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ABSTRACT

We present a novel method for learning reduced-order models of dynamical systems using nonlinear manifolds. First, we learn the mani-
fold by identifying nonlinear structure in the data through a general representation learning problem. The proposed approach is driven by
embeddings of low-order polynomial form. A projection onto the nonlinear manifold reveals the algebraic structure of the reduced-space
system that governs the problem of interest. The matrix operators of the reduced-order model are then inferred from the data using operator
inference. Numerical experiments on a number of nonlinear problems demonstrate the generalizability of the methodology and the increase
in accuracy that can be obtained over reduced-order modeling methods that employ a linear subspace approximation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0170105

Model reduction rests on the fundamental assumption that sys-
tem states in complex, physics-based models can often be rep-
resented with a smaller number of variables without a signif-
icant loss of information. The identification of such intrinsic,
low-dimensional structure in these problems and the subsequent
inference of projection-based reduced-order models lies at the
heart of this paper. We treat the construction of nonlinear state
approximations of polynomial form as a general representation
learning problem. By leveraging data-driven operator inference,
we can then learn reduced-order models directly from available
snapshot data. These models are physics-informed in that their
algebraic structure is dictated by the original, high-dimensional
problem. The proposed nonlinear model reduction method is
interpretable and effective for reducing large-scale, dynamical-
system models.

I. INTRODUCTION AND BACKGROUND

Projection-based model reduction is comprised of a family
of methods that build approximations of complex physics-based
models with (generally speaking) orders-of-magnitude reduction in

computational complexity. Through identification of inherent low-
dimensional structure, the cost of many computational tasks can be
lowered significantly. Model reduction makes tractable many appli-
cations in control, uncertainty quantification, optimal experimental
design, and inverse problems.1 The key idea behind many model
reduction methods is to identify a low-dimensional representation
for a set of training snapshots by applying data compression. The
computation of high-dimensional states is then replaced with iden-
tification of the coefficients of a basis expansion in the reduced
subspace. As the effectiveness of the reduction step hinges on the
ability to find a sufficiently accurate reduced-dimensional repre-
sentation of full-state vectors, the task of identifying and learning
such a representation is crucial to model reduction theory and
methods.

Traditionally, linear approaches such as the Proper Orthogonal
Decomposition (POD) are the method of choice in problems with
high-dimensional state spaces associated with physics-based data
and modeling.2–4 There are several model-reduction approaches
based on POD, such as dynamic mode decomposition, balanced
POD, the reduced basis method, POD-based discrete empirical
interpolation, and data-driven operator inference.5–15 While all such
methods have their own strengths and limitations, their formula-
tion in terms of linear dimension reduction principles can lead to
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difficulties in problems for which the Kolmogorov N-width
decreases slowly with increasing N. The Kolmogorov N-width is a
measure for the worst-case error that might arise from the projection
of a solution manifold onto a linear subspace of dimension N.16

Nonlinear methods with machine learning techniques at their
core have received a surge in attention over the past few years
for adoption in reduced-order modeling applications.17–21 We
here focus on methods that build on the concept of nonlinear
embeddings.22–27 More specifically, this paper develops a method-
ology in which we learn a reduced, nonlinear representation of
the data, after which the system dynamics can be expressed and
learned in terms of this new representation. We first reveal the low-
dimensional manifold structure of a dynamical system by fitting a
nonlinear basis expansion to the observed data. (The task of char-
acterizing and representing this inherent structure is often referred
to as representation learning in the machine learning community.28)
The construction of nonlinear state representations is achieved
here by enriching linear approximations with low-order polynomial
terms. We then summarize two different approaches for learning
the manifold geometry from data. The first is based on the POD,
while the second builds on alternating minimization techniques.26

Once the nonlinear manifold can be represented in the form of a
basis expansion, a projection of the PDE model onto the manifold
reveals the algebraic structure of the reduced-order model for the
problem of interest. Data-driven operator inference (OpInf) is then
used to construct projection-based reduced-order models from data
in a non-intrusive fashion.14,15

A major benefit of our proposed methodology is that the sys-
tem states are expressed through a compact modal representation.
The use of modal decomposition and analysis techniques has paved
the way to scalable nonlinear model reduction methods that favor
interpretability and promote physical intuition. Modal representa-
tions have a long history in approximations of physics-based mod-
els, stretching back to early work in normal mode representations
in structures and reduced basis representations.29–31 In many appli-
cations, the modes have physical significance in that they represent
dominant physical modal responses.32–35 Our proposed methodol-
ogy follows this template in that the latent space coordinates are
the multipliers (i.e., modal coordinates) of a nonlinear combination
of basis vectors with physical interpretation. An immediate conse-
quence of this construction is that the coordinates now also repre-
sent the evolution of the dynamical system on a low-dimensional
manifold. Because the proposed techniques are directly applicable to
discrete-time observed data, the reduced model constructed in this
fashion has the form of a system of nonlinear ordinary differential
equations (ODEs), which can be solved effectively by modern ODE
solvers.

The proposed approach shares conceptual parallels with the
seminal work from Kevrekidis and co-workers on the so-called
approximate inertial manifolds.36–39 The theory of inertial manifolds
states that infinite-dimensional system of partial different equations
(PDEs) may be described accurately in their long term behavior
by finite-dimensional systems. The existence of inertial manifolds
has been established for various PDE systems in computational
physics.36,40–42 Approximate inertial manifold calculations are car-
ried out as follows. One first performs a Galerkin approximation in
the derivation of low-dimensional reduced systems, after which the

higher-order modes are represented by means of the lower-order
modes (a process sometimes referred to as slaving). Of particular
relevance to this paper is the idea suggested in Deane et al.:43 “A par-
ticularly interesting direction is to combine the approximate inertial
manifold method with the POD eigenmode hierarchy, and approxi-
mate the solution component on the higher POD modes as a function
of its components on the lower, more energetic ones.”

An outline of the remainder of the paper follows. Section II dis-
cusses the construction of nonlinear state approximations through
the lens of representation learning. We demonstrate carefully how
conventional linear state approximations can be enriched with
polynomial terms and how the unknown basis matrices, coeffi-
cient matrix, and representation of the data in a low-dimensional
coordinate system can be determined in a principled manner.
Section III works with these nonlinear state approximations to
derive the algebraic structure of the corresponding reduced-order
models and shows how physics-based reduced-order models may be
learned from data using the OpInf methodology. We then provide
numerical evidence for the effectiveness of manifold-based OpInf
approaches in Sec. IV using representative numerical experiments.
Some conclusions and future research directions are presented in
Sec. V.

