptors leads to stabilization of expression and function of another excitatory

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

transmitter, glutamate, consistent with the inhibitory effect of ACh on glutamate signaling in CNS neurons (25).

Expressing exogenous GABA receptors in embryonic myocytes

Embryonic *Xenopus* motor neurons express GABA as well as glutamate in their cell bodies (13) and in their axons (**Fig. 2***A*). Ordinarily, the level of GABA decreases by 2 dpf as ChAT appears. We expressed GABAA receptors in a small number of embryonic myocytes (26) to determine whether these receptors would stabilize expression of GABA in the motor neurons that innervate them. We co-injected the transcripts for rat GABAA receptor α 1-EGFP, β 2, and γ 2 subunits into the ventral blastomeres (V2) at the 8-cell stage to achieve assembly of GABAA $\alpha\beta\gamma$ receptors. Injection of α 1-EGFP transcripts alone served as control, since expression in this case is restricted to the cytoplasm and does not appear in the plasma membrane (27) (*SI Appendix* **Fig. S4***A*-**E**). The EGFP-tag (hence, GFP) on the α 1 subunit labeled the transfected myocytes. GABAA $\alpha\beta\gamma$ receptors were first reliably detected on the surface of myocytes at 27 hpf (*SI Appendix* **Fig. S5***A*-**C**) by fluorescence of BODIPYTM TMR-X-conjugated muscimol, a GABAA receptor agonist. As noted above, neuromuscular junctions have already formed.

At 1 dpf the presence of GABA_A α $\beta\gamma$ receptors had not altered GABA expression at neuromuscular junctions, because the expression of GABA in motor neuron axons contacting GABA_A α $\beta\gamma$ receptor-expressing myocytes was not different from that in motor neuron axons contacting either GABA_A α -expressing myocytes or myocytes in larvae that had not been injected with transcripts (**Fig. 2***A*-**D** and **E**-**H**). At 2 dpf, the normally decreasing expression of GABA in motor neuron axons was selectively stabilized when they contacted myocytes expressing

GABA_Aαβγ receptors (**Fig. 2***I-L* and *M-P*). Strikingly, at 3 dpf, expression of GABA_Aαβγ receptors in myocytes led to expression of GABA, VGAT and GAD65/67 in the nerve terminals that innervate them (**Fig. 3***A-M*). The expression of GABA in motor neuron axons in these embryos was increased specifically in axons contacting myocytes that express GABA_Aαβγ receptors. Myocytes expressing GABA_Aα alone did not elicit additional axonal GABA expression (**Fig. 3***N*), suggesting that GABA was stabilized by the presence of the cognate postsynaptic receptor. Examination of 20 GABA_Aαβγ receptor-expressing 3dpf larvae showed no preferential distribution of GFP-expressing myocytes contacted by GABA-expressing axon terminals along the anterior-posterior axis of the trunk of the larvae (*SI Appendix* **Fig. S6**).

ChAT was coexpressed with GABA and VGAT, suggesting that the terminals are processes of motor neurons (*SI Appendix* Fig. S4F-L). Further support that the nerve terminals expressing GABA and VGAT are from motor neurons came when we traced GABA-labeled axons in the myotome back to spinal cord cell bodies that consistently expressed motor neuron transcription factor Hb9 (*SI Appendix* Fig. S7). This conclusion was strengthened by the observation that GAD67 and ChAT, as well as GABA and Hb9, are coexpressed in neuronal cell bodies (*SI Appendix* Fig. S4M-P). Moreover, neurons expressing ChAT and GABA in their cell bodies expressed the Lim3 and not the rAldh1a2 transcription factor. This result demonstrated that these were medial motor neurons produced during the primary wave of neurogenesis (28) and not the lateral motor neurons that are generated later (29) (*SI Appendix* Fig. S8A-D). Expression of GABA_Aαβγ receptors stabilized the GABAergic phenotype but did not stabilize expression of VGLUT1 or glycine in innervating axons (*SI Appendix* Fig. S4Q-T).

The stabilization of GABA in axons innervating GABA_Aαβγ receptor-expressing myocytes persisted up to 7 dpf (*SI Appendix* **Fig. S8***E*). To further test whether GABA_Aαβγ receptor-expressing myocytes were specific in stabilizing the presynaptic GABAergic phenotype, we removed mesoderm of 15 hpf uninjected embryos and transplanted into these hosts 15 hpf mesoderm grafts from embryos expressing GABA_Aαβγ receptors or GABA_Aα alone. SV2-stained axons that contacted GABA_Aαβγ receptor myocytes in the grafts expressed ChAT and GABA; axons that contacted GABA_Aα-expressing myocytes expressed only ChAT (**Fig. 4***A*-*F* and **Table S2**). Thus, stabilization of GABA in axons depended on the GABA_Aαβγ receptor myocytes and not on GABA expression within the spinal cord.

To assess the functional consequence of anatomical innervation by nerve terminals expressing both ChAT and GABA, we recorded mEPPs from GABA_Aαβγ receptor-expressing myocytes at 4 dpf. We observed two classes of mEPPs, distinguished on the basis of their blockade by different antagonists, their rise and decay times and their mean frequency (6), with an overall frequency of 0.79±0.07 sec⁻¹. Those with faster times occurred at a frequency of 0.57±0.03 sec⁻¹ and were blocked by pancuronium, showing that they depended on AChR. Those with slower times occurred at a frequency of 0.24±0.04 sec⁻¹ and were blocked by bicuculline (**Fig. 5***A***-***C* and *G***-***I*), indicating that they depended on GABA_Aαβγ receptors. In contrast, only a single class of mEPPs at a frequency of 0.98±0.13 sec⁻¹ was observed when recording from myocytes that expressed GABA_Aαβγ receptor-expressing myocytes in the presence of bicuculline (**Fig. 5***D***-***F* and *J*). The results of these recordings demonstrate that GABA can be functionally released from motor nerve terminals and innervate myocytes that express GABA_Aαβγ receptors.

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

Signal transduction by trans-synaptic bridges

We then considered the possible role of trans-synaptic bridges in regulating the stability of presynaptic GABA and ACh (30-32). Presynaptic neurexins and postsynaptic neuroligins and dystroglycans are synaptic adhesion molecules that are important for proper maturation and function of synaptic contacts (33). They bridge the synaptic cleft and create a potential pathway for retrograde signaling. However, in heterologous synapse formation assays with neuroligin 1 and neurexin 1β, neuroligin 1 induced both a glutamatergic and a GABAergic phenotype at the same time (34). To determine if trans-synaptic bridges could regulate cholinergic stability versus GABAergic stability at the neuromuscular junction, we tested the role of postsynaptic receptorspecific auxiliary subunits and associating proteins, which are components of endogenous transsynaptic bridges. The GABA_Aαβγ receptor auxiliary subunit GARLH4 mediates interaction between the γ subunit of the GABA_A α β γ receptor and neuroligin 2, which binds to neurexin (35). A clue was provided by the finding that expression of α and β transcripts of the GABAA receptor resulted in surface expression of receptors with channel properties similar to those of GABA_Aαβγ receptors (27). We found that none of 12 GABA_Aαβ receptor-expressing larvae expressed GABA in motor neuron axons that contacted GFP-labeled myocytes, and in all these cases GABA expression remained restricted to the spinal cord (SI Appendix Fig. S9 and Table S2). This result suggested that the presence of the GABA_A receptor γ subunit of the GABA_A $\alpha\beta\gamma$ receptor might be required for a trans-synaptic bridge to stabilize the presynaptic GABAergic phenotype.

