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Abstract. In this paper, we propose a recursive importance sketching algorithm for rank-
constrained least squares optimization (RISRO). The key step of RISRO is recursive impor-
tance sketching, a new sketching framework based on deterministically designed recursive
projections, and it significantly differs from the randomized sketching in the literature.
Several existing algorithms in the literature can be reinterpreted under this new sketching
framework, and RISRO offers clear advantages over them. RISRO is easy to implement
and computationally efficient, and the core procedure in each iteration is to solve a
dimension-reduced least squares problem. We establish the local quadratic-linear and qua-
dratic rate of convergence for RISRO under somemild conditions. We also discover a deep
connection of RISRO to the Riemannian Gauss–Newton algorithm on fixed rank matrices.
The effectiveness of RISRO is demonstrated in two applications in machine learning and
statistics: low-rank matrix trace regression and phase retrieval. Simulation studies demon-
strate the superior numerical performance of RISRO.
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1. Introduction
The focus of this paper is on the rank-constrained least
squares:

min
X∈Rp1×p2

f (X) :� 1
2
‖y�A(X)‖22, subject to rank(X) � r:

(1)

Here, y ∈ R
n is the given response and A ∈ R

p1×p2 → R
n

is a known linear map that can be explicitly represented as

A(X) � [〈A1, X〉,: : : ,〈An, X〉]�, 〈Ai,X〉
� X

1⩽j⩽p1, 1⩽k⩽p2
(Ai)[j,k]X[j,k] (2)

with givenmeasurement matricesAi ∈ R
p1×p2 , i � 1, : : : ,n.

The rank-constrained least square (1) is motivated by
the widely studied low-rank matrix recovery problem, in

which the goal is to recover a low-rank matrix X∗ from
the observation y �A(X∗) + � (� is the noise). This prob-
lem is of fundamental importance in a variety of fields,
such as optimization, machine learning, signal proces-
sing, scientific computation, and statistics. With different
realizations of A, (1) covers many applications, such as
matrix trace regression (Candès and Plan 2011, Daven-
port and Romberg 2016), matrix completion (Keshavan
et al. 2009, Candès and Tao 2010, Koltchinskii et al. 2011,
Miao et al. 2016), phase retrieval (Candès et al. 2013,
Shechtman et al. 2015), blind deconvolution (Ahmed
et al. 2013), and matrix recovery via rank-one projections
(Cai and Zhang 2015, Chen et al. 2015). To overcome
the nonconvexity and NP-hardness of directly solving
(1) (Recht et al. 2010), various computational feasible
schemes have been developed in the past decade, includ-
ing the prominent convex relaxation (Recht et al. 2010,
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Candès and Plan 2011)

min
X∈Rp1×p2

1
2
‖y�A(X)‖22 +λ‖X‖∗, (3)

where ‖X‖∗ �
Pmin(p1,p2)

i�1 σi(X) is the nuclear norm of X
and λ > 0 is a tuning parameter. Nevertheless, the con-
vex relaxation technique has one well-documented limi-
tation: the parameter space after relaxation is usually
much larger than that of the target problem. Also, algo-
rithms for solving the convex program often require the
singular value decomposition as the stepping-stone and
can be prohibitively time-consuming for large-scale
instances.

In addition, nonconvex optimization, which directly
enforces the rank-r constraint on the iterates, renders
another important class of algorithms for solving (1).
Because each iterate lies in a low-dimensional space, the
computation cost of the nonconvex approach can be
much smaller than the convex regularized approach.
Over the last a few years, there is a flurry of research on
nonconvex methods in solving (1) (Wen et al. 2012, Jain
et al. 2013, Hardt 2014, Chen and Wainwright 2015,
Zhao et al. 2015, Zheng and Lafferty 2015, Miao et al.
2016, Sun and Luo 2016, Tu et al. 2016, Tran-Dinh 2021),
and many of the algorithms, such as gradient descent
(GD) and alternating minimization (alter mini), are
shown to have nice convergence results under proper
model assumptions (Jain et al. 2013, Hardt 2014, Zhao
et al. 2015, Sun and Luo 2016, Tu et al. 2016, Tong et al.
2021a). We refer readers to Section 1.2 for more review
of recent works.

In the existing literature, many algorithms for solving (1)
either require careful tuning of hyperparameters or have a
convergence rate no faster than linear. Thus, we raise the
following question: can we develop an easy-to-compute
and efficient (we hopewith comparable per-iteration com-
putational complexity as the first order methods) algo-
rithm with provable high-order convergence guarantees

(possibly converging to a stationary point because of the
nonconvexity) for solving (1)?

In this paper, we give an affirmative answer to this
question by making contributions as outlined next.

1.1. Our Contributions
We introduce an easy-to-implement and computation-
ally efficient algorithm, recursive importance sketching
for rank-constrained least squares optimization (RISRO),
for solving (1) in this paper. The proposed algorithm is
tuning-free and has the same per-iteration computational
complexity as alternating minimization (Jain et al. 2013)
as well as comparable complexity to many popular first
order methods, such as iterative hard thresholding (Jain
et al. 2010) and gradient descent (Tu et al. 2016) when
r
 p1,p2,n. We then illustrate the key idea of RISRO
under a general framework of recursive importance
sketching. This framework also renders a platform to
compare RISRO and several existing algorithms for rank-
constrained least squares.

Assuming A satisfies the restricted isometry property
(RIP), we prove RISRO is local quadratic-linearly conver-
gent in general and quadratically convergent to a station-
ary point under some extra conditions. Figure 1 provides
a numerical example of the performance of RISRO in the
noiseless low-rank matrix trace regression (left panel)
and phase retrieval (right panel). In both problems,
RISRO converges to the underlying parameter quadrati-
cally and reaches a highly accurate solution within five
iterations.

In addition, we discover a deep connection between
RISRO and the Riemannian Gauss–Newton optimization
algorithm on fixed rank matrices manifold. The least
squares step in RISRO implicitly solves a Fisher scoring or
Riemannian Gauss–Newton equation on the Riemannian
optimization of low-rank matrices, and the updating rule
in RISRO can be seen as a retraction map. With this con-
nection, our theory on RISRO also improves the existing

Figure 1. (Color online) RISROAchieves a Quadratic Rate of Convergence

(a) (b)

Notes. Spectral initialization is used in each setting and more details about the simulation setup are given in Section 7. (a) Noiseless low-rank
matrix trace regression. Here, yi � 〈Ai,X∗〉 for 1⩽ i⩽ n, X∗ ∈ R

p×p with p � 100, σ1(X∗) �⋯� σ3(X∗) � 3,σk(X∗) � 0 for 4⩽ k⩽ 100 and Ai has inde-
pendently and identically distributed (i.i.d.) standard Gaussian entries. (b) Phase retrieval. Here, yi � 〈aia�i ,x∗x∗�〉 for 1⩽ i⩽ n, x∗ ∈ R

p with
p � 1, 200, ai ~

i:i:d:N(0, Ip).
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convergence results on the Riemannian Gauss–Newton
method for the rank-constrained least squares problem.

Next, we further apply RISRO to two prominent pro-
blems in machine learning and statistics: low-rank matrix
trace regression and phase retrieval. In the noisy low-rank
matrix trace regression, we prove the estimation error rate
of RISRO converges quadratically to the information-
theoretical limit with only a double-logarithmic number
of iterations under the Gaussian ensemble design. To the
best of our knowledge, RISRO is the first algorithm that
provably achieves the minimax rate-optimal estimation
error in matrix trace regression with only a double-
logarithmic number of iterations, which offers an expo-
nential improvement over the existing results of first order
methods (Jain et al. 2010, 2013; Chen and Wainwright
2015). We also discover a new “quadratic+ one-iteration
optimality” phenomenon for RISRO on low-rank matrix
recovery (Remark 12). In phase retrieval, in whichA does
not satisfy the RIP condition, we can still establish the
local convergence of RISRO given a proper initialization.
We also develop RISRO in the matrix completion and
robust principal component analysis (PCA) applications,
in which the restricted isometry property completely fails.
We find RISRO still has similar empirical performance as
in the setting in which the RIP condition holds.

Finally, we conduct simulation studies to support our
theoretical findings and compare RISRO with many
existing algorithms. The numerical results show RISRO
not only offers faster and more robust convergence, but
also requires a smaller sample size for low-rank matrix
recovery compared with existing approaches.

1.2. Related Literature
This work is related to a range of literature on low-rank
matrix recovery, convex/nonconvex optimization, and
sketching arising from several communities, including
optimization, machine learning, statistics, and applied
mathematics. We make an attempt to review the related
literature without claiming the survey is exhaustive.

One class of the most popular approaches to solve (1)
is the nuclear normminimization (NNM) (3). Many algo-
rithms are proposed to solve NNM, such as proximal
gradient descent (Toh and Yun 2010), fixed-point contin-
uation (Goldfarb and Ma 2011), and proximal point
methods (Jiang et al. 2014). It is shown that the solution
of NNM has desirable properties under proper models,
such as matrix trace regression and matrix completion
(Recht et al. 2010; Candès and Plan 2011; Cai and Zhang
2013, 2014, 2015). In addition to NNM, the max norm
minimization is another widely considered convex reali-
zation for the rank-constrained optimization (Lee et al.
2010, Cai and Zhou 2013). However, these convex pro-
grams are usually computationally intensive to solve,
which motivates a line of work on using nonconvex
approaches. Since Burer and Monteiro (2003), one of the
most popular nonconvex methods for solving (1) is to

first factor the low-rank matrix X to RL� with two factor
matrices R ∈ R

p1×r, L ∈ R
p2×r and then run either gradi-

ent descent or alternating minimization on R and L
(Candès et al. 2015, Zhao et al. 2015, Zheng and Lafferty
2015, Sun and Luo 2016, Tu et al. 2016, Sanghavi et al.
2017, Wang et al. 2017c, Park et al. 2018, Li et al. 2019b,
Ma et al. 2019, Tong et al. 2021b). Other methods, such as
singular value projection or iterative hard thresholding
(Jain et al. 2010, Goldfarb and Ma 2011, Tanner and Wei
2013), Grassmannmanifold optimization (Keshavan et al.
2009, Boumal and Absil 2011), and Riemannian manifold
optimization (Meyer et al. 2011, Vandereycken 2013, Mis-
hra et al. 2014, Wei et al. 2016, Huang and Hand 2018),
have also been proposed and studied. We refer readers
to the recent survey paper Chi et al. (2019) for a compre-
hensive overview of existing literature on convex and
nonconvex approaches on solving (1). Most of the con-
vergence analyses in the literature were conducted under
certain statistical models (e.g., noisy/noiseless matrix
trace regression, matrix completion, and phase retrieval),
and the goal was to recover the underlying parameter
matrix. Here, we study (1) from both an optimization
perspective (how the algorithm converges to a stationary
point) and a statistical perspective (how the iterates esti-
mate the underlying true parameter). These two perspec-
tives overlap in the noiseless settings as the parameter
becomes a stationary point and is disjoint in the more
general noisy settings.

