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Abstract—Quantum computers have the potential to provide
exponential speedups over their classical counterparts. Quantum
principles are being applied to fields such as communications,
information processing, and artificial intelligence to achieve
quantum advantage. However, quantum bits are extremely noisy
and prone to decoherence. Thus, keeping the qubits error free
is extremely important toward reliable quantum computing.
Quantum error correcting codes have been studied for several
decades and methods have been proposed to import classical
error correcting codes to the quantum domain. Along with
the exploration into novel and more efficient quantum error
correction codes, it is also essential to design circuits for practical
realization of these codes. This paper serves as a tutorial on
designing and simulating quantum encoder and decoder circuits
for stabilizer codes. We first describe Shor’s 9-qubit code which
was the first quantum error correcting code. We discuss the
stabilizer formalism along with the design of encoding and
decoding circuits for stabilizer codes such as the five-qubit code
and Steane code. We also design nearest neighbor compliant
circuits for the above codes. The circuits were simulated and
verified using IBM Qiskit.

Index Terms—Quantum ECCs, Quantum computation, Steane
code, CSS code, Stabilizer codes, Quantum encoders and de-
coders, Syndrome measurement, Nearest neighbor compliant
circuits.

I. INTRODUCTION

Quantum computing is a rapidly-evolving technology which
exploits the fundamentals of quantum mechanics toward solv-
ing tasks which are too complex for current classical com-
puters. Quantum computers have the potential to achieve
exponential speedups over their classical counterparts [1], [2].
In 1981, Feynman suggested that a quantum computer would
have the power to simulate systems which are not feasible for
classical computers [3], [4]. In 1994, Shor proposed a quantum
algorithm to find the prime factors of an integer in polynomial
time [5]. Grover proposed an algorithm which was able to
search a particular element in an unsorted database with a
high probability, with significantly higher efficiency than any
known classical algorithm in 1996 [6]. Subsequently, several
quantum algorithms aimed at achieving better efficiencies than
their classical counterparts were proposed. However, practical
realization of these algorithms requires quantum computers,
which are slowly evolving. IBM demonstrated a 433 qubit
quantum computer in 2022 [7], and recently announced a
1121 qubit computer. The path towards a powerful quantum
computer which can perform Shor’s factorization or Grover’s
search algorithm may not be a distant reality. However, a
fundamental issue needs to be addressed. As we pack more

number of qubits into quantum processors, we need to have a
reliable method of processing to mitigate noise and quantum
decoherence.

The phenomenon through which quantum mechanical sys-
tems attain interference among each other is known as quan-
tum coherence. Quantum coherence is essential to perform
quantum computations on quantum information. However,
quantum systems are inherently susceptible to noise and
decoherence which necessitates building fault tolerant systems
which can overcome noise and decoherence. Thus, quantum
error correcting codes (ECCs) become a necessity for quantum
computing systems. There were various challenges in the way
of designing a quantum ECC framework. It is well known
that measurement destroys superpositions in any quantum
system. Additionally, since the quantum errors are continu-
ous in nature, the design of an ECC for quantum systems
was difficult. To make things more complicated, the no-go
theorems in the quantum realm make it challenging to design
an ECC system analogous to classical domain [8], [9], [10],
[11], [12]. Quantum ECCs were believed to be impossible
till 1995, when Shor demonstrated a 9-qubit ECC which was
capable of correcting a single qubit error for the first time
[13]. In 1996, Gottesman proposed a stabilizer framework
which was widely used for the construction of quantum ECCs
from classical ECCs [14], [15]. Calderbank-Shor-Steane (CSS)
codes were proposed independently by Calderbank-Shor [16]
and Steane [17]. These codes were used to derive quantum
codes from binary classical linear codes which satisfy a dual-
containing criterion. The necessary and sufficient conditions
for a quantum ECC to be able to recover from a set of errors
were given in [18]. Topological quantum codes like toric code
were constructed for applications on quantum circuits arranged
in a torus [19]. Subsequently, surface codes were introduced
using stabilizer formalism in [20].

