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Abstract—Principal component analysis (PCA) is a key tool
in the field of data dimensionality reduction that is useful
for various data science problems. However, many applications
involve heterogeneous data that varies in quality due to noise
characteristics associated with different sources of the data.
Methods that deal with this mixed dataset are known as het-
eroscedastic methods. Current methods like HePPCAT make
Gaussian assumptions of the basis coefficients that may not hold
in practice. Other methods such as Weighted PCA (WPCA)
assume the noise variances are known, which may be difficult to
know in practice. This paper develops a PCA method that can
estimate the sample-wise noise variances and use this information
in the model to improve the estimate of the subspace basis
associated with the low-rank structure of the data. This is done
without distributional assumptions of the low-rank component
and without assuming the noise variances are known. Simulations
show the effectiveness of accounting for such heteroscedasticity
in the data, the benefits of using such a method with all of
the data versus retaining only good data, and comparisons are
made against other PCA methods established in the literature
like PCA, Robust PCA (RPCA), and HePPCAT. Code available
at https://github.com/javiersc1/ALPCAH.

I. INTRODUCTION

Many modern data science problems require learning an
approximate subspace basis for some collection of data. For
example, lesion detection [1], motion estimation [2], dynamic
MRI [3], and image/video denoising [4] are practical appli-
cations involving the estimation of a subspace basis. Today,
a voluminous amount of data is collected to solve problems
and this data tends to have a high dimensional ambient space.
However, the underlying relationships between the variables
are often low dimensional so the problem becomes finding low
dimensional structure in the data to achieve a certain task.

PCA methods like Robust PCA [5] and Probabilistic PCA
[6] work well in the homoscedastic setting, i.e., when the
data is the same quality throughout, but fail to accurately
estimate the basis when the data varies in quality, i.e., in
the heteroscedastic setting [7]. In this setting, the noisier data
samples can wildly corrupt the basis estimate. Some examples
of heteroscedastic data sets that involve subspace bases include
environmental air data [8], astronomical image data [9], and
biological sequencing data [10]. A natural question to ask is
whether it is possible to simply discard the noisy samples to
avoid this issue. This question assumes that the practitioner
knows what samples are good and bad, which may be difficult
to know in practice. The question also assumes that there is
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enough good data to estimate the basis, but it is possible that
the general lack of good data requires using the noisy data
if the subspace dimension is higher than the amount of good
data. More optimistically, even the noisier samples can help
improve the estimate of the basis if properly modeled [7], so
it is preferable to use all of the data available.

Although one can consider heteroscedasticity across the
feature space with methods such as HeteroPCA [11], this
paper focuses on heteroscedasticity across the data samples.
The weighted PCA (WPCA) [12] approach for heteroscedastic
data forms a weighted sample covariance matrix and requires
knowledge of the noise variances. However, data quality may
not be known, e.g., unknown origin of the dataset or un-
available data sheet for physical sensors. Other heteroscedastic
methods like HePPCAT [7] use factor analysis and hard rank
constraints to estimate the subspace basis. Being a probabilistic
PCA approach, HePPCAT makes Gaussian assumptions about
the basis coefficients. Additionally, HePPCAT either assumes
the subspace dimension is known or requires an estimate of
the rank parameter. The proposed method in the next section
allows for optional usage of rank knowledge via a unique
low-rank promoting functional and makes no distributional
assumptions about the low-rank component, allowing it to
achieve higher accuracy than current methods even without
knowing the noise variances.

II. PROPOSED METHOD

Let yi ∈ RD represent the data samples for index i ∈
{1, . . . , N} given N total samples, and let D denote the
ambient dimension. Let xi represent the low-dimensional data
sample generated by xi = Uzi where U ∈ RD×k is an
unknown subspace basis of dimension k and zi ∈ Rk are
basis coordinates. Then the heteroscedastic model is described
as follows assuming Gaussian noise

yi = xi + ϵi where ϵi ∼ N (0, νiI) (1)

for noise variances νi. Note that we are considering the general
case where each data point has its own noise variance since
it is more challenging to tackle. However, one can consider
groups of data {ν1, . . . , νL} where L represents the number
of groups and each data point belongs to one of the L groups.
For the measurement model yi ∼ N (xi, νiI), the probability
density function for a single point is

1√
(2π)k|νiI|

exp [−1

2
(yi − xi)

T (νiI)
−1(yi − xi)]. (2)
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For uncorrelated samples, the joint log likelihood of all yi is
the following after dropping constants

N∑
i=1

−1

2
log |νiI| −

1

2
(yi − xi)