There are a few recent attempts in connecting the geo-
metric structures of different approaches (Li et al. 2019a,
Ha et al. 2020), and the landscape of Problem (1) is also
studied in various settings (Bhojanapalli et al. 2016, Ge
et al. 2017, Zhu et al. 2018, Zhang et al. 2019, Uschmajew
and Vandereycken 2020).

Our work is also related to the idea of sketching in
numerical linear algebra. Performing sketching to speed
up the computation via dimension reduction has been
explored extensively in recent years (Mahoney 2011,
Woodruff 2014). Sketching methods are applied to solve
a number of problems, including but not limited to
matrix approximation (Drineas et al. 2012, Zheng et al.
2012, Song et al. 2017), linear regression (Pilanci and
Wainwright 2016, Raskutti and Mahoney 2016, Clarkson
and Woodruff 2017, Dobriban and Liu 2019), ridge
regression (Wang et al. 2017b), etc. In most of the sketch-
ing literature, the sketching matrices are randomly con-
structed (Mahoney 2011, Woodruff 2014). Randomized
sketching matrices are easy to generate and require little
storage for sparse sketching. However, randomized sket-
ching can be suboptimal in statistical settings (Raskutti
and Mahoney 2016). To overcome this, Zhang et al.
(2020) introduce an idea of importance sketching in the
context of low-rank tensor regression. In contrast to the
randomized sketching, importance sketching matrices
are constructed deterministically with the supervision of
the data and are shown capable of achieving better

Luo et al.: Importance Sketching for Rank Constrained Least Squares
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statistical efficiency. However, the method developed in
Zhang et al. (2020) is essentially a “one-time” importance
sketching, which yields a suboptimal outcome when the
noise level is small or moderate. This paper proposes a
more powerful recursive importance sketching algorithm
that iteratively refines the sketchingmatrices. We also pro-
vide a comprehensive convergence analysis for the pro-
posed algorithm without the sample-splitting assumption
used in Zhang et al. (2020); our theory demonstrates the
optimality of the proposed algorithm at all different noise
levels and advantages over other algorithms for the rank-
constrained least squares problem.

1.3. Organization of the Paper
The rest of this article is organized as follows. After a
brief introduction of notation in Section 1.4, we present
our main algorithm RISRO with an interpretation from
the recursive importance sketching perspective in Sec-
tion 2. The theoretical results of RISRO are given in Sec-
tion 3. In Section 4, we present another interpretation
for RISRO from Riemannian manifold optimization.
The computational complexity of RISRO and its appli-
cations to low-rank matrix trace regression and phase
retrieval are discussed in Sections 5 and 6, respectively.
Numerical studies of RISRO and the comparison with
existing algorithms in the literature are presented in
Section 7. Conclusion and future work are given in
Section 8.

1.4. Notation
The following notation is used throughout this article.
Uppercase and lowercase letters (e.g., A,B,a,b), lower-
case boldface letters (e.g., u,v), and uppercase boldface
letters (e.g., U,V) are used to denote scalars, vectors, and
matrices, respectively. For any two series of numbers,
say {an} and {bn}, denote a �O(b) if there exists uniform
constants C > 0 such that an ⩽ Cbn, ∀n. For any a,b ∈ R,
let a ∧ b :�min{a,b},a ∨ b �max{a,b}. For any matrix
X ∈ R

p1×p2 with singular value decomposition
Pp1∧p2

i�1
σi(X)uiv�i , where σ1(X)Pσ2(X)P ⋯ Pσp1∧p2(X), let

Xmax(r) � Pr
i�1 σi(X)uiv�i be the best rank-r approxi-

mation of X and denote ‖X‖F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iσ
2
i (X)

q
and ‖X‖ �

σ1(X) as the Frobenius and spectral norm, respectively.
Let QR(X) be the Q part of the QR decomposition out-
come of X. We denote vec(X) ∈ R

p1p2 as the vectoriza-
tion of X by its columns. In addition, Ir is the r-by-r
identity matrix. Let Op,r � {U :U�U � Ir} be the set of
all p-by-r matrices with orthonormal columns. For any
U ∈Op,r, PU �UU� represents the orthogonal projector
onto the column space of U; we also note U⊥ ∈Op,p�r as
the orthonormal complement of U. We use bracket sub-
scripts to denote submatrices. For example, X[i1,i2] is the
entry ofX on the i1th row and i2th column;X[(r+1):p1,:] con-
tains the (r+ 1)th to the p1th rows of X. For any matrix
X, we use X† to denote its Moore–Penrose inverse. For
matricesU ∈ R

p1×p2 ,V ∈ R
m1×m2 , let

U⊗V �
U[1,1] ·V ⋯ U[1,p2] ·V

⋮ ⋮
U[p1,1] ·V ⋯ U[p1,p2] ·V

2
4

3
5 ∈ R

(p1m1)×(p2m2)

be their Kronecker product. Finally, for any given linear
operator L, we use L∗ to denote its adjoint and use
Ran(L) to denote its range space.

2. Recursive Importance Sketching for
Rank-Constrained Least Squares

In this section, we discuss the procedure and interpreta-
tions of RISRO and then compare it with existing algo-
rithms from a sketching perspective. The pseudocode of
RISRO is summarized in Algorithm 1.

2.1. RISRO Procedure and Recursive
Importance Sketching

In each iteration t � 1, 2, : : : , RISRO includes three steps:
1. We sketch each Ai (i � 1, : : : ,n) onto the subspace

spanned by [Ut ⊗Vt,Ut
⊥ ⊗Vt,Ut ⊗Vt

⊥], where Ut and
Vt span the column and row subspaces of Xt, respec-
tively. This yields the sketched importance covariates
Ut�AiVt,Ut�

⊥ AiVt,Ut�AiVt
⊥. See Figure 2, left panel,

Figure 2. (Color online) Illustration of Sketching Strategies of RISRO (this Work), Alter Mini (Jain et al. 2013, Hardt 2014), and
R2RILS (Bauch et al. 2021)

Notes. Here, Ai denotes the covariate matrix of the ith observation; Ut and Vt span the column and row subspaces of Xt, respectively. The 3*3
core covariate matrices (colored in gray) represent the sketching of Ai onto the column and row subspaces of Xt, the 7*3 thin covariate matrices
(colored in green) represent the sketching of Ai onto the perpendicular column subspace and row subspace of Xt, and the 3*7 fact covariate
matrices (colored in blue) represent the sketching of Ai onto the column subspace and perpendicular row subspace of Xt. In alter mini and
R2RILS, the sketched covariates are combined to represent the actual algorithmic implementation.
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for an illustration of the sketching scheme of RISRO.
Then, we construct the covariate maps AB : R

r×r → R
n,

AD1 : R
(p1�r)×r → R

n, andAD2 : R
r×(p2�r) → R

n: formatrix
“·,” let
[AB(·)]i � 〈 · ,Ut�AiVt〉, [AD1(·)]i � 〈 · ,Ut�

⊥ AiVt〉,
[AD2(·)]i � 〈 · ,Ut�AiVt

⊥〉, i � 1, : : : ,n: (4)

2. We solve a dimension-reduced least squares prob-
lem (5) (provided in the box of Algorithm 1) in which
the number of parameters is reduced to (p1 + p2 � r)r,
whereas the sample size remains n.

3. We update the sketching matrices Ut+1,Vt+1, and
Xt+1 in steps 6 and 7. By construction,Ut+1,Vt+1 contain
both the column and row spans of Xt+1.

Algorithm 1 (RISRO)
1: Input: A(·) : Rp1×p2 → R

n, y ∈ R
n, rank r, and ini-

tialization X0, which admits singular value decomposi-
tionU0S0V0�, whereU0 ∈Op1,r,V

0 ∈Op2,r,S
0 ∈ R

r×r.
2: for t � 0, 1, : : : do
3: Perform importance sketching on A and con-

struct the covariate maps AB : R
r×r → R

n, AD1 :
R

(p1�r)×r → R
n, andAD2 : R

r×(p2�r) → R
n: formatrix

“·,” let
[AB(·)]i � 〈 · ,Ut�AiVt〉,
[AD1(·)]i � 〈 · ,Ut�

⊥ AiVt〉,
[AD2(·)]i � 〈 · ,Ut�AiVt

⊥〉, i � 1, : : : ,n:

4: Solve the unconstrained least squares problem

(Bt+1,Dt+1
1 ,Dt+1

2 ) � argmin
B∈Rr×r,Di∈R(pi�r)×r, i�1, 2

‖y�AB(B)�AD1(D1)�AD2(D�
2 )‖22: (5)

5: Compute Xt+1
U � (UtBt+1 +Ut

⊥D
t+1
1 ) and Xt+1

V �
(VtBt+1� +Vt

⊥D
t+1
2 ).

6: Perform QR orthogonalization: Ut+1 �QR(Xt+1
U ),

Vt+1 �QR(Xt+1
V ):

7: Update Xt+1 � Xt+1
U (Bt+1)†Xt+1�

V .
8: end for

We give a high-level explanation of RISRO through
a decomposition of yi. Suppose yi � 〈Ai, X̄〉 + �̄i, where
X̄ is a rank-r target matrix with singular value decom-
position ŪS̄V̄� with Ū ∈Op1,r, S̄ ∈ R

r×r, and V̄ ∈Op2,r.
Then,

yi � 〈Ut�AiVt,Ut�X̄Vt〉 + 〈Ut�
⊥ AiVt,Ut�

⊥ X̄Vt〉
+ 〈Ut�AiVt

⊥,U
t�X̄Vt

⊥〉 + 〈Ut�
⊥ AiVt

⊥,U
t�
⊥ X̄Vt

⊥〉 + �̄i

:� 〈Ut�AiVt,Ut�X̄Vt〉 + 〈Ut�
⊥ AiVt,Ut�

⊥ X̄Vt〉
+ 〈Ut�AiVt

⊥,U
t�X̄Vt

⊥〉 + �ti : (6)

Here, �t :�A(PUt
⊥ X̄PVt

⊥) + �̄ ∈ R
n can be seen as the resi-

dual of the new regression model (6), and Ut�AiVt,Ut�
⊥

AiVt,Ut�AiVt
⊥ are exactly the importance covariates

constructed in (4). Let

B̃
t
:�Ut�X̄Vt, D̃

t
1 :�Ut�

⊥ X̄Vt, D̃
t�
2 :�Ut�X̄Vt

⊥: (7)

If �t � 0, we have that (B̃t
, D̃

t
1, D̃

t
2) is a solution of the

least squares in (5). Hence, we could set Bt+1 � B̃
t
,Dt+1

1 �
D̃

t
1,D

t+1
2 � D̃

t
2, and thus, Xt+1

U � X̄Vt,Xt+1
V � X̄�Ut. Fur-

thermore, if Bt+1 is invertible, then it holds that

Xt+1
U (Bt+1)�1Xt+1�

V � X̄Vt(Ut�X̄Vt)�1(X̄�Ut)� � X̄, (8)

which means X̄ can be exactly recovered by one iteration
of RISRO.