To investigate directly whether trans-synaptic bridges stabilize presynaptic transmitters, we first used pan-neurexin and pan-neuroligin antibodies to confirm the presence of neurexin (36) and neuroligin at the Xenopus neuromuscular junction of larvae expressing GABAA receptor transcripts (SI Appendix Fig. S10A and B). The presence of α -dystroglycan was previously established (37). We ascertained that GARLH4 is expressed in the myocommatal junctions of GABA_Aαβγ receptor-expressing larvae (SI Appendix Fig. S10C-F) and that Lrp4 is expressed in the myocommatal junctions of wild type larvae (SI Appendix Fig. S10G-J). We then injected morpholinos into the V2 blastomeres at the 8-cell stage to knock down GARLH4 in myocytes and disrupt regulation by GARLH4-neuroligin-neurexin trans-synaptic bridges (Fig. 6A-C and F and SI Appendix Fig. S10C-F and SI Appendix Fig. S11). This experiment prevented the GABA_A α By receptor-mediated stabilization of GABA in motor neurons (**Fig. 6D** and **E** and **G** and H and SI Appendix Fig. S12A-C) but did not alter ChAT expression (SI Appendix Fig. S13A and C and D). These results indicated that GARLH4 is necessary for the expression of presynaptic GABA and implicated regulation by trans-synaptic bridges. Similarly, we injected morpholinos into the V2 blastomeres to knock down the postsynaptic AChR-complex-associating protein Lrp4 (38, 39) in myocytes and disrupt regulation by AChR-rapsyn-Lrp4-musk-dystroglycan-neurexin trans-synaptic bridges (40, 41) (Fig. 6I-K and SI Appendix Fig. S10G-J and SI Appendix Fig. S11). This experiment recapitulated the destabilization and loss of ChAT that we observed in the presence of pancuronium (Fig. 6L-Q), without affecting the ability of GABA_A α By receptors to induce GABA in the motor neurons (SI Appendix Fig. S13B and D and E and Table S3). These results suggested that Lrp4 is required for expression of presynaptic ChAT and pointed to regulation by trans-synaptic bridges.

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

Larvae in which Lrp4 was knocked down exhibited two classes of mEPPs at 4 dpf, differing in their blockade by different antagonists, their rise and decay times (*SI Appendix* **Fig. S14***A*-*C* and *G-I*) and their mean frequency, with an overall frequency of 0.63±0.15 sec⁻¹. Pancuronium-resistant NBQX-sensitive glutamatergic mEPPs had a frequency of 0.53±0.16 sec⁻¹. Pancuronium-sensitive, NBQX-resistant cholinergic mEPPs had a frequency of 0.05±0.01 sec⁻¹. These cholinergic mEPPs, for which there were also fewer AChR (42), were smaller in amplitude compared to cholinergic mEPPs in larvae expressing the control morpholino (1.7±0.1 mV vs 2.7±0.1 mV; n^{mEPP}=177, N^{larvae}=7; p<0.0001, two-tailed t-test). mEPPs in control larvae implanted with a saline bead occurred at a frequency of 1.20±0.09 sec⁻¹ and were blocked by pancuronium (SI Appendix Fig. S14*D*-*F* and *J*). The effect of knocking down Lrp4 may be phenocopied by pancuronium through binding to the α and γ subunits of the AChR (43) and altering the AChR-Lrp4 interaction, thereby disrupting signaling through cholinergic trans-synaptic bridges.

We next considered CASK (Ca²⁺/calmodulin-activated Ser-Thr kinase) as a candidate that could receive signals from the presynaptic ends of the trans-synaptic bridges and stabilize transmitter expression in the motor neurons. CASK is a membrane-associated guanylate kinase (44) and transcription factor that binds to neurexin protein presynaptically (**Fig. 7***A*) and is present at both glutamatergic (45) and GABAergic (46) synapses. CASK pre-mRNA is subject to alternative splicing that yields proteins with preferences to interact with many targets (47). Autophosphorylated CASK translocates to the nucleus and induces transcription of genes essential for development (48, 49). Additionally, neurexin-1 competes as a CASK phosphorylation substrate, preventing CASK autophosphorylation (50). The splice variants, together with differential phosphorylation, identified CASK as a potentially significant player in stabilizing

presynaptic expression of different neurotransmitters. We found that CASK is expressed in the myocommatal junctions and spinal cord of normal *Xenopus* larvae (*SI Appendix* **Fig. S10***K-O*). Knocking down presynaptic CASK, by injecting morpholinos into the D1.2 blastomeres at the 16-cell stage to target the spinal cord (51) (**Fig. 7***B-D* and *H* and *SI Appendix* **Fig. S10***N* and *O* and *SI Appendix* **Fig. S11**), disrupted both GABA_Aαβγ receptor-mediated GABA stabilization and AChR-mediated ChAT stabilization in motor neurons (**Fig. 7***E-G* and *I-N* and **Table S3**). Knockdown of CASK, Lrp4 or GARLH4 did not alter laminin expression or the extent of labelling by synaptophysin (SYN) (*SI Appendix* **Fig. S15***A-C*), suggesting there was no change in the gross morphology of the myocommatal junction or postsynaptic myocytes.

Presynaptic localization of CASK in motor neuron nuclei and in myocommatal junctions, however, depended on integrity of the cholinergic or GABAergic trans-synaptic bridge (**Fig. 70** and **P**). In control larvae, in the presence of the cholinergic trans-synaptic bridge, CASK expression was observed in both the nuclei and the myocommatal junctions. Knocking down Lrp4, to disrupt the cholinergic trans-synaptic bridge, reduced CASK expression to 37% of controls in the synaptophysin- (SYN-) labeled myocommatal junctions but did not reduce CASK expression in the Hoechst-labeled nuclei. This result suggests that cytoplasmic expression of CASK in the motor neuron axon or cell body is required to stabilize cholinergic transmission. Expressing GABAA $\alpha\beta\gamma$ receptors and simultaneously disrupting the cholinergic trans-synaptic bridge reduced CASK expression in the nuclei to 26% of controls but did not reduce CASK expression in the SYN-labeled myocommatal junctions. This finding suggests that reduction in nuclear expression of CASK is necessary to stabilize GABAergic transmission. As expected, disrupting the

GABAergic trans-synaptic bridge in the presence of the cholinergic trans-synaptic bridge recapitulated the CASK expression that was observed in control larvae.

Discussion

To address the role of postsynaptic receptors in transmitter stabilization, we took advantage of the presence of the canonical junctional transmitter, acetylcholine, and the early expression of glutamate and GABA as they are disappearing from motor neurons during development. Our results demonstrate that blockade of acetylcholine receptors at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier glutamatergic phenotype. Moreover, expression of GABAA $\alpha\beta\gamma$ receptors stabilizes an earlier GABAergic motor neuron phenotype. Spontaneous mEPPs and EPPs are present prior to the reduction of ChAT expression by pancuronium and prior to enhancement of GABA expression by GABA $\alpha\beta\gamma$ receptors, indicating that these manipulations do not alter the initial formation of the synapse. Thus, postsynaptic neurotransmitter receptors regulate the stability of presynaptic neurotransmitters at newly formed neuromuscular junctions.

This regulation is achieved by non-canonical retrograde signaling by postsynaptic receptors (52, 53) that operates through trans-synaptic bridges (**Fig. 8**). The specificity of regulation relies on receptor-specific auxiliary subunits and associating proteins linked to neuroligin and dystroglycan at the postsynaptic end of the GABAergic and cholinergic bridges. When the cholinergic bridge was disrupted by knockdown of Lrp4, ChAT expression was reduced, and glutamate was stabilized. When the GABA_Aαβγ receptor was expressed, GABA expression was stabilized unless GARLH4 was knocked down. For both GABA and ACh, the change in transmitter stability was

specific to the perturbation and no change was observed in the stability of the other transmitter. Our results are consistent with a model in which knockdown of Lrp4 or GARLH4, together with knockdown of CASK, knocks down the on-ramp and the off-ramp of the trans-synaptic bridges, preventing signal transmission across the synaptic cleft along the bridges formed by neurexins, neuroligins and dystroglycans (36).