Pre-shared entangled qubits were proposed toward con-
structing stabilizer codes over non-Abelian groups in [21].
This is done by extending the non-Abelian group into an
Abelian group by using extended operators which commute
with each other. These entanglement-assisted (EA) stabilizer
codes contain qubits over the extended operators which are
assumed to be at the receiver end throughout, and entangled
with the transmitted set of qubits. It was later shown that
EA stabilizer codes increase the error correcting capabil-
ity of quantum ECCs [22]. The advantage of the stabilizer
framework lies in its ability to construct quantum ECCs
from any classical binary ECC. The optimal number of pre-
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Fig. 1. Chronology of some of the primary advances in quantum ECC.

shared entangled qubits required for an EA stabilizer code
was expressed analytically, along with an encoding procedure
in [23]. Quantum analog of classical low-density parity-check
(LDPC) codes were constructed using quasi-cyclic binary
LDPC codes in [24]. Algebraic codes like Reed Solomon
(RS) codes were also explored in the quantum domain by the
authors in [25], [26], and [27] using self-orthogonal classical
RS codes. Purely quantum polar codes based on recursive
channel combining and splitting construction were studied
in [28]. EA stabilizer codes were extended to qudit systems
for different aspects of quantum ECCs in [29], [30], [31],
[32]. Recently, a universal decoding scheme was conceived
for stabilizer codes by adapting ’guessing random additive
noise decoding’ (GRAND) philosophy from classical domain
codes [33]. However, it becomes necessary to design actual
encoder and decoder circuits for these quantum ECCs, so that
reliable quantum computing systems can be built. The CSS
framework is particularly interesting due to its simplicity. It
provides a method for importing any classical ECC into the
quantum domain, as long as the dual-containing criterion is
satisfied. A chronological list of some of the primary advances
in quantum ECCs is shown in Fig. 1.

Along with the exploration of novel and efficient quantum
ECCs, it is also important to design encoding and decoding
circuits for quantum ECCs toward practical implementation on
quantum computers. Quantum bits, unlike classical bits, are
excessively prone to noise and decoherence. Also, there are
other challenges related to the no-go theorems which make
the design of quantum ECC circuits challenging. Systematic
design of circuits for stabilizer codes was explored in [15].
There are challenges related to the reliability of these circuits.
Multi-qubit gates are a source of noise since they involve
interaction between qubits. Optimization of the circuits in
terms of number of gates enhances reliability by reducing
the number of 2-qubit gates [34]. In [35], a procedure to
optimize encoding circuits for stabilizer codes was proposed.
Also, nearest neighbor compliant (NNC) circuits are desirable
to limit interactions to adjacent qubits, thus enhancing circuit
reliability [36]. In this paper, we will focus on the NNC
encoder and decoder circuits for stabilizer codes.

The contributions of this paper are as follows. This paper
serves as a tutorial for the design of encoder and decoder
circuits for stabilizer codes. First, we discuss the encoding
and decoding circuits for Shor’s 9-qubit code, followed by its
treatment using stabilizer formalism. Second, we revisit the
systematic method for construction of encoder and decoder
circuits for stabilizer codes. We identify and analyze the key
concepts for the construction of an encoder for stabilizer
codes, demonstrated in [15] through a five-qubit code [37],
[38]. The concepts are then used to formulate an algorithm for
the construction of an encoder circuit for a general stabilizer
code. For the decoder design, we use a syndrome measure-
ment circuit, and depending on the measured syndromes,
we may apply the appropriate error correction using suitable
Pauli gates. Third, we present encoder and decoder circuits
for two stabilizer codes: the five-qubit code and the Steane
code. Fourth, we provide NNC circuits for the encoding and
syndrome measurement for the above codes [36]. We also
present simulation results using IBM Qiskit [39] and verify
the circuits.

The rest of the paper is organized as follows. Section II
presents a brief description of quantum gates and quantum
circuits. Section III reviews Shor’s 9-qubit code [13], stabilizer
formalism, and CSS codes. In Section IV, we discuss a
systematic method of construction of encoder circuits for gen-
eral stabilizer codes. Using the above knowledge, we present
design of encoding and syndrome measurement circuits for
the five-qubit code and Steane code in Section V. In Section
VI, we provide NNC circuits for the above codes. We discuss
the results and comparisons in Section VII, followed by
conclusions in Section VIII.

II. PAULI MATRICES AND QUANTUM GATES

In two-level quantum systems, the two-dimensional unit of
quantum information is called a quantum bit (qubit). The state
of a qubit is represented by [¢) = a|0) + b|1), where a,b €
C and |al®> + |b]*> = 1. |0) and |1) are basis states of the
state space. The evolution of a quantum mechanical system
is fully described by a unitary transformation. State [1)1) of
a quantum system at time ¢; is related to fo by a unitary
operator U that depends only on the time instances ¢; and o,
i.e., |tp2) = Ult1). The unitary operators or matrices which
act on the qubit belong to C2*2, We have a Pauli group which
represents the unitary matrices given by

Il = {4l +ily, £ X, £iX, £Y, +iY, +Z, +iZ} (1)

