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Regulation of brain cognitive 
states through auditory, gustatory, 
and olfactory stimulation 
with wearable monitoring
Hamid Fekri Azgomi 1,2, Luciano R. F. Branco 1,3, Md. Rafiul Amin 1, Saman Khazaei 1,4 & 
Rose T. Faghih 1,4*

Inspired by advances in wearable technologies, we design and perform human-subject experiments. 
We aim to investigate the effects of applying safe actuation (i.e., auditory, gustatory, and olfactory) 
for the purpose of regulating cognitive arousal and enhancing the performance states. In two 
proposed experiments, subjects are asked to perform a working memory experiment called n-back 
tasks. Next, we incorporate listening to different types of music, drinking coffee, and smelling 
perfume as safe actuators. We employ signal processing methods to seamlessly infer participants’ 
brain cognitive states. The results demonstrate the effectiveness of the proposed safe actuation in 
regulating the arousal state and enhancing performance levels. Employing only wearable devices for 
human monitoring and using safe actuation intervention are the key components of the proposed 
experiments. Our dataset fills the existing gap of the lack of publicly available datasets for the 
self-management of internal brain states using wearable devices and safe everyday actuators. This 
dataset enables further machine learning and system identification investigations to facilitate future 
smart work environments. This would lead us to the ultimate idea of developing practical automated 
personalized closed-loop architectures for managing internal brain states and enhancing the quality of 
life.

Any activity might be a source of cognitive stress. Stress in  workplaces1 and cognitive load while learning at 
 schools2 are considered examples of such occasions that might cause cognitive stress in humans. Additionally, 
to reach enhanced productivity and retain it, it is crucial to elevate cognitive arousal levels and prevent low 
 engagement3–5. According to the Yerkes–Dodson law from psychology, one’s cognitive performance levels change 
as a function of their cognitive arousal state by following an inverse-U-shaped  relationship5,6. Hence, cognitive 
performance can be maximized by maintaining the internal arousal state in an optimal  range7,8. Besides cognitive 
performance enhancement, over the last few years, a growing interest in human emotion regulation arises in 
various areas such as  education9,10, neural  rehabilitation11,12, physiological disorder  treatments13, and brain–com-
puter  interfaces14,15. !us, it is crucial to regulate the arousal state and keep it within the optimal  range16. In this 
research, we design and perform human-subject experiments to analyze the e"ects of safe actuation (i.e., auditory, 
gustatory, and olfactory) on participants’ cognitive performance state and explore their arousal state #uctuations.

To investigate the relationship between cognitive performance and internal arousal states, we aim to analyze 
the changes in cognitive arousal state while under cognitive  load17–19. As the internal arousal state is a hidden 
state, we approach this problem indirectly. In response to the presence of cognitive stress stimuli, similar to any 
other internal or external stimuli, the brain reacts in multiple ways. Monitoring brain signals with Electroen-
cephalography (EEG)20–23 or functional Near-Infrared Spectroscopy (fNIRS)24,25 methods would shed light on 
how the brain would respond to those environmental stimuli. In addition to the direct changes in the human 
brain, there are also #uctuations in other physiological signals such as heart rate (HR), blood volume pulses 
(BVP), and electrodermal activity (EDA)26 that carry important information regarding the internal arousal 
state. With recent advances in wearable technologies, there exist fascinating and unique opportunities to inves-
tigate human brain responses in a more practical way. Compared to research-grade technologies that are more 
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expensive and precise in sensing, wearable devices are designed to be seamlessly integrated into everyday life 
and smart work  environments26–30. Low-cost and portability features are the most remarkable characteristics that 
make the wearable technologies more attractive in the $eld of emotion recognition and human  performance31–33.

In this study, we focus on employing only wearable devices for monitoring physiological responses. We 
propose to use Empatica E4  wristbands34 and a muse  headband35 to collect data from human subjects while 
exposing them to cognitive stress tasks. !e Empatica E4 wristband employs noninvasive sensors to collect 
multiple physiological signals (i.e., EDA, BVP, Photoplethysmography (PPG), 3-axis accelerometer data, and 
skin temperature). Additionally, we employ a muse headband to directly record brain electrical activity with a 
noninvasive EEG  method36,37. Compared to other research-grade devices that collect EEG signals from the entire 
scalp, and are not practical in daily life, a muse headband collects EEG signals from four  channels38.

In the present research, to induce cognitive stress, we propose to employ a well-studied working memory 
experiment called n-back  tasks39. We design and perform n-back experiments to investigate the brain responses 
while under cognitive  load40–42. In n-back tasks, the system represents a sequence of stimuli, each followed by 
a consistent  $xation43. !e participants are asked to recall if the stimulus they observe is the same as the one 
they were shown during the n-th step before. Higher values of n will result in more di%cult tasks. !is study 
also seeks to investigate the e"ects of using safe actuation in in#uencing physiological responses and enhancing 
cognitive performance state.

!ere are multiple studies discussing how listening to di"erent kinds of music (as a safe actuation) might 
a"ect humans’ internal  states44–46. Researchers  in47 performed an experiment to show the e%ciency of listening to 
music in improving imagery in the context of sports skills. By collecting physiological data such as EDA and HR, 
they have demonstrated the e"ectiveness of listening to music in enhancing the performance index. Lehmann 
et al. examined the e"ectiveness of background music in improving learning  outcomes48. Half of the subjects are 
asked to perform a memory task in silence while the other half are asked to listen to two pop  songs48. !e results 
further support their hypothesis about the positive role of music in improving working memory  capabilities49. 
In a similar study, Du et al. analyzed the e"ects of high and low-arousal music on neural responses by using eye 
blinks extracted from the recorded EEG  data49. While there exists rich literature verifying the positive impacts 
of listening to music on the human brain state, there is still a lack of experimental studies that computationally 
evaluate their e"ects on the human performance state and explore their impacts in changing physiological data 
collected via wearable technologies. To this end, in experiment 1, we propose to use music as a safe intervention 
for regulating the internal arousal state and enhancing the performance state.

In addition to listening to music, there exist other types of safe actuation that would in#uence human cogni-
tive behavior. Ca"eine intake and olfactory stimulants are examples of safe actuation that would be e"ective in 
brain state regulation. !e ca"eine involved in co"ee is in the class of central nervous system (CNS) stimulants. 
Organic molecular methylxanthine in ca"eine causes an increase in energy metabolism and in#uences cognitive 
function. !ese positive impacts are widely discussed in several studies on humans and  animals50–57. McLellan 
et al. performed a comprehensive review of multiple studies verifying the e"ects of ca"eine in enhancing alert-
ness, attention, and reaction  time58. Souissi et al. demonstrated how ca"eine ingestion is e"ective in enhanc-
ing cognitive and physical  performance59. !ey used reaction time and “number cancellation” tests to analyze 
cognitive  performance59. Researchers  in60 designed an experiment and analyzed the e"ects of co"ee intake on 
the brain’s electrical activity. Saifudinova et al. collect and analyze EEG signals before and a'er taking co"ee. 
In a recent study by Sargent et al., they performed experiments and collected EEG and EDA data from subjects 
while performing daily tasks in a naturalistic work  environment61. While participants are in an o%ce-type envi-
ronment, they were provided with hot beverages. In a similar study, researchers  in62 designed and performed 
experiments to investigate the e"ects of hot tea and co"ee on cognitive performance. During the experiment, 
they collected EDA and fNIRS data from the subjects. To explore the e"ects of co"ee on brain-computer inter-
faces, Meng et al. performed an experiment and analyzed EEG signals from the subjects who are asked to drink 
 co"ee63. In a separate study, Fine et al. also veri$ed the e"ects of ca"eine in improving cognitive performance 
and reducing  fatigue54.