In general, �t ≠ 0. When the column spans of Ut,Vt

well-approximate the ones of Ū, V̄, that is, the column
and row subspaces on which the target parameter X̄
lies, we expect Ut�

⊥ X̄Vt
⊥ and �ti � 〈Ut�

⊥ AiVt
⊥,U

t�
⊥ X̄Vt

⊥〉 +
�̄i to have a small amplitude; then, Bt+1,Dt+1

1 ,Dt+1
2 , the

outcome of the least squares problem (5), can well-
approximate B̃

t
, D̃

t
1, D̃

t
2. In Lemma 1, we give a precise

characterization for this approximation. Before that, let
us introduce a convenient notation so that (5) can be
written in a more compact way.

Define the linear operator Lt as

Lt :W � W0 ∈ R
r×r W2 ∈ R

r×(p2�r)

W1 ∈ R
(p1�r)×r 0(p1�r)×(p2�r)

" #

→ [Ut Ut
⊥]

W0 W2

W1 0

� �
[Vt Vt

⊥]�, (9)

and it is easy to compute its adjoint L∗
t :M ∈ R

p1×p2 →
Ut�MVt Ut�MVt

⊥(Ut
⊥)�MVt 0

� �
. Then, the least squares prob-

lem in (5) can be written as

(Bt+1,Dt+1
1 ,Dt+1

2 ) � argmin
B∈Rr×r,Di∈R(pi�r)×r,i�1,2����
����y�ALt

B D�
2

D1 0

� �� �����
����
2

2
: (10)

Lemma 1 (Iteration Error Analysis for RISRO). Let X̄ be
any given target matrix. Recall the definition of �t �
�̄ +A(PUt

⊥ X̄PVt
⊥) from (6). If the operator L∗

tA
∗ALt is in-

vertible over Ran(L∗
t), then Bt+1,Dt+1

1 ,Dt+1
2 in (5) satisfy

Bt+1 � B̃
t
Dt+1�

2 � D̃
t�
2

Dt+1
1 � D̃

t
1 0

" #
� (L∗

tA
∗ALt)�1L∗

tA
∗�t, (11)

and

‖Bt+1 � B̃
t‖2F +

X2
k�1

‖Dt+1
k � D̃

t
k‖2F � ‖(L∗

tA
∗ALt)�1L∗

tA
∗�t‖2F:

(12)

In view of Lemma 1, the approximation errors of Bt+1,
Dt+1

1 ,Dt+1
2 to B̃

t
, D̃

t
1, D̃

t
2 are driven by the least squares

residual ‖(L∗
tA

∗ALt)�1L∗
tA

∗�t‖2F. This fact plays a key
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role in the proof for the high-order convergence theory
of RISRO; see later in Remark 7.

Remark 1 (Comparison with Randomized Sketching).
The importance sketching in RISRO is significantly
different from the randomized sketching in the litera-
ture (see surveys Mahoney 2011, Woodruff 2014, and
the references therein). The randomized sketching matri-
ces are often randomly generated and reduce the sample
size (n), the importance sketching matrices are determinis-
tically constructed under the supervision of y and reduce
the dimension of parameter space (p1p2). See Zhang et al.
(2020, sections 1.3 and 2) for more comparison of random-
ized and importance sketchings.

2.2. Comparison with More Algorithms in the
View of Sketching

In addition to RISRO, several classic algorithms for rank-
constrained least squares can be interpreted from the
recursive importance sketching perspective. Through the
lens of the sketching, RISRO exhibits advantages over
these existing algorithms.

We first focus on alter mini proposed and studied in
Hardt (2014), Jain et al. (2013), and Zhao et al. (2015).
SupposeUt is the left singular vectors of Xt, the outcome
of the tth iteration; alter mini solves the following least
squares problems to updateU andV:

V̌
t+1 � argmin

V∈Rp2×r

Xn
i�1

(yi � 〈Ai,UtV�〉)2

� argmin
V∈Rp2×r

Xn
i�1

(yi � 〈Ut�Ai,V�〉)2,

Ǔ
t+1 � argmin

U∈Rp1×r

Xn
i�1

(y� 〈Ai,U(Vt+1)�〉)2

� argmin
U∈Rp1×r

Xn
i�1

(y� 〈AiVt+1,U〉)2,

Vt+1 �QR(V̌t+1), Ut+1 �QR(Ǔt+1): (13)

Then, alter mini essentially solves least squares problems
with sketched covariates Ut�Ai,AiVt+1 to update V̌

t+1
,

Ǔ
t+1

alternatively and iteratively. The number of para-
meters of the least squares in (13) are rp2 and rp1 as
opposed to p1p2, the number of parameters in the origi-
nal least squares problem. See Figure 2, upper right
panel, for an illustration of the sketching scheme in alter
mini. Consider the following decomposition of yi:

yi � 〈Ai,PUt X̄〉 + 〈Ai,PUt
⊥X̄〉 + �̄i

� 〈Ut�Ai,Ut�X̄〉 + 〈Ai,PUt
⊥X̄〉 + �̄i

:� 〈Ut�Ai,Ut�X̄〉 + �̌ti , (14)

where �̌t :�A(PUt
⊥ X̄) + �̄ ∈ R

n. Define Ǎ
t ∈ R

n×p2r with
Ǎ[i,:] � vec(Ut�Ai). Similar to how Lemma 1 is proved,
we can show ‖V̌t+1� �Ut�X̄‖2F � ‖(Ǎt�

Ǎ
t)�1Ǎ

t�
�̌t‖22,

which implies the approximation error of Vt+1 �
QR(V̌t+1) (i.e., the outcome of one iteration of alter mini)
to V̄ (i.e., true row span of the target matrix X̄) is driven
by �̌t �A(PUt

⊥X̄) + �̄, that is, the residual of the least
squares problem (14). Recall that, for RISRO, Lemma 1
shows the approximation error of Vt+1 is driven by
�t �A(PUt

⊥X̄PVt
⊥) + �̄. Because ‖PUt

⊥ X̄PVt
⊥‖F ⩽ ‖PUt

⊥ X̄‖F,
the approximation error in per iteration of RISRO can be
smaller than the one of alter mini. Such a difference
between RISRO and alter mini is due to the following
fact: in alter mini, the sketching captures that the impor-
tance covariates correspond to only the row (or column)
span of Xt in updatingVt+1 (orUt+1), whereas the impor-
tance sketching of RISRO in (4) catches the importance
covariates from both the row and column spans of Xt. As
a consequence, alter mini iterations yield first order con-
vergence, whereas RISRO iterations render high-order
convergence as is established in Section 3.

Remark 2. Recently, Kümmerle and Sigl (2018) propose
a harmonic mean iterative reweighted least squares
(HM-IRLS) method for low-rank matrix recovery: they
specifically solve minX∈Rp1×p2 ‖X‖qq subject to y � A(X),
where ‖X‖q � (Piσ

q
i (X))1=q is the Schatten-q norm of the

matrix X. Compared with the original IRLS (Fornasier
et al. 2011, Mohan and Fazel 2012), which only involves
either the column span or the row span of Xt in con-
structing the reweighting matrix, HM-IRLS leverages
both the column and row spans of Xt in constructing
the reweighting matrix per iteration and performs bet-
ter. Such a comparison of HM-IRLS versus IRLS shares
the same spirit as RISRO versus alter mini: the impor-
tance sketching of RISRO simultaneously captures the
information of both column and row spans of Xt per
iteration and achieves a better performance. Utilizing
both row and column spans of Xt simultaneously is
the key to achieve high-order convergence performance
by RISRO.

Another example is the rank-2r iterative least squares
(R2RILS) proposed in Bauch et al. (2021) for solving ill-
conditioned matrix completion problems. In particular, at
the tth iteration, step 1 of R2RILS solves the following
least squares problem:

min
M∈Rp1×r,N∈Rp2×r

X
(i, j)∈Ω

{(UtN� +MVt� �X)[i,j]}2, (15)

where Ω is the set of index pairs of the observed
entries. In the matrix completion setting, it turns out
the following equivalence holds (proof given in the
online appendix):

argmin
M∈Rp1×r,N∈Rp2×r

X
(i, j)∈Ω

{(UtN� +MVt� �X)[i,j]}2

� argmin
M∈Rp1×r,N∈Rp2×r

X
(i, j)∈Ω

(〈Ut�Aij ,N�〉 + 〈M,AijVt〉�X[i,j])2,

(16)
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where Aij ∈ R
p1×p2 is the special covariate in matrix com-

pletion satisfying (Aij)[k,l] � 1 if (i, j) � (k, l) and (Aij)[k,l] � 0
otherwise. This equivalence reveals that the least squares
step (15) in R2RILS can be seen as an implicit sketched
least squares problem similar to (5) and (13) with cov-
ariatesUt�Aij and AijVt for (i, j) ∈Ω.

We give a pictorial illustration for the sketching
interpretation of R2RILS on the bottom right part of
Figure 2. Different from the sketching in RISRO,
R2RILS incorporates the core sketch Ut�AiVt twice,
which results in the rank deficiency in the least squa-
res problem (15) and brings difficulties in both imple-
mentation and theoretical analysis. RISRO overcomes
this issue by performing a better designed sketching
and covers more general low-rank matrix recovery
settings than R2RILS. With the new sketching scheme,
we are able to give a new and solid theory for RISRO
with high-order convergence.

3. Theoretical Analysis
In this section, we provide convergence analysis for
the proposed algorithm. For technical convenience, we
assume A satisfies the RIP (Candès 2008). The RIP con-
dition, first introduced in compressed sensing, is widely
used as one of the most standard assumptions in the
low-rank matrix recovery literature (Jain et al. 2010;
Recht et al. 2010; Candès and Plan 2011; Cai and Zhang
2013, 2014; Chen and Wainwright 2015; Zhao et al. 2015;
Tu et al. 2016). It also plays a critical role in analyzing the
landscape of the rank-constrained optimization problem
(1) (Bhojanapalli et al. 2016, Ge et al. 2017, Zhu et al.
2018, Zhang et al. 2019, Uschmajew and Vandereycken
2020). On the other hand, RIP is only a sufficient but not
necessary condition for the convergence of RISRO. We
illustrate later in several examples that RISRO converges
quadratically, whereas RIP completely fails.

Definition 1 (RIP). Let A : Rp1×p2 → R
n be a linear map.

For every integer r with 1⩽ r⩽min(p1,p2), define the
r-restricted isometry constant to be the smallest num-
ber Rr such that (1�Rr)‖Z‖2F ⩽ ‖A(Z)‖22 ⩽ (1+Rr)‖Z‖2F
holds for all Z of rank at most r. And A is said to sat-
isfy the r-restricted isometry property (r�RIP) if 0⩽
Rr < 1.