Knockdown of MUSK (54) was not tested, as its absence would prevent assembly of the neuromuscular junction. Knockdown of dystroglycan would not distinguish between effects on cholinergic and GABAergic junctions (55–57). Knockdown of neurexin (58) and neuroligin (59) was not tested. Our data suggest that neurexin serves as the presynaptic end of both the cholinergic and GABAergic trans-synaptic bridges, receiving postsynaptic receptor-dependent signals and transmitting them through the neurexin-interacting protein CASK to achieve presynaptic cholinergic or GABAergic stabilization. The receptor-dependent distribution of CASK within the presynaptic neuron, likely coupled with its roles in scaffolding the synapse (60), organizing presynaptic voltage-gated calcium channels (61) and regulating neuronal gene transcription (48), appears to provide a mechanism by which different postsynaptic receptors stabilize cognate neurotransmitter expression. This signaling system of trans-synaptic bridges shares features with clustered protocadherin cell adhesion molecules (62), some of which change the nuclear versus cytoplasmic distribution of β-catenin to regulate the Wnt pathway (63).

The appearance of glutamate receptors following AChR blockade and the appearance of glutamatergic mEPPs following either AChR blockade or Lrp4 knockdown, as well as the expression of GABAAαβγ receptors, are linked to a reduction in the frequency of cholinergic

mEPPs. Although not tested here, this would likely produce a reduction in the safety factor for transmission (64). The reduced frequencies could arise because of changes in the level of ChAT, competition for a limited pool of synaptic vesicles, changes in vesicle release, or changes in the level or extent of AChR (65). Interestingly, the loss of AChR precedes the loss of nerve terminals in a mouse model of myasthenia gravis (MG) (66). MG is often the result of an autoimmune attack on AChR function (67–69). Our findings suggest that reduced levels of presynaptic ACh, in addition to loss of AChR, may contribute to the muscle fatigue that is observed in MG.

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

344

345

346

347

348

349

350

The reduction we observed in presynaptic cholinergic markers upon blockade of postsynaptic ACh receptors is consistent with presynaptic homeostatic plasticity, in which a compensatory increase in neurotransmitter upon loss of receptor function is preceded by a compensatory change in receptor subunits (22, 23, 70–72). In *Xenopus* myocytes, where the AChR block cannot be rescued by alternative subunits (73, 74), reduction in presynaptic ChAT and VACHT was observed. Expression of glutamate receptors in myocytes (6, 75) led to stabilization of presynaptic glutamate (76, 77). Our results are consistent with the effectiveness of alternative, reserve receptor subunits in homeostatic synaptic plasticity at mammalian CNS synapses (78, 79). Our results are also consistent with the observation of a decrease in the *Drosophila* presynaptic active zone protein Bruchpilot, which is associated with presynaptic transmitter synthesis and release (80). Irrespective of differences between some of the molecular components at the Drosophila and Xenopus neuromuscular junctions, both junctions rely on neurexins and neuroligins and transsynaptic bridges. The decrease in Bruchpilot occurs following the blockade of postsynaptic receptor subunits (81) that occurs early in homeostatic presynaptic scaling (70, 82). The decrease is reversed only when the receptor function is restored by expression and insertion of a different,

reserve receptor subunit (70, 71). These findings again link the stability of transmitter expression to the presence of an appropriate postsynaptic receptor.

What is the receptor-specific retrograde signal? Although we have identified one protein, CASK, with receptor-specific presynaptic distribution, the molecular mechanism by which this is achieved remains unknown. Our findings demonstrate the presence of neurexins at *Xenopus* neuromuscular junction. Further investigation will determine if different isoforms or splice variants of neurexins are recruited to GABAergic and cholinergic trans-synaptic bridges or if a receptor-specific conformational change in neurexin results in differential recruitment or phosphorylation of CASK. Other presynaptic signaling proteins that act independently or along with neurexin and CASK may also contribute to stabilization of the appropriate transmitter. In addition, the demonstration that trans-synaptic bridges are involved in transmitter stabilization does not preclude a role for postsynaptic diffusible factors, some of which have been shown to influence synapse formation and maintenance retrogradely (12, 83–86). It will be of interest to determine whether deficits in postsynaptic receptors or trans-synaptic bridges contribute to reduced transmitter levels at neuronal synapses in the mature nervous system and to pathological change in neurological disorders.

Neurotransmitter release is closely coupled with the expression of cognate neurotransmitter receptors postsynaptic to the release sites (70, 87). Mechanisms to accomplish this transmitter-receptor match are necessary to produce this precision, because neurons can have more than one neurotransmitter and their synaptic partners can express more than one population of transmitter receptors. If a neuron released one transmitter, and the postsynaptic cell expressed receptors for a different transmitter, synaptic transmission would fail. Spatially localized, bidirectional signaling,

390	as described here, can achieve the transmitter-receptor match essential for robust communication
391	in neural circuits.
392	
393	MATERIALS AND METHODS (526 words)
394	Animals
395	All animal procedures were performed in accordance with institutional guidelines and approved
396	by the UCSD Institutional Animal Care and Use Committee. See SI Appendix for further details.
397	Local drug delivery
398	Spatial and temporal control of delivery of pharmacological agents was achieved using agarose
399	beads (100-200 mesh, Bio-Rad) loaded with 2mM Ca2+ medium with or without drugs and
400	implanted at 19 hours post fertilization (hpf) (Stage 18) (6, 9, 13). See SI Appendix for further
401	details.
402	Whole mount immunohistochemistry
403	Whole Xenopus larvae were fixed at the indicated stages of development and processed for
404	immunostaining with antibodies. See SI Appendix for further details.
405	Image acquisition
406	Confocal images of whole larvae were acquired with a Leica Stellaris 5 confocal microscope or
407	on a Leica SP8 at the UC San Diego School of Medicine microscopy core, at a z-resolution of 0.5
408	μm. See SI Appendix for further details.
409	
410	Image analysis
411	Images were analyzed in FIJI. Percent of labelled area was determined by measuring the fraction
412	occupied by pixels of intensity at or above an empirically determined constant threshold. For