In past decades, the e"ects of olfactory stimulation have also been explored by multiple  researchers64. Exam-
ples of these studies are analyzing the e"ects of smelling perfumes on lung function and exercise  performance65, 
pain  management66,67, and alleviating psychological e"ects in women’s menopausal  symptoms68. Porcherot et al. 
designed and performed experiments to investigate changes in emotions in response to smelling  fragrances69. 
Similar to any stimulation, to analyze the e"ects of olfactory stimulation, researchers proposed to collect multiple 
physiological signals such as cardiac and electrodermal  activity70, EEG  recording71, galvanic skin  response72, 
 heartbeat73, and  fNIRS74. Saeki et al. investigated the e"ects of inhaling favorite fragrances for relieving prick-
ing  pain75. !ey used electrical stimulation to cause pain and measured skin conductance  levels75. !e results 
verify their hypothesis about the positive in#uence of fragrances to alleviate pain. !ey also discuss the possibil-
ity of the e"ectiveness of aromatherapy in chronic pain  relief76. Onuma et al. conducted similar research and 
recorded brain activity from the frontal region and explored how smelling fragrances would a"ect that  area77. 
!ey concluded a positive relationship between activity associated with the right region of the brain and induced 
 impression77. Moss et al. performed experiments for evaluating the e"ects of di"erent aromas in modulating 
cognitive  performance78. !ey showed that peppermint has signi$cant potential to enhance cognitive mood. 
!e results of these studies validate the e"ects of smelling fragrances on changes in individuals’ psychological 
and physiological conditions. Inspired by these $ndings, we propose to explore the e"ects of drinking co"ee and 
smelling perfumes on cognitive performance and arousal states for potential future use in related closed-loop 
applications. In experiment 2, we design and perform human-subject experiments to analytically investigate the 
e"ects of this safe actuation on participants’ cognitive performance state while using only wearable technologies 
for physiological signals monitoring.
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We hypothesize that using safe actuators would improve the cognitive performance state and in#uence the 
cognitive arousal state. With the goal of making the $ndings in this research more applicable in everyday life, 
we only use wearable technologies for our investigation. To infer an individual’s internal arousal state, we model 
and estimate the hidden state by utilizing well-established computational tools. To this end, we analyze EDA 
data measured by the Empatica E4. While the main function of sweat gland activation is body thermoregula-
tion, it also carries important information regarding an individual’s internal arousal  state17,18,79. In response to 
internal and external stimuli, the human brain employs the autonomic nervous system to adjust sweat gland 
 secretions80. Accordingly, skin surface conductivity, which is measured by electrodes placed on the Empatica 
wristbands, provides information about brain peripheral signals. By performing deconvolution algorithms and 
inferring underlying neural  impulses81,82, we employ state-space representations and point process algorithms 
to model and estimate internal arousal  state83,84. Scholars have shown that the state-space representation is a 
suitable tool for capturing internal arousal state in response to the changes in skin conductance  signal85,86. As 
another measure, we also collect EEG signals to directly monitor brain activity and study its functionalities in 
the proposed experiments.

In summary, we analyze the impacts of listening to di"erent kinds of music while subjects perform cogni-
tive tasks and are under cognitive load in experiment 1. In experiment 2, we propose to explore the e"ects of 
drinking co"ee and smelling fragrances as safe actuation for closing the loop. To explore the e"ectiveness of 
this safe actuation in enhancing the performance state, we record the correct/incorrect responses as well as 
their reaction time while performing n-back tasks. Next, we employ a similar state-space approach to model the 
cognitive performance state. We take correct/incorrect response and reaction times as binary and continuous 
observations and utilize a Bayesian $ltering method to estimate the hidden performance state. !e obtained 
data in these experiments will give us the insight required to con$rm our hypothesis on the e"ectiveness of 
safe actuation while closing the loop in a systematic way. In this study, we have analyzed a comprehensive set of 
data, including behavioral measurements (i.e., correct/incorrect responses and reaction times) and physiological 
measures (i.e., EDA and EEG). However, we posit that a more thorough exploration of the remaining physiologi-
cal data holds signi$cant potential for advancing our understanding of human neurophysiology. Moreover, this 
expanded investigation will a"ord valuable insights into the e"ects of safe actuation on modulating cognitive 
states at the neural level.

Contribution. While there exist multiple studies discussing the impacts of safe actuation in regulating the 
brain’s cognitive states, a systematic approach is still required for implementing them in real-world environ-
ments. !e proposed experiments in this study are the $rst attempts to explore cognitive brain state regulation 
using safe actuation by utilizing only wearable technologies. Employing commercially available wearable devices 
(i.e., Empatica E4 and muse headband) along with safe actuation (i.e., music, perfume, and co"ee) make this 
research applicable in real-world settings. !e goal is to demonstrate how safe actuation intervention would 
enhance the cognitive performance state and regulate the arousal state. !e insights gained from this study could 
provide tremendous illumination for practical future uses in closed-loop regulation of internal brain states. We 
make a comprehensive physiological and behavioral dataset of working memory n-back experiments available to 
the research community. !e resulting dataset in these human-in-the-loop experiments has also great potential 
to be further investigated for modeling the dynamics of the proposed safe actuation in modulating internal brain 
states and would enhance our understanding of human neurophysiology.

Results
In this section, we demonstrate the results of two experiments. In both experiments, subjects are asked to 
perform working memory n-back tasks. In experiment 1, we analyzed the e"ects of listening to music on their 
physiological data and their cognitive performance levels. In experiment 2, the e"ects of smelling perfume and 
drinking co"ee on their cognitive performance levels are analyzed. Hence, we $rst present the raw physiological 
data collected from the wearable devices (i.e., Empatica wristband and muse headband). To evaluate the e"ects 
of safe actuation while performing memory tasks, we employ correct/incorrect responses and their reaction time 
to estimate the cognitive performance state. Moreover, the results of analyzing the skin conductance signals and 
estimating the internal arousal state are presented for each experiment. In what follows, we present one sample 
subject in each experiment. !e results associated with the rest of the subjects are presented in the supplementary 
material document.

!e recorded physiological data in experiments 1 and 2 are presented in Figs. 1 and 2. In Fig. 1 the grey, 
green, purple, and blue background colors in turn represent the results associated with no music, relaxing music, 
exciting music, and newly generated relaxing music sessions, respectively. !e yellow backgrounds are associ-
ated with rest time periods. In experiment 1, a'er each session, participants are asked to sit and relax for three 
minutes. !e rest time a'er the second session, which is in the middle of the experiment, was set to 6 min. In 
Fig. 2, the grey, green, and rust background colors in turn represent the results associated with no actuation, 
smelling perfume, and drinking co"ee sessions, respectively. !e yellow background is associated with the six 
minutes they have to smell their choice of fragrance as the olfactory stimuli. !e blue background implies the 
time participants have to drink the co"ee.

As illustrated in the top panels of Figs. 1 and 2, Empatica provides us with electrodermal activity (EDA) 
(i.e., measured as skin conductance signal), heart rate (HR) (i.e., derived from the interval between successive 
heartbeats), blood volume pulses (BVP), body temperature, and 3-axis accelerometer data. !e muse headband 
used in these experiments provides us with electroencephalogram (EEG) recordings from four channels. !e 
spectrogram analysis of two temporal channels (i.e., le' (TP9) and right (TP10))87,88 are presented in the bottom 
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panel of Figs. 1 and 2. To generate these spectrogram representations from the raw EEG signals, we followed the 
steps presented in the data analysis section.

!e collected correct/incorrect responses and their reaction times while performing n-back experiments, 
along with the estimated cognitive performance state are presented in Figs. 3 and 4. In each $gure, the $rst panel 
shows the reaction time along with correct (black) and incorrect (red) responses. !e second panel shows cogni-
tive performance state estimates. Bright and dark backgrounds represent 1-back and 3-back tasks, respectively. 
!e results of estimating the internal arousal state based on analyzing skin conductance signals are presented 
in Figs. 5 and 6. As presented in these $gures, panels from the top show in turn the skin conductance signal, 
underlying neural impulses, and estimated cognitive arousal state. Di"erent background colors are associated 
with di"erent sessions of each experiment.