The RIP condition provably holds when A has inde-
pendent random sub-Gaussian design or A is a random
projection (Recht et al. 2010, Candès and Plan 2011). In
addition, this definition of RIP can be equivalently stated
in a matrix format: define Ã � [vec(A1),: : : ,vec(An)]�
andA(Z) � Ãvec(Z). Then, thatA satisfies the RIP condi-
tion is equivalent to (1�Rr)‖vec(Z)‖22 ⩽ ‖Ã(vec(Z))‖22 ⩽(1+Rr)‖vec(Z)‖22 for all matrices Z of rank at most r. By
definition, Rr ⩽Rr′ for any r⩽ r′.

By assuming RIP for A, we can show that the linear
operator L∗

tA
∗ALt mentioned in Lemma 1 is always

invertible over Ran(L∗
t) (i.e., the least squares (5) has a

unique solution). The following lemma gives explicit lower
and upper bounds for the spectrum of this operator.

Lemma 2 (Bounds for the Spectrum of L�
tA�ALt). Recall

the definition of Lt in (9). It holds that

‖Lt(M)‖F � ‖M‖F, ∀M ∈ Ran(L∗
t): (17)

Suppose the linear map A satisfies the 2r-RIP. Then, it
holds that, for any matrixM ∈ Ran(L∗

t),
(1�R2r)‖M‖F ⩽ ‖L∗

tA
∗ALt(M)‖F ⩽ (1+R2r)‖M‖F:

Remark 3 (Bounds for the Spectrum of ðL�
tA�ALtÞ21).

By the relationship of the spectrum of an operator and
its inverse, from Lemma 2, we also have that the spec-
trum of (L∗

tA
∗ALt)�1 is lower and upper bounded by

1
(1+R2r) and

1
(1�R2r), respectively.

In the following Proposition 1, we bound the itera-
tion approximation error given in Lemma 1.

Proposition 1 (Upper Bound for Iteration Approximation
Error). Let X̄ be a given target rank-r matrix and �̄ �
y�A(X̄). Suppose that A satisfies the 2r-RIP. Then, at the
tth iteration of RISRO, the approximation error (12) has
the following upper bound:

‖(L∗
tA

∗ALt)�1L∗
tA

∗�t‖2F
⩽ R2

3r‖Xt � X̄‖2‖Xt � X̄‖2F
(1�R2r)2σ2r (X̄)

+ ‖L∗
tA

∗(�̄)‖2F
(1�R2r)2

+ ‖L∗
tA

∗(�̄)‖F 2R3r‖Xt � X̄‖‖Xt � X̄‖F
σr(X̄)(1�R2r)2

: (18)

Note that Proposition 1 is rather general in the sense that
it applies to any X̄ of rank r, and we pick different
choices of X̄ depending on our purposes. For example,
in studying the convergence of RISRO, for example, the
upcoming Theorem 1, we treat X̄ as a stationary point,
and in the setting of estimating the model parameter in
matrix trace regression, we take X̄ to be the ground truth
(see Theorem 3).

Now, we are ready to establish the deterministic con-
vergence theory for RISRO. For Problem (1), we use the
following definition of stationary points: a rank-r matrix
X̄ is said to be a stationary point of (1) if ∇f (X̄)�Ū � 0
and ∇f (X̄)V̄ � 0, where ∇f (X̄) �A∗(A(X̄)� y), and Ū, V̄
are the left and right singular vectors of X̄. See also Ha
et al. (2020). In Theorem 1, we show that, given any tar-
get stationary point X̄ and proper initialization, RISRO
has a local quadratic-linear convergence rate in general
and quadratic convergence rate if y �A(X̄).
Theorem 1 (Local Quadratic-Linear and Quadratic Con-
vergence of RISRO). Let X̄ be a stationary point to Prob-
lem (1) and �̄ � y�A(X̄). Suppose that A satisfies the
2r-RIP, and the initialization X0 satisfies

‖X0 � X̄‖F ⩽ 1
4

∧
1�R2r

4
ffiffiffi
5

√
R3r

� �
σr(X̄), (19)

Luo et al.: Importance Sketching for Rank Constrained Least Squares
Operations Research, 2024, vol. 72, no. 1, pp. 237–256, © 2023 INFORMS 243

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

52
.1

6.
19

1.
12

3]
 o

n 
19

 A
pr

il 
20

24
, a

t 1
2:

32
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



and ‖A∗(�̄)‖F ⩽ 1�R2r

4
ffiffi
5

√ σr(X̄). Then, we have {Xt}, the sequence
generated by RISRO (Algorithm 1), converges linearly to X̄:
‖Xt+1 � X̄‖F ⩽ 3

4 ‖Xt � X̄‖F, ∀tP0:
More precisely, it holds that ∀tP0:

‖Xt+1 � X̄‖2F ⩽
5‖Xt � X̄‖2

(1�R2r)2σ2r (X̄)
· (R2

3r‖Xt � X̄‖2F + 4R3r‖A∗(�̄)‖F‖Xt � X̄‖F + 4‖A∗(�̄)‖2F ):
(20)

In particular, if �̄ � 0, then {Xt} converges quadratically to
X̄ as

‖Xt+1 � X̄‖F ⩽
ffiffiffi
5

√
R3r

(1�R2r)σr(X̄) ‖X
t � X̄‖2F, ∀tP0:

Remark 4 (Quadratic-Linear and Quadratic Conver-
gence of RISRO). We call the convergence in (20)
quadratic-linear because the sequence {Xt} generated
by RISRO exhibits a phase transition from quadratic
to linear convergence: when ‖Xt � X̄‖F � ‖A∗(�̄)‖F, the
algorithm has a quadratic convergence rate; when Xt

becomes close to X̄ such that ‖Xt � X̄‖F ⩽ c‖A∗(�̄)‖F for
some c > 0, the convergence rate becomes linear. Even
though the ultimate convergence of RISRO is linear to
a stationary point in the noisy setting, we show later
in Section 6.1 that RISRO achieves quadratic conver-
gence in estimating the underlying parameter matrix
in statistical applications. Moreover, as �̄ becomes
smaller, the stage of quadratic convergence becomes
longer (see Section 7.1 for a numerical illustration of
this convergence pattern). In the extreme case �̄ � 0,
Theorem 1 covers the widely studied matrix sensing
problem under the RIP framework (Jain et al. 2010,
Recht et al. 2010, Chen and Wainwright 2015, Zhao
et al. 2015, Zheng and Lafferty 2015, Tu et al. 2016,
Park et al. 2018). It shows that, as long as the initializa-
tion error is within a constant factor of σr(X̄), RISRO
enjoys quadratic convergence to the target matrix X̄. To
the best of our knowledge, we are among the first to give
quadratic-linear algorithmic convergence guarantees for
general rank-constrained least squares and quadratic con-
vergence for matrix sensing. Recently, Charisopoulos et al.
(2021) formulated (1) as a nonconvex composite optimiza-
tion problem based on X � RL� factorization and showed
that the prox-linear algorithm (Burke 1985, Lewis and
Wright 2016) achieves local quadratic convergence when
�̄ � 0. In each iteration therein, a carefully tuned convex
program needs to be solved exactly, and the tuning
parameter relies on the unknown weak convexity param-
eter of the composite objective function. In contrast, the
proposed RISRO is tuning-free, only solves a dimension-
reduced least squares in each step, and can be as cheaply
as many first order methods. See Section 5 for a detailed
discussion on the computational complexity of RISRO.

Moreover, a quadratic-linear convergence rate also
appears in several other methods under different set-
tings: Pilanci and Wainwright (2017) study the local
convergence of the randomized Newton sketch for
objectives with strong convexity and smooth properties;
Erdogdu and Montanari (2015) consider the subsampled
Newton method to optimize an objective function in the
form of a sum of convex functions and establish their con-
vergence theory with the well-conditioned subsampled
Hessian. We consider the nonconvex matrix optimization
problem (1) and use the recursive importance sketching
method. Our quadratic-linear convergence result can be
boosted to quadratic when �̄ � 0.

Remark 5 (Initialization). The convergence theory in
Theorem 1 requires a good initialization condition.
Practically, the spectral method often provides a suffi-
ciently good initialization that meets the requirement
in (19) in many statistical applications. In Sections 6
and 7, we illustrate this point from two applications:
matrix trace regression and phase retrieval.

Remark 6 (Small Residual Condition in Theorem 1). In
addition to the initialization condition, the small resid-
ual condition ‖A∗(�̄)‖F ⩽ 1�R2r

4
ffiffi
5

√ σr(X̄) is also needed in
Theorem 1. This condition essentially means that the
signal strength at point X̄ needs to dominate the noise.
If �̄ � y�A(X̄) � 0, then the aforementioned small
residual condition holds automatically.

Remark 7. We provide a proof sketch of Theorem 1
and discuss our technical contributions therein.

Step 1. We bound ‖L∗
tA

∗(�̄)‖F ⩽ 4‖Xt�X̄‖2
σ2r (X̄) ‖A∗(�̄)‖2F and

then apply Proposition 1 to obtain an upper bound for
the approximation error in (12):

‖(L∗
tA

∗ALt)�1L∗
tA

∗�t‖2F ⩽
‖Xt � X̄‖2

(1�R2r)2σ2r (X̄)
· (R2

3r‖Xt � X̄‖2F + 4‖A∗(�̄)‖2F + 4R3r‖A∗(�̄)‖F‖Xt � X̄‖F):
(21)

Step 2. We use induction to show the following
three claims:

(C1) max ‖sinΘ(Ut, Ū)‖, ‖sinΘ(Vt, V̄)‖� 	
⩽ 1

2
;

(C2) Bt+1 in (5) is invertible;

(C3) ‖Xt+1 � X̄‖2F ⩽
5‖Xt � X̄‖2

(1� R2
2r)σ2r (X̄)

(R2
3r‖Xt � X̄‖2F + 4R3r‖A∗(�̄)‖F‖Xt � X̄‖F + 4‖A∗(�̄)‖2F)

⩽ 9
16

‖Xt � X̄‖2F:

Here, (C2) means the iterates Xt are always rank-r.
This fact is useful in Section 4 in connecting RISRO
to Riemannian optimization on fixed-rank matrix
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manifolds. (C2) is proved by (C1) and Lemma 1. In prov-
ing (C3), we introduce an intermediate quantity ρt+1 �
max{‖Dt+1

1 (Bt+1)�1‖, ‖(Bt+1)�1Dt+1�
2 ‖} and obtain

‖Xt+1 � X̄‖2F

�
�����
����� B

t+1 � B̃
t

Dt+1�
2 � D̃

t�
2

Dt+1
1 � D̃

t
1 Dt+1

1 (Bt+1)�1Dt+1�
2 � D̃

t
1(B̃t)�1D̃

t�
2

�����
�����
2

F

⩽
(a)

5‖(L∗
tA

∗ALt)�1L∗
tA

∗�t‖2F, (22)

Here, (a) is by the induction assumptions, Lemma 1, and
Lemma 7. Finally, (C3) follows by plugging (21) into (22)
and the induction assumptions, and this proves the main
result of Theorem 1.