1 0 0 1
where [, = [0 1 , X = {1 0],}/ =
0 —i 1 0
i 0 » 4 = 0 -1

A quantum circuit consists of an initial set of qubits as
inputs which evolve through time to a final state, comprising
of the outputs of the quantum circuit. Quantum states evolve
through unitary operations which are represented by quantum
gates. Quantum gates can be single qubit gates which act on
a single qubit, or they can be multiple qubit gates which act
on multi-qubit states to produce a new multi-qubit state. The



single qubit gates include the bit flip gate X, phase flip gate Z,
Hadamard gate H, Y gate, and the phase gate .S. The unitary
operations related to the single qubit gates are as follows:

S R N AP A |

2
0 —i 1 0
r=[0 5] s[4 0]
The multi-qubit gates include controlled-X (CNOT),
controlled-Z (CZ), controlled-Y (CY) gates, and the
controlled-controlled-NOT (CCNOT), also known as the Tof-

foli gate. These gates act on 2-qubit or 3-qubit states and are
given by the following unitary transformations:

100 0 100 0
0100 010 0
CNOT=149 0019|001 0 |
0010 000 —1
3)
100 0
010 0
Y=1000 - @
00 i 0
(100000 0 0]
01000000
00100000
00010000
CONOT =14 00010 0 0 )
00000100
00000001
(0000001 0

Symbolic representations of various 1-qubit, 2-qubit, and
3-qubit gates are shown in Fig. 2.

III. DEVELOPMENT OF THE FIRST QUANTUM ECC AND
STABILIZER FORMALISM

Shor’s 9-qubit code was the first ever quantum ECC capable
of correcting a single qubit error [13]. Gottesman proposed a
general methodology to construct quantum ECCs [15]. This
method is known as the stabilizer construction and the codes
thus generated are known as stabilizer codes. Calderbank-Shor
[16] and Steane [17] proposed a method to derive quantum
codes from binary classical linear codes which satisfy a dual-
containing criterion. We will discuss the above in detail in this
section.

A. Shor’s 9-qubit Quantum ECC

Shor’s 9-qubit code consists of a combination of 3-qubit
bit flip and 3-qubit phase flip codes. First, we will provide a
brief description of the working of these 3-qubit codes. From
classical ECCs, we know about repetition codes. For a rate 1/3
repetition code, 0 is transmitted as 000 and 1 is transmitted
as 111. The redundancies ensure that if a single error has
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Fig. 2. Symbolic representations of various 1-qubit and 2-qubit gates.

occurred, a majority detector can detect and correct the error.
Analogous to repetition code, we have a 3-qubit bit flip code
and a 3-qubit phase flip code. However, due to the no-cloning
theorem in quantum domain, we cannot create copies of a
certain qubit state. Next, we will describe how this limitation
is overcome toward the design of the 3-qubit bit flip and phase
flip codes.

1) 3-qubit bit flip code: We can design a 3-qubit quantum
code [40] capable of correcting a single bit flip error as shown
in Fig. 3. Two ancilla qubits are initialized to |0) analogous
to redundant bits in a 3-bit repetition code. A single qubit is
thus encoded into a 3-qubit state. The basis states |0) and |1)
are encoded using encoding as shown below:

CNOT(3,2)CNOT(3,1)

10)
1)

For an arbitrary normalized state |¢) = a|0) + b|1), where
a,b € C, the encoding operation results in the state |¢) given
by

1000), ©)

CNOT(3,2)CNOT(3,1

b 1) )

1) = a|000) + b|111) (8)

The notation CNOT (z,y) implies a CNOT gate acting on
qubits indexed = and y, with z as control and y as target qubit.
The qubits are numbered from top to bottom. It should be
noted that in CNOT(3,2)CNOT(3,1), the rightmost operation
is performed first and the leftmost operation is performed last.

The syndrome computation circuit is shown in Fig.
4. Two ancilla qubits initialized to |0) are used to
compute the syndrome. We perform the operation
CNOT(1,4)CNOT(2,4)CNOT(1,5)CNOT(3,5) on the state
U|1)|00) to obtain U|1)|s) as shown in Fig. 4. The two qubit
syndrome state is given by |s).
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Fig. 3. 3-qubit bit flip encoder.
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Fig. 4. 3-qubit bit flip syndrome computation.

Let’s take an example to demonstrate the syndrome de-
tection. Let the error be U = [, ® I, ® X, leading to
the erroneous state U|y) = al001) + b|110). Performing
the operation CNOT(1,4)CNOT(2,4)CNOT(1,5)CNOT(3,5) on
U)1)|00), we have [41],

(CNOT(1,4)CNOT(2,4)CNOT(1,5)CNOT(3,5))
Uy)|00)
=(CNOT(1,4)CNOT(2,4)CNOT(1,5)CNOT(3,5))
(a]001) 4 b/110))|00)
=(CNOT(1,4)CNOT(2,4)CNOT(1,5)CNOT(3,5))
(|00100) 4 b/11000))

=a|00101) + 5/11001)

=U[)|01)

=Ulp)]s)

Thus, the syndrome is |s) = |01). The syndromes |11),
|10), and |01) correspond to errors in the first, second and
third qubits respectively. Here, since the syndrome is |01), the
third qubit is in error.