Figure 1.  Raw physiological data collected via Empatica E4 Wristband and Muse Headband (Subject—A9, 
Experiment 1). In the top panel, sub-panels in turn represent the EDA, HR, BVP, body temperature, and 3-axis 
accelerometer data. !e grey, green, purple, and blue background colors in turn represent the results associated 
with no music, relaxing music, exciting music, and newly generated relaxing music sessions, respectively. 
Yellow backgrounds are associated with rest time periods. Sub-panels in the bottom panel depict spectrogram 
representations of EEG signals recorded from the le' and right temporoparietal areas of the brain (i.e., TP9 and 
TP10). White vertical lines separate the memory tasks from rest times.
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Discussion
As one of the very $rst attempts in brain state regulation with safe actuation using only wearable technolo-
gies, we designed and performed human-subject experiments. We designed two sets of memory-related n-back 
experiments and proposed to take safe actuation (i.e., listening to di"erent music tracks in experiment 1, smell-
ing perfumes, and drinking co"ee in experiment 2) for the purpose of brain state regulation. We examined the 
e"ectiveness of this safe actuation on regulating brain states and enhancing cognitive performance state (see 
Figs. 7, 8). Employing only wearable devices to record physiological signals makes the $ndings of this research 
applicable in real life. As a result of these experiments (Figs. 1, 2), we collected multiple physiological data using 
wearable devices. In terms of physiological signal processing, our aim is to (1) analyze the EDA signal collected 
via the Empatica E4 and derive the internal arousal state, and (2) investigate changes in EEG signal power, and 
(3) study their connection with cognitive performance state. !e remaining of physiological data presented in 
the top panels of Figs. 1 and 2 (i.e., HR, BVP, temperature, and 3-axis acceleration) were not analyzed in this 
research but hold great potential for future investigation and analysis. In what follows, we discuss the results of 
each experiment. Next, we elaborate on general $ndings and discuss the challenges.

Figure 2.  Raw physiological data collected via Empatica E4 Wristband and Muse Headband (Subject—B9, 
Experiment 2). In the top panel, sub-panels in turn represent the EDA, HR, BVP, body temperature, and 
3-axis accelerometer data. !e grey, green, and rust background colors in turn represent the results associated 
with no actuation, smelling perfume, and drinking co"ee sessions, respectively. Yellow and blue background 
colors are associated with rest time periods for smelling perfume and drinking co"ee, respectively. Sub-panels 
in the bottom panel depict spectrogram representations of EEG signals recorded from the le' and right 
temporoparietal areas of the brain (i.e., TP9 and TP10). White vertical lines separate the memory tasks from rest 
times.
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Participants in experiment 1 were asked to listen to di"erent kinds of music while performing memory tasks. 
Fluctuations in their physiological data (Fig. 1) and performance state (Fig. 3) demonstrate important informa-
tion regarding the e"ects of listening to music while under cognitive load. Analyzing the results of all partici-
pants, we observe an enhancement in their cognitive performance state while listening to music. !e primary 
aim of using music as an intervention during cognitive tasks is to investigate their impact in (i) controlling the 
performance state, (ii) keeping it within the desired range, and (iii) preventing the subjects from feeling bored 

Figure 3.  Cognitive performance results (Subject—A9, Experiment 1). !e top panel shows the reaction time 
along with correct (black) and incorrect (red) responses. !e bottom panel shows cognitive performance state 
estimates. !e grey, green, purple, and blue background colors in turn represent the results associated with no 
music, relaxing music, exciting music, and newly generated relaxing music sessions, respectively. Bright and 
dark backgrounds present 1-back and 3-back tasks, respectively.

Figure 4.  Cognitive performance results (Subject—B9, Experiment 2). !e top panel shows the reaction time 
along with correct (black) and incorrect (red) responses. !e bottom panel shows cognitive performance state 
estimates. !e grey, green, and rust background colors in turn represent the results associated with no actuation, 
smelling perfume, and drinking co"ee sessions, respectively. Bright and dark backgrounds present 1-back and 
3-back tasks, respectively.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12399  |  https://doi.org/10.1038/s41598-023-37829-z

www.nature.com/scientificreports/

and unengaged. Moreover, our results indicate that listening to music led to an increase in the performance state 
and helped them better concentrate on memory tasks. To further explain these results, we perform multiple 
analyses to compare the participants’ performance levels within di"erent sessions (i.e., baseline with no music 
and sessions while listening to di"erent music). As it is presented in Fig. 7, listening to relaxing music elevates 
the average levels of performance state in 3-back tasks from 0.38 to 0.51. !is is equal to 34% enhancement in 
the estimated performance levels while listening to relaxing music (p < 0.001). !e observed enhancement in 

Figure 5.  Cognitive arousal results (Subject—A9, Experiment 1). Panels from the top show in turn the skin 
conductance signal, underlying neural impulses, and estimated cognitive arousal state. !e grey, green, purple, 
and blue background colors represent the results associated with no music, relaxing music, exciting music, and 
newly generated relaxing music sessions, respectively. Yellow backgrounds are associated with rest time periods.

Figure 6.  Cognitive arousal results (Subject—B9, Experiment 2). Panels from the top show in turn the skin 
conductance signal, underlying neural impulses, and estimated cognitive arousal state. !e grey, green, and rust 
background colors represent the results associated with no actuation, smelling perfume, and drinking co"ee 
sessions, respectively. Yellow and blue background colors are associated with rest time periods for smelling 
perfume and drinking co"ee, respectively.
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the levels of performance state is because of either receiving more correct responses or faster reaction times. 
!e utilized Bayesian $lter to estimate the modeled performance stat incorporates this information (i.e., cor-
rect/incorrect responses and reaction times) and results in an estimate of the cognitive performance state. As 
depicted in panels A and B of Fig. 7, listening to relaxing music improved the rate of correct responses by 3.5% 
within faster reaction times (i.e., 17.1% faster reaction times (p < 0.001) compared to the baseline with no music 
played). It should be also noted that listening to relaxing music slightly improved subjects’ performance levels 
in 1-back tasks (p > 0.4). In the third session, subjects showed higher improvements while listening to exciting 
music. Listening to exciting music increases the average levels of performance state from 0.55 and 0.38 to 0.63 
(p < 0.001) and 0.56 (p < 0.001) in 1-back and 3-back tasks, respectively. !ese enhancements were because of 
receiving more correct responses and/or faster reaction times. Listening to exciting music resulted in 5.9% and 
16.5% faster reaction times in 1-back and 3-back tasks, respectively. Interestingly, these faster reaction times in 
3-back tasks are achieved with receiving a signi$cant increase in the number of correct responses (i.e., a 6.8% 
increase compared to the baseline with no music played (p < 0.001)). In 1-back and 3-back tasks by 5.9% and 
by 3.5% within faster reaction times (i.e., 17.1% faster reaction times (p < 0.001) compared to the baseline with 
no music played).

In addition to these familiar types of music, we also played newly generated relaxing music in the fourth 
session of experiment 1, which they had never heard before. !ese newly generated relaxing music tracks were 
created by using deep learning approaches. In response to listening to this new music, participants showed higher 
levels of performance state (i.e., reaching 0.66 (p < 0.001) and 0.58 (p < 0.001) performance levels in 1-back 
and 3-back tasks, respectively). !e main objective of incorporating the newly generated music into the study 
was to evaluate its potential positive impact on participants’ cognitive performance levels. Our $ndings sug-
gest that despite the music being tailored to the subject’s preferences, its novelty factor might have contributed 
to the observed cognitive enhancements. However, to fully comprehend the potential bene$ts of new arti$cial 
intelligence (AI)-generated music on cognitive performance, further research is necessary. !is could entail 

Figure 7.  Performance analysis of all participants (Experiment 1). Box-plots in each panel show in turn 
(A) correct response percentage, (B) reaction time, and (C) estimated cognitive performance state for all 
participants.