4. A Riemannian Manifold Optimization
Interpretation of RISRO

The superior performance of RISRO yields the following
question: is there a connection of RISRO to any class of
optimization algorithms in the literature?

In this section, we give an affirmative answer to this
question. We show RISRO can be viewed as a Riema-
nnian optimization algorithm on the manifold Mr :�
{X ∈ R

p1×p2 |rank(X) � r}. We find the sketched least squ-
ares in (5) of RISRO actually solves the Fisher scoring or
Riemannian Gauss–Newton equation, and step 7 in
RISRO performs a type of retraction under the frame-
work of Riemannian optimization.

Riemannian optimization concerns optimizing a real-
valued function f defined on a Riemannian manifoldM.
One commonly encountered manifold is a submanifold
of R

n. Under such circumstances, a manifold can be
viewed as a smooth subset of R

n. When a smooth-
varying inner product is further defined on the subset,
the subset together with the inner product is called a Rie-
mannian manifold. We refer to Absil et al. (2008) for the
rigorous definition of Riemannian manifolds. Optimiza-
tion on a Riemannian manifold often relies on the notion
of Riemannian gradient/Riemannian Hessian (which are
used to find a search direction) and the notion of retrac-
tion (which is defined for the motion of iterates on the
manifold). The remainder of this section describes the
required Riemannian optimization tools and the connec-
tion of RISRO to Riemannian optimization.

It is shown in Lee (2013, example 8.14) that the setMr

is a smooth submanifold of Rp1×p2 and the tangent space
is also given therein. The result is given in Proposition 2
for completeness.

Proposition 2 (Lee 2013, Example 8.14). Mr � {X ∈
R

p1×p2 : rank(X) � r} is a smooth embedded submanifold of
dimension (p1 + p2 � r)r. Its tangent space TXMr at X ∈
Mr with the singular value decomposition X �USV�

(U ∈Op1,r and V ∈Op2,r) is given by

TXMr � [U U⊥] R
r×r

R
r×(p2�r)

R
(p1�r)×r 0(p1�r)×(p2�r)

� �
[V V⊥]�


 �
:

(23)
The Riemannian metric of Mr that we use throughout
this paper is the Euclidean inner product, that is, 〈U,V〉 �
trace(U�V).

In the Euclidean setting, the update formula in an iter-
ative algorithm is Xt +αηt, where α is the step size and
ηt is a descent direction. However, in the framework of
Riemannian optimization, Xt + αηt is generally neither
well-defined nor lying in the manifold. To overcome this
difficulty, the notion of retraction is used; see, for exam-
ple, Absil et al. (2008). Considering the manifold Mr,
we have the definition that a retraction R is a smooth
map from TMr to Mr satisfying (i) R(X, 0) � X and (ii)
d
dtR(X, tη) | t�0 � η for all X ∈Mr and η ∈ TXMr, where
TMr � {(X,TXMr) : X ∈Mr} is the tangent bundle of
Mr. The two conditions guarantee that R(X, tη) stays in
Mr and R(X, tη) is a first order approximation of X+ tη
at t � 0.

Next, we show that step 7 in Algorithm 1 performs
the orthographic retraction on the manifold of fixed-rank
matrices given in Absil and Malick (2012). Suppose at
iteration t+ 1 Bt+1 is invertible (this is true under the RIP
framework; see Remark 7 and step 2 in the proof of The-
orem 1). We can show by some algebraic calculations
that the update Xt+1 in step 7 can be rewritten as

Xt+1 � Xt+1
U (Bt+1)�1Xt+1�

V

� [Ut Ut
⊥]

Bt+1 Dt+1�
2

Dt+1
1 Dt+1

1 (Bt+1)�1Dt+1�
2

" #
[Vt Vt

⊥]�:

(24)

Let ηt ∈ TXtMr be the update direction and Xt + ηt has
the following representation:

Xt + ηt � [Ut Ut
⊥]

Bt+1 Dt+1�
2

Dt+1
1 0

" #
[Vt Vt

⊥]�: (25)

Comparing (24) and (25), we can view the update of
Xt+1 from Xt + ηt as simply completing the 0 matrix in
Bt+1 Dt+1�

2
Dt+1

1 0

� �
by Dt+1

1 (Bt+1)�1Dt+1�
2 . This operation

maps the tangent vector on TXtMr back to the manifold
Mr, and it turns out that it coincides with the ortho-
graphic retraction

R(Xt,ηt) � [Ut Ut
⊥]

Bt+1 Dt+1�
2

Dt+1
1 Dt+1

1 (Bt+1)�1Dt+1�
2

" #
[Vt Vt

⊥]�

(26)
on the set of fixed-rank matrices (Absil and Malick 2012).
Therefore, we have Xt+1 � R(Xt,ηt).

Luo et al.: Importance Sketching for Rank Constrained Least Squares
Operations Research, 2024, vol. 72, no. 1, pp. 237–256, © 2023 INFORMS 245

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

52
.1

6.
19

1.
12

3]
 o

n 
19

 A
pr

il 
20

24
, a

t 1
2:

32
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Remark 8. Although the orthographic retraction de-
fined in Absil and Malick (2012) requires that Ut and
Vt are left and right singular vectors of Xt, one can
verify that, even if the Ut and Vt are not exactly the
left and right singular vectors but satisfy Ut � Ũ

t
O,

Vt � Ṽ
t
Q, then the mapping (26) is equivalent to the

orthographic retraction in Absil and Malick (2012).
Here, O,Q ∈Or,r, and Ũ

t
and Ṽ

t
are left and right sin-

gular vectors of Xt.
The Riemannian gradient of a smooth function f :

Mr → R at X ∈Mr is defined as the unique tangent
vector grad f (X) ∈ TXMr such that 〈grad f (X),Z〉 �
D f (X)[Z], ∀Z ∈ TXMr, where Df (X)[Z] denotes the
directional derivative of f at point X along the direc-
tion Z. Because Mr is an embedded submanifold of
R

p1×p2 and the Euclidean metric is used, from Absil
et al. (2008, (3.37)), we know, in our problem,

grad f (X) � PTX(A∗(A(X)� y)), (27)

and here, PTX is the orthogonal projector onto the tangent
space at X defined as follows:

PTX(Z) � PUZPV +PU⊥ZPV +PUZPV⊥ , ∀Z ∈ R
p1×p2 ,

(28)

where U ∈Op1,r,V ∈Op2,r are the left and right singular
vectors of X.

Next, we introduce the Riemannian Hessian. The Rie-
mannian Hessian of f at X ∈Mr is the linear map
Hess f (X) of TXMr onto itself defined as Hess f (X)[Z] �
∇Zgrad f , ∀Z ∈ TXMr, where ∇ is the Riemannian con-
nection on Mr (Absil et al. 2008, section 5.3). Lemma 3
gives an explicit formula for Riemannian Hessian in our
problem.

Lemma 3 (Riemannian Hessian). Consider f (X) in (1). If
X ∈Mr has singular value decomposition USV� and Z ∈
TXMr has representation

Z � [U U⊥] ZB Z�
D2

ZD1 0

� �
[V V⊥]�,

then the Hessian operator in this setting satisfies

Hess f (X)[Z] � PTX (A∗(A(Z))) +PU⊥A
∗(A(X)� y)

VpS
�1V�PV +PUUS�1U�

p A
∗(A(X)� y)PV⊥ ,

(29)
whereUp �U⊥ZD1 ,Vp �V⊥ZD2 .

Next, we show that the update direction ηt, implicitly
encoded in (25), finds the Riemannian Gauss–Newton
direction in the manifold optimization of Mr. Similar to
the classic Newton’s method, at the tth iteration, the Rie-
mannian Newton method aims to find the Riemannian
Newton direction ηtNewton in TXtMr that solves the fol-
lowing Newton equation:

�grad f (Xt) �Hess f (Xt)[ηtNewton]: (30)

If the residual (y�A(Xt)) is small, the last two terms in
Hessf (Xt)[η] of (29) are expected to be small, which
means we can approximately solve the Riemannian New-
ton direction via

�grad f (Xt) � PTXt
(A∗(A(η))), η ∈ TXtMr: (31)

In fact, Equation (31) has an interpretation from the
Fisher scoring algorithm. Consider the statistical setting
y �A(X) + �, where X is a fixed low-rank matrix and
�i ~i:i:d:N(0,σ2). Then, for any η,

{E(Hess f (X)[η])} |X�Xt � PTXt
(A∗(A(η))),

where, on the left-hand side, the expression is evaluated
at Xt after taking expectation. In the literature, the Fisher
scoring algorithm computes the update direction via
solving the modified Newton equation, which replaces
the Hessian with its expected value (Lange 2010), that is,

{E(Hess f (X)[η])} |X�Xt ��grad f (Xt), η ∈ TXtMr,

which exactly becomes (31) in our setting. Meanwhile, it
is not difficult to show that the Fisher scoring algorithm
here is equivalent to the Riemannian Gauss–Newton
method for solving nonlinear least squares; see Lange
(2010, section 14.6) and Absil et al. (2008, section 8.4).
Thus, η that solves Equation (31) is also the Riemannian
Gauss–Newton direction.

It turns out that the update direction ηt (25) of RISRO
solves the Fisher scoring or Riemannian Gauss–Newton
equation (31).

Theorem 2. Let {Xt} be the sequence generated by RISRO
under the same assumptions as in Theorem 1. Then, for all
tP0, the implicitly encoded update direction ηt in (25)
solves the Riemannian Gaus–Newton equation (31).

Theorem 2 together with the retraction explanation in
(26) establishes the connection of RISRO and Riemannian
manifold optimization. Following this connection, we
further show that each ηt is always a decent direction in
the next Proposition 3. This fact is useful in boosting the
local convergence of RISRO to the global convergence
discussed in Remark 11.

Proposition 3. For all tP0, the update direction ηt ∈
TXtMr in (25) satisfies 〈gradf (Xt),ηt〉 < 0, that is, ηt is a
descent direction. If A satisfies the 2r-RIP, then the direc-
tion sequence {ηt} is gradient related.
Remark 9. The convergence of Riemannian Gauss–
Newton is studied in a recent work (Breiding and
Vannieuwenhoven 2018). Our results are significantly
different from and offer improvements to Breiding and
Vannieuwenhoven (2018) in the following ways. First,
Breiding and Vannieuwenhoven (2018) consider a more
general Riemannian Gauss–Newton setting, whereas their
convergence results are established for a local minimum,
which is a stronger and less practical requirement than
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the stationary point assumptionwe need. Second, the con-
vergence rate in Breiding and Vannieuwenhoven (2018)
includes several unspecified constants, whereas we man-
age to work out all constants explicitly in our statement.
Third, the local convergence radius in Breiding and Van-
nieuwenhoven (2018) does not specify the dependence on
the rth singular value of the target matrix, whereas our
result does. Fourth, our recursive importance sketching
framework provides new sketching interpretations for
several classic algorithms for rank-constrained least squ-
ares. Finally, in Section 6, we also apply RISRO in popular
statistical models and show RISRO achieves quadratic
convergence in terms of estimation. It is, however, not
immediately clear how to utilize the results in Breiding
and Vannieuwenhoven (2018) in these statistical settings.