413 GABA receptor expression experiments, larvae were analyzed along the entire A-P axis. Representative images are maximum intensity projections of 5 consecutive slices. See SI Appendix 414 415 for further details. 416 Electrophysiology 417 Recording techniques and analysis are described in SI Appendix. Plasmids and morpholinos 418 419 Expression of GABAAR was achieved with GABAAR subunit plasmids for α 1-EGFP, β 2 and γ 2 420 generated in the Czajkowski lab (27). The lissamine-tagged GARLH4, Lrp4 and CASK translation-blocking and splice-blocking morpholinos were supplied by GeneTools (Philomath, 421 422 OR). See SI Appendix for further details. 423 **Microinjections** 424 See SI Appendix for further details. **Protein extraction and ELISA** 425 426 ELISA assays for GFP-tagged GABA_ARα subunit expression in the muscle and spinal cord were performed per the manufacturer's instructions (GFP ELISA Kit, Cell Biolabs). Dissection and 427 sample preparation are described in SI Appendix. 428 **Muscimol-BODIPY** staining 429 430 Embryos or larvae at the appropriate stages of development (indicated in the Results) were skinned 431 and incubated in 20 µM muscimol-BODIPY (reconstituted in 0.1X MMR). Samples were imaged immediately after mounting. See SI Appendix for further details. 432 433 **Mesoderm grafting** To obtain myocyte-specific GABA_ARαβγ or GABA_ARα expression, presomitic mesoderm of 434 435 normal embryos 15 hpf (St 13-14) was replaced with presomitic mesoderm explant dissected from 436 sibling embryos expressing either GABA_AR α β γ or GABA_AR α transcripts. The grafting technique 437 was similar to that previously described (88). See SI Appendix for further details. 438 Western blotting 439 Protein for Western blotting of components of trans-synaptic bridges was extracted as described 440 above except that larvae were anaesthetized on ice and RIPA lysis buffer was supplemented with phosphatase inhibitors (PhosSTOP, Roche). Protein detection by Western blotting was performed 441 442 for different antibodies. Signal was detected using Clarity ECL Western substrate (BioRad) and 443 imaged on a BioRad Chemidoc Touch Imaging System. See SI Appendix for further details. **Statistics** 444 445 All statistical analysis was performed in GraphPad Prism. Values were expressed as mean \pm SD. 446 Statistical differences were analyzed using the unpaired, two-tailed Student's t-test or one-way 447 ANOVA or Kolmogorov-Smirnov test. The statistical test used and the P values for each measurement are provided in the figure legends and Tables S1, S2 and S3. P<0.05 was considered 448 449 statistically significant. See SI Appendix for further details. 450 451 Data availability statement The authors declare that the data supporting the findings of this study are available within the 452 453 paper and its supplementary information files. 454 Acknowledgements 455 456 We thank all members of the Spitzer laboratory for discussions and critical feedback; K. Marek

A. Ray and E. Park for guidance on miniature analysis; A. Glavis-Bloom, S.U. Choi, S. Atkins,

for discussions of acknowledgement signals; I. Gregor and R. Aricescu for discussions of receptor

pharmacology and trans-synaptic bridges; C. Kintner for advice on *Xenopus* blastomere lineage;

457

458

M. Gupta and S. Malladi for technical assistance; D.K. Berg and L.R. Squire for comments on the manuscript. This work was supported by NSF 2051555 and the Overland Foundation. Some of the microscopy utilized the UCSD School of Medicine Microscopy Core, supported by NIH grant NS047101.

464

465

Author contributions

- S.K.G and N.C.S conceived the study and designed the experiments with consultation and advice from H-q.L. and M.P. S.K.G. performed all the experiments. M.H. and H.T.C. performed electrophysiology experiments with S.K.G., Y.I. and L.S. contributed to the identification of motor neuron identity. J.B. and C.C. contributed GABA_A receptor clones and advice regarding
- expression. J.B.L and L.N.B provided instruction in embryonic tissue transplantation. S.K.G. and
- N.C.S wrote the manuscript with contributions from all authors.

472

473

Competing interests statement

The authors declare no competing interests.

475

476

Materials & Correspondence

- 477 Correspondence and material requests should be addressed to Swetha K. Godavarthi -
- 478 skgodavarthi@ucsd.edu and Nicholas C. Spitzer nspitzer@ucsd.edu

479 480

References

- 481 1. H. A. Mattison, D. Popovkina, J. P. Y. Kao, S. M. Thompson, The role of glutamate in the 482 morphological and physiological development of dendritic spines. *Eur. J. Neurosci.* **39**, 483 1761–1770 (2014).
- 484 2. H.-B. Kwon, B. L. Sabatini, Glutamate induces de novo growth of functional spines in developing cortex. *Nature* **474**, 100–104 (2011).

- 486 3. W. C. Oh, S. Lutzu, P. E. Castillo, H.-B. Kwon, De novo synaptogenesis induced by GABA in the developing mouse cortex. *Science* **353**, 1037–1040 (2016).
- 488 4. U. J. McMahan, *et al.*, Agrin isoforms and their role in synaptogenesis. *Curr. Opin. Cell Biol.*489 **4**, 869–874 (1992).
- 490 5. M. Ettorre, *et al.*, Glutamatergic neurons induce expression of functional glutamatergic 491 synapses in primary myotubes. *PLOS ONE* **7**, e31451 (2012).
- 492 6. L. N. Borodinsky, N. C. Spitzer, Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. *Proc. Natl. Acad. Sci.* **104**, 335–340 (2007).
- 7. D. Dulcis, N. C. Spitzer, Illumination controls differentiation of dopamine neurons regulating behaviour. *Nature* **456**, 195–201 (2008).
- 496 8. D. Dulcis, P. Jamshidi, S. Leutgeb, N. C. Spitzer, Neurotransmitter switching in the adult brain regulates behavior. *Science* **340**, 449–53 (2013).
- D. R. Hammond-Weinberger, Y. Wang, A. Glavis-Bloom, N. C. Spitzer, Mechanism for neurotransmitter-receptor matching. *Proc. Natl. Acad. Sci.* 117, 4368–4374 (2020).
- 500 10. P. E. Castillo, T. J. Younts, A. E. Chávez, Y. Hashimotodani, Endocannabinoid signaling and synaptic function. *Neuron* **76**, 70–81 (2012).
- 502 11. A. W. Harrington, D. D. Ginty, Long-distance retrograde neurotrophic factor signalling in neurons. *Nat. Rev. Neurosci.* **14**, 177–187 (2013).
- B. A. Habecker, S. C. Landis, Noradrenergic regulation of cholinergic differentiation.
 Science **264**, 1602–1604 (1994).
- 506 13. C. M. Root, N. A. Velázquez-Ulloa, G. C. Monsalve, E. Minakova, N. C. Spitzer,
 507 Embryonically expressed GABA and glutamate drive electrical activity regulating
 508 neurotransmitter specification. *J. Neurosci.* 28, 4777–4784 (2008).
- 14. R. W. Kullberg, T. L. Lentz, M. W. Cohen, Development of the myotomal neuromuscular
 junction in Xenopus laevis: An electrophysiological and fine-structural study. *Dev. Biol.* 60,
 101–129 (1977).
- 512 15. S. Blackshaw, A. Warner, Onset of acetylcholine sensitivity and endplate activity in developing myotome muscles of *Xenopus*. *Nature* **262**, 217–218 (1976).
- 16. L. M. Murray, L. H. Comley, T. H. Gillingwater, S. H. Parson, The response of neuromuscular junctions to injury is developmentally regulated. *FASEB J.* **25**, 1306–1313 (2011).
- 516 17. L. H. Comley, *et al.*, Motor unit recovery following Smn restoration in mouse models of spinal muscular atrophy. *Hum. Mol. Genet.* **31**, 3107–3119 (2022).