Figure 8.  Performance analysis of all participants (Experiment 2). Box-plots in each panel show in turn 
(A) correct response percentage, (B) reaction time, and (C) estimated cognitive performance state for all 
participants.
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exploring the speci$c music features that lead to cognitive improvements, as well as investigating the potential 
for personalized AI-generated music to enhance cognitive function.

In experiment 2, where the participants were asked to smell perfume and drink co"ee as the safe actuation, 
we observe an enhancement in average levels of performance state. Similar to experiment 1, the proposed safe 
actuation not only prevents the participants from feeling bored and unengaged but also leads the subjects to 
achieve higher performance levels. Here, we perform corresponding analyses to compare the performance levels 
in the baseline session with those in sessions with safe actuated conditions. As it is illustrated in Fig. 8, smelling 
perfume has increased the average levels of performance state from 0.55 and 0.39 to 0.61 (p < 0.001) and 0.47 (p 
< 0.001) in 1-back and 3-back tasks, respectively. Drinking co"ee has also increased the average levels of perfor-
mance state from 0.55 and 0.39 in 1-back and 3-back tasks to 0.62 and 0.52, respectively. !is enhancement in 
the levels of estimated performance state is due to receiving more correct responses with faster reaction times. To 
further demonstrate the e"ects of olfactory stimulation and ca"eine intake in improving brain cognitive perfor-
mance levels, we compare their impacts on the number of correct responses and reaction times. As presented in 
Fig. 8, smelling perfumes improves the average rate of correct responses by 0.9% (p < 0.01) and 1.6% (p < 0.001) 
in 1-back and 3-back tasks, respectively. !ese improvements in correct responses are achieved with 4.4% (p < 
0.01) and 5.4% (p < 0.01) enhancements in reaction times in 1-back and 3-back tasks, respectively. Similarly, 
in response to drinking co"ee, subjects showed 1.4% (p < 0.05) and 5.8% (p < 0.001) enhancement in the rate 
of correct responses in 1-back and 3-back tasks, respectively. A'er Drinking co"ee, more correct responses 
are achieved within faster reaction times (i.e., 6.1% (p < 0.01) and 8.6% (p < 0.01) improvement in 1-back and 
3-back tasks, respectively). !ese comparisons further demonstrate how this safe actuation has improved sub-
jects’ performance state by both reducing reaction times and receiving more correct responses. !erefore, one 
may conclude that the subjects’ cognitive performance state while conducting memory-related tasks would be 
improved a'er smelling perfume or drinking co"ee.

In addition to the positive impacts of the proposed safe actuation on enhancing the subjects’ performance 
state, we also observe di"erent sorts of modulation in human physiological data. As these physiological data 
are collected only using wearable devices, further studying the aforementioned #uctuations would make these 
devices along with the proposed algorithms more applicable in everyday life. For instance, changes in EEG sig-
nals collected via muse headband would also provide us with insight regarding the impacts of safe actuation in 
brain activities. By prepossessing the EEG signal (see “Methods” section) and performing a continuous wavelet 
transform, we analyze the #uctuation in EEG signal power. As shown in the bottom panel of Fig. 1 (i.e., results of 
subject A9 in experiment 1), signi$cant activation of brain beta frequency bands (13–30 Hz), during the n-back 
experiments compared to the rest periods, could be an indicator of the high levels of cognitive engagement. To 
further analyze these results, we compared the average levels of brain signal power in the beta frequency bands. 
As shown in panel A of Fig. 9, we observe a 29.9% increase in beta band power while listening to relaxing music 
and a 27.3% increase while listening to exciting music (p < 0.001). Interestingly, the increase in beta power was 
even greater, at 46.8%, while listening to newly generated music (p < 0.001). !ese higher levels of beta band 
power have also resulted in faster reaction times and an increase in correct response rates (as shown in the top 
and bottom panels of Fig. 3). Statistical analysis revealed an important 42.5% increase in the average levels of 
estimated performance state compared to the baseline with no actuation (p < 0.001). So, we might conclude 
that listening to di"erent kinds of music leads to this increase in the beta band power and could eventually be a 
reason for the observed enhancement in the cognitive performance state in this speci$c subject (Fig. 3). As seen 
in the bottom panel of Fig. 3, listening to di"erent kinds of music has also led to an improvement in cognitive 
performance levels. !erefore, it can be inferred that the increase in beta band power while listening to music is 
an indicator of an elevated cognitive performance state in the subject. To further explore the connection between 
the beta band power and the subject’s performance state, we present their relationship in panel A of Fig. 10. !e 
results demonstrate a linear-shaped relationship between the estimated performance levels and the beta band 
power calculated from the EEG signals. !is implies that achieving the maximum levels in the performance state 
is correlated with the increase in beta band power. !ese $ndings are consistent with previous studies reporting 
higher levels of alpha and beta band activity in the brain’s temporal region during cognitive  tasks87,88. Additionally, 

Figure 9.  EEG power variation in beta band frequency. Panels A and B show in turn the average levels of EEG 
power in the beta frequency band for the subject—A9 (in experiment 1) and the subject—B9 (in experiment 2).
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the higher levels of beta band power during the actuated periods (while listening to relaxing music, exciting 
music, and newly generated music) may be attributed to the positive e"ects of safe actuation.

To further investigate the impacts of safe actuation utilized in experiment 2 (i.e., smelling perfume and 
drinking co"ee) on the physiological signals, we conducted a similar analysis on their EEG signal. As shown in 
panel B of Fig. 9, subject B9 exhibited a di"erent beta power synchronization compared to subject A9 in Panel 
A of Fig. 9 during no actuation periods. Subject B9 started with higher signal power in the baseline compared to 
subject A9. Smelling perfume resulted in a 42% drop in the beta power in the second session (p < 0.001). Drinking 
co"ee increased beta power by 24%, which was higher than the second session (i.e., a'er smelling perfume) but 
relatively lower than the baseline with no actuation (% a8 lower compared to the baseline (p < 0.001)). !ere-
fore, subject B9 experienced a lower level of beta power a'er smelling perfume and reached a moderate level 
a'er drinking co"ee. !ese moderate levels of beta band power a'er drinking co"ee led to faster reaction times 
and an increase in correct response rates (see top and bottom panels of Fig. 3). Statistical analysis indicated an 
important 115% increase in the average levels of estimated performance state compared to the baseline with no 
actuation (p < 0.001). Hence, we might conclude that drinking co"ee for this subject led to modulation in the 
beta band power and could be a cause for the improvement in cognitive performance state (Fig. 3). Additionally, 
the higher levels of beta band power with no actuation could be attributed to the low levels of performance state 
in this subject. !is $nding supports the hypothesis that for achieving the highest performance levels, neither 
high levels of engagement nor a low level is  desired5,6. Similar to the analysis conducted for experiment 1, we have 
explored the connection between the beta band power and the subject’s performance state in experiment 2. !e 
relationship between them is presented in panel B of Fig. 10. !e $ndings indicate that there exists an inverted 
U-shaped relationship between the estimated performance levels and the beta band power derived from the EEG 
signals. !is implies that achieving the maximum levels in the performance state requires the modulation of 
beta band power within a moderate range. !ese results further demonstrate the need to investigate the impact 
of any actuation within a personalized framework.