Remark 10. In addition to providing an interpretation
of the superiority of RISRO, the Riemannian Gauss–
Newton perspective developed in this section can in-
spire algorithmic developments in more general settings.
For example, consider a general constrained optimization
programming: minX∈M f (X), where M is an embedded
submanifold of RN and f is the restriction of a general
twice-differentiable objective in the ambient space to
M. Although importance sketching is hard to define for
this setting, the Riemannian Gauss–Newton equation in-
spires to compute η ∈ TXtM by solving PTXt

∇2f (Xt)[η] �
� gradf (Xt) and then updating the iterate as Xt+1 �
R(Xt,η), where R(·, ·) is a retraction operator ontoM. It is
interesting to investigate the behavior of this algorithm
from both optimization and statistical perspectives.

Meanwhile, the recursive sketching perspective also
provides solutions to a wider range of constrained
optimization problems. For example, one can replace
the l2 loss, that is, the least squares in Equation (5), by
other loss functions, such as the l1 loss, Huber loss, or
logistic loss, to handle different types of error corrup-
tions and develop more robust algorithms.

Remark 11 (Global Convergence of RISRO). By the
classic theory of Riemannian optimization, the estab-
lished connection of RISRO and Riemannian Gauss–
Newton implies that vanilla RISRO may not converge
when the RIP or initialization condition fails. On the
other hand, Absil et al. (2008, section 8.4) suggests
that, by adding or modifying the algorithm with certain
line search or trust-region schemes, global convergence of
Riemannian Gauss–Newton from any initialization to
a stationary point can be guaranteed under proper
assumptions. To be more specific, based on the

Riemannian Gauss–Newton equation in (31) and The-
orem 2, the Riemannian Gauss–Newton direction at
iteration t satisfies

ηt � arg min
η∈TXtMr

‖APTXt
(Xt + η)� y‖22

� (PTXt
A∗APTXt

)�1PTXt
A∗(y�A∗(Xt)): (32)

After calculating ηt, we can update Xt to Xt + ηt.
We can equip the algorithm with line search and

update Xt to Xt +αtη
t, where αt is determined by

some line search scheme, such as the Armijo method
(Absil et al. 2008, section 4.3). Because the update
direction ηt is gradient-related as shown in Proposi-
tion 3 under the RIP condition, this modified line
search method has a guaranteed global convergence
property as shown in Absil et al. (2008, theorem 4.3.1).

We can also apply the trust region method to
achieve global convergence. Specifically, we calculate
the update direction as

η̃t � arg min
η∈TXtMr, η ⩽ Δt

‖APTXt
(Xt + η)� y‖22

for some radius Δt > 0. Then, if Δt is properly chosen
such that η̃t guarantees sufficient decrease, the global
convergence of this trust region method can be achieved
under proper assumptions (Absil et al. 2008, theorem
7.4.2).

5. Computational Complexity of RISRO
In this section, we discuss the computational complexity
of RISRO. Suppose p1 � p2 � p and the computational
complexity of RISRO per iteration is O(np2r2 + (pr)3) in
the general setting. A comparison of the computational
complexity of RISRO and other common algorithms is
provided in Table 1. Here, the main complexity of RISRO
and alter mini is from solving the least squares. The
main complexity of the singular value projection (SVP)
(Jain et al. 2010) and gradient descent (Tu et al. 2016) is
from computing the gradient. From Table 1, we can see
that RISRO has the same per-iteration complexity as alter
mini and comparable complexity with SVP and GD
when nPpr, and r is much less than n and p. On the
other hand, RISRO and alter mini are tuning-free,
whereas a proper step size is crucial for SVP and GD
to have fast convergence: the convergence theory of
SVP and GD are often established when the step size
is chosen to be smaller than a hard-to-find threshold;
there are several practical ways to determine this step
size, and one needs to select the best one based on the

Table 1. Computational Complexity per Iteration and Convergence Rate for Alter Mini (Jain et al.
2013), SVP (Jain et al. 2010), GD (Tu et al. 2016), and RISRO

Alter mini SVP GD RISRO (this work)

Complexity per iteration O(np2r2 + (pr)3) O(np2) O(np2) O(np2r2 + (pr)3)
Convergence rate Linear Linear Linear Quadratic-(linear)
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data (Zheng and Lafferty 2015), which may cost extra
time. Finally, RISRO enjoys a high-order convergence
as we show in Section 3, and the convergence rates of
all other algorithms are limited to being linear.

The main computational bottleneck of RISRO is solv-
ing the least squares, which can be alleviated by using
iterative linear system solvers, such as the (precondi-
tioned) conjugate gradient method when the linear oper-
ator A has special structures. Such special structures
occur, for example, in the matrix completion problem (A
is sparse) (Vandereycken 2013), phase retrieval for X-ray
crystallography imaging (A involves fast Fourier trans-
forms) (Huang et al. 2017b), and blind deconvolution for
imaging deblurring (A involves fast Fourier transforms
and Haar wavelet transforms) (Huang and Hand 2018).

To utilize these structures, we introduce an intrinsic
representation of tangent vectors in Mr: if U,V are the
left and right singular vectors of a rank-r matrix X, an
orthonormal basis of TXMr can be(

[U U⊥] eie�j 0r×(p�r)
0(p�r)×r 0(p�r)×(p�r)

� �
[V V⊥]�,

i � 1, : : : , r, j � 1, : : : , r

)
∪(

[U U⊥] 0r×r eiẽ�j
0(p�r)×r 0(p�r)×(p�r)

� �
[V V⊥]�,

i � 1, : : : , r, j � 1, : : : ,p� r

)
∪(

[U U⊥] 0r×r 0r×(p�r)
ẽie�j 0(p�r)×(p�r)

� �
[V V⊥]�,

i � 1, : : : ,p� r, j � 1, : : : , r

)
,

where ei and ẽi denote the ith canonical basis of Rr and
R

p�r, respectively. It follows that any tangent vector in
TXMr can be uniquely represented by a coefficient vec-
tor in R

(2p�r)r via this basis. This representation is called
the intrinsic representation (Huang et al. 2017a). Com-
puting the intrinsic representations of a Riemannian gra-
dient can be computationally efficient. For example, the
complexity of computing the Riemannian gradient in
matrix completion is O(nr+ pr2), and its intrinsic re-
presentation can be computed by additional O(pr2)
operations (Vandereycken 2013). The complexities of
computing intrinsic representations of the Riemannian
gradients of the phase retrieval and blind deconvolution
are both O(n log(n)r+ pr2) (Huang et al. 2017b, Huang
and Hand 2018).

By Theorem 2, the least squares problem (5) of RISRO
is equivalent to solving η ∈ TXtMr such that PTXt

A∗
(A(η)) ��gradf (Xt). Reformulating this equation by in-
trinsic representation yields

�grad f (Xt) � PTXt
A∗(A(η)) ⇒�u � B∗

X(A∗(A(BXv))), (33)

where u,v are the intrinsic representations of gradf (Xt)
and η, the mapping BX : R(2p�r)r → TXMr ⊂ R

p×p con-
verts an intrinsic representation to the corresponding
tangent vector, and B∗

X : Rp×p → R
(2p�r)r is the adjoint

operator of BX. The computational complexity of using
the conjugate gradient method to solve (33) is deter-
mined by the complexity of evaluating the operator B∗

X ◦(A∗A) ◦BX on a given vector. With the intrinsic repre-
sentation, it can be shown that this evaluation costs
O(nr+ pr2) in matrix completion and O(n log(n)r+ pr2)
in phase retrieval and blind deconvolution. Thus, when
solving (33) via the conjugate gradient method, the com-
plexity is O(k(nr+ pr2)) in the matrix completion and
O(k(n log(n)r+ pr2)) in the phase retrieval and blind
deconvolution, where k is the number of conjugate gradi-
ent iterations and is provably at most (2p� r)r. Hence,
for special applications, such as matrix completion, phase
retrieval, and blind deconvolution, by using the conju-
gate gradient method with the intrinsic representation,
the per-iteration complexity of RISRO can be greatly
reduced. This point will be further exploited in our
future research.

6. Recursive Importance Sketching Under
Statistical Models

In this section, we study the applications of RISRO in
machine learning and statistics. We specifically investi-
gate the low-rank matrix trace regression and phase
retrieval, whereas our key ideas can be applied to more
problems. For the execution of RISRO, we assume that
some estimate for the rank of the target parameter
matrix, denoted by r, is available. In many statistical
applications, such as phase retrieval and blind deconvo-
lution, this assumption trivially holds as the parameter
matrix is known to be rank-one. In other applications,
whereas the rank of the parameter is unknown, it is gen-
erally not difficult to obtain a rough estimate given the
domain knowledge. Then, we can optimize over the set
of fixed-rank matrices using the formulation of (1) and
dynamically update the selected rank (see, e.g., Vander-
eycken and Vandewalle 2010, Zhou et al. 2016).

6.1. Low-Rank Matrix Trace Regression
Consider the low-rank matrix trace regression model:

yi � 〈Ai,X∗〉 + �i, for 1⩽ i⩽ n, (34)

where X∗ ∈ R
p1×p2 is the true model parameter to be esti-

mated. We estimate X∗ by solving (1), where r in the
rank constraint satisfies r⩽ rank(X∗), that is, r is an esti-
mate of rank(X∗).

The following Theorem 3 shows RISRO converges
quadratically to the best rank-r approximation of X∗, that
is, X∗

max(r) up to some statistical error given a proper ini-
tialization. Under the Gaussian ensemble design, RISRO

Luo et al.: Importance Sketching for Rank Constrained Least Squares
248 Operations Research, 2024, vol. 72, no. 1, pp. 237–256, © 2023 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

52
.1

6.
19

1.
12

3]
 o

n 
19

 A
pr

il 
20

24
, a

t 1
2:

32
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



with spectral initialization achieves the minimax optimal
estimation error rate.