II. LEARNING NONLINEAR MANIFOLDS

This section outlines our method for learning nonlinear man-
ifolds and presents an illustrative example. Section II A discusses
the general representation learning problem for constructing non-
linear state approximations in problems with high-dimensional state
spaces. The numerical procedures introduced by Geelen et al.26

for solving this learning problem are summarized in Sec. II B. In
Sec. II C, a geometric interpretation of the method is illustrated by
means of a simple three-dimensional example. A Jupyter notebook
outlining the computational steps for this example is available at
https://github.com/geelenr/nl_manifolds.

A. A general representation learning problem

Our focus is on data generated from complex PDE models
that represent the governing laws of nature. A training data set
is comprised of a set of snapshots, each snapshot being a sam-
ple of the high-fidelity state representing a particular condition
of the physical system. We denote each snapshot by sj ∈ R

n for

n ∈ N and construct a snapshot matrix S ∈ R
n×k from k such

snapshots,

S :=





| | |
s1 s2 . . . sk

| | |



 . (1)

We make use of a reference state, sref ∈ R
n, and denote by Sref the

n × k reference matrix each of whose columns is sref.
To approximate the high-dimensional state s(t) ∈ R

n, we seek
low-dimensional approximations 0 : R

r 7→ R
n such that

s(t) ≈ 0(ŝ(t)), (2)

where t ∈ R is some parameter on which the state depends (fre-
quently, time). The vector ŝ(t) ∈ R

r denotes the reduced state coor-
dinate vector of dimension r. The transformation 0 constitutes a
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nonlinear mapping from the reduced-state coordinate system to the
original, high-dimensional state space. We consider the following
specific nonlinear modal basis structure for 0:

s(t) ≈ 0(ŝ(t)) := sref + Vŝ(t)
︸ ︷︷ ︸

linear

+ V4g(ŝ(t))
︸ ︷︷ ︸

nonlinear

, (3)

where V = [v1 | . . . | vr] ∈ R
n×r and V = [v1 | . . . | vq] ∈ R

n×q are
a pair of basis matrices. The matrix 4 ∈ R

q×(p−1)r is a coefficient
matrix that controls the weighting of the basis functions contained
in V. The vector g(ŝ(t)) ∈ R

(p−1)r has the form

g(ŝ(t)) =








ŝ
2
(t)

ŝ
3
(t)
...

ŝ
p
(t)








, (4)

where each ŝ
j
(t) ∈ R

r consists of the jth power of the components of

ŝ(t), that is, ŝ
j
(t) = [ŝ1(t)

j, ŝ2(t)
j, . . . , ŝr(t)

j]. While one could instead
employ Kronecker products of the reduced-state vector ŝ(t) (in con-
trast to the proposed element-wise formulation without the cross
terms), the number of terms in g(ŝ(t)) would grow exponentially
in such a construction. Keeping the dimension of g(ŝ(t)) rela-
tively small is of particular importance in learning physics-based
reduced-order models, to be discussed in Sec. III.

The representation learning problem to construct a nonlinear
state approximation of the form (3) is now posed as a constrained
optimization problem,26

min
V,V,4,Ŝ

(

F(V, V, 4, Ŝ) + γ

2
‖4‖2

F

)

such that
(

V V
)

∈ Vn,(r+q), (5)

where Ŝ := (ŝ1, ŝ2, . . . , ŝk) ∈ R
r×k is the reduced-state representation

of the given system states sj for j = 1, . . . , k; the objective function
term F is defined as

F(V, V, 4, Ŝ) = 1

2

k
∑

j=1

∥
∥sj − 0(ŝj)

∥
∥

2

2

= 1

2

k
∑

j=1

∥
∥
∥
∥
sj − sref −

(

V V
)
(

ŝj

4g(ŝj)

)∥
∥
∥
∥

2

2

. (6)

Frobenius norm regularization involving 4 is used to avoid over-
fitting to the training data; γ ≥ 0 is a regularization parameter;
and Vn,(r+q) is the Stiefel manifold, defined as the set of matrices in
R

n×(r+q) with orthonormal columns, that is,

Vn,(r+q) =
{
(

V V
)

∈ R
n×(r+q) :

(

V V
)> (

V V
)

= Ir+q

}

, (7)

where Ir+q is the R
(r+q)×(r+q) identity matrix.

It should be noted that an expressive approximation of the form
(3) has the tendency to overfit noise or anomalous behavior in the
data. In general, the more parameters in the model, the higher the
likelihood that it will overfit. Specifically, approximations with only
low-order polynomial degree p (as we advocate here) are less prone
to overfitting in comparison to higher order polynomial methods or

ALGORITHM 1. POD-based representation learning.

Input: Snapshot matrix S ∈ R
n×k, reference state sref ∈ R

n,
regularization γ ∈ R

+, polynomial order p ∈ N≥2.

Output: Basis matrices V ∈ R
n×r and V ∈ R

n×q, coefficient

matrix 4 ∈ R
q×(p−1)r, projected snapshot data Ŝ ∈ R

r×k.
Step 1: Fixing an orthogonal set of basis vectors

S − Sref = 869
>. (8)

(V, V) ← the r + q leading left singular vectors of S − Sref

Step 2: Compute snapshot representation in POD coordinates

Ŝ = V>(S − Sref). (9)

Step 3: Fixing V, V, and Ŝ at their values defined above,
compute the coefficient matrix 4 by solving a linear
least-squares problem,

min
4

(

F(V, V, 4, Ŝ) + γ

2
‖4‖2

F

)

. (10)

alternative black-box regression methods. The addition of Frobenius
regularization in (5) also helps to mitigate overfitting.

B. Computing the basis expansion

This section summarizes the two methodologies from Geelen
et al.26 for finding a numerical approximation to the solution of
the representation learning problem (5) and (6): the POD-based
and alternating-minimization-based methods. To build approxima-
tions of the form (3), these approaches make informed choices
on the basis matrices V and V, the coefficient matrix 4, and the
reduced-state representation of the data Ŝ.

In the POD-based representation learning method (see
Algorithm 1), the columns of V are chosen to be the POD basis vec-
tors, that is, the left singular vectors of S − Sref corresponding to the
r largest singular values. The columns of the basis matrix V are cho-
sen to be the left singular vectors corresponding to the next q largest
singular values. This choice of matrices {V, V} satisfies constraint
(7) by virtue of the orthogonality property of singular vectors. Rep-
resentation of snapshots in the POD coordinates can be calculated
by means of an orthogonal projection. The coefficient matrix 4 is
obtained from a linear least-squares problem.

The alternating minimization (AM) representation learning
approach (Algorithm 2) proceeds as follows. Initial guesses are

required for the projected snapshot data matrix Ŝ and the coeffi-
cient matrix 4. Then, the objective in (5) is successively minimized
for the three blocks of variables in turn—first � =

(

V V
)

, then 4,

then Ŝ—with the pattern repeating until a convergence criterion is
satisfied. Generally speaking, three-block alternating minimization
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ALGORITHM 2. Alternating minimization-based representation learning.