2) 3-qubit phase flip code: A 3-qubit phase flip code
encodes a single qubit into a 3-qubit state as shown in Fig. 5.
Basis states |0) and |1) are encoded as shown below:

H®3CNOT(3,2)CNOT(3,1

10) I )

|1> H®3CNOT(3,2)CNOT(3,1) |_ __>

where |£) = %. Any arbitrary normalized state |¢) =
a|0) 4 b|1) gets encoded to state |t)) using the above encoding
operation as

(10)

0)—X
0) —F—IX Y=al++4)+b| - ——)
¢ = al0) + b|1) @7
Fig. 5. 3-qubit phase flip encoder.
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Fig. 6. 3-qubit phase flip syndrome computation.

) =al+++) +0[ - ——) (11)

The unitary operator H®3CNOT(3,2)CNOT(3,1) is ap-
plied to the message state |¢) along with two ancilla bits
initially in the state |0) to perform the encoding.

The syndrome detection circuit is shown in Fig. 6. The
syndrome is computed by performing the operation (H®3 ®

I$*)(CNOT(1,4)CNOT(2,4)CNOT(1,5)CNOT(3,5))(H®*®

I$?) on the state U|t))|00) to obtain U|¢))|s), where |s) is
the two qubit syndrome state.

We now consider an example to demonstrate the syn-
drome detection. Let the error be Z ® Iy ® I>. Thus,
the erroneous state is Uly) = a| — ++) + b +
——). The first step (H®® ® IF?) converts Ult)|00)
to Ui|y)|00) = a|10000) + b|01100). Next, the oper-
ation (CNOT(1,4)CNOT(2,4)CNOT (1,5 CNOT(3,5))
converts U [1)]|00) to Us|th)|s) as follows:

(CNOT(1,4)CNOT(2,4)CNOT(1,5)CNOT(3,5))
Uil4)|00)

=(CNOT(1,4)CNOT(2,4)CNOT(1,5)CNOT(3,5))
(a]10000) + b[01100))

—a|10011) + b[01111)

—al100)|11) 4 b|011)11)

=(al100) + b]011))|11)

Next, the operation (H®? ® I$?) converts (a|100) +
Bl011))|11) to (a| — ++) + b] + ——))[11) = UJ)[11) =
Ul)|s). Thus, the syndrome is |s) = |11). The syndromes
|11), |10), and |01) correspond to phase errors in the first,
second and third qubits, respectively. Here, since the syndrome
is |11), the first qubit has a phase error.




The 3-qubit bit flip code is good at correcting a single bit
flip. However, it cannot correct phase errors. It is in fact more
prone to phase flip errors since phase flips in any of the qubits
are indistinguishable from each other. Similarly, the 3-qubit
phase flip code cannot correct bit flip errors. Hence, it was
believed for a long time that a general quantum ECC capable
of correcting both type of errors was not feasible, until Shor
[13] proposed a 9 qubit code capable of correcting a bit flip
and a phase flip simultaneously. The encoding and decoding
circuits for Shor’s 9-qubit code are shown in Fig. 7 and Fig.
8, respectively.

The encoding process consists of the following steps:

Step 1: Phase flip coding: After applying the CNOT gates
we have the following state

1) = a|000) + b|111) (12)

Next, we have three Hadamard gates resulting in the state

o (2502 (242) ()
(25 (25 (252)

Step 2: Bit flip coding: After adding the ancillas, we have
the state

[¥3) =-—=1((10) +11))100)) ((10) + [1))[00))

f b
((10) + [1))]00))] + mmm = [1))100))
((10) = [1))]00)) (([0) — [1))]00})]

Next the CNOT gates are applied to achieve the encoded
Sstate

|91} =5—=[(1000) + [111)) (]000) + [111)) (]000) + [111))]

2f

+ 575 [(1000) -

[111)) (/000) —

Decoding process: Let us assume that there is a bit and a

phase flip on the 4*" qubit. Thus the combined state of the
received qubits can be represented as:

9) = [ (101 11 (100~ oy
(W) ] + b[ <|000>\/§|111>)

(|100>\%|011>> (|000>\/§111>) ]

s, ) = a[ (000>;§|100>> <|111>\;§|011>>
(W)] +bl (00(”\—[2“0@)

(|111>;§|011>> (000>\;§|100>) 1

Step 2: Next, the CCNOT (Toffoli) gates are applied
resulting in the state

o) :a[ (000>;§|100>> (|011>\;§|111>>
(000>;§|100>> 1 . b[ <|000>\;§100>>
(011>\J}|111>> <|000>\—f100> ]