Theorem 3 (RISRO in Matrix Trace Regression). Con-
sider the low-rank matrix trace regression problem (34).
Define �̃i :� �i + 〈Ai,X∗ �X∗

max(r)〉 for i � 1, : : : ,n. Suppose
that A satisfies the 2r-RIP, the initialization of RISRO
satisfies

‖X0 �X∗
max(r)‖F ⩽

1
4

∧
1�R2r

2
ffiffiffi
5

√
R3r

� �
σr(X∗), (35)

and

σr(X∗)P 16
ffiffiffi
5

√
∨
40

ffiffiffi
2

√
R3r

1�R2r

 ! ‖(A∗(�̃))max(r)‖F
1�R2r

: (36)

Then, the iterations of RISRO converge as follows ∀tP0:

‖Xt+1 �X∗
max(r)‖2F

⩽ 10
R2
3r‖Xt �X∗

max(r)‖4F
(1�R2r)2σ2r (X∗) + 20‖(A∗(�̃))max(r)‖2F

(1�R2r)2

⩽ 10
R2
3r‖Xt �X∗‖4F

(1�R2r)2σ2r (X∗)

+ 20(‖(A∗(�))max(r)‖F + ‖(A∗A(X∗ �X∗
max(r)))max(r)‖F)2

(1�R2r)2
:

(37)

The overall convergence of RISRO shows two phases:
• (Phase I) When ‖Xt �X∗

max(r)‖2FP
ffiffi
2

√
R3r

‖(A∗(�̃))max(r)‖Fσr
(X∗),

‖Xt+1 �X∗
max(r)‖F ⩽ 2

ffiffiffi
5

√ R3r‖Xt �X∗
max(r)‖2F

(1�R2r)σr(X∗) ,

‖Xt+1 �X∗‖F ⩽ 2
ffiffiffi
5

√ R3r‖Xt �X∗
max(r)‖2F

(1�R2r)σr(X∗) + ‖X∗
�max(r)‖F,

where X∗
�max(r) � X∗ �X∗

max(r).• (Phase II) When ‖Xt �X∗
max(r)‖2F ⩽

ffiffi
2

√
R3r

‖(A∗(�̃))max(r)‖F
σr(X∗),

‖Xt+1 �X∗
max(r)‖F ⩽

2
ffiffiffiffiffi
10

√ ‖(A∗(�̃))max(r)‖F
1�R2r

,

‖Xt+1 �X∗‖F ⩽
2
ffiffiffiffiffi
10

√ ‖(A∗(�̃))max(r)‖F
1�R2r

+ ‖X∗
�max(r)‖F:

Moreover, we assume rank(X∗) � r, (Ai)[j,k] are indepen-
dent sub-Gaussian random variables with mean zero and
variance 1=n and �i are independent sub-Gaussian random
variables with mean zero and variance σ2=n (i.e.,
E(Ai)[j,k] � E(�i) � 0, Var((Ai)[j,k]) � 1=n, Var(�i) � σ2=n,

supqP1(n=q)1=2(E | (Ai)[j,k] | q)1=q ⩽C, supqP1(n=(qσ2))1=2
(E |�i | q)1=q ⩽ C for some fixed C > 0). Then, there exist uni-
versal constants C1,C2,C′, c > 0 such that as long as nP

C1(p1 + p2)r σ2

σ2r (X∗) ∨ rκ2
� 
�

here, κ � σ1(X∗)
σr(X∗) is the condition

number of X∗


and tmaxPC2log log σ2r (X∗)n

r(p1+p2)σ2
� 


∨ 1, the out-

put of RISRO with spectral initialization X0 � (A∗(y))max(r)
satisfies ‖Xtmax �X∗‖2F ⩽ c r(p1+p2)n σ2 with probability at least
1� exp(�C′(p1 + p2)).
Remark 12 (Quadratic Convergence, Two-Phase Con-
vergence, Statistical Error, and Robustness). The upper
bound of ‖Xt �X∗

max(r)‖2F in (37) includes two terms:
the optimization error term O(‖Xt �X∗

max(r)‖4F) qua-
dratically decreases over iteration t, and the statistical
error term O(‖(A∗(�̃))max(r)‖2F) is static through itera-
tions. Moreover, RISRO includes two phases in its
convergence. In phase I with large ‖Xt �X∗

max(r)‖2F,
RISRO converges quadratically toward X∗

max(r); in
phase II with moderate ‖Xt �X∗

max(r)‖2F, the estimator
returned by one more iteration of RISRO achieves the
best possible statistical error rate O(‖(A∗(�̃))max(r)‖2F) as
suggested by the d � 2 case in Luo and Zhang (2021,
theorem 2). Therefore, although the convergence rate
of RISRO may decelerate to be linear in phase II, Theorem
3 suggests there is no need to run further iterations as the
estimator is already statistically optimal after one addi-
tional iteration. Such performance of “quadratic conver-
gence+one-iteration optimality” is unique, which does
not appear in common first order methods.

Finally, (37) shows the error contraction factor is in-
dependent of the condition number κ, which demon-
strates the robustness of RISRO to the ill-conditioning
of the underlying low-rank matrix. We further demon-
strate this point by simulation studies in Section 7.2.

Remark 13 (Optimal Statistical Error). Under the Gauss-
ian ensemble design and when rank(X∗) � r, RISRO with
spectral initialization achieves the rate of estimation error
cr(p1 + p2)σ2=n after a double-logarithmic number of

iterations when nPC1(p1 + p2) r σ2

σ2r (X∗) ∨ rκ2
� 


. Compared

with the lower bound of the estimation error

min
X̂

max
rank(X∗) ⩽ r

E‖X̂�X∗‖2FPc′
r(p1 + p2)σ2

n

for some c′ > 0 in Candès and Plan (2011), RISRO achieves
the minimax optimal estimation error with near-optimal
sample complexity. To the best of our knowledge, RISRO
is the first provable algorithm that achieves the minimax
rate-optimal estimation error with only a double-logarithmic
number of iterations, and this is an exponential improve-
ment over common first order methods in which a loga-
rithmic number of iterations is needed.

6.2. Phase Retrieval
In this section, we consider RISRO for solving the follow-
ing quadratic equation system:

yi � |〈ai, x∗〉 |2 for 1⩽ i⩽ n, (38)
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where y ∈ R
n and covariates {ai}ni�1 ∈ R

p (or C
p) are

known, whereas x∗ ∈ R
p (or Cp) are unknown. The goal

is to recover x∗ based on {yi, ai}ni�1. One important appli-
cation is known as phase retrieval, arising from physical
science because of the nature of optical sensors (Fienup
1982). In the literature, various approaches are proposed
for phase retrieval with provable guarantees, such as
convex relaxation (Candès et al. 2013, Waldspurger et al.
2015, Huang et al. 2017b) and nonconvex approaches
(Netrapalli et al. 2013, Candès et al. 2015, Chen and
Candès 2017, Gao and Xu 2017, Sanghavi et al. 2017,
Wang et al. 2017a, Duchi and Ruan 2019, Ma et al. 2019).

For ease of exposition, we focus on the real-value
model, that is, x∗ ∈ R

n and ai ∈ R
n, whereas a simple

trick in Sanghavi et al. (2017) can recast Problem (38) in
the complex model into a rank-two real-value matrix
recovery problem; then, our approach still applies. In the
real-valued setting, we can rewrite Model (38) into a
low-rank matrix recovery model:

y �A(X∗) with X∗ � x∗x∗� and [A(X∗)]i � 〈aia�i ,x∗x∗�〉:
(39)

There are two challenges in phase retrieval compared
with the low-rank matrix trace regression considered
previously. First, because of the symmetry of sensing
matrices aia�i and x∗x∗� in phase retrieval, the impor-
tance covariatesAD1 andAD2 in (4) are exactly the same,
and an adaptation of Algorithm 1 is, thus, needed. Sec-
ond, in phase retrieval, the mappingA no longer satisfies
a proper RIP condition in general (Candès et al. 2013,
Cai and Zhang 2015), so a new theory is needed. To this
end, we introduce a modified RISRO for phase retrieval
in Algorithm 2. Particularly in step 4 of Algorithm 2, we
multiply the importance covariates A2 by an extra factor
2 to account for the duplicate importance covariates
because of symmetry.

Algorithm 2 (RISRO for Phase Retrieval)
1: Input: design vectors {ai}ni�1 ∈ R

p, y ∈ R
n, initializa-

tion X0 that admits eigenvalue decomposition
σ01u

0u0�.
2: for t � 0, 1, : : : , do
3: Perform importance sketching on ai and con-

struct the covariates A1 ∈ R
n, A2 ∈ R

n×(p�1),
where for 1⩽ i⩽ n, (A1)i � (a�i ut)2, (A2)[i,:] �
ut�⊥ aia�i ut:

4: Solve the unconstrained least squares problem
(bt+1,dt+1) � argminb∈R,d∈R(p�1) ‖y�A1b� 2A2d‖22:

5: Compute the eigenvalue decomposition of

[utut⊥] bt+1 dt+1�
dt+1 0

� �
[utut⊥]�, and denote it as

[v1 v2] λ1 0
0 λ2

� �
[v1 v2]� with λ1Pλ2.

6: Update ut+1 � v1 and Xt+1 � λ1ut+1ut+1�.
7: end for

Next, we show, under Gaussian ensemble design,
given the sample number n �O(p log p) and proper ini-
tialization, the sequence {Xt} generated by Algorithm 2
converges quadratically to X∗.
Theorem 4 (Local Quadratic Convergence of RISRO for
Phase Retrieval). In the phase retrieval problem (38),
assume that {ai}ni�1 are independently generated from
N(0, Ip). Then, for any δ1,δ2 ∈ (0, 1), there exist c,C(δ1),
C′ > 0 such that, when pPc log n,nPC(δ1)p log p, if
‖X0 �X∗‖F ⩽ (1�δ1)

C′(1+δ2)p ‖X∗‖F with probability at least 1�C1

exp(�C2(δ1,δ2)n)�C3n�p, the sequence {Xt} generated
by Algorithm 2 satisfies

‖Xt+1 �X∗‖F ⩽ C′(1+ δ2)p
(1� δ1)‖X∗‖F ‖X

t �X∗‖2F, ∀tP0 (40)

for some C1,C2(δ1,δ2),C3 > 0.

To overcome the technical difficulties in establishing
quadratic convergence without RIP for phase retrieval,
Theorem 4 is established under the assumption ‖X0�
X∗‖F ⩽O(‖X∗‖F=p). Although it is difficult to prove that
the spectral initializer meets this assumption under the
near-optimal sample size (e.g., n � Cp log p), we find by
simulation that the spectral initialization yields quadratic
convergence for RISRO (Section 7). On the other hand, we
can also run a few iterations of factorized gradient descent
to achieve the initialization condition in Theorem 4 with
near-optimal sample complexity guarantee (Candès et al.
2015, Chen and Candès 2017, Ma et al. 2019) and then
switch to RISRO. Specifically, the initialization algorithm
for RISRO in phase retrieval via factorized gradient
descent is provided in Algorithm 3, and its guarantee
is given in Proposition 4.

Algorithm 3 (RISRO for Phase Retrieval with Gradient
Descent Initialization)

1: Input: design vectors {ai}ni�1 ∈ R
p and y ∈ R

n.
2: Let λ1(Y) and v1 be the leading eigenvalue and

eigenvector of Y � 1
n

Pn
j�1 yjaja

�
j , respectively, and

set x̃0 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1(Y)=3

p
v1.

3: for t � 0, 1, : : : ,T0 � 1 do
4: Update x̃t+1 � x̃t � ηt∇g(x̃t), where g(x) � 1

4nPn
j�1 ((a�j x)2 � yj)

2
.