Input: Snapshot matrix S ∈ R
n×k, reference state sref ∈ R

n,
regularization γ ∈ R

+, polynomial order p ∈ N≥2, stopping
criterion.

Output: Basis matrices V ∈ R
n×r and V ∈ R

n×q, coefficient

matrix 4 ∈ R
q×(p−1)r, projected snapshot data Ŝ ∈ R

r×k.
while stopping criterion not satisfied do
Step 1: Orthogonal Procrustes: Compute the basis vectors
� :=

(

V V
)

by solving

min
�

1

2

∥
∥
∥
∥
S − Sref − �

(

Ŝ

4g(Ŝ)

)∥
∥
∥
∥

2

F

such that �
>
� = Ir+q. (11)

Step 2: Compute the coefficient matrix 4 from a linear
least-squares problem:

min
4

(

F(V, V, 4, Ŝ) + γ

2
‖4‖2

F

)

(12)

Step 3: Project data onto the nonlinear manifold by solving

min
ŝj

1

2

∥
∥
∥
∥
sj − sref − �

(

ŝj

4g(ŝj)

)∥
∥
∥
∥

2

2

, j = 1, 2, . . . , k. (13)

end while

schemes have no theoretical guarantees of convergence.44 How-
ever, in this context, and many others, they converge on practical
instances.26

The minimization with respect to � is a standard problem
known as the orthogonal Procrustes problem, and it can be solved
via singular value decomposition.45 The minimization with respect
to 4 is a linear least squares problem, as in Algorithm 1. The min-

imization with respect to Ŝ decomposes into k separate problems,
each of which has a single reduced state ŝj as its variable.

C. Orthogonal subspace transformations: An

illustrative example

We demonstrate the nonlinear representation (3) by means
of a small numerical example. Consider a manifold in a three-
dimensional Euclidian space parametrized by the vector s(x, y)

=
(

x, y, sin(x) cos(y)
)> ∈ R

3 for x, y ∈ [0, 4]. A dataset is built
by sampling s(x, y) uniformly over the domain with grid spac-
ings 1x = 1y = 0.1. The resulting data matrix S has dimension
3 × 1681. After defining sref to be the column-averaged mean of the
data matrix, we build approximations to the nonlinear manifold of
dimension r = 2. By choosing a polynomial embedding of degree
p = 3 in (4), the nonlinear state approximation (3) of the jth data

sample becomes

sj ≈ sref + v1 ŝ1,j + v2 ŝ2,j
︸ ︷︷ ︸

linear

+ v1

(

41 ŝ
2
1,j + 42 ŝ

2
2,j + 43 ŝ

3
2,j + 44 ŝ

3
2,j

)

︸ ︷︷ ︸

nonlinear

, (14)

where the basis vectors v1, v2, v1 form an orthogonal set. The modal
coefficients are given by ŝ1,j and ŝ2,j. Instead of introducing a separate
coefficient for the third basis vector v1, we express its coefficient in
terms of the coefficients of the first two basis vectors ŝ1,j and ŝ2,j. The
coefficients 4 = (41, 42, 43, 44) ∈ R

4 control the weighting of v1.
We now follow the steps from the POD-based representa-

tion learning formulation of Algorithm 1. The vectors v1, v2, v1 are
fixed to be the three left singular vectors of the shifted data matrix.
Accordingly, ŝ1,j and ŝ2,j represent the coefficients of expansion in
the basis V. The coefficients 4 are inferred from the data via linear
regression; see (10).

In the alternating minimization-based representation learning
approach of Algorithm 2, the basis vectors v1, v2, v1 and the data
representation in the reduced-space coordinate system (through
coordinates ŝ1, ŝ2) are computed by way of an orthogonal Procrustes
problem and a set of k = 1681 unconstrained nonlinear optimiza-
tion problems, respectively. The computation of the coefficient
matrix 4 is the linear least-squares problem (10).

Figure 1 compares the reconstructions of the standard (linear)
POD approximation with those that use (14). Linear-subspace POD
invokes a large projection error and, in this example, is ill-suited for
data reconstruction tasks. The POD-based representation learning
approach warps the POD subspace to produce a nonlinear manifold
that is slightly closer to the exact solution, see Fig. 1(b). By applying
a series of rotations and/or reflections to the POD basis, the alternat-
ing minimization-based method finds the preferred directions along
which to apply curvature to further reduce the representation error,
as shown in Fig. 1(c).

III. LEARNING REDUCED-ORDER MODELS ON

NONLINEAR MANIFOLDS

In this section, we show how nonlinear manifold represen-
tations of the form (3) can be employed to learn physics-based
reduced-order models from data. Assuming that the full-space data
s(t) is generated by solving nonlinear governing equations with par-
ticular (widely relevant) structure, we substitute from (3) to obtain
the corresponding system in the reduced space. We then describe
a process for learning the operators that define the reduced-order
model.

Section III A derives the algebraic structure of the underly-
ing reduced-order models through a manifold projection method.
In Sec. III B, we propose a manifold-based inference method
for constructing reduced-order models from snapshot
data.
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FIG. 1. Comparison of (a) the linear-subspace POD with (b) the POD-based representation learning and (c) alternating minimization-based representation learning

approaches for reconstructing, using two modal coefficients, the three-dimensional manifold. The relative state error ‖S − 0(Ŝ)‖F/‖S − Sref‖F is given between parenthe-
ses. The gray surface denotes the original three-dimensional manifold, whereas the colored surfaces illustrate the different reconstructions. The black arrows represent the
basis vectors. (a) Traditional POD (linear subspace) (22.6% error), (b) POD-based representation learning (21.1% error), and (c) AM-based representation learning (10.4%
error).

A. Projection-based model reduction

Consider the following initial-value nonlinear ODE problem:

d

dt
s(t) = f(s(t)); s(0) = s0, (15)

where as before s(t) ∈ R
n is the system state at time t and f : R

n

7→ R
n maps the state to its time derivative. In many systems that

arise throughout computational engineering and sciences, the oper-
ator f has a certain linear-quadratic form,15,46,47 allowing us to work
with the following special case of (15):

ds

dt
= As + H(s ⊗ s); s(0) = s0, (16)

where we omitted the dependence of the system states on t to
simplify the notation and ⊗ denotes the Kronecker product. [We
will refer to (16) henceforth as the full-order model (FOM).] The
operators A ∈ R

n×n and H ∈ R
n×n2

denote the FOM operators
corresponding to linear and quadratic terms, respectively, in the
governing semi-discrete equations.