T (νiI)
−1(yi − xi). (3)

Let Π = diag(ν1, . . . , νN ) ∈ RN×N be a diagonal matrix
representing the (typically unknown) noise variances. Let Y =
[y1, . . . , yN ] ∈ RD×N represent all of the data samples. Then,
the log likelihood in matrix form is

−D

2
log |Π| − 1

2
Trace[(Y −X)TΠ−1(Y −X)]. (4)

Using trace properties, the optimization problem we pose for
the heteroscedastic model is

argmin
X,Π

λfk(X) +
1

2
∥(Y −X)Π−1/2∥2F +

D

2
log |Π|︸︷︷︸

determinant

, (5)

where fk(X) is a relatively new functional in the literature
[13] that promotes low-rank structure in X and λ ∈ R+ is
a regularization parameter. Our algorithm for solving (5) is
called ALPCAH (Algorithm for Low-rank regularized PCA
for Heteroscedastic data). Since X represents the denoised
data matrix, the subspace basis is calculated by performing an
SVD on the optimal solution from (5) so that X̂ =

∑
i σ̂iûiv̂i

′

and thus Û = [û1, . . . , ûk]. The low-rank promoting functional
we use is the summation of the tail singular values defined as
the following

fk(X) ≜
min(D,N)∑
i=k+1

σi(X) = ∥X∥∗ − ∥X∥Ky−Fan(k) (6)

where σi(X) is the ith singular value of X , ∥·∥∗ is the nuclear
norm, and ∥·∥Ky−Fan(k) is the Ky-Fan norm defined as the sum
of the first k singular values. For k = 0, f0(X) = ∥X∥∗. For
a general k > 0, fk(X) is a nonconvex difference of convex
functions. When k > 0 and λ → ∞, then the solution of the
optimization problem approaches X̂ =

∑k
i=1 σiuiv

′
i ∈ RD×k

meaning the solution becomes identical to a singular value
projection approach.

III. ALGORITHM & CONVERGENCE ANALYSIS

We apply the inexact augmented Lagrangian method
ADMM [14] to the cost function (5). Introducing the auxiliary
variable Z = Y −X , the augmented penalty parameter µ ∈ R,
and dual variable Λ ∈ RD×N , the augmented Lagrangian, as
defined in [15], is

Lµ(X,Z,Λ,Π) = λrfk(X) +
1

2
∥ZΠ−1/2∥2F +

D

2
log |Π|

+ ⟨Λ, Y −X − Z⟩+ µ

2
∥Y −X − Z∥2F. (7)

Definition 1. Let A ∈ RD×N be a rank k matrix such
that its decomposition is SVD(A) = UADAV

′
A where

DA = diag(σ1(A), . . . , σmin(D,N)(A)). Let the soft thresh-
olding operation be defined as Sτ [x] = sign(x)max(|x| −
τ, 0) for some threshold τ > 0. Decompose DA such that

DA = DA1 + DA2 = diag(σ1(A), . . . , σk(A), 0, . . . , 0) +
diag(0, . . . , 0, σk+1(A), . . . , σN (A)). Then, the proximal
mapping solution for fk(X), as shown in [13], is denoted as
the tail singular value thresholding operation and expressed
as

TSVT(A, τ, k) ≜ UA (DA1 + Sτ [DA2])V
′
A. (8)

Performing a block Gauss-Seidel pass for each variable
results in the following closed-form updates

Zi+1 = argmin
Zi

Lµ(Xi, Zi,Λi,Πi)

= [µ(Y −Xi) + Λi](Π
−1
i + µI)−1 (9)

Xi+1 = argmin
Xi

Lµ(Xi, Zi,Λi,Πi)

= TSVT(Y − Zi +
1

µ
Λi,

λr

µ
, k) (10)

Λi+1 = Λi + µ(Y −Xi − Zi). (11)

When each point is treated as having its own noise variance,
then the variance update is

Πi+1 = argmin
Πi

Lµ(Xi, Zi,Λi,Πi) =
1

D
ZT
i Zi ⊙ I. (12)

For the case when the data points have grouped noise vari-
ances, let l ∈ {1, . . . , L} and let nl signify the number of
points in group l out of L total groups; then the grouped noise
variance update instead becomes

νl =
1

Dnl
∥Z(pl)∥2F =

1

Dnl
∥Y (pl) −X(pl)∥2F (13)

where pl signifies the points associated with group l, meaning
that Y (pl) ⊂ Y .