In addition to these changes in EEG signal recorded from the muse headband, we analyzed skin conductance 
signal (as a valid indicator of the internal arousal  state17,83,89–91) collected by Empatica wristband. By utilizing skin 
conductance signals, applying a deconvolution algorithm to extract underlying neural impulses, and employing 
a state-space approach to relate the underlying neural impulses to the hidden arousal state, we estimated the 
internal arousal state (Fig. 5). As seen in the top panel of Fig. 5, although we observe more skin conductance 
responses in the raw signal in the $rst session (i.e., no music), the deconvolution algorithm recovers fewer arousal 
events (over sparsi$es). !is can be due to changes in the sweat dynamics as we move to the three sessions with 
music played in the background putting more emphasis on the last three-quarters of the data. !is indicates 
the need for an adaptive deconvolution algorithm for real-world settings. Both Figs. 1 and 5 demonstrate that 
listening to all kinds of music modulated the subject’s skin conductance data and their estimated arousal state. 
We then sought to explore the relationship between the arousal state and the estimated performance state. As 
presented in panel A of Fig. 11, we examined the normalized levels of arousal and performance state in subject 
A9. !e results reveal an inverted U-shaped relationship between these two cognitive states. !is implies that to 
achieve maximum performance, it is important to maintain arousal levels within a moderate range.

In a similar manner, and to examine how this safe actuation impacts the subjects’ physiological data in 
experiment 2, we analyzed the arousal levels of subject B9. !e selected subject shows a distinct pattern in their 
physiological signal modulation in response to the safe actuation (i.e., smelling perfume and drinking co"ee). 
!e data presented in both Figs. 2 and  6, indicate that subject B9 exhibited a decrease in skin conductance levels 
a'er smelling perfume, followed by an increase in levels a'er drinking co"ee. As a result, changes in the estimated 
arousal state can be attributed to these observed alterations in skin conductance levels. As shown in the bottom 
panel of Fig. 6, smelling perfumes has resulted in a drop in estimated arousal levels, while drinking co"ee has 

Figure 10.  EEG beta band power-performance relationship. Panels A and B show in turn the relationship 
between the averaged levels of beta band power in the EEG signal and the normalized levels of estimated 
cognitive performance state of the subject—A9 (in experiment 1) and subject—B9 (in experiment 2). !e blue 
line in each $gure shows the $tted line to the actual data shown in red.
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led to an elevation in the levels of estimated arousal state. As a $nal step, we explore the relationship between 
the arousal state and performance state in Fig. 11. As shown in panel B of Fig. 11, we see an inverted U-shaped 
relationship here. !is suggests that optimal performance is achieved when arousal levels are modulated and kept 
within a moderate range. !ese person-speci$c insights are valuable for the development of closed-loop archi-
tectures aimed at improving performance and productivity. While an inverted U-shaped relationship between 
arousal and performance was observed in the example subjects (i.e., A9 in experiment 1 and B9 in experiment 
2), it should be noted that some subjects exhibited di"erent patterns (see Supplementary Information). !is 
highlights the importance of a personalized framework in the design of closed-loop systems.

!e performed analyses provide additional insights into how the implementation of safe actuation can modify 
the performance state of individuals by improving their reaction times and/or increasing the accuracy of their 
responses. It is also worth mentioning that these experiments lasted so long (i.e., more than 70 min in each 
experiment) and it is a possibility that without safe actuation (either listening to music, smelling perfume, or 
drinking co"ee), the subjects’ performance state would be dropped due to tiredness. !erefore, we may conclude 
that the proposed safe actuation while performing memory-related tasks would enhance subjects’ productivity. In 
addition, one concern that could arise is that the improvement in cognitive performance levels may be due to the 
habituation e"ect. While this is a valid point, it should be considered that within each session we do not observe 
meaningful improvements that could be resulted from learning the tasks (Figs. 3, 4). To validate this hypothesis, 
a possible future direction of this research could be changing the sequence of sessions to further di"erentiate 
the e"ects of habituation versus the in#uence of applying safe actuation. It should also be noted that among the 
various n-back tasks, we speci$cally selected the 1-back and 3-back tasks for our study. Although it is possible to 
include 2-back tasks, we opted to focus on the 1-back and 3-back tasks to reduce the duration of the experiment. 
Additionally, the primary goal of experiments in this research was to examine the in#uence of safe actuation on 
cognitive performance. !erefore, we chose the 1-back and 3-back tasks as distinct and representative cases to 
better comprehend their dissimilarities. In designing experiment 1, we also included washout periods lasting 3 
min a'er session one, and 3 and 6 min a'er session two and three, respectively. !e duration of these periods is 
in#uenced by various factors such as the nature of the task, individual responses, and the characteristics of the 
music  stimulus92. Importantly, when utilizing shorter intervals between music tracks, it is critical to recognize 
the potential for lingering e"ects from the previous session to persist into the subsequent one.

Methods
All experiments were performed in the Computational Medicine Lab (CML) at the University of Houston (see 
Fig. 12). During the experiment, the subject is seated comfortably on an armchair and wears a muse headband 
and Empatica E4 wristbands on both hands. During the experiment, the subject looks at the screen to perform 
memory-related n-back tasks. We also record facial activity with an action camera. All methods were performed 
according to the guidelines of the Declaration of Helsinki and the current ethical guidelines. All the experimental 
procedures and corresponding documents were approved by the institutional review board at the University of 
Houston, TX, USA (STUDY 00002490).

Participants. !is pilot study includes two sets of experiments. Subjects were recruited from the members 
of the University of Houston (i.e., students and postdocs) for these experiments. In Experiment 1, 17 partici-
pants (11 males, 6 females) were recruited in total. In Experiment 2, 13 participants (10 males, 3 females) were 
recruited in total. Participants were required to be at least 18 years old. All participants read and signed an 
informed consent document. All participants received gi' cards as incentive compensation. !ey all received a 
base amount plus an additional incentive to further encourage them to fully focus on the tasks.

Figure 11.  Arousal-performance relationship. Panels A and B show in turn the relationship between the 
normalized levels of estimated cognitive arousal and estimated cognitive performance state of Subject—A9 (in 
experiment 1) and Subject—B9 (in experiment 2). !e blue curve in each $gure shows the inverted U-shaped 
$tted to the actual data shown in red.
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In analyzing participants’ data, seven participants were excluded due to the E-Prime program crashes ( N = 1 ) 
for collecting participants’ behavioral responses or the quality of wearable Empatica wristband data due to the 
motion artifacts and/or the lack of proper contact between the wearable’s electrodes and participants’ skin surface 
( N = 6 ) in experiment 1. In experiment 2, the data of ( N = 3 ) participants were excluded similar to experiment 
1. In the present study, we utilized 10 participants for each experiment and labeled the subjects accordingly 
(please see supplementary information). In Experiment 1, 10 subjects (6 males, 4 females), with a mean age of 
29.2 (SD = 4.0), were included in total (i.e., subject A1—subject A10). In Experiment 2, 10 subjects (8 males, 2 
females), with a mean age of 29.0 (SD = 3.8), were included in total (i.e., subject B1—subject B10).

Equipment. We used two wearable Empatica E4 wristbands and a portable muse headband for EEG record-
ing. Using the Empatica E4 wristbands, we collected electrodermal activity (EDA) (or skin conductance) that 
tracks the changes in skin conductivity using two metal electrodes, blood volume pulse (BVP), from which heart 
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Figure 12.  Experimental setup and summary. Panels demonstrate the experimental setup and experiments’ 
summary. During the experiment, the participant is seated comfortably on an armchair and wears a muse 
headband and one empatica E4 wristband on each hand. During the experiment, the subject looks at the screen 
to perform n-back memory-related tasks and we record facial activity with an action camera. In experiment 
1, listening to music is used as the safe actuation. In experiment 2, smelling fragrances and drinking co"ee are 
used as the safe actuation. !e bottom panel describes the n-back tasks.
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rate variability can be measured, using a photoplethysmography sensor, motion-based activity using a 3-axis 
accelerometer sensor, and skin temperature using infrared thermopile. Using the 2016 edition muse headband, 
we collected brain activity using four EEG sensors.