The use of nonlinear state approximations of the form (3)
informs the algebraic structure of the reduced-order analog of (16),
requiring that we account for cubic and higher-order interactions
between the modal coefficients. Specifically, by introducing (3) into
(16), and projecting the residual of the resulting system onto the
span of V, we obtain

dŝ

dt
= V>Asref + V>AVŝ + V>AV4g(ŝ) + V>H(sref ⊗ sref)

+ V>H(sref ⊗ Vŝ) + V>H(sref ⊗ V4g(ŝ))

+ V>H(Vŝ ⊗ sref) + V>H(Vŝ ⊗ Vŝ)

+ V>H(Vŝ ⊗ V4g(ŝ)) + V>H(V4g(ŝ) ⊗ sref)

+ V>H(V4g(ŝ) ⊗ Vŝ) + V>H(V4g(ŝ) ⊗ V4g(ŝ)), (17)

with ŝ(0) = ŝ0 the representation of the initial condition s0 in the
low-dimensional coordinate system. An alternative approach would
be to choose a nonlinear, state-dependent projection of the state
equations, which comes at the cost of increased algebraic complexity
in the reduced-order models.48

By adapting the argument of Sec. II B from a previous work24 to

this case, we can show that when V and Ŝ are obtained from an SVD
of S − Sref (as in standard linear POD), 4 is fixed at some reasonable
value, and we minimize the objective function in (5) over V alone,
the orthogonality property V>V = 0 will be satisfied automatically
by the minimizing value of V. Although this property cannot be
guaranteed to hold when we optimize simultaneously with respect

to V, V, Ŝ, and 4, as in (5), much remains to be gained in terms
of simplification of our inferred reduced-order model. Specifically,
by enforcing the orthogonality property in (5) the left-hand side of
(17) simplifies to a time derivative applied to the reduced state vector
ŝ(t). A lack of orthogonality, on the other hand, would result in an
expression that involves the time derivative of the polynomial func-
tion g(ŝ(t)). The added nonlinearity would cause the evaluation of
the data-driven models to be more mathematically cumbersome.

The right-hand side of (17) contains polynomial nonlinear
terms up to order 2p. In practice, this structure poses a significant
challenge from the implementation viewpoint: explicitly computing
the different projected operators becomes cumbersome and requires
explicit access to the full-order operators A and H. Rather than oper-
ating on (17) directly, we expose its polynomial structure by using
the mixed-product property of Kronecker products and grouping
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TABLE I. Dimension d(r, p) as a function of the reduced basis dimension, r and the

degree of the polynomial embeddings, p.

p = 2 p = 3 p = 4

r = 2 7 16 27
r = 4 26 64 114
r = 6 57 144 261
r = 8 100 256 468
r = 10 155 400 735

the constant, linear, quadratic, and higher-order terms as follows:

dŝ

dt
= ĉ + Âŝ + Ĥ(ŝ ⊗ ŝ) + P̂ĝ(ŝ), (18)

where ĉ ∈ R
r, Â ∈ R

r×r, Ĥ ∈ R
r×r2 , and P̂ ∈ R

r×d(r,p) are the reduced
matrix operators. The operator P̂ accounts for the higher-order
interactions between the modal coefficients in the reduced-order
model. These interactions are captured by the vector ĝ(ŝ) [which is
a subvector of g(ŝ) defined in (4)] and consist of monomials from
degree three to degree 2p. The total number of unique coefficients
in ĝ(ŝ) scales as d(r, p) ∼ O(p2r2). Example III.1 provides an illus-
tration of the structure of ĝ(ŝ) and the scaling of d(r, p) in reduced-
order models of the form (18). A technique for approximating the

reduced-order operators ĉ, Â, Ĥ, P̂ is presented in Sec. III B.
Example III.1. For illustration purposes, consider a state

approximation of dimensionality r = 2 and polynomial degree
p = 3 given by

s ≈ sref + V(ŝ1, ŝ2)
> + V4(ŝ2

1, ŝ
2
2, ŝ

3
1, ŝ

3
2)

>
, (19)

where V ∈ R
n×2 and V ∈ R

n×q are the basis matrices and 4 ∈ R
q×4

is the coefficient matrix, calculated as described in Sec. II. The
modal coefficients ŝ1, ŝ2 are the only unknowns. By substituting from
(19) into the linear-quadratic full-order model (16) and following
the derivation from Sec. III A, we obtain a reduced model of the
form (18). This model then accounts for the following nonlinear
interactions among the modal coefficients:

ŝ =
(

ŝ1, ŝ2

)> ∈ R
2,

ŝ ⊗ ŝ =
(

ŝ2
1, ŝ1 ŝ2, ŝ

2
2

)> ∈ R
3,

ĝ(ŝ) =
(

ŝ3
1, ŝ1 ŝ

2
2, ŝ

2
1 ŝ2, ŝ

3
2, ŝ

4
1, ŝ1 ŝ

3
2, ŝ

3
1 ŝ2, ŝ

2
1 ŝ

2
2, ŝ

4
2, . . .

ŝ5
1, ŝ

2
1 ŝ

3
1, ŝ

3
1 ŝ

2
2, ŝ

5
2, ŝ

6
1, ŝ

3
1 ŝ

3
2, ŝ

6
2

)> ∈ R
d(r,p)=16,

where ŝ, ŝ ⊗ ŝ, and ĝ(ŝ) contain monomials of the modal coefficients
of first, second, and higher-order degree, respectively. Using ele-
mentwise powers of the reduced-state vector ŝ [see (4)] ensures that
the number of entries in ĝ(ŝ) remains tractable. Table I lists d(r, p)
the number of terms contained in ŝ as a function of the reduced basis
dimension r and the degree of the polynomial embeddings p.

B. Learning physics-based reduced-order models

from data

We employ the data-driven operator inference (OpInf) method
for learning the low-dimensional dynamical system (18) from time-
domain simulation data.14 While traditional linear-subspace POD
lies at the heart of the formulation of Peherstorfer and Willcox,14

OpInf can be extended to the nonlinear manifold setting, as demon-
strated in Geelen et al. for linear systems.24 Here, we consider
reduction of nonlinear systems. The OpInf methodology finds the

reduced matrix operators ĉ, Â, Ĥ, P̂ that define the reduced model
that best matches the projected snapshot data, in the following sense
of regularized least squares:

(

ĉ, Â, Ĥ, P̂
)

= argminc̃,Ã,H̃,P̃

(

J(c̃, Ã, H̃, P̃ )

+λ1

2

(

‖c̃‖2
2 + ‖Ã‖2

F

)

+ λ2

2
‖H̃‖2

F + λ3

2
‖P̃‖2

F

)