Consider the cost function for the case when the variances
are known. The formulation consists of a two-block setup
written as

argmin
X,Z

λrfk(X)︸ ︷︷ ︸
f(X)

+
1

2
∥ZΠ−1/2∥2F︸ ︷︷ ︸

g(Z)

s.t. Y = X + Z. (14)

Theorem 1. Let Ψ(X,Z) = f(X)+g(Z). Let νi ≥ ϵ > 0 ∀i.
Assuming that µ in (7) satisfies µ > 2Lg = 2∥Π−1∥2, the
sequence generated by (9), (10), (11) converges to a KKT
(Karush–Kuhn–Tucker) point of the augmented Lagrangian
Lµ(X,Z,Λ).

Proof. ADMM convergence for nonconvex problems has been
studied by [16] for two-block setups. The functional f(X) is
a proper, lower semi-continuous function since it is a sum
of continuous functions. The function g(Z) is a continuous
differentiable function whose gradient is Lipschitz continuous
with modulus of continuity Lg = ∥Π−1∥2 . Since g(Z) =

ν
−1/2
1 Z1,1 + ν

−1/2
1 Z2,1 + . . . is a polynomial equation, then

its graph is a semi-algebraic set.
To the best of our knowledge, there is no literature that

explores semi-algebraic properties of nuclear norm based
functions and so the following results are our own. Let
fk(X) = h(X) − q(X) = ∥X∥∗ − ∥X∥Ky−Fan(k). Let
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X ∈ RM×N such that G = X ′X ∈ RN×N . Then, by Cayley
Hamilton theorem, the characteristic polynomial is expressed
as pG(λ) = λn + cn−1(G)λn−1 + . . . + c1(G)λ + c0 for
constants ci ∈ R. Let λ be eigenvalues of G which implies
pG(λ) = 0. Then, the set SG = {∀λ | pG(λ) = 0} is semi-
algebraic since it is defined by polynomial equations. Note
that λi = σ2

i since G is the gram matrix of X . The set
SX = {∀σ | σ2 = λ ∈ SG, σ ≥ 0} = {(σ1, . . . , σn)} is semi-
algebraic as it is expressed in terms of polynomial inequalities.
Expressing h(X) = ∥X∥∗ = h(σ1, . . . , σn), its graph h =
{(σ, f(σ))} is semi-algebraic and thus so is the nuclear norm.
By Tarksi-Seidenburg theorem [17], defining the projection
map Φ : Rn → Rk, the set Φ(SX) = {(σ1, . . . , σk)} is
semi-algebraic and thus so is q(X) = ∥X∥Ky−Fan(k). A finite
weighted sum of semi-algebraic functions is known to be semi-
algebraic [18] and so f(X) = h(X)−q(X) is semi-algebraic.

Since the functions f(X) and g(Z) are lower, semi-
continuous and definable on an o-minimal structure (such
as semi-algebraic or sub-analytic as an example) [19] then
it follows that Ψ(X,Z) = f(X) + g(Z) is a Kurdyka-
Łojasiewicz function [18] which is sufficient to proving a
bounded sequence. Then the sequence {(Xi, Zi)}i∈N con-
verges to a KKT point by applying Theorem 3.1 from [16].
The unknown variance case involves a challenging nonconvex
three-block non-separable setup because of the g(Z,Π) term
that, to the best of our knowledge, has not been explored in
the ADMM literature and thus is a topic of future work.

IV. RESULTS

This section uses a synthetic dataset to compare ALPCAH
with PCA, RPCA, and HePPCAT. We consider two groups
of data, one with fixed quality (i.e., fixed size and fixed
additive noise variance) and one whose parameters we vary.
Let yi ∈ R100×N where N , the total number of points, changes
depending on parameter values. Let U ∈ R100×10 represent
a 10 dimensional subspace generated by random uniform
matrices such that UΣV T = svd(A), where Ai,j ∼ U [0, 1].
The low-rank data xi we simulated as xi = Uzi where the
coordinates zi ∈ R10 were generated from U [−100, 100] for
each element in the vector. Then, we generated yi = Uzi + ϵi
where ϵi ∈ R100 is drawn from N (0, νiI). The noise variance
for group 1 (ν1) was fixed to 1 and we varied group 2 noise
variances (ν2). The error metric used is subspace affinity
error that compares the difference in projection matrices
∥UU ′− Û Û ′∥F/∥UU ′∥F so that a low error signifies a closer
estimate of the true subspace. In summary, the noisy data
Y = [y1, . . . , yN ] is generated accordingly, a solution X̂
is generated from (5), the subspace basis is calculated by
X̂ =

∑
i σ̂iûiv̂i

′ =⇒ Û = [û1, . . . , ûk], and the subspace
affinity error is reported.