2
l( 0) +|1 )/00) ) (<|o> —;mm)
2
(( 0) ¢|1§>>|oo>)] +bl((m _¢1§>)|00>)
(10) - |

(10) + [1)[11) — [1))[00)
() ()|

Step 3: Applying Hadamard gate on 1%¢, 4*" and 7t" qubits,
we have

|9s5) = al0)1]1)4]0)7 + b|1)1]0)a[1)7 (13)
Step 4: Next, applying CNOT gates, we have
[Vsy) = al0)1]1)4|0)7 + b|1)1[1)4]0)7 (14)

Step 5: Finally, applying the CCNOT (Tofolli) gates, the

111)) (/000) — [111))] state is

[¥ss) =10)1|1)4|0)7 + b[1)1]1)4]0)7
=(al0) + b]1))[1)|0)

As we can see, the first qubit is restored to the a|0) + b|1)
state. This is true independent of the index of the qubit on
which the error has occurred.

B. Shor’s 9-qubit code in stabilizer framework

Now, we analyze the 9-qubit code and try to reason why it
works, and then we generalize it toward a systematic method
of error correction using the idea used in the 9-qubit code.
From Fig. 8, we observe that for detecting bit flips in each

The evolution of states for the decoding can be described group of three, we compare the first and third qubit, followed

in the following steps:

Step 1: After the application of the first two CNOT gates,

we have

by the first two qubits. A correctly encoded state has the
property that the first two qubits have even parity. Equivalently,
a codeword is a +1 eigen vector of ZZ1, and a state with an
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Fig. 7. Encoder for Shor’s 9-qubit code.
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Fig. 8. Decoder for Shor’s 9-qubit code.

error on first or second qubit is a —1 eigenvector of ZZ1.
Similarly, first and third qubit should have even parity. Thus
a codeword is also 41 eigenvector of Z1Z.

For detecting phase errors, we compare the signs of first
and second blocks of three, and the signs of first and third
blocks of three. Thus, a correctly encoded codeword is a +1
eigenvector of X X XXX XII] and XX XIITXXX. Thus,
to correct the code, we need to measure the eigenvalues of the
eight operators as shown in the following table.

My\z zZ 1 I I I I I 1
My |\ Zz I Z I I I I I I
Ms |\ I I I 7z Z 1 I I I
My |1 I I ZzZ I Z 1 I I
Ms | I I I I I I Z Z 1
Mg | I I I I I I Z I Z
M; 1 X X X X X X I T I
Mg | X X X I I I X X X

The two valid codewords in Shor’s code are eigenvectors of
all these operators M through Mg with eigenvalues +1. These
generate a group, the stabilizer of the code, which consists of
all Pauli operators M with the property that M|y) = |¢) for
all encoded states |1)).

C. Binary vector space representation for stabilizers

The stabilizers can be written as binary vector spaces,
which can be useful to bring connections with classical error
correction theory [15]. For this, the stabilizers are written as
a pair of (n — k) x n matrices. The rows correspond to the
stabilizers and the columns correspond to the qubits. The first
matrix has a 1 wherever there is a X or Y in the corresponding
stabilizer, and O everywhere else. The second matrix has a 1
wherever there is a Z or Y in the corresponding stabilizer and
0 everywhere else. It is often more convenient to write the two
matrices as a single (n — k) x 2n matrix with a vertical line
separating the two.

D. Stabilizer formalism

An [[n, k]] quantum code can be used for quantum error
correction, where k logical qubits are encoded using n physical
qubits, leading to a code rate of k/n analogous to classical
error correction. It has 2* basis codewords, and any linear
combination of the basis codewords are also valid codewords.
Let the space of valid codewords be denoted by 7. If we
consider the tensor product of Pauli operators (with possible
overall factors of +1 or +¢) in equation 1, it forms a group G
under multiplication. The stabilizer .S is an Abelian subgroup
of G, such that the code space 7' is the space of vectors fixed
by S [14], [15]. Stabilizer generators are a set of independent
n — k elements from the stabilizer group, in the sense that
none of them is a product of any two other generators.

We know that the operators in the Pauli group act on
single qubit states which are represented by 2-bit vectors. The
operators in I have eigen values £1, and either commute or
anti-commute with other elements in the group. The set II"
is given by the n-fold tensor products of elements from the
Pauli group II as shown below,

I" ={e?A; @A ®---® A,

:Vje{l,2,--- ,n}A; €I, ¢ € {0,7/2,7,37/2}}
(15)

The stabilizers form a group with elements M such that
M]|y) = |¢). The stabilizer is Abelian, i.e., every pair of
elements in the stabilizer group commute. This can be verified
from the following observation. If M|vy) = |¢) and N|y) =
|1}, then M N |y — NM|y)y = (MN — NM)|¢)) = 0. Thus,
MN —NM =0or MN = NM, showing that every pair of
elements in the stabilizer group commute.