- 18. M. Jonsson, et al., Distinct Pharmacologic Properties of Neuromuscular Blocking Agents on
- Human Neuronal Nicotinic Acetylcholine Receptors: A Possible Explanation for the Train-
- 520 of-four Fade. *Anesthesiology* **105**, 521–533 (2006).
- 19. W. M. Fu, J. C. Liou, Y. H. Lee, H. C. Liou, Potentiation of neurotransmitter release by
- activation of presynaptic glutamate receptors at developing neuromuscular synapses of
- 523 Xenopus. J. Physiol. **489**, 813–823 (1995).
- 524 20. M. Kuno, S. A. Turkanis, J. N. Weakly, Correlation between nerve terminal size and
- 525 transmitter release at the neuromuscular junction of the frog. J. Physiol. 213, 545–556
- 526 (1971).
- 527 21. A. D. Grinnell, A. A. Herrera, Physiological regulation of synaptic effectiveness at frog
- neuromuscular junctions. *J. Physiol.* **307**, 301–317 (1980).
- 529 22. G. W. Davis, HOMEOSTATIC CONTROL OF NEURAL ACTIVITY: From Phenomenology to
- 530 Molecular Design. *Annu. Rev. Neurosci.* **29**, 307–323 (2006).
- 531 23. G. Turrigiano, Homeostatic Synaptic Plasticity: Local and Global Mechanisms for Stabilizing
- Neuronal Function. *Cold Spring Harb. Perspect. Biol.* **4**, a005736 (2012).
- 533 24. L. N. Borodinsky, et al., Activity-dependent homeostatic specification of transmitter
- expression in embryonic neurons. *Nature* **429**, 523–530 (2004).
- 535 25. T. G. J. Allen, F. C. Abogadie, D. A. Brown, Simultaneous Release of Glutamate and
- 536 Acetylcholine from Single Magnocellular "Cholinergic" Basal Forebrain Neurons. J.
- 537 *Neurosci.* **26**, 1588–1595 (2006).
- 538 26. S. A. Moody, Fates of the blastomeres of the 16-cell stage *Xenopus* embryo. *Dev. Biol.* 119,
- 539 560–578 (1987).
- 540 27. J. X. Connor, A. J. Boileau, C. Czajkowski, A GABA_A receptor α1 subunit tagged with green
- 541 fluorescent protein requires a β subunit for functional surface expression. *J. Biol. Chem.*
- **273**, 28906–28911 (1998).
- 543 28. A. Lumsden, Neural Development: A 'LIM code' for motor neurons? Curr. Biol. 5, 491–495.
- 544 (1995).
- 545 29. L. B. Sweeney, et al., Origin and segmental diversity of spinal inhibitory interneurons.
- 546 *Neuron* **97**, 341-355.e3 (2018).
- 30. J. Dai, K. Liakath-Ali, S. R. Golf, T. C. Südhof, Distinct neurexin-cerebellin complexes control
- 548 AMPA- and NMDA-receptor responses in a circuit-dependent manner. *eLife* **11**, e78649
- 549 (2022).

- 31. J. Dai, C. Patzke, K. Liakath-Ali, E. Seigneur, T. C. Südhof, GluD1 is a signal transduction device disguised as an ionotropic receptor. *Nature* **595**, 261–265 (2021).
- 552 32. S. P. Gangwar, *et al.*, Molecular mechanism of MDGA1: regulation of neuroligin 2:neurexin trans-synaptic bridges. *Neuron* **94**, 1132-1141.e4 (2017).
- 33. T. C. Südhof, Synaptic neurexin complexes: a molecular code for the logic of neural circuits. *Cell* **171**, 745–769 (2017).
- X. Jiang, R. Sando, T. C. Südhof, Multiple signaling pathways are essential for synapse
 formation induced by synaptic adhesion molecules. *Proc. Natl. Acad. Sci.* 118,
 e2000173118 (2021).
- 559 35. T. Yamasaki, E. Hoyos-Ramirez, J. S. Martenson, M. Morimoto-Tomita, S. Tomita, Garlh family proteins stabilize GABA_A receptors at synapses. *Neuron* **93**, 1138-1152.e6 (2017).
- 36. M. S. Sons, et al., α-Neurexins are required for efficient transmitter release and synaptic
 homeostasis at the mouse neuromuscular junction. Neuroscience 138, 433–446 (2006).
- M. Cohen, C. Jacobson, E. Godfrey, K. Campbell, S. Carbonetto, Distribution of alpha dystroglycan during embryonic nerve-muscle synaptogenesis. *J. Cell Biol.* 129, 1093–1101
 (1995).
- 38. N. Yumoto, N. Kim, S. J. Burden, Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. *Nature* **489**, 438–442 (2012).
- 39. N. Kim, *et al.*, Lrp4 is a receptor for agrin and forms a complex with musk. *Cell* **135**, 334–342 (2008).
- 40. E. D. Apel, D. J. Glass, L. M. Moscoso, G. D. Yancopoulos, J. R. Sanes, Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. *Neuron* 18, 623–635 (1997).
- 573 41. A. Barik, *et al.*, Lrp4 is critical for neuromuscular junction maintenance. *J. Neurosci.* **34**, 13892–13905 (2014).
- M. Akaaboune, S. M. Culican, S. G. Turney, J. W. Lichtman, Rapid and Reversible Effects of
 Activity on Acetylcholine Receptor Density at the Neuromuscular Junction in Vivo. *Science* 286, 503–507 (1999).
- 578 43. D. X. Fu, S. M. Sine, Competitive antagonists bridge the alpha-gamma subunit interface of the acetylcholine receptor through quaternary ammonium-aromatic interactions. *J. Biol.* 580 *Chem.* **269**, 26152–26157 (1994).

- 44. K. Tabuchi, T. Biederer, S. Butz, T. C. Südhof, CASK participates in alternative tripartite
 complexes in which mint 1 competes for binding with caskin 1, a novel CASK-binding
 protein. J. Neurosci. 22, 4264–4273 (2002).
- 584 45. T. C. Südhof, Neuroligins and neurexins link synaptic function to cognitive disease. *Nature* 455, 903–911 (2008).
- 586 46. K. A. Han, *et al.*, Lar-rptps directly interact with neurexins to coordinate bidirectional assembly of molecular machineries. *J. Neurosci.* **40**, 8438–8462 (2020).
- 588 47. D. Tibbe, Y. E. Pan, C. Reißner, F. L. Harms, H.-J. Kreienkamp, Functional analysis of CASK transcript variants expressed in human brain. *PLOS ONE* **16**, e0253223 (2021).
- 590 48. Y.-P. Hsueh, T.-F. Wang, F.-C. Yang, M. Sheng, Nuclear translocation and transcription 591 regulation by the membrane-associated guanylate kinase CASK/LIN-2. *Nature* **404**, 298– 592 302 (2000).
- 593 49. T.-N. Huang, H.-P. Chang, Y.-P. Hsueh, CASK phosphorylation by PKA regulates the protein-594 protein interactions of CASK and expression of the NMDAR2b gene. *J. Neurochem.* **112**, 595 1562–1573 (2010).
- 596 50. K. Mukherjee, *et al.*, CASK functions as a Mg2+-independent neurexin kinase. *Cell* **133**, 597 328–339 (2008).
- 598 51. S. A. Moody, M. J. Kline, Segregation of fate during cleavage of frog (*Xenopus laevis*) blastomeres. *Anat. Embryol. (Berl.)* **182**, 347–362 (1990).
- 52. S. Valbuena, J. Lerma, Non-canonical Signaling, the Hidden Life of Ligand-Gated Ion Channels. *Neuron* **92**, 316–329 (2016).
- X. Wang, J. M. McIntosh, M. M. Rich, Muscle Nicotinic Acetylcholine Receptors May
 Mediate Trans-Synaptic Signaling at the Mouse Neuromuscular Junction. *J. Neurosci. Off. J. Soc. Neurosci.* 38, 1725–1736 (2018).
- 54. D. J. Glass, et al., The Receptor Tyrosine Kinase MuSK Is Required for Neuromuscular
 Junction Formation and Is a Functional Receptor for Agrin. Cold Spring Harb. Symp. Quant.
 Biol. 61, 435–444 (1996).
- 55. S. Lévi, *et al.*, Dystroglycan Is Selectively Associated with Inhibitory GABAergic Synapses But Is Dispensable for Their Differentiation. *J. Neurosci.* **22**, 4274–4285 (2002).
- 56. F. Briatore, *et al.*, Dystroglycan Mediates Clustering of Essential GABAergic Components in Cerebellar Purkinje Cells. *Front. Mol. Neurosci.* **13**, 164 (2020).