5: end for
6: Apply Algorithm 2 with initialization x̃T0 x̃T0�.

Proposition 4. In phase retrieval (38), suppose {ai}ni�1 are
independently drawn from N(0, Ip) and nPCp log p for
some sufficiently large constant C > 0. Assume the step size
in Algorithm 3 obeys ηt ≡ η � c1=(log p · ‖x̃0‖22) for con-
stant c1 > 0, where x̃0 is given in the algorithm. Then, there
exist absolute constants c2, c3 > 0 such that, when T0P
c2 log p · log(‖x∗‖2p), the initialization X0 :� x̃T0 x̃T0� in
Algorithm 3 satisfies the initialization condition in Theo-
rem 4, and the conclusion of Theorem 4 holds with probabil-
ity at least 1� c3np�5.
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7. Numerical Studies
In this section, we conduct simulation studies to investi-
gate the numerical performance of RISRO. We specifi-
cally consider two settings:

• Matrix trace regression. Let p � p1 � p2 and yi �〈X∗,Ai〉 + �i, where Ais are constructed with indepen-
dent standard normal entries and �i ~

i:i:d:N(0,σ2). X∗ �
U∗S∗V∗�, where U∗,V∗ ∈Op,r are randomly generated,
S � diag(λ1, : : : ,λr). Also, we set λ1 � 3 and λi � λ1

κi=r
for

i � 2, : : : , r, so the condition number of X∗ is κ. We ini-
tialize X0 via (A∗(y))max(r).

• Phase retrieval. Let yi � 〈ai,x∗〉2, where x∗ ∈ R
p is a

randomly generated unit vector, ai ~
i:i:d:N(0, Ip). We ini-

tialize X0 via truncated spectral initialization (Chen
and Candès 2017).

Throughout the simulation studies, we consider errors
in two metrics: (1) ‖Xt �Xtmax‖F=‖Xtmax‖F, which mea-
sures the convergence error, and (2) ‖Xt �X∗‖F=‖X∗‖F,
which is the relative root mean-squared error (RMSE)
that measures the estimation error for X∗. The algorithm
is terminated when it reaches the maximum number of
iterations tmax � 300 or the corresponding error metric is
less than 10�12. Unless otherwise noted, the reported
results are based on the averages of 50 simulations and on
a computer with Intel Xeon E5-2680 2.5 GHz CPU. Addi-
tional development and simulation results for RISRO in
matrix completion and robust PCA can be found in
Online Appendix A.

7.1. Properties of RISRO
We first study the convergence rate of RISRO. Specifi-
cally, set p � 100, r � 3,n ∈ {1,200, 1,500, 1,800, 2,100, 2,400},
κ � 1,σ � 0 for low-rank matrix trace regression and
p � 1,200,n ∈ {4,800, 6,000, 7,200, 8,400, 9,600} for phase
retrieval. The convergence performance of RISRO (Algo-
rithm 1 in low-rank matrix trace regression and Algo-
rithm 2 in phase retrieval) is plotted in Figure 1. We can
see that RISRO with the (truncated) spectral initialization
converges quadratically to the true parameter X∗ in both
problems, which is in line with the theory developed
in previous sections. Although our theory on phase

retrieval in Theorem 4 is based on a stronger initializa-
tion assumption, the truncated spectral initialization
achieves great empirical performance.

In another setting, we examine the quadratic-linear
convergence for RISRO under the noisy setting. Consider
the matrix trace regression problem, in which σ � 10α,
α ∈ {0, �1, �2, �3, �5, �14}, n � 1, 500, and p, r,κ are
the same as the previous setting. The simulation results
in Figure 3 show the gradient norm ‖gradf (Xt)‖ of the
iterates converges to zero, which demonstrates the con-
vergence of the algorithm. Meanwhile, because the ob-
servations are noisy, RISRO exhibits the quadratic-linear
convergence as discussed in Remark 4: when α � 0, that
is, σ � 1, RISRO converges quadratically in the first two
to three steps and then reduces to linear convergence
afterward; as σ gets smaller, we can see RISRO enjoys a
longer path of quadratic convergence, which matches
our theoretical prediction in Remark 4.

Finally, we study the performance of RISRO under the
large-scale setting of the matrix trace regression. Fix n �
7, 000, r � 3,κ � 1,σ � 0 and let dimension p grow from
100 to 500. For the largest case, the space cost of storingA
reaches 7,000 · 500 · 500 · 8B � 13:04GB. Figure 4 shows
the relative RMSE of the output of RISRO and runtime
versus dimension. We can clearly see the relative RMSE
of the output is stable, and the runtime scales reasonably
well as the dimension p grows.

7.2. Comparison of RISRO with Other Algorithms
in Literature

In this section, we further compare RISRO with existing
algorithms in the literature. In the matrix trace regres-
sion, we compare our algorithm with SVP (Jain et al.
2010, Goldfarb and Ma 2011), alter mini (Jain et al. 2013,
Zhao et al. 2015), GD (Zheng and Lafferty 2015, Tu et al.
2016, Park et al. 2018), and convex NNM (3) (Toh and
Yun 2010). We consider the setting with p � 100, r � 3,
n � 1,500, κ ∈ {1, 50, 500}, σ � 0 (noiseless case), or σ �
10�6 (noisy case). Following Zheng and Lafferty (2015),
in the implementation of GD and SVP, we evaluate three
choices of step size, {5 × 10�3, 10�3, 5 × 10�4}, then
choose the best one. In phase retrieval, we compare

Figure 3. (Color online) Convergence Plot of RISRO inMatrix Trace Regression

Note. p � 100, r � 3,n � 1, 500,κ � 1, σ � 10α with varying α.
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Algorithm 2 with Wirtinger flow (WF) (Candès et al.
2015) and truncated Wirtinger flow (TWF) (Chen and
Candès 2017) with p � 1, 200,n � 6, 000. We use the codes
of the accelerated proximal gradient for NNM, WF, and

TWF from the corresponding authors’ websites and im-
plement the other algorithms by ourselves. The stop-
ping criteria of all procedures are the same as RISRO
mentioned in the previous simulation settings.

Figure 4. Relative RMSE and Runtime of RISRO inMatrix Trace Regression

Note. p ∈ [100, 500], r � 3,n � 7,000,κ � 1, σ � 0.

Figure 5. (Color online) Relative RMSE of RISRO, SVP, AlterMini, GD, and NNM in Low-RankMatrix Trace Regression

(a)

(b)

(c)

Notes. Here, p � 100, r � 3,n � 1, 500,σ � 0,κ ∈ {1, 50,500}. (a) κ � 1. (b) κ � 50. (c) κ � 500.
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We compare the performance of various procedures
on noiseless matrix trace regression in Figure 5. For all
different choices of κ, RISRO converges quadratically to
X∗ in seven iterations with high accuracy, whereas the
other baseline algorithms converge much slower at a
linear rate. When κ (condition number of X∗) increases
from 1 to 50 and 500 so that the problem becomes more
ill-conditioned, RISRO, alter mini, and SVP perform
robustly, whereas GD converges more slowly. In Theo-
rem 3, we show the quadratic convergence rate of
RISRO is robust to the condition number (see Remark
12). As we expect, the nonconvex optimization methods
converge much faster than the convex relaxation me-
thod. Moreover, to achieve a relative RMSE of 10�10,
RISRO only takes about five iterations and 1=5 runtime
compared with other algorithms if κ � 1, and this factor
is even smaller in the ill-conditioned cases that κ � 50
and 500.

The comparison of RISRO, WF, and TWF in phase
retrieval is plotted in Figure 6. We can also see that RISRO
can recover the underlying true signal with high accuracy
in much less time than the other baseline methods.

Next, we compare the performance of RISRO with
other algorithms in the noisy setting, σ � 10�6, in the
low-rank matrix trace regression. We can see from
the results in Figure 7 that, because of the noise, the esti-
mation error first decreases and then stabilizes after

reaching a certain level. Meanwhile, we can also find
that RISRO converges at a much faster quadratic rate
before reaching the stable level compared with all other
algorithms.

Finally, we study the required sample size to guaran-
tee successful recovery by RISRO and other algorithms.
We set p � 100, r � 3, κ � 5, n ∈ [600, 1,500] in the noise-
less matrix trace regression and p � 1,200, n ∈ [2,400,
6,000] in phase retrieval. We say the algorithm achi-
eves successful recovery if the relative RMSE is less
than 10�2 when the algorithm terminates. The simula-
tion results in Figure 8 show RISRO requires the mini-
mum sample size to achieve a successful recovery in
both matrix trace regression and phase retrieval, alter
mini has similar performance to RISRO, and both
RISRO and alter mini require smaller sample sizes
than the rest of the algorithms for successful recovery.

8. Conclusion and Discussion
In this paper, we propose a new algorithm, RISRO, for
solving rank-constrained least squares. RISRO is based
on a novel algorithmic framework, recursive importance
sketching, which also provides new sketching interpreta-
tions for several existing algorithms for rank-constrained
least squares. RISRO is easy to implement and computa-
tionally efficient. Under some reasonable assumptions,
local quadratic-linear and quadratic convergence are

Figure 6. (Color online) Relative RMSE of RISRO,WF, and TWF in Phase Retrieval

Note. Here, p � 1,200,n � 6,000.

Figure 7. (Color online) Relative RMSE of RISRO, SVP, AlterMini, GD, and NNM in Low-RankMatrix Trace Regression

Note. Here, p � 100, r � 3,n � 1,500,κ � 5,σ � 10�6.
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established for RISRO. Simulation studies demonstrate
the superior performance of RISRO.

The connection of recursive importance sketching and
Riemannian Gauss–Newton discovered in this paper can
be leveraged to other settings, such as in the low-rank
tensor estimation problems (see a follow-up work in Luo
and Zhang (2021) after the first preprint of this paper).

There are many interesting extensions to the results in
this paper to be explored in the future. First, our current
convergence theory on RISRO relies on the RIP assump-
tion, which may not hold in many scenarios, such as
phase retrieval, matrix completion, and robust PCA. In
this paper, we give some theoretical guarantees of RISRO
in phase retrieval with a strong initialization assumption.
However, such an initialization requirement may be
unnecessary, and spectral initialization is good enough
to guarantee quadratic convergence as we observe in the
simulation studies. Empirically, we also observe RISRO
achieves quadratic convergence in the matrix completion
and robust PCA examples; see their development in
Online Appendix A. To improve and establish theoreti-
cal guarantees for RISRO in phase retrieval and matrix
completion or robust PCA, we think more sophisticated
analysis tools, such as the “leave-one-out” method, and
some extra properties, such as “implicit regularization”
(Ma et al. 2019), need to be incorporated into the analysis,
and it will be interesting future work. Also, this paper
focuses on the squared error loss in (1), whereas the
other loss functions may be of interest in different set-
tings, such as the ℓ1 loss in robust low-rank matrix recov-
ery (Li et al. 2020a,b; Charisopoulos et al. 2021), which is
worth exploring.
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