For the heatmaps in Fig. 1-Fig. 4, each pixel represents a
ratio of ALPCAH error divided by the error of some other
method like HePPCAT. A value close to 1 implies ALPCAH
did not perform much better relative to the other method,
whereas a ratio closer to 0 implies ALPCAH performed
relatively well. For the heatmaps in Fig. 1-Fig. 4, the x-axis

represents the point ratio between group 1 and 2, where group
1 always has 10 points. The y-axis represents the variance ratio
between group 1 and 2, where the group 1 noise variance
was fixed to 1. The average of 25 trials is plotted at each
pixel in the heatmap where each trial has different noise, basis
coefficients, and subspace basis realizations. To summarize, we
explored the effects of data quality and data quantity on the
heteroscedastic subspace basis estimates in different situations.

Fig. 1 and Fig. 2 compare ALPCAH against PCA in the
simpler situation where noise variances are known. Fig. 2 is
similar to Fig. 1 but only using the high quality points for
PCA specifically, whereas ALPCAH used all of the data. This
result confirms that it is useful to use very noisy data, as
opposed to throwing it away and treating the remaining data
as homoscedastic. Fig. 3 and Fig. 4 compare ALPCAH against
two other PCA methods in the unknown variance setting.
Fig. 3 compares against Robust PCA to see if an “outlier”
model can capture heteroscedastic noise. Fig. 4 compares
against HePPCAT.

Since Fig. 1-Fig. 4 only show relative error, it is important
to discuss absolute error of these algorithms. For Fig. 5-Fig. 6,
we fixed the total number of points to be 500 with just enough
high quality samples that have noise variance ν1 = 0.25 and
the rest of the points have noise variance ν2 = 100. The
regularization parameter λ is varied both when rank knowledge
is known or estimated (for these results k = 10) and when
rank knowledge is not utilized (k = 0 =⇒ fk(X) = ∥ · ∥∗).
The y-axis consists of the subspace affinity error function as
shown before. The average error is plotted out of 25 trials with
maximum error bounds for each λ value. Fig. 6 considers the
unknown variance case but shows WPCA (a known variance
method) as a bottom floor to illustrate the lowest realistic
affinity error if one knew the noise variances.

Because the unknown variance setting requires a tuning
parameter λ, we performed cross validation to determine a
different λ value for each heatmap pixel location to generate
Fig. 3 and Fig. 4. The robustness of λ for different point
and variance ratios is mentioned in the discussion section. In
practice, we found that one λ value works well across the
entire heatmap. Experimentally, we found that a sufficiently
large λ ≥ ∥Y ∥2 gave the lowest subspace affinity error in the
known variance setting so cross-validation is not performed in
the known variance setting for these experiments.

Note that the subspace basis dimension was used for these
results in Fig. 1-Fig. 4 by setting k = 10 for fk(X) in
ALPCAH to compare against HePPCAT but one may use
k = 0 when the subspace dimension is not known. For many
applications, the subspace dimension is unknown such as non-
Lambertian surfaces under non-isotropic lighting conditions
[20]. For this situation, there are rank estimation methods
proven to be robust in this heteroscedastic noise setting, such
as randomly flipping signs in the data matrix [21]. Thus,
it is possible to approximate the rank beforehand given a
reasonably sized data matrix such that SVD methods are
feasible.
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Fig. 1: Ratio of subspace affinity errors ALPCAH/PCA
(known variance, no cross-validation required)

Fig. 2: Ratio of subspace affinity errors ALPCAH/PCA-
GOOD (PCA using good data only and ALPCAH using all of
the data, no cross-validation required)

Fig. 3: Ratio of subspace affinity errors ALPCAH/RPCA
(unknown variance, no group knowledge, cross-validated λ
for both methods)

Fig. 4: Ratio of subspace affinity errors ALPCAH/HePPCAT
(unknown variance, no group knowledge, cross-validated λ for
ALPCAH)

Fig. 5: Subspace affinity error of various PCA methods as the
regularization parameter is adjusted (known variance)

Fig. 6: Subspace affinity error of various PCA methods as
the regularization parameter is adjusted (unknown variance,
no group knowledge)
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V. DISCUSSION