, (20)

where the function J(c̃, Ã, H̃, P̃ ) is defined to be

k
∑

j=1

∥
∥
∥
∥
c̃ + Ãŝj + H̃(ŝj ⊗ ŝj) + P̃ĝ(ŝj) − dŝj

dt

∥
∥
∥
∥

2

2

, (21)

while the nonnegative scalars λi with i = 1, 2, 3 are Tikhonov regu-
larization parameters that promote stability in the inferred reduced-
order models and inhibit the overfitting of the system operators to
potentially noisy data.49 Generally speaking, good choices of the reg-
ularization parameters λi tend to be different as they are coefficients
of terms with different scales. The time derivatives in the objective
function are typically estimated numerically using finite difference
approximations. The optimization problem (20) decouples into r
independent linear least-squares problems.14

Algorithm 3 presents the steps of the linear-subspace OpInf
approach for quadratic systems,14,49 while the workflow of the
proposed nonlinear manifold-based OpInf methodology is sum-
marized in Algorithm 4. We use the acronyms MPOD-OpInf
and MAM-OpInf to distinguish between the nonlinear manifold
OpInf approaches based on Algorithms 1 and 2, respectively. These
methodologies differ in the manner in which the projected snapshot
data are computed and thus also in their subsequent reconstructions
in the original state space. This is due to differences in the adopted
low-dimensional basis, coefficient matrix, and reduced-state data
representation; see Sec. II.

IV. NUMERICAL EXPERIMENTS

In this section, we discuss the application of the OpInf model
reduction methods described in Sec. III to several dynamical sys-
tems. We compare the OpInf approach from Peherstorfer and
Willcox14 (Algorithm 3) and the nonlinear-manifold-based OpInf
approaches proposed above: MPOD-OpInf and MAM-OpInf (see
Algorithm 4). We report numerical results for benchmark prob-
lems involving the Allen–Cahn equation, the Korteweg–de Vries
equation, and a cylinder flow problem.
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ALGORITHM 3. The standard (POD-based) OpInf methodology for quadratic

systems.14,49

Input: Snapshot matrix S ∈ R
n×k, reference state sref ∈ R

n

Output: Reduced operators ĉ, Â, Ĥ
1: Compute SVD of S − Sref

2: V ← The r leading left singular vectors of the S − Sref

3: Ŝ ← V>(S − Sref) {Project snapshot data onto POD subspace}

4: Approximate
d

dt
Ŝ from Ŝ {Time derivative approximation}

5: Choose λ1, λ2 {Hyperparameter optimization}

6: Find reduced operators ĉ, Â, Ĥ through OpInf regression

A. Practical considerations

The dimensionality of a reduced-order model is typically
informed by the representation error of the training data used in
its construction. For nonlinear approximations of the form (3), we
compute the metric24

εr = ‖VŜ + V4g(Ŝ)‖2
F

‖S − Sref‖2
F

. (22)

When V is zero (as in the linear-subspace OpInf approach), we
recover the well-known expression

εr =
r

∑

j=1

σ 2
j /

k
∑

j=1

σ 2
j , (23)

where σj denotes the jth singular value of the mean-centered snap-
shot matrix S − Sref. This indicator is commonly referred to as the
(cumulative) snapshot energy captured by the basis. The dimension-
ality of the reduced-order models, r, and the number of orthogonal
basis vectors in the nonlinear part of the approximation, q, are user-
specified. In the following, these values are chosen based on the
singular value decay of the shifted snapshot matrices. The polyno-
mial order, p, of approximation (3) is chosen, in accordance with
r and q, based on the ability to represent data in the reduced-state
coordinate system to sufficient accuracy.

The primary error metric used in numerical experiments is the

relative error in the states, namely, ‖S − 0(Ŝ)‖F/‖S − Sref‖F. Initial

guesses for V, V, 4, Ŝ in the alternating minimization method from
Algorithm 2 are obtained from the POD-based representation learn-
ing method of Algorithm 1. The iterative process from Algorithm 2
is terminated when the change in the relative snapshot energy εr (22)
on consecutive iterations falls below 10−3. Note that this termination
criterion for the alternating minimization scheme is not indicative of
the snapshot energy captured by a given number of basis vectors and
reduced-state coefficients. One might change this threshold based
on model size or desired optimization tolerance. The function toler-
ance for the nonlinear least-squares solver used in solving (10) is set
to 10−9. It is noted that the MAM-OpInf approach calls for a rep-
resentation of the initial condition in the reduced-state coordinate
system. This involves computing r coefficients through a nonlin-
ear least-squares problem which is carried out at the start of each
reduced model evaluation.

The regularization parameters λi with i = 1, 2, 3 in (20) and the
regularization parameter γ in representation learning problem (5)
are calibrated through a grid search conducted over a predetermined
range of candidate values. We seek the parameter combination that
minimizes the relative state error over the available training data.49

This requires that the reduced-order model be evaluated for every
parameter combination. We also note that γ does not (explicitly)
show up in OpInf problem (20) as it appears only upon comput-
ing a representation of the data in the original state-space through
(3). The time derivatives of the projected snapshot data in the
OpInf regression problems are estimated via a fourth-order finite
difference approximation.

B. The Allen–Cahn equation

While the Allen–Cahn model was originally conceived to
describe the motion of anti-phase boundaries in metallic alloys,50 it
has become prototypical for describing phase separation and inter-
facial dynamics in many application domains. The equation has also
been studied in the context of model reduction.51,52 We consider the
Allen–Cahn equation

∂ts = κ∂2
x s + s − s3 (24)

in the domain x ∈ [−1, 1] with Dirichlet boundary conditions
s(−1, t) = −1; s(1, t) = 1 and initial condition

s(x, 0) = µx + (1 − µ) sin(−1.5πx),

ALGORITHM 4. Proposed nonlinear manifold-based OpInf method for quadratic systems.

Input: Snapshot matrix S ∈ R
n×k, reference state sref ∈ R

n, regularization parameter γ ∈ R
+, polynomial order p ∈ N≥2, stopping criterion

Output: Reduced operators ĉ, Â, Ĥ, P̂
1: Compute SVD of S − Sref

2: r, q ← Choose the number of left singular vectors to be used in basis matrices V and V

3: 0(V, V, 4, Ŝ) ← Approximate the solution to general representation learning problem (5) using Algorithm 1 or 2

4: Approximate
d

dt
Ŝ from Ŝ {Time derivative approximation}

5: Choose λ1, λ2, λ3 {Hyperparameter optimization}

6: Solve OpInf regression problem (20) to find ĉ, Â, Ĥ, P̂.

Chaos 34, 033122 (2024); doi: 10.1063/5.0170105 34, 033122-7

Published under an exclusive license by AIP Publishing

 22 April 2024 20:48:04

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

in which the parameter µ varies uniformly on the range [0.5, 0.6].
The operators ∂x and ∂t in (24) denote partial differentiation with
respect to space and time, respectively. The interface parameter
κ ∈ R

+ is positive constant which represents the thickness of the
interface that separates the two phases.