- 57. J. H. Trotter, C. Y. Wang, P. Zhou, G. Nakahara, T. C. Südhof, A combinatorial code of
- 613 neurexin-3 alternative splicing controls inhibitory synapses via a trans-synaptic
- dystroglycan signaling loop. *Nat. Commun.* **14**, 1771 (2023).
- 58. J. Li, J. Ashley, V. Budnik, M. A. Bhat, Crucial Role of Drosophila Neurexin in Proper Active
- Zone Apposition to Postsynaptic Densities, Synaptic Growth and Synaptic Transmission.
- 617 *Neuron* **55**, 741–755 (2007).
- 618 59. M. Sun, et al., Neuroligin 2 Is Required for Synapse Development and Function at the
- 619 Drosophila Neuromuscular Junction. J. Neurosci. **31**, 687–699 (2011).
- 620 60. S. Butz, M. Okamoto, T. C. Südhof, A tripartite protein complex with the potential to
- 621 couple synaptic vesicle exocytosis to cell adhesion in brain. *Cell* **94**, 773–782 (1998).
- 622 61. A. Maximov, T. C. Südhof, I. Bezprozvanny, Association of neuronal calcium channels with
- 623 modular adaptor proteins. J. Biol. Chem. 274, 24453–24456 (1999).
- 624 62. W. V. Chen, T. Maniatis, Clustered protocadherins. *Dev. Camb. Engl.* **140**, 3297–3302
- 625 (2013).
- 626 63. A. Pancho, T. Aerts, M. D. Mitsogiannis, E. Seuntjens, Protocadherins at the Crossroad of
- 627 Signaling Pathways. Front. Mol. Neurosci. 13 (2020).
- 628 64. S. J. Wood, C. R. Slater, Safety factor at the neuromuscular junction. *Prog. Neurobiol.* 64,
- 629 393–429 (2001).
- 630 65. C. R. Slater, Pre- and post-synaptic abnormalities associated with impaired neuromuscular
- transmission in a group of patients with "limb-girdle myasthenia." Brain 129, 2061–2076
- 632 (2006).
- 63. M. M. Rich, H. Colman, J. W. Lichtman, In vivo imaging shows loss of synaptic sites from
- 634 neuromuscular junctions in a model of myasthenia gravis. *Neurology* **44**, 2138–2138
- 635 (1994).
- 636 67. J. H. Peragallo, Pediatric myasthenia gravis. Semin. Pediatr. Neurol. 24, 116–121 (2017).
- 637 68. A. G. Engel, X.-M. Shen, D. Selcen, S. M. Sine, Congenital myasthenic syndromes:
- pathogenesis, diagnosis, and treatment. Lancet Neurol. 14, 420–434 (2015).
- 639 69. N. E. Gilhus, J. J. Verschuuren, Myasthenia gravis: subgroup classification and therapeutic
- 640 strategies. *Lancet Neurol.* **14**, 1023–1036 (2015).
- 70. P. Muttathukunnel, P. Frei, S. Perry, D. Dickman, M. Müller, Rapid homeostatic modulation
- of transsynaptic nanocolumn rings. *Proc. Natl. Acad. Sci.* **119**, e2119044119 (2022).

- 71. A. DiAntonio, S. A. Petersen, M. Heckmann, C. S. Goodman, Glutamate receptor expression regulates quantal size and quantal content at the drosophila neuromuscular junction. *J. Neurosci.* **19**, 3023–3032 (1999).
- 72. L. T. Landmesser, Synaptic plasticity: Keeping synapses under control. *Curr. Biol.* **8**, R564–R567 (1998).
- 73. N. S. Millar, C. Gotti, Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology **56**, 237–246 (2009).
- 74. Y. D. Wang, T. Claudio, Xenopus muscle acetylcholine receptor alpha subunits bind ligands with different affinities. *J. Biol. Chem.* **268**, 18782–18793 (1993).
- 75. F. M. Lambert, *et al.*, Functional limb muscle innervation prior to cholinergic transmitter specification during early metamorphosis in Xenopus. *eLife* **7** (2018).
- 654 76. W. M. Fu, H. C. Liou, Y. H. Chen, S. M. Wang, Coexistence of glutamate and acetylcholine in the developing motoneurons. *Chin. J. Physiol.* **41**, 127–132 (1998).
- 77. M. Bertuzzi, W. Chang, K. Ampatzis, Adult spinal motoneurons change their
 neurotransmitter phenotype to control locomotion. *Proc. Natl. Acad. Sci. U. S. A.* 115,
 E9926–E9933 (2018).
- 659 78. G. G. Turrigiano, K. R. Leslie, N. S. Desai, L. C. Rutherford, S. B. Nelson, Activity-dependent 660 scaling of quantal amplitude in neocortical neurons. *Nature* **391**, 892–896 (1998).
- 79. C. C. Steinmetz, et al., Upregulation of μ3A Drives Homeostatic Plasticity by Rerouting
 AMPAR into the Recycling Endosomal Pathway. Cell Rep. 16, 2711–2722 (2016).
- 80. D. A. Wagh, *et al.*, Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in *Drosophila*. *Neuron* **49**, 833–844 (2006).
- 666 81. C. A. Frank, M. J. Kennedy, C. P. Goold, K. W. Marek, G. W. Davis, Mechanisms underlying 667 the rapid induction and sustained expression of synaptic homeostasis. *Neuron* **52**, 663– 668 677 (2006).
- 669 82. A. Weyhersmuller, S. Hallermann, N. Wagner, J. Eilers, Rapid active zone remodeling during synaptic plasticity. *J. Neurosci.* **31**, 6041–6052 (2011).
- 671 83. G. Ouanounou, G. Baux, T. Bal, A novel synaptic plasticity rule explains homeostasis of neuromuscular transmission. *eLife* **5**, e12190 (2016).
- 673 84. O. E. Harish, M. Poo, Retrograde modulation at developing neuromuscular synapses: 674 Involvement of G protein and arachidonic acid cascade. *Neuron* **9**, 1201–1209 (1992).

- 85. H. W. Tao, M. Poo, Retrograde signaling at central synapses. *Proc. Natl. Acad. Sci.* **98**, 11009–11015 (2001).
- 86. S. K. Jakawich, *et al.*, Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic bdnf synthesis. *Neuron* **68**, 1143–1158 (2010).
- A. A. Cole, T. S. Reese, Transsynaptic Assemblies Link Domains of Presynaptic and
 Postsynaptic Intracellular Structures across the Synaptic Cleft. *J. Neurosci. Off. J. Soc. Neurosci.* 43, 5883–5892 (2023).
- 682 88. C. Gargioli, J. M. W. Slack, Cell lineage tracing during *Xenopus* tail regeneration.
 683 *Development* **131**, 2669–2679 (2004).
- 89. A. Noble, A. Abu-Daya, M. Guille, Cryopreservation of *Xenopus* sperm and in vitro
 fertilization using frozen sperm samples. *Cold Spring Harb. Protoc.* 2022, pdb.prot107029
 (2022).
- 90. P. D. Nieuwkoop, J. Faber, Eds., Normal table of Xenopus laevis (daudin): a systematical
 and chronological survey of the development from the fertilized egg till the end of
 metamorphosis (Garland Pub, 1994).
- 690 91. E. Segerdell, *et al.*, Enhanced XAO: the ontology of *Xenopus* anatomy and development 691 underpins more accurate annotation of gene expression and queries on Xenbase. *J.* 692 *Biomed. Semant.* **4**, 31 (2013).
- 693 92. V. Hartenstein, Early pattern of neuronal differentiation in the *Xenopus* embryonic 694 brainstem and spinal cord. *J. Comp. Neurol.* **328**, 213–231 (1993).