In the known variance cases, Fig. 1 shows that ALPCAH
performs well relative to PCA in noisy situations and can
improve estimation by up to 50% or 20% in more tame
situations. From the bottom left corner and moving rightwards,
there is a general decline as the estimation error worsened as
the number of “bad” points increased. This means that the
noisy points contributed too much to the estimation process
when the good quality data should have more influence in the
process. ALPCAH uses the term ∥ZΠ−1/2∥2F, but a user may
well use something like ∥ZΠ−1∥2F to further downplay the
contribution of the noisy points. Finding the optimal weighing
scheme for this method is a topic of future work, but using
inverse standard deviations is a natural choice that arises from
the Gaussian likelihood. Some work has been done in this area
for the case when noise variances are known [22]. In Fig. 2,
one can see that even in a limited data situation with very
noisy data (bottom left corner), there is a 30% improvement
relative to applying PCA to just the good data alone. The
improvement only increased as more noisy points were added.
Thus it is beneficial to collect and use all of the data, since
the noisy points offer meaningful information that can improve
the estimate of the basis versus using good data alone.

For the unknown variance cases, we considered the situation
where group information is not known in the sense that each
data point is treated as having its own noise variance as
opposed to belonging to known groups {1, 2}. This groupless
situation is more challenging than the grouped case. Because
of this, it is useful for comparison purposes in this unknown
variance case. Since Robust PCA shares similarities with
ALPCAH, Fig. 3 compared these two methods. As illustrated,
using cross-validation to learn λ for both methods, ALPCAH
was able to outperform RPCA in all situations shown in the
heatmap. Thus it appears to be preferable to treat extremely
noisy points with a noise model ∥·∥F rather than treating them
as outliers with a ∥ ·∥1,1 regularizer. In Fig. 4, the comparison
with HePPCAT, there is one location (bright yellow) where
ALPCAH gave a worse estimation of the subspace basis,
but generally on average there was a 20% improvement over
HePPCAT. Since HePPCAT is a hard rank constraint method,
it seems beneficial to not completely shrink the k+10 singular
values but rather to retain them as they seem to improve the
estimation process. Moreover, since we make no distributional
assumptions about X itself besides low-rank assumptions,
then this assumption relaxation helps us achieve lower error
in settings where the basis coordinates are not Gaussian,
whereas HePPCAT makes Gaussian assumptions about the
basis coordinates themselves.

For both Fig. 5 and Fig. 6, Robust PCA is excluded since
this method did not perform any better than PCA for this
specific test setup of fixed noise variances and point ratio.
In Fig. 5, for ALPCAH (k = 0), the results became worse
than PCA once λ > 5 so the y-axis range is fixed for better
visibility. For this case, it is interesting that there is a certain
λ range where ALPCAH (k = 0) performs similarly to HeP-

PCAT. Recall that when k = 0 in the known variance setting,
the optimization problem is convex. When rank knowledge is
utilized, ALPCAH (k = 10) subspace affinity error approaches
the error of the other methods as λ grows and stays fixed at
that location for larger λ values. In Fig. 6, ALPCAH (k = 0)
performs poorly in the unknown variance case and is excluded
just like Robust PCA. The results shown are in the harder
groupless setting where noise variance group knowledge is
not known. We observed that ALPCAH (k = 10) performs
better than HePPCAT for a certain λ range and gets close to
WPCA (known variance method) as if we really did learn the
noise variances of the points.

As a final comment, the regularization parameter appears
to be fairly robust against this landscape of different variance
ratios and point ratios shown in Fig. 1-Fig. 4. Recall that
each heatmap pixel involves a different random subspace basis
with data points that have different noise and basis coordinate
realizations. The robustness of the regularization parameter
means that it will be easier to find a suitable value since, for
example, the user does not need to worry about data split size
between validation and test set or whether the variance ratio
in that specific validation set will not generalize to the test set.
Fig. 7 shows this result.

Fig. 7: ALPCAH cross validation matrix of optimized λ values

VI. CONCLUSION

Heteroscedastic data can exist when using mixed data sets
that stem from different sources to give an example. Current
methods to deal with subspace models in this setting have
limitations such as requiring the noise variances to be known
or assuming Gaussian basis coefficients. Both of these assump-
tions may not be good assumptions in practice due to unknown
data set group knowledge or data distribution knowledge. This
work proposed a PCA method named ALPCAH that can
estimate the noise variances of the collected data and use
these estimates in the optimization model to not only denoise
the data, but also improve the estimate of the subspace basis.
ALPCAH avoids the limitations stated above and led to higher
accuracy in the subspace basis estimate as shown in the results
section.

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 22,2024 at 20:17:47 UTC from IEEE Xplore.  Restrictions apply. 



VII. FUNDING DISCLOSURE
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