While the Allen–Cahn Eq. (24) is characterized by linear and
cubic terms, adding an auxiliary variable yields system dynam-
ics with the desired quadratic model structure (16). We apply the
transformation15,53

T :
(

s
)

7→
(

s
s2

)

≡
(

w1

w2

)

.

The lifted system is then given by

∂tw1 = ε∂2
x w1 + w1 + w1w2,

(25)

∂tw2 = 2w1∂tw1

= 2w1

(

ε∂2
x w1 + w1 + w1w2

)

= 2εw1∂
2
x w1 + 2w2 + 2(w2)

2,

which contains only quadratic nonlinear dependencies on the state.
It is also important to note that no approximations are invoked in
the process of lifting (24) to (25).

State data are computed on a uniform spatial grid consisting
of n = 512 grid points. The state snapshot data are generated from
three simulations of the Allen–Cahn model, corresponding to the
parameters µ = [0.50, 0.55, 0.60]. For testing, ten more trajectories
are generated with parameter µ drawn uniformly at random from
the interval [0.5, 0.6]. The data are recorded every 0.1 time units
up to time T = 60, yielding 600 snapshots per trajectory, for a total
of 1800. The lifted snapshot matrix is centered by the mean initial
condition across the test parameters.

Figure 2 shows the decay of the normalized singular values,
where normalized means that the first normalized singular value
equals 1. The first two POD modes contain 97.7% of the energy
in the lifted state data, but a total of r + q = 20 POD modes are
needed to drive the projection error in the training data below 10−5.
We consider two-equation reduced-order models constructed from
OpInf methodologies. For the MPOD-OpInf formulation, the basis
matrix V contains the first r = 2 POD modes, with the remain-
ing q = 20 − r = 18 POD modes captured in V. The regularization
parameter in the representation learning problem in (5) is chosen to
be γ = 10−2. Value for the regularization parameters λi, i = 1, 2, 3
in the OpInf problems are found by minimizing the relative state
error across all the training parameters µ.

Figure 3 shows the reconstructed trajectories at a random test
parameter µ = 0.5127 for the linear-subspace OpInf formulation
and its manifold-based counterpart using fourth-order polynomial
embeddings. The MPOD-OpInf model represents the phase separa-
tion process over time more accurately, in both the material phases
and the interface dynamics. Pointwise errors in the reconstructions
of the original state data for the nonlinear manifold models are
shown in Fig. 4. We note from these figures that increasing the
degree of the polynomial embeddings can improve the predictive
capabilities. (Performance of a linear-subspace OpInf reduced-order
model is shown for reference.) The relative state errors for the

FIG. 2. Normalized singular values of the centered snapshot matrix for the
Allen–Cahn problem. The blue and red areas denote the singular values whose

corresponding left singular vectors are columns in V and V, respectively, in the
MPOD-OpInf formulation.

reduced-order models are tabulated in Table II. It can be seen
that the MPOD-OpInf formulation outperforms the linear-subspace
OpInf formulation in the training regime as well as in the predictive
setting.

C. The Korteweg–de Vries equation

The second numerical experiment is concerned with travel-
ing wave physics.54 We consider a single propagating soliton in a
one-dimensional domain with periodic boundary conditions. The
evolution of the wave field s in the space-time domain [−π , π]
× [0, T] is obtained from the Korteweg–de Vries equation

∂ts = −αs∂xs − β∂3
x s. (26)

The initial condition is given by s0(x) = 1 + 24sech2
(√

8x
)

. We use
an equidistant computational grid consisting of 256 evenly spaced
points in space. State data are saved every 0.0002 time units. We
choose a final time T = 1 and model constants α = 4 and β = 1.

To learn the nonlinear manifolds and train our data-driven
reduced-order models, 1001 snapshots of the solution are collected
uniformly across the time interval t ∈ [0, 0.2]. The snapshot matrix
under consideration is centered by its column-averaged (thus time-
averaged) mean value; the decay of its singular values is shown in
Fig. 5. The dynamics of the system can be captured well with only 14
modes capturing 99.3% of the cumulative snapshot energy. The val-
ues of r (the number of columns of V) and q (the number of columns

TABLE II. Median of relative state error (22) in the training and test problems across

the parameters for the Allen–Cahn problem.

Training Testing

Linear-subspace OpInf 3.599 × 10−1 3.424 × 10−1

MPOD-OpInf (p = 2) 1.823 × 10−1 1.552 × 10−1

MPOD-OpInf (p = 3) 5.091 × 10−2 4.368 × 10−2

MPOD-OpInf (p = 4) 2.567 × 10−2 2.552 × 10−2
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FIG. 3. Comparison of the reference solution at parameter value µ = 0.5127
(top) with the reconstructions from the two-equation OpInf (middle) and
MPOD-OpInf (bottom) models for the Allen–Cahn model. (a) Reference, (b)
linear-subspace OpInf (POD): r = 2, (c) MPOD-OpInf: r = 2, p = 4.

of V) are then chosen so that r + q = 14. The regularization param-
eter in the representation learning problem in (5) is chosen so that
γ = 10−3. We now consider the performance of the reduced-order
models in both the training regime and the predictive setting.

Visual comparisons of the reference solution and the solu-
tions produced by the OpInf models are shown in Fig. 6. The
MPOD-OpInf and MAM-OpInf models use polynomial embed-
dings of degree p = 2. Even at r = 5 basis vectors, the space-time
evolution of the propagating soliton is relatively well captured. The
OpInf, MPOD-OpInf, and MAM-OpInf models account for 73.6%,
82.0%, and 93.1%, respectively, of the cumulative energy (22) in the
system. The relative state errors for these formulations, over the
window of training, equals 51.4%, 42.5%, and 30.0%. Predictably,
the addition of quadratic terms in the state approximation yields
an increase in accuracy. By accounting for orthogonal transfor-
mations of the basis, as induced by the alternating minimization
procedure, the contrast in accuracy becomes more pronounced, as

FIG. 4. Pointwise error in the reconstructions for the test trajectory at parameter
value µ = 0.5127 for the Allen–Cahn model. (a) Linear-subspace OpInf (POD):
r = 2, (b) MPOD-OpInf: r = 2, p = 2, (c) MPOD-OpInf: r = 2, p = 3, and (d)
MPOD-OpInf: r = 2, p = 4.

the MAM-OpInf model is more accurate than the MPOD-OpInf
variant (despite these two models having the exact same online
computational expense).