696 Figure Legends

695

697

698

699

700

701

702

703

704

Fig 1. Local block of AChR in myocytes reduces ChAT expression in motor neuron axons and induces a glutamatergic phenotype. (*A*) Experimental design. A single agarose bead loaded with pancuronium, curare, or saline was implanted into the *Xenopus* mesoderm at 19hpf. (*B-D*) Wholemounts of bead-implanted larvae (lateral view) were stained at 2dpf, 3dpf and 4dpf for ChAT and SV2. Dotted lines outline the regions of myocommatal junctions (1/larva) analyzed for quantification of staining area. Dashed circles indicate positions of beads. (*E*) Area of expression (labelled area above threshold) quantified for ChAT and SV2. n≥5 larvae. (*F-H*) Expression and quantification of VGLUT1, GLUR1 and NR1 in the 4dpf myotome (lateral view) of control and

pancuronium-loaded agarose bead-implanted larvae. $n\geq 8$ larvae. A, anterior; D, dorsal. (*I-K*) Recordings from pancuronium-bead-implanted larvae reveal rapid rise and rapid decay AMPAR-mediated-PSP-like mEPPs (arrowheads) that are pancuronium-resistant and NBQX-sensitive, as well as pancuronium-sensitive and NBQX-resistant mEPPs with rise and decay times similar to those described for nicotinic receptor-mediated-EPPs. (*L-N*) Recordings from saline-bead-implanted larvae reveal only pancuronium-sensitive mEPPs. (*O-R*) Rise and decay time distributions for mEPPs in myocytes of pancuronium-bead implanted larvae and saline-bead implanted larvae. N, number of mEPPs. >155 mEPPs (≥ 3 larvae, 4dpf) for each group. Only mEPPs with decay times fit by single exponentials were included. Resting potentials were held near -60 mV. Arrowheads indicate median values. Kolmogorov-Smirnov test compared rise time and decay time in (*R*) with respective rise and decay time in (*P*) and (*Q*). *p<0.05, **p<0.01, *****p<0.0001, ns not significant, unpaired two-tailed t-test. See also *SI Appendix*, Fig. S1 - S3 and Table S1.

Fig 2. GABA_ARαβγ expression in myocytes does not affect GABA expression in motor neuron axons contacting these myocytes at 1dpf but increases GABA expression at 2dpf. (A and B) 1 dpf axonal GABA expression in the myotome of a normal larva and a GABA_ARα larva. Arrows identify myocommatal junctions. (C) 1 dpf GABA expression in the myocommatal junctions of a GABA_ARαβγ larva is not different from that in the GABA_ARα larva. (A-C) Insets: GABA, SV2 or GABA, SV2 and GABA_AR expression in myocytes. (D) Left, magnified GABA+SV2+ process from the GABA_ARα larva contacts GFP+ myocytes (arrowhead and area indicated by yellow box in B). Right, magnified GABA+SV2+ processes from GABA_ARαβγ larva contact GFP+ myocytes

(arrowhead and area indicated by yellow box in C). (E-H) Magnified myocommatal junctions from dashed boxes in B and C. Quantification of 1 dpf expression of GABA and SV2. Dotted lines outline regions of myocommatal junctions analyzed. n=6 larvae. (I and J) 2 dpf axonal GABA expression in the myotome of a normal larva and a GABA_ARα larva have decreased compared to GABA expression at 1dpf (A and B). (K) 2dpf GABA expression in the myotome of a GABA_ARαβγ larva is greater than in the GABA_ARα larva. (*I-K*) *Insets*: GABA, SV2 or GABA, SV2 and GABA_AR expression in myocytes. (L) Left, magnified GABA-SV2+ process from the GABA_AR α larva contacts a GFP+ myocyte (arrowhead and area indicated by yellow box in J). Right, magnified GABA+SV2+ process from the GABA_ARαβγ larva contacts a GFP+ myocyte (arrowhead and area indicated by yellow box in K). (M-P) Magnified myocommatal junctions from dashed boxes in (J) and (K). Quantification of 2dpf expression of GABA and SV2. $n\geq 8$ larvae. Five-fold increase in the 2dpf GABA-labeled area of motor neuron axons contacting GABA_AR α B γ -expressing myocytes relative to GABA_AR α -expressing myocytes (N and K versus J), with no difference in SV2-labeled area of motor neuron axons (P), indicates stabilization of GABA expression in axons contacting GABA_ARαβγ-expressing myocytes. Dotted lines outline regions of myocommatal junctions analyzed. ****p<0.0001 using two-tailed t-test. A, anterior; D, dorsal. SC, spinal cord. M, myotome. See also SI Appendix, Fig. S4 and S5.

744

745

746

747

748

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

Fig 3. GABA_AR $\alpha\beta\gamma$ expression in myocytes leads to GABA expression in axons that contact them. (A) Injection of ventral blastomeres (V2) with GABA_AR $\alpha\beta\gamma$ mRNA at the 8-cell stage results in myocyte-specific GABA_AR expression. (B) Expression of GABA_AR $\alpha\beta\gamma$ in sparse

myocytes. SV2 labels axons in the spinal cord and in the trunk myotome. (*C*) In an expansion of the field of view in (*B*), staining for GABA reveals GABA+ axons in the spinal cord and coursing ventrally and posteriorly over the trunk myotome. *Inset:* GFP+ myocyte contacted by the GABA+SV2+ axon from the dotted box. (*D-F*) Higher magnification of contact in (*C*) (arrowheads). (*B-F*) n=13 larvae. (*G-J*) A GABA+VGAT+SV2+ axon contacts a different GABA_ARαβγ myocyte. n=6 larvae. (*K-M*) A GABA+GAD65/67+ axon contacts another GABA_ARαβγ myocyte. n=10 larvae. (*N*) Injection of ventral blastomeres (V2) with GABA_ARα mRNA results in sparse expression of GABA_ARα in myocytes. SV2+ axons contact a GABA_ARα-expressing GFP+ myocyte (arrowheads). n=7 larvae. *Inset*, GABA+ axons are restricted to the spinal cord. M, trunk myotome; SC, spinal cord; A, anterior; D, dorsal. All larvae 3dpf. Further details in Table S2. See also *SI Appendix*, Fig. S4 – S8 and Table S2.

Fig 4. Grafting GABA_AR $\alpha\beta\gamma$ receptor-expressing mesoderm into host embryos results in GABA_AR $\alpha\beta\gamma$ receptor expression in myocytes and GABA expression in motor neurons contacting these myocytes. (A) Procedure for mesodermal transplantation. Left to right: donor Xenopus embryo injected at the 8-cell stage with GABA_AR α or GABA_AR $\alpha\beta\gamma$ mRNA in the ventral blastomeres (V2). The neural plate was lifted to access the presomitic mesoderm (green), which was grafted from donor to wild-type host larva at 15 hpf (red arrow). GFP expression was detected in the myotome of host larva at 3dpf. (B) Left: a GABA+ axon courses ventrally and posteriorly over the trunk myotome (M) in GABA_AR $\alpha\beta\gamma$ -expressing, mesoderm-grafted host. Right: the GABA+SV2+ axon (arrowhead) contacts a GABA_AR $\alpha\beta\gamma$ -expressing GFP+ myocyte. (C) Another GABA_AR $\alpha\beta\gamma$ myocyte is contacted by a GABA+ChAT+ axon in the trunk myotome

(M). (*D*) Isolation of GABA+ChAT+ axons in (*C*). (*E*) Individual channels for GABA and ChAT in (*D*). n=5 larvae. (*F*) *Left:* No GABA is detected in the trunk myotome (M) in GABA_ARα–expressing, mesoderm-grafted host. *Right:* A GABA-SV2+ axon (arrowhead) contacts a GABA_ARα–expressing GFP+ myocyte. n=5 larvae. All larvae 3dpf. A, anterior; D, dorsal.