Procedure. In this study, we propose to perform two sets of experiments for regulating cognitive arousal 
and cognitive performance states. As presented in Fig. 12, in the $rst experiment we aim to analyze the e"ects of 
listening to music in enhancing brain states. In the second experiment, we evaluate the e"ects of drinking co"ee 
and smelling perfume in regulating brain cognitive states. In each experiment, we ask the subjects to perform 
memory-related n-back tasks.

To design experiments 1 and 2, we used E-Prime professional so'ware (version 3.0) on a Dell Latitude 5580 
DESKTOP-Q6TBA9H. Within E-Prime, E-Studio and E-Data Aid modules were used to design the presentation 
of multiple sessions of n-back tasks. To record the responses, we used Chronos. To have a more comfortable 
setting, we used a 50 inches LCD screen mounted on the wall within a 2-meter distance of the subjects (see 
Fig. 12). Participants were asked to sit in an armchair comfortably facing the screen with their dominant hand 
on the Chronos response device.

In the designed n-back experiments, subjects were shown trials of stimulus (500 ms) along with a plus sign 
for their response (1500 ms). Each session consisted of an instruction that lasted for 5 s and 16 trials each of 
which includes 22 stimuli. !ere were 10 s breaks in between trials and 20 s relaxation in between the 16 tri-
als. !e total duration of each session was 964 s (i.e., 16 × [5+ (22 × 2)+ 10] + 20 = 964 ). To specify their 
response, participants had to press the target (green) vs non-target (red) buttons on Chronos. Before the start 
of the experiment, they were provided with instructions regarding the tasks and performed a couple of practice 
trials (i.e., one 1-back and one 3-back trial). In the 1-back task, the participants were asked to determine if the 
stimulus they saw is the same as they saw one step before. Conversely, in the 3-back task, they were asked to 
indicate if the one they saw is the same as they observed three steps before (see bottom sub-panel in Fig. 12). In 
session one of experiment 1, subjects perform n-back tasks with no music. In the second session, they are asked 
to repeat the tasks while listening to their choice of relaxing music. In the third session, they repeated the tasks 
while listening to their choice of exciting music. In the $nal session, they repeated the tasks while listening to 
the newly generated relaxing music. In what follows we illustrate the process of generating music based on their 
taste for relaxing music.

Music taste is a colloquial term to represent how di"erent songs have distinct e"ects on each individual. 
Nowadays, there are multiple music genres and within each genre, there are various bands producing a variety 
of content, in accordance with a wide range of preferences from their audiences. Musical preference is a very 
subjective matter, which usually encodes distinct auditory stimulation responses in the  brain93. Moreover, music 
has been used to improve clinician-rated depressive  symptoms94, reduce stress levels and increase performance 
during  exams95,96 and improve performance in non-complex cognitive  tasks97. Arti$cially generated music is an 
interesting research topic that has the potential to automatically alter musical parameters and optimize the songs 
to achieve certain desired goals, such as relaxation, excitation, or  concentration98. In this research, we employ 
deep learning neural networks to generate new songs based on the subject’s preference. More speci$cally, we use 
a long short-term memory (LSTM) neural network. LSTMs are capable of learning long-term and short-term 
dependencies and have been widely used in music  generation98,99. !e LSTM architecture is comprised of various 
interconnected cell blocks that transfer the cell’s hidden state to the next cell, a'er mathematical manipulations. 
Each cell block has a memory component that gets altered via the Forget, Input, and Output gates. !e Forget gate 
is responsible for removing unwanted information from the cell state, the input gate selects relevant information 
to be stored in the cell’s state, and the output gate $lters information for the next cell, all based on the input data 
and previous cell’s output. Each gate works by  computing99

where ft , it , ot represent forget, input, and output gates, respectively. σ stands for a Sigmoid function, wx and bx 
are weights and biases for a gate x respectively. ht−1 represents the output of the previous cell block at time-step 
t − 1 , ut is the input at current time-step.

To generate the music in this study, we employ a neural network with three LSTM layers in succession, with a 
recurrent dropout parameter set to 0.3. With this parameter, at every update, a percentage of the input is dropped, 
preventing over-$tting. Next, a batch normalization layer is added, followed by a fully connected layer, and an 
activation layer with a recti$ed linear activation function (ReLU). Subsequently, another batch normalization 
layer is added, a dropout layer, and a fully connected layer before the $nal activation layer with a “So'Max” 
function. !e “So'Max” is a generalized logistic function. Finally, the loss metric is calculated during the train-
ing phase with a categorical cross-entropy function.

!e input songs for the training phase of the neural network need to be in textual format. For this, we use 
the musical instrument digital interface (MIDI) format as there are plenty of songs available  online100. !is text-
based musical format carries instructions on how to play the song, such as notation, pitch, and tempo. With this 
format, the neural network is easily trained on the n-th sequence of notes of songs from a dataset. Once training 
is complete, each prediction of a future note considers the n-th previous notes and the neural network would be 
capable of generating new songs with a similar structure. We trained 3 separate networks in 3 di"erent datasets 

(1)ft = σ (wf [ht−1, ut ] + bf ),

(2)it = σ (wi[ht−1, ut ] + bi),

(3)ot = σ (wo[ht−1, ut ] + bo),
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of MIDI songs, obtained  from100. !e musical genres chosen were, (1) classical music with songs from Ludwig 
van Beethoven, Johann Sebastian Bach, and Frédéric François Chopin; (2) fantasy music with video-game songs 
such as the various Final Fantasy and Mario theme songs; and (3) jazz music including songs from Frank Sinatra 
and various other authors. Prior to the start of the experiment, samples of these types of music are played for the 
subjects and we asked them to choose their favorite one. Within the experiment, newly generated music based 
on their selection is played for them in the last session. A'er each session, they sit and relax for three minutes 
(the relaxation time a'er the second session was 6 min). !e entire duration of the experiment is about 80 min.

In experiment 2, in the $rst session, they perform n-back tasks with no actuation. Before the second ses-
sion, they are asked to smell their choice of fragrance. !ey have 6 min to apply this actuation. Next, they are 
asked to repeat the n-back tasks. In the third session, we aimed to investigate the e"ects of drinking co"ee as 
the actuation. !ey were provided with their regular co"ee and were asked to sit down and drink their co"ee 
during a 30-min break while resting. Next, they repeat performing the memory tasks. !e entire duration of the 
experiment is about 90 min.

Data analysis. We perform multiple types of analyses to evaluate our hypothesis about the e"ectiveness of 
safe actuation in regulating brain states. !ese include physiological signal processing and evaluating cognitive 
performance levels. To evaluate cognitive performance state, we follow the methodology presented  in101,102 to 
model latent performance  state6. Using a systematic approach, we relate the cognitive performance state to the 
subjects’ correct/incorrect responses and reaction times in the n-back experiments. We next estimate the latent 
performance state. Moreover, we employ physiological measurements and use a state-space representation to 
model the internal arousal state. To estimate the internal arousal state, we analyze the skin conductance signal 
collected via Empatica E4 wristbands. By applying a deconvolution algorithm and inferring underlying neural 
impulses, we establish a marked point process Bayesian $lter to estimate hidden cognitive arousal  state83,91. For 
the purpose of statistical analysis, we conducted a one-way analysis of variance (ANOVA) to test for di"erences 
in behavioral data, physiological signals, and all derived metrics.

Prepossessing of EEG recordings and spectrogram representation. Due to the low spatial resolution of the EEG 
signal, we $rst $lter the raw EEG  signal22,36. To this end, we start with raw EEG signal and perform high-pass 
$ltering above 1 Hz and low-pass $ltering below 50 Hz, similarly to previous  studies103. Next, the signal is down-
sampled from 256 to 128 Hz to improve computational e%ciency. !en, we run “clean_artifacts” from EEGLAB 
toolbox, version  2021104. !is function is based on burst criteria on the EEG signal. To calculate the spectrogram 
of the cleaned EEG signal, we use built-in constant-Q nonstationary Gabor transform (cqt) MATLAB function.