Outside the range of their training data (that is, t ∈ [0.2, 1]),
the relative state errors are 52.9%, 43.3%, and 35.1%, for the
OpInf, MPOD-OpInf, and MAM-OpInf models, respectively. This
experiment demonstrates the potential of both the MPOD-OpInf
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FIG. 5. Normalized singular values of the mean-subtracted snapshot matrix
for the Korteweg–de Vries problem. The blue and red areas denote the singu-

lar values whose corresponding left singular vectors are columns in V and V,
respectively, in the MPOD-OpInf formulation.

and MAM-OpInf methods to outperform linear-subspace OpInf
methods in the training and (especially) in the predictive regime.
These results are corroborated by comparing the solution snapshots
at the end of training (t = 0.2) and at final time (t = 1) for the dif-
ferent methods (see Fig. 7). While there is some error associated
with the prediction of the soliton’s exact spatial location, the MPOD-
OpInf and MAM-OpInf formulations are better suited for capturing
the soliton’s representation over time.

The first four basis vectors (corresponding to the dominant
left singular vectors) for state approximations of dimension r = 5
of order p = 2 are shown in Fig. 8. While both the MPOD-OpInf
and MAM-OpInf approaches produce an orthogonal set of vectors,
the alternating minimization approach can be seen to incorporate
some of the small-scale solution features into the dominant modes.

When we repeat the experiment but with the dimension of the
reduced-order model increased to r = 16 (choosing r + q = 25), the
state error for the OpInf, MPOD-Opinf, and MAM-OpInf models in
the range of the training data drops further to 5.7%, 4.3%, and 2.4%,
respectively (see Fig. 9). However, if the models are integrated to
final time T, the error increases rapidly. The state errors across the
time interval [0.2, 1] are 30.4%, 48.2%, and 76.4%, respectively, for
the three OpInf variants. Figure 10 shows that these errors can be
attributed to inaccurate predictions of the soliton’s spatial location.
These results demonstrate an important trade-off between choos-
ing r, the dimension of the linear subspace described by basis V,
and q, the number of basis vectors in the basis V. With r = 16, the
linear subspace captures 99.7% of the snapshot energy. Enriching
the approximation by adding the V manifold terms using the next
q = 9 singular vectors leads to 99.85% snapshot energy being cap-
tured by the polynomial manifold representation (i.e., an increase of
only 0.15%). In this case, the components of the basis V correspond
to singular vectors with near-zero singular values and the additional
terms provide little benefit—in fact, in this example they lead to
overfitting and a decline in reduced model predictive performance.

We now shift attention to the computational cost of integrating
reduced models of the form (18). We monitor the accuracy of the
model in the training regime, as given by the representation error

FIG. 6. Plots of the reference solution and OpInf-produced predictions for the
Korteweg–de Vries equation over the time window t ∈ [0, T ] at a reduced basis
dimension of r = 5. The end of the training window is indicated by the dashed line.
(a) Reference, (b) linear-subspace OpInf, r = 5, (c) MPOD-OpInf, r = 5, p = 2,
and (d) MAM-OpInf, r = 5, p = 2.

of the training data (22), as a function of the length of the reduced-

representation vector [ŝ
>

, (ŝ ⊗ ŝ)
>

, ĝ(ŝ)
>

]
>

, which equals r + r(r +
1)/2 + d(r, p). The results are summarized in Fig. 11 for the POD-
based and AM-based manifold formulations. A higher dimen-
sion for the reduced-order model leads to both more expensive
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FIG. 7. Reference and OpInf solution snapshots from the Korteweg–de Vries
experiment at the end of the training regime (t = 0.2) and predictions for the final
time T . The plots are given for models of dimension r = 5. (a) t = 0.2 and (b)
t = 1.

computation and increased accuracy. However, for models of the
same dimensionality (for example, r = 4), it can be seen that
the total number of terms grows rapidly with the degree of the
polynomial embeddings. Note that this analysis pertains only to
online computational costs. (Reduced-order modeling of large-scale
dynamical systems typically invokes a high cost during the offline
phase, which is performed only once.)

D. Incompressible Navier–Stokes—Flow past a cylinder

We now apply our techniques to the well-investigated prob-
lem of two-dimensional transient flow past a circular cylinder. We
focus on the configuration with Reynolds number Re = 100, a value
that is above the critical Reynolds number for the onset of the two-
dimensional vortex shedding. The fluid flow is governed by the
incompressible Navier–Stokes equations

∂tu + ∇ · (u ⊗ u) = ∇p + Re−11u,

∇ · u = 0. (27)

FIG. 8. First four basis vectors computed using POD (black curves) and those
obtained by means of orthogonal Procrustes problem (10) in Algorithm 2 (red
curves) for the Korteweg–de Vries problem. For the latter curves, the modes are
computed for models of size r = 5 with quadratic embeddings (p = 2). (a) Basis
vector 1, (b) Basis vector 2, (c) Basis vector 3, and (d) Basis vector 4.

The velocity vector is given by u = (u, v)>, where u and v are
the components in the x and y directions, respectively. Pressure is
denoted by p. We integrate the model over time interval t ∈ [0, 8].
Problem setup, geometry, and parameters are taken from the DFG
2D-3 benchmark in the FeatFlow benchmark suite.55 In the model
reduction experiments that follow, we did not explicitly account for
the pressure term. This omission is known to be valid for both the
transient and periodic regime of the flow.43,56

We collected 200 snapshots of a periodic reference simulation
at Re = 100 in the interval t ∈ [4, 5] and store each snapshot as a
column vector with 292 678 entries. As usual, the snapshot matrix S
is centered by its column-averaged mean value Sref, and the orthog-
onal basis vectors are computed by means of the POD. Because the
cylinder flow example is periodic, the POD modes can be grouped
in pairs (v1, v2), (v3, v4), (v5, v6), (v7, v8). Figure 12 displays the
computed mean flow and the first POD mode for each pair.

We choose the reference state in (3) to represent the mean
flow. The flow dynamics can be captured well with only eight
modes capturing 99.89% of the snapshot energy. However, phys-
ical and mathematical system reduction approaches have revealed
that only two modes are actual degrees of freedom of the sys-
tem; the remaining ones are completely dependent on these two.56

This insight can also be obtained from a nonlinear correlation
analysis.57 Although the POD analysis indicates that eight POD
modes should be considered for accurate flow reconstructions, we
use instead the proposed nonlinear model reduction framework
for learning dynamical-system models that respect the problem’s
intrinsic dimensionality of 2. Although we could also compute an
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FIG. 9. Plots of the reference solution and OpInf-produced predictions for the
Korteweg–de Vries equation over the time window t ∈ [0, T ] at a reduced basis
dimension of r = 16. The end of the training window is indicated by the dashed
line. (a) Reference, (b) linear-subspace OpInf, r = 16, (c) MPOD-OpInf, r = 16,
p = 2, and (d) MAM-OpInf, r = 16, p = 2.

orthogonal set of basis vectors through an orthogonal Procrustes
problem, as in the alternating minimization-based representation
learning problem (see Algorithm 2), the advantages accruing from
orthogonal transformations of a POD subspace were found to be

FIG. 10. Reference and OpInf solution snapshots from the Korteweg–de Vries
experiment at final time t = 1. The plots are given for models of dimension
r = 16.

negligible: The Procrustes modes were found to be virtually indis-
tinguishable from the ones computed using POD. We thus focus
exclusively on the MPOD-OpInf formulation.