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

771

772

773

774

775

Fig 5. Neuromuscular junctions of myocytes expressing GABA_ARαβγ generate GABAergic and cholinergic mEPPs. (A-C) Recordings from GABA_ARαβγ myocytes reveal pancuroniumresistant and bicuculline-sensitive mEPPs (arrowheads; n=7 larvae), as well as pancuroniumsensitive and bicuculline-resistant mEPPs (n=7 larvae). (D-F) Recordings from GABAARa myocytes in the presence of saline, pancuronium and bicuculline reveal only pancuroniumsensitive and bicuculline-resistant mEPPs (n=5 larvae). (G-I) Recordings from GABA_ARαβγ myocytes reveal both pancuronium-sensitive, bicuculline-resistant mEPPs with kinetics of nicotinic receptor mEPPs and pancuronium-resistant, bicuculline-sensitive mEPPs with kinetics of GABA_AR-mediated mEPPs. (J) Recordings from GABA_ARα myocytes in presence of saline reveal rise and decay time distributions for mEPPs similar to (1). N, number of mEPPs. N\ge 178 mEPPs (n>5 larvae) for each group. All recordings at 4dpf. Only mEPPs with decay times fit by single exponentials were included. Resting potentials were held near -60 mV. Arrowheads indicate median values. Kolmogorov-Smirnov test comparing rise time and decay time in (J) with respective rise and decay time in (H) and (I). ****p<0.0001, ns not significant. See also SI Appendix, Table S2.

Fig 6. Knockdown of postsynaptic components of trans-synaptic bridges prevents receptordriven presynaptic neurotransmitter stabilization. (A) GARLH4 links GABA_ARαβγ to neuroligin in the postsynaptic membrane. (B) Simultaneous injection of ventral blastomeres (V2) with GABA_ΔRαβγ mRNA along with control morpholino (control^{MO}) or GARLH4^{MO} (6 nl of 1 mM MO), to achieve widespread expression of GABA AR and MOs in myocytes. (C) Presence of GARLH4 and morpholino knockdown validation by Western blot. (D) GABA+ axon is observed in myotome of a control ^{MO} GABA Rαβγ larva (dashed box, GABA channel only, 7/7). *Inset*: Area in the dashed box. GABA+SV2+ axon contacts a control HO+GFP+ myocyte. (E) No GABA+ axon is observed in myotome of a GARLH4^{MO} GABA_ARαβγ larva (dashed box, GABA channel only, 0/12), Inset: Area in the dashed box. SV2+ axon contacts a GARLH4^{MO}+GFP+ myocyte. n/N, larvae with GABA+ axon/total larvae examined. (F) Staggered injection of ventral blastomeres (V2) with $GABA_AR\alpha\beta\gamma$ mRNA followed 1 minute later by low dose of $control^{MO}$ or $GARLH4^{MO}$ (3 nl of 1 mM MO), to achieve sparse expression of MOs in myocytes. (G) GABA+ axon is observed in a control ^{MO} GABA ARαβγ larva (dashed box, GABA channel only, 5/5). *Inset:* Area in the dashed box. GABA+ axon contacts a control MO+GFP+ myocyte (arrowheads). (H) GABA+ axon observed in myotome of a GARLH4^{MO}/normal larva (dashed box, GABA channel only, 12/12). Inset: Area in the dashed box. GABA+ axon contacts a GABA_ARαβγ myocyte lacking GARLH4^{MO} (arrowhead, 12/12). GABA+ processes were not observed contacting GARLH4^{MO} GABA_ARαβγ myocytes (e.g. asterisk, 0/12). (I) Lrp4 links to AChR through rapsyn and to MUSK and dystroglycan in the postsynaptic membrane. (J) Injection of ventral blastomeres (V2) with a high dose of Lrp4^{MO} or control^{MO} (6 nl of 1 mM MO) to achieve widespread expression of MOs

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

in myocytes. (K) Morpholino knockdown validation by Western blot. (L and M) Control^{MO} and Lrp4^{MO} expression in the myotome. (N and O) Myocommatal junctions of larvae with control or Lrp4^{MO} stained for ChAT and SV2. (P and O) Labelled area above threshold quantified for ChAT and SV2. P and P0.0092, two-tailed P1. Red X in A and G, proteins knocked-down in B-H and J-Q. M, myotome; SC, spinal cord; NT, neurotransmitter; A, anterior; D, dorsal. All larvae 3dpf. See also P1. See also P3.

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

814

815

816

817

818

819

Fig 7. Knockdown of a presynaptic component of trans-synaptic bridges prevents receptordriven presynaptic neurotransmitter stabilization. (A) CASK links to neurexin in the presynaptic membrane. (**B**) Injection of a high dose of CASK MO or control MO (6 nl of 1 mM MO) in dorsal blastomeres 1.2 (D1.2) at the 16-cell stage. All MOs were lissamine-tagged. (C) Presence of CASK and morpholino knockdown validation by Western blot. (D) Injection of GABARαβy mRNA in ventral blastomeres (V2) to achieve expression in myocytes, and a high dose of CASK^{MO} or control^{MO} (6 nl of 1 mM MO) in dorsal blastomeres 1.2 (D1.2) to achieve widespread transfection of spinal cord cells. (E) GABA+ axon in myotome of control MOGABARαβγ larva (arrowhead, 6/6). (F) No GABA+ axons in the myotome of CASK MO GABA $_{A}$ R $\alpha\beta\gamma$ larvae (0/12). (G) When the control MO was injected into the dorsal blastomeres 1.2 (D1.2), most lissamine+ somata in spinal cords were ChAT+ (red) (77/83), indicating that the MO transfects motor neurons. When stained for GABA, only a small number of spinal cord lissamine+ somata were GABA+ (cyan) (3/82); the rest were either lissamine+GABA- or lissamine+ChAT- (magenta) (79/82). Total lissamine cells counted per larva ≥71. n=3. (*H*) Injection of control^{MO} or CASK^{MO} (6 nl of 1 mM MO) in dorsal blastomeres 1.2

(D1.2). (I) Larva expressing the control MO in the SC. (J) Larva expressing the CASK MO in the SC. 836 (K and L) Myocommatal junctions of larvae with control or CASK or ChAT and 837 SV2. (*M* and *N*) Labelled area above threshold quantified for ChAT and SV2. n ≥ 5, ****p<0.0001, 838 two-tailed *t-test*. ($\boldsymbol{0}$ and \boldsymbol{P}) Myocommatal junctions of larvae with control^{MO}, Lrp4^{MO}, 839 GABA_ARαβγ-Lrp4^{MO} or GABA_ARαβγ-GARLH4^{MO} stained for CASK in synaptophysin (SYN)+ 840 motor neuron terminals along the myocommatal junction and in Hoechst+ nuclei in the spinal cord. 841 (\boldsymbol{O}) Area of expression of CASK and SYN. n=4, *p<0.01, one-way ANOVA ($F_{3,12}$ =6.316, 842 p=0.0081). (P) Area of expression of CASK and Hoechst. n=5, ***p<0.0001, one-way ANOVA 843 (F_{3,12}=16.5, p<0.0001). n/N, larvae with GABA+ axon/total larvae observed. Red X in A, protein 844 845 knocked down. M, myotome; SC, spinal cord; A, anterior; D, dorsal. All larvae 3dpf. See also SI Appendix, Fig. S10 and S11 and S13 and S15 and S16 and Table S3. 846

847

848

849

Fig 8. Model of receptor-driven neurotransmitter stabilization mediated by trans-synaptic bridges. Summary of interactions between neurotransmitter receptors and transsynaptic bridge proteins that signal retrogradely to achieve presynaptic transmitter stabilization.