Given an Abelian subgroup S of Pauli operators, the code
space is defined as

T(S) = {ly),s.t. M) = |¢),VM € S} (16)

Suppose M € S and Pauli operator E anti-commutes with
M. Then, M(E|Y)) = —EM|y) = —Ey). Thus, E¢)
has eigenvalue —1 for M. Conversely, if Pauli operator E
commutes with M, M (E|¢)) = EM|y) = E|¢), thus E|¢)
has eigenvalue +1 for M. Thus, eigenvalue of an operator
M from a stabilizer group detects errors which anti-commute
with M.



Single qubit operators X, Y, and Z commute with them-
selves while they anti-commute with each other. For two
multiple qubit operators, we need to evaluate how many anti-
commutations happen. If the number is odd, the operators anti-
commute; else, they commute.

Examples:

¢ X commutes with X, and anti-commutes with Y and Z.

e X®X ®Z commutes with X ® Y ® X since there are

two anti-commuting qubit positions, 2 and 3.
e Y ®7Z®X anti-commutes with Y ® X ® X , since there
is a single anti-commutation at position 2.

E. CSS framework

The CSS framework [16], [17] is a method to construct
quantum ECCs from their classical counterparts. Given two
classical codes Ci[n,k1,d;] and Ca[n, ka,ds] which satisfy
the dual containing criterion C’f‘ C (s, CSS framework can
be used to construct quantum codes from such codes.

The CSS codes form a class of stabilizer codes. From the
classical theory of error correction, let H; and Hs be the
check matrices of the codes C; and Cy. Since Cf C Co,
codewords of Cy are basically the elements of Cli. Hence,
we have, HngT = 0. The check matrix of a CSS code is
given by:

Heye, = [ }él ‘ s ] a7)
IV. SYSTEMATIC PROCEDURE FOR ENCODER DESIGN FOR
A STABILIZER CODE

A systematic method for the design of an encoder for a
stabilizer code was presented in [15]. Taking the key concepts
from the above method, the complete procedure for the design
of an encoder circuit for a stabilizer code can be summarized
as follows:

Step 1: The stabilizers are written in a matrix form using
binary vector space formalism as mentioned in Section III-C.
Let the parity-check matrix thus obtained be H,.

Step 2: Our aim is to bring H, to the standard form H
below:

B C; Gy

H, = D I, E

0o 0 O (18

L A A ‘

where, I; and B are r x r matrices. ‘r’ is the rank of the
X portion of H,. A; and C; are r X (n — k —r) matrices. Ag
and Cy are r x k matrices. D is a (n —k —r) X r matrix. I
isa(n—k—r)x(n—k—r)matrix. Eisa(n—k—r)xk
matrix. /; and I are identity matrices.

H, is converted to standard form H using Gaussian elim-
ination [15]. The logical operators X and Z can be written
as

X=[0 U U |

Vi 00 ] (19)

Z=[000 | V0 V] (20)

where Uy = E7, Uz = I.x1, Vi = ETCT +CT, V] = AT,
and V3' = Ikxk-

Given the parity check matrix in standard form H, and X,
the encoding operation for a stabilizer code can be written as,

lereg - -cp) =Xy Xo - X' <Z M) |00---0) (21)
MeS
=X7'Xy - X+ M) (I + M) - -

(I + M,_1)|00---0). (22)

There are a total of n qubits. Place qubits initialized to |0)
at qubit positions 7 = 1 to ¢ = n — k. Place the qubits to be
encoded at positions i =n —k+1to ¢ = n.

We observe the following from H, and X:

o We know that a particular logical operator X; is applied
only if the qubit at 4" position is |1). Thus, applying X
controlled at i*" qubit encodes X;.

« The X operators consist of products of only Zs for the
first r qubits. For the rest of the qubits, X consists of
products of X’s only. We know that Z acts trivially on
|0). Since the first r qubits are initialized to |0), we can
ignore all the Zs in X.

o The first » generators in H, apply only a single bit flip
to the first » qubits. This implies that when I + M; is
applied, the resulting state would be a sum of |0) and |1)
for the i*"" qubit. This corresponds to applying H gates
to the first » qubits, which puts each of the r qubits in
the state %(|0> + |1>) o

o If we apply M, conditioned on qubit ¢, it implies the
application of I + M;. The reason is as follows. When
the control qubit ¢ is |1), M; needs to be applied to the
combined qubit state. Since the qubit ¢ suffers from a bit
flip X only by the stabilizer M;, it is already in flipped
state when it is |1). Thus, only the rest of the operators
in M; need to be applied. However, there would be an
issue if Hy, , . is not 0, i.e., there is a Y instead of X.
In that case, adding an S gate after the H gate resolves
the issue.