Figure 13(a) shows that an OpInf model of size r = 2 is unable
to capture the periodic nature of the fluid flow. The state error for
this model across the training window is 42.9%, while with all eight
modes, the error drops to 7.4%. While the model does an excel-
lent job of capturing the transient dynamics in the training regime
t ∈ [4, 5], it fails soon after exiting the training window. For the
MPOD-OpInf model, we consider only a reduced basis dimen-
sion of r = 2, as informed by physical intuition. This means that
the remaining six POD modes are contained in the basis matrix
associated with the nonlinear part of the state approximation (3),
that is, V. These approximations are built from quadratic embed-
dings. (Although high-order embeddings were considered for this

FIG. 11. Cost-accuracy assessment in evaluating reduced-order model (18) for
the Korteweg–de Vries problem using (a) the POD-based manifold formulation
(Algorithm 1) and (b) the alternating minimization-based manifold formulation
(Algorithm 2) as a function of the degree of the polynomial embeddings, p. The
results for the different models at a reduced dimensionality of r = 4 are indicated
by the triangles (4).
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FIG. 12. Mean flow (top) and the dominant odd-numbered POD modes in the
cylinder flow problem. We show the vorticity computed from the velocity fields.

problem, a polynomial degree of p = 2 was found to be suffi-
cient for learning accurate reduced-order models.) The regular-
ization parameter for the representation learning problem was
set to γ = 10−2. The training error for the MPOD-OpInf was
found to be 18.6%, which is, as expected, larger than the eight-
equation OpInf model. However, the inferred two-equation MPOD-
OpInf model, which has a quadratic term in the nonlinear part
of the state approximation, was found to be stable well outside
of the training regime [see Fig. 13(b)]. The modal amplitudes
of the original simulation model are found when the flow data
are projected onto the eight POD modes. A comparison in the
phase space of the first two coefficients, shown in Fig. 14, finds
the MPOD-OpInf model to be accurate and stable with respect to
the flow data. Finally, Fig. 15 shows a reconstruction of the flow field
in the original state space as predicted at time t = 8 compared to the
reference solution at the same time step. While some of the finer-
scale flow features are not resolved fully, the overall flow dynamics
are predicted accurately.

It should be noted that reduced-order models with excel-
lent predictive performance can be obtained by other means. For
instance, approaches in which the models are equipped with linear
structure (such as the dynamic mode decomposition5–8) are reported
to work well for capturing periodic vortex shedding in the cylinder
flow problem.58 In the work from Baddoo et al.,58 for instance, the
data were truncated to the first 15 POD modes. It remains unclear to

FIG. 13. Comparison of the amplitudes of the first POD mode over time in the
OpInf (top) and the MPOD-OpInf (bottom) models in the cylinder flow problem.
The manifold models used quadratic embeddings. The gray shaded region high-
lights the window over which flow snapshots have been collected for training. (a)
Linear-subspace OpInf and (b) MPOD-OpInf (p = 2).

what extent dynamic mode decomposition and its variants can issue
efficient and accurate predictions at or near the true dimensionality
of two.

FIG. 14. Limit cycles observed in the full simulation model (4), the eight-equation
OpInf model (blue curve), and the two-equation MPOD-OpInf model (red curve)
for the cylinder flow problem.
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FIG. 15. Flow field (vorticity) predicted at t = 8 with a two-equation MPOD-OpInf
model using quadratic embeddings (that is, r = 2; p = 2) for the cylinder flow
problem. (a) Reference (292 678 degrees of freedom) and (b) MPOD-OpInf
(2 degrees of freedom).

V. CONCLUSION AND DISCUSSION

We have presented a general framework for nonlinear model
reduction of large-scale physical systems. We draw on recently
developed techniques for constructing nonlinear manifolds of poly-
nomial structure via representation learning in the form of two
different learning approaches. First, a POD-based version of the
approach is intuitive due to its connection to conventional POD.
Second, if one is willing to depart from the interpretable nature
of POD methods, alternating minimization techniques can boost
model accuracy by means of better approximations to the solution
of the general representation learning problem. We then turn to
the issue of learning reduced-order models from data. By project-
ing PDE systems onto the nonlinear manifold, we can identify the
algebraic structure of the projection-based reduced-order model.
This process calls for careful consideration of the structure of (1)
the high-dimensional, physical system and (2) the nonlinear state
approximation of choice. The non-intrusive OpInf method was used
for learning models directly from time-domain simulation data.
Coupling of the two different representation learning approaches
with the OpInf framework leads to a set of methods referred to
as POD-based manifold OpInf (MPOD-OpInf) and alternating-
minimization-based manifold OpInf (MAM-OpInf).

We applied this methodology to the Allen–Cahn equation, the
Korteweg–de Vries equation, and the incompressible Navier–Stokes
equation. In all numerical experiments, we found the proposed
OpInf approaches to be able to circumvent the limitations of linear-
subspace OpInf that are due to its use of linear state approximations.
The polynomial manifold constructions provide the most benefit in
situations where the linear subspace does not accurately represent
the full dynamics of the training data. In these situations, the man-
ifold acts as a closure term that accounts for the effects of modes
truncated from the linear subspace. The increased accuracy enabled

by a nonlinear compression of the state data does not point to com-
putational speedups: The reduced dimensionality comes at the cost
of increased algebraic complexity (and thus computational burden)
for the manifold-based reduced models. Although the results from
Sec. IV D imply that model robustness and predictive performance
are important additional considerations to be made, further inves-
tigation is needed for better understanding the tradeoffs between
dimensionality and complexity.

Further improvements in OpInf reduced-order models may
be possible if constraints are introduced to enforce particular
mathematical properties of the dynamical system. For example,
some classes of problems can be expressed using Hamiltonian or
Lagrangian formalisms.59 Biasing OpInf models toward such struc-
ture may enable more accurate long-time predictions far outside
the training time interval and will be addressed in future work. In
another research direction, data-driven OpInf could be combined
with the dynamic training via roll outs of neural ordinary differential
equations.60 This OpInf formulation should be more robust against
perturbations in the data because the whole predicted trajectory is
considered in the training loss rather than a single time step.
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from Algorithms 1 and 2. The data used in numerical experiments
from Sec. IV B and IV C are available upon reasonable request
from the authors. The FEniCSx computing platform is used to solve
Eq. (23) through their tutorial example.61,62
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