Cognitive performance analysis. Pursuing the approach presented  in101, we model the cognitive performance 
state as a $rst-order state-space system

where zk is the hidden performance state, vk ∼ N(0, σ 2
w) represents the process noise, ρ is the unknown coef-

$cient; k stands for the trial number during each experiments. Assigning one binary observation (correct/
incorrect response at k th trial) and one continuous observation (reaction time of the corresponding trial)101, we 
form the observation model

where δk ∼ N(0, σ 2
δ ) , tk displays the reaction time at each trial; α0 and α1 are the unknown parameters. !e 

binary response is assumed to follow a Bernoulli distribution with the probability mass function pmk
k (1 − pk)

1−mk 
where pk stand for the probability of receiving a response (i.e., P(mk = 1) ). To relate the performance state to the 
probability of having a correct response, we apply the same Sigmoid transform function. !erefore,

!e constant term µ can be evaluated by µ ≈ log
(

p0
1−p0

)

 where p0 is the average probability of having a cor-
rect response over the experiment. Utilizing an expectation maximization (EM) approach, we estimate unknown 
parameters θP = {ρ, σ 2

w ,α0,α1, σ
2
δ } as well as the performance state zk . !e E-step formulation consists of the 

following prediction and update steps.
Prediction:

Update:

(4)zk+1 = ρzk + wk ,

(5)Ik = log(tk) = α0 + α1zk + δk ,

(6)pk =
1

1+ e−(zk+µ)
.

(7)zk|k−1 =ρzk−1|k−1,

(8)s2k|k−1 =ρ2s2k−1|k−1 + σ 2
w .

(9)zk|k = zk|k−1 +
s2k|k−1

α2
1s

2
k|k−1 + σ 2

δ

[

σ 2
δ (mk − pk|k)] + α1(Ik − α0 − α1zk|k−1)

]

,
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To achieve smoother results, we perform the following smoothing steps

!e expected values of z2k , and zkzk−1 can be derived as,

At the M-step, the expected log-likelihood function can be formulated as

Consequently, in response to the correct/incorrect responses and the subject’s reaction time, the cognitive 
performance state can be obtained.

Cognitive arousal analysis via EDA. While the main purpose of EDA or skin conductivity is the body’s ther-
moregulation, it carries important information about the internal cognitive arousal state. !e human brain 
employs the autonomic nervous system to handle sweat gland activation and response to internal and external 
stimuli. !e skin conductance signal consists of two components: fast varying phasic and slow varying  tonic105. 
By performing a cvxEDA approach we $rst separate phasic and tonic parts. By performing a deconvolution 
algorithm, similar to the ones presented  in18,79,82,85, we obtain the underlying neural impulses. Next, we employ 
a state-space approach to relate the internal arousal state to the changes in SCR events. Since the internal cogni-
tive arousal state is not directly measured, we utilize a marked pint process Bayesian-type $lter to estimate the 
hidden arousal  state83,106. In what follows, we review the steps.

In this study, we utilize the approach presented  in85. SCR measurement as a function of time can be thought 
of as the summation of a slow varying (tonic) component and a fast varying (phasic) component. !e SCR signal 
can be represented by combining these three components as

where y(t), yp(t) , ys(t) , and ν(t) represent the SCR signal, phasic component, tonic component, and noise process, 
respectively. !e phasic responses can be written as the convolution operation between the autonomic nervous 
system activation u(t) and the phasic response h1,τ (t) , i.e. yp(t) = h1,τ (t) ∗ u(t) . !e phasic impulse response 
hτ (t) can be written  as85

Here, τr and τd are the rise time and decay time of a skin conductance response. On the other hand, the auto-
nomic nervous system activation can be modeled as the weighted shi'ed sum of the delta functions.

If SCR is periodically sampled with a period of Ty for M measurements, we can write the discrete observation 
equation as follows, i.e., u(t) =

∑N−1
i=0 uiδ(t − iTu) . Here, N is the number of impulses in the input and Tu is the 

sampling frequency of the input

where k ∈ {1, 2, · · · ,M} represents the kth measurement with sampling frequency of Ty . One should note that 
here, Td = NTu = MTy is the sampled signal duration. Here, ν[k] represents the discretized measurement errors. 
We model ν[k] as a zero-mean independent and identically distributed (i.i.d) Gaussian random variable. We write 
the discrete model for y[k] based on the tonic and phasic modeling

(10)s2k|k =
[

1

s2k|k−1

+ pk|k(1 − pk|k)+
α2
1

σ 2
δ

]−1

.

(11)Bk = ρ
s2k|k
s2k+1|k

,

(12)zk|K = zk|k + Bk(zk+1|K − zk+1|k),

(13)s2k|K = s2k|k + B2k(s
2
k+1|K − s2k+1|k).

(14)E[z2k ] = z2k|K + s2k|K ,

(15)E[zk+1zk] = zk+1|Kzk|K + Bks
2
k+1|K .

(16)

Q2 =
K

∑

k=1

E[mk(µ+ zk) − log(1+ eµ+zk )]

+
−K

2
log(2πσ 2

δ ) −
K

∑

k=1

E

[

(Ik − α0 − α1zk)
2

]

2σ 2
δ

+
−K

2
log(2πσ 2

w) −
K

∑

k=1

E

[

(zk − zk−1)
2

]

2σ 2
w

.

(17)y(t) = yp(t)+ ys(t)+ ν(t),

(18)hτ (t) =

{

1
τr−τd

(

e−
t
τr − e

− t
τd

)

; if t ≥ 0

0 ; otherwise
.

(19)y[k] = yp(kTy)+ ys(kTy)+ ν[k],
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where h0,τ [k] = e
−

kTy
τd  , h1,τ [k] =

[

h1,τ (kTy) h1,τ (kTy − Tu) · · · h1,τ (Tu) 0 · · · 0
︸ ︷︷ ︸

N−
kTy
Tu

]" , h2[k] =
[

h2(kTy + !s)

h2(kTy) h2(kTy − !s) · · · h2(kTy − (P − 1)!s)
]" ; u = [u1 u2 · · · uN ]! represents a sparse vector con-

taining all the amplitudes of the impulses in the autonomic nervous system activation model over the entire 
signal duration and q = [q1 q2 · · · qN ]! represents all the coe%cients of the cubic B-spline basis functions 
and yp0 = yp(0) . Here h2(t) represents the cubic B-spline basis functions and h2[k] is the discretized version of 
a shi'ed cubic-spline basis function. Here the knot size for the cubic B-spline basis functions is selected similar 
 to85. !e overall vector matrix form becomes

where y = [y[1] y[2] · · · y[M]]! , H0,τ = [h0,τ [1] h0,τ [2] · · · h0,τ [M]! , H1,τ = [h1,τ [1] h1,τ [2]

· · · h1,τ [M]]! , H2 = [h2[1] h2[2] · · · h2[M]]! , and ν = [ν1 ν2 · · · νM ]! . Here yp0 is assumed to 
be unknown and estimated during the deconvolution. During the deconvolution, all the unknowns, i.e., τ , u , and 
q are identi$ed by solving an optimization problem in a coordinate descent manner that utilizes physiological 
prior information and generalized-cross-validation. !e details for the estimation are provided  in85. For a long 
measurement, we split the data into multiple blocks of 200 s with a stride of 100 s to perform the deconvolution 
for each of these blocks. Later, all the results of u are concatenated by discarding 50 s of the start and end part of 
the results to avoid inaccuracies in the boundaries of the deconvolution. Only for the $rst block and last block, we 
keep the $rst 50-s and last 50-s parts, respectively, as they cannot be replaced by results from the adjacent blocks.