Step 3: The observations in Step 2 can be used to devise
an algorithm as shown in Algorithm 1 to design the encoding
circuit.

V. ENCODER AND SYNDROME MEASUREMENT CIRCUIT
DESIGN FOR STABILIZER CODES

A. Error model

The quantum error correction system consists of an encoder,
the channel, and a decoder as shown in Fig 9. The encoder
transforms & logical qubits to n physical qubits. Subsequently,
the channel introduces errors. The errors can be of three
different types, namely a bit flip (X), a phase flip (Z), and
a Y error. We will assume that errors act independently on
individual qubits. Additionally, it is assumed that the error
acting on a qubit is equally likely to be a X, Y or Z error. If
the number of errors introduced is within the error correction
limit, the syndrome measurement circuit generates unique
syndromes for each of the possible error types. Depending
on the measured syndromes, the error corrector uses the
appropriate Pauli (X, Z, or Y) gate to correct the error.
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Algorithm 1: Algorithm to generate encoding circuit
from Hg and X (n = number of physical qubits, k&
= number of logical qubits, » = rank of X-portion of
Hy).

Data: H,, X
Result: Encoding circuit
for i =1 to k do

if Yi,iJrnfk ==1 then
| Place controlled dot at qubit i +n — k
end
for j =1 ton do
if i +n —k # j then
if yi,j == 1 then
Place X gate at qubit j controlled at
qubit i +n —k
end
end
end
end
for i =1 to r do
if Hy, ., ==0 then
Place H gate followed by controlled dot at
qubit ¢
else
Place H gate followed by S gate followed by
controlled dot at qubit ¢
end
for j =1 ton do
if i # j then
if Hy,, ==1&& H; j4, == 0 then
Place X gate on qubit j with control at
qubit ¢
end
if Hs(i,j) ==0 && Hi,j+n ==1 then
Place Z gate on qubit j with control at
qubit ¢
end
if HS(i,j) =1 && Hi’jJrn ==1 then
Place Y gate on qubit j with control at
qubit ¢
end
end
end
end

Error
Deduction Decoding
X Circuit
Correction

Fig. 9. A quantum error correction system consisting of an encoder, channel, and a decoder.

B. Encoder and syndrome measurement circuit design for 5-
qubit code

The five-qubit [37], [38] ECC is the smallest quantum ECC
with the ability to correct a single qubit error. It is a cyclic
code with a distance of 3. The treatment of the 5-qubit code in
the stabilizer formalism was provided in [15]. We will revisit
the concept in brief. The stabilizers My — M, along with the
logical X and Z operators for a 5-qubit ECC are given as
follows:

M| X Z Z X I
My | I X Z Z X
My | X I X Z Z
M| Z X I X Z
X|xXx X X X X
Z\|\z z z z 2z

1) Extended parity-check matrix and encoder design: In
[15], the parity check matrix of the five-qubit code using
binary formalism was given. Using the binary formalism as
described in Section III-C, we can write the extended parity-
check matrix as follows:

1 00 10 01100
01 0 01 001 10

Hq = 101 00 00 0 11 23)
01 010 1 0 0 0 1

For the encoder design, H, is converted to standard form
using Gaussian elimination. The standard form was given in
[15] directly; however, we describe the steps in detail. Our
aim is to bring the above parity check matrix in the standard
form through Gaussian elimination as described in Section I'V.
Applying R3 —+ R3 + Ry and Ry — R4+ R

10 0 10 01100
01 0 01 001 10

Hy = 001 10 ’ 01 111 24
000 11 101 11

Applying Ry — R; + R4 and R3 — Rs + R4, we get the
standard form of the parity check matrix as

(25)

OO O =
SO = O
o~ OO
=N
— ==
— = O
O~ O
—_ O = O
— O~
_ o o



1 1 1 0 1
1 0 0 1 1
We observe that Ay = 1 ,B= 110 0 , and
1 1 01 1
1
0
Cy = 0
1

The logical operators can be evaluated using the steps
mentioned in Section IV. We get,
X =] 00001 |

10010 ] (26)

Z =[ 00000 | 11111 | 27)

From the standard parity-check matrix Hy and the logical
operators X and Z, we have,