Following83,102, we specify a $rst-order auto-regressive model for the hidden cognitive arousal state

where xj and εj ∼ N(0, σ 2
ε ) stand for internal cognitive arousal state and process noise at time j, respectively. 

Employing SCR events’ timing and their amplitudes as the observation, we intend to estimate the hidden arousal 
state using a marked point process Bayesian  $lter83. To this end, we consider the occurrence of a neural impulse nj , 
as a Bernoulli-distributed random variable with probability mass function anjj (1 − aj)

1−nj where aj = P(nj = 1) . 
To relate relate xj to aj , we use Sigmoid transfer  function102

where β is a constant that can be calculated from β ≈ log
(

a0
1−a0

)

 and a0 represents the average probability of 
observing an impulse during the experiment. Similar  to83, we de$ne the continuous-valued amplitude rj of each 
neural impulse as

where rj is the amplitude of the observed neural impulse due to ANS activation, vj ∼ N(0, σ 2
v ) describes the 

sensor noise, γ0 and γ1 are the unknown parameters to be determined. Consequently, the joint density function 
for the observed neural stimuli is

Applying the expectation-maximization framework, we estimate the unknown parameters 
θA = {σ 2

ε , γ0, γ1, σ
2
v } , and hidden state xj , simultaneously. !e E-step equations have been derived based on the 

observations RJ = {(n1, r1), ..., (nJ , rJ )} up to time J. At the E-step, the main objective is to estimate xj and its 
variance. !e forward $lter consists of the prediction and updates steps.

 Prediction:

Update:
If nj = 0

(20)
y[k] = h0,τ [k]yp0

︸ ︷︷ ︸

initial condition

+ h1,τ [k]u
︸ ︷︷ ︸

phasic

+ h2[k]q
︸ ︷︷ ︸

tonic

+ν[k],

(21)
y = H0,τ yp0 +H1,τu

︸ ︷︷ ︸

phasic

+H2q
︸︷︷︸

tonic

+ν,

(22)xj+1 = xj + εj ,

(23)aj =
1

1+ e−(xj+β)
,

(24)rj = γ0 + γ1xj + vj ,

(25)p(nj ∩ rj|xj) =







1 − aj if nj = 0

aj
1√
2πσ 2

v

e
−(rj−γ0−γ1xj )

2

2σ2v if nj = 1
.

(26)xj|j−1 = xj−1|j−1,

(27)σ 2
j|j−1 = σ 2

j−1|j−1 + σ 2
ε .

(28)xj|j = xj|j−1 + σ 2
j|j−1(nj − aj|j),
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If nj = 1

To derive xj|j appears on both sides of Eqs. (28) and (31), we use Newton-Raphson method. Next we follow 
a smoother approach to derive s smooth estimate

At the M-step, we de$ne J̃ = {j|nj = 1} to indicate the locations of neural impulse occurrences. Similar  to83,102, 
we compute the expected values of x2j  and xjxj−1 as

!erea'er, we derive the log-likelihood function Q1 and, we estimate the unknown parameters such that they 
maximize it. !e Q1 function is

!e algorithm iterates between the E-step and the M-step until convergence.

Conclusion
In this research, with the ultimate goal of implementing wearable machine interface architectures in real-world 
settings, we examined the e"ects of auditory, gustatory, and olfactory actuation in regulating internal brain states. 
We designed and performed two sets of experiments to systematically evaluate the e"ects of safe actuation in 
modulating brain states. We employed wearable devices to collect human physiological data while asking them 
to perform memory-related cognitive tasks. Utilizing only wearable devices provides us with an excellent oppor-
tunity to further examine the idea of practical implementation of the proposed algorithms. In experiment 1, dif-
ferent types of music were played for participants while they perform n-back tasks. In experiment 2, we explored 
the e"ects of applying olfactory stimuli (i.e., smelling perfume) and drinking co"ee on internal brain states. To 
validate our hypothesis about the e"ectiveness of this actuation (i.e., listening to music, smelling fragrances, and 
drinking co"ee) in regulating brain states, we compared the results in all sessions (i.e., baseline sessions with no 
music and sessions with safe actuated conditions). To estimate cognitive performance, we collected and analyzed 
subjects’ correct/incorrect responses as well as their reaction times. To explore the e"ects of safe actuation in 
regulating physiological signals and cognitive arousal, we analyzed changes in electrodermal activity collected via 
wristband devices and EEG signals collected via muse headband. !e experimental results verify our hypothesis 
about the e%ciency of the proposed safe actuation in regulating internal brain states.

As a result of these human-subject experiments, we collected multiple physiological data (i.e., EDA, BVP, 
PPG, 3-axis accelerometer data, skin temperature, EEG) using only wearable technologies. An important future 
direction of this research could be on analyzing various physiological data and exploring the corresponding 
biomarkers. !ere is potential for further analysis of the published dataset, which could enhance our understand-
ing of human cognitive science. While the overall positive impacts of the proposed safe actuation in elevating 
the average levels of cognitive performance state in all participants are reported, di"erent types of physiological 
responses have been observed in the conducted experiments. !us, the person-speci$c analysis would shed 

(29)σ 2
j|j =

[
1

σ 2
j|j−1

+ aj|j(1 − aj|j)

]−1

.

(30)Cj =
σ 2
j|j−1

γ 2
1 σ 2

j|j−1 + σ 2
v

,

(31)xj|j = xj|j−1 + Cj

[

σ 2
v (nj − aj|j)+ γ1(rj − γ0 − γ1xj|j−1)

]

,

(32)σ 2
j|j =

[
1

σ 2
j|j−1

+ aj|j(1 − aj|j)+
γ 2
1

σ 2
v

]−1

.

(33)Aj =
σ 2
j|j

σ 2
j+1|j

,

(34)xj|J = xj|j + Aj(xj+1|J − xj+1|j),

(35)σ 2
j|J = σ 2

j|j + A2
j (σ

2
j+1|J − σ 2

j+1|j).

(36)E[x2j ] = x2j|J + σ 2
j|J and E[xj+1xj] = xj+1|J xj|J + Ajσ

2
j+1|J .

(37)

Q1 =
J

∑

j=1

E[nj(β + xj) − log(1+ eβ+xj )]

+
−J̃

2
log(2πσ 2

v ) −
∑

j∈J̃

E

[

(rj − γ0 − γ1xj)2
]

2σ 2
v

+
−J

2
log(2πσ 2

ε ) −
J

∑

j=1

E

[

(xj − xj−1)
2

]

2σ 2
ε

.
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light on the physiological bases of the observed improvements in participants’ cognitive performance levels. 
Performing additional experiments on more subjects would lead to reaching a more diverse dataset. Given the 
variability in subject-speci$c reactions and potential latency in physiological responses to various forms of actua-
tion, it may be bene$cial to model actuation dynamics and incorporate them into the development of wearable 
machine interface (WMI) architectures. !e proposed future directions of the present research will deepen the 
understanding of sensory stimulation’s impact on cognitive states and help develop new interventions to enhance 
cognitive performance in a closed-loop system. In such practical closed-loop WMI architectures, a wearable 
device collects physiological data from humans in the loop, a decoder estimates the internal cognitive brain 
state(s), and a controller incorporates the personalized dynamics of safe actuation and suggests the appropriate 
safe actuation. Consequently, it brings the hidden states to the desired range within a closed-loop framework. 
With ongoing advances in wearable technologies, the proposed research would open avenues of opportunities 
addressing mental health-related disorders within the remote monitoring properties. Humankind would derive 
a bene$t from the proposed real-time monitoring and regulation toolsets by receiving personalized e"ective 
suggestions and medications with minimized side e"ects to enhance their overall quality of life.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information $les. !e datasets used and/or analyzed during the current study are available from the correspond-
ing author upon reasonable request.
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