M,y
My
M;3
My
X

VA

The basis codewords for this code can be written as

NNNN~X
N~ ~ N >N
N~ N >N~
NN SN~NN
N

0) = > M][00000) (28)
MeS
1) = X10) (29)

which gives us the encoded |0) as

10) = |00000) + M;]00000) + M5|00000) + Ms|00000)
+ M;4]00000) + M; M>|00000) + M; Ms|00000)
+ M; M4|00000) + Ms Ms|00000) -+ Ms M,|00000)
+ M3 M,|00000) + M, My Ms]00000)
+ M, My M4]00000) + My M M,|00000)
+ My M3 M,|00000) + M, My Ms M, |00000)

1
= (100000} +[10010) + 01001) +[10100) +[01010)

— [11011) — |00110) — |11000) — |11101) — [00011)
— [11110) — [01111) — |10001) — |01100) — [10111)

+100101)) (30)
and encoded |1) as
1) = X10)
1
= (=[11111) — 01101) - [10110) — [01011) — [10101)

+(00100) + [11001) + |00111) + [00010) + |11100)
+(00001) + [10000) + |01110) + |10011) -+ |01000)

—[11010)) (€29

Following the procedure in IV, we put the input qubit |¢)
at the 5 spot followed by n — 1 qubits initialized to |0)
state. Next, the logical operators are encoded according the

) 1z ]

0) H Z

10) Z HH Lﬁ

10) %7 Z ‘ H
I

Fig. 10. Encoder for the five-qubit code.

0) S 1z | 7 |
) i 5

0) H] z]
10) H -
) Y| X | X | Y|

Fig. 11. Modified encoder for the five-qubit code.

Algorithm 1. Thereafter, the stabilizers corresponding to the
rows of standard form of the parity check matrix H, are
applied according the Algorithm 1. The encoder circuit thus
designed is shown in Fig. 10.

Next, we observe that there are four Z gates which are
acting on state |0), making those Z gates redundant. After
removing those Z gates, the modified encoding circuit is
shown in Fig. 11.

On observing carefully, we notice that this circuit is slightly
different from the encoder provided in [15]. In the circuit in
[15], there is a subtle error (later addressed in an errata [42])
due to which the stabilizers don’t commute. To be specific, the
H gate (or H followed by S gate) should appear just before
the control dots, else the stabilizer operators don’t commute.
Also, the circuit in [15] uses Z gates instead of S after the H
gates when required. However, if one intends to use Z gate,
one has to use controlled-Z followed by controlled-X instead
of controlled-Y gates. The evolution of the output state of the
encoder is mathematically derived for the circuit in Fig. 10 in
Appendix A.

2) Syndrome measurement circuit and error corrector: The
syndrome measurement circuit measures the four stabilizers
using four ancilla qubits initialized to the |0) state. There are 5
qubits and each qubit can be affected by X, Y, or Z errors. So,
15 unique error syndromes are possible, which are represented
by the final state of the ancilla qubits. The syndromes are
shown in Table I.

The syndrome measurement circuit is shown in Fig. 12.
Depending on the syndrome, appropriate error correction can
be performed by using suitable X, Z, or Y gate on the
appropriate qubit.

C. Encoder and syndrome measurement circuit design for
Steane code

Hamming codes [43] are linear error correcting codes which
have the property that they can detect 1- and 2-bit errors,



TABLE I
SYNDROME TABLE FOR THE 5-QUBIT CODE.

l [ My [ My [ M3 [ My | Decimal |

X I I 1 I 0 0 0 1 1
Z I I 1 I 1 0 1 0 10
Y 1 I I I 1 0 1 1 11
I X I I I 1 0 0 0 8
I Z I I I 0 1 0 1 5
I Y I I 1 1 1 0 1 13
I 1 X I I 1 1 0 0 12
I 1 Z I I 0 0 1 0 2
I 1 Y I I 1 1 1 0 14
I 1 I X 1 0 1 1 0 6
I I I Z I 1 0 0 1 9
I I I Y I 1 1 1 1 15
I 1 I I X 0 0 1 1 3
I 1 1 I A 0 1 0 0 4
1 I 1 I Y 0 1 1 1 7
1 I 1 I I 0 0 0 0 0
0) ——H] e
71
0) ——[H] e
71
10) ——{H] e
71
0) —H] Hf—{7
[~ ] B
Z—x]
)
X

Fig. 12. Syndrome measurement circuit for 5-qubit code.

and can correct 1-bit errors. The [7,4, 3] Hamming code was
introduced by Hamming. It encodes 4 bits of data into 7 bits,
such that the 3 parity bits provide the ability to detect and
correct single bit errors. The generator matrix G and the parity
check matrix H of the Hamming code are given as,

1000110

1101100
G = | MOU0L 1 011010 (32)
0010011 0111001
0001111

1) Steane code as the quantum analog of classical Ham-
ming code: Steane code [44] is a CSS code which uses
the Hamming [7,4,3] code and the dual of the Hamming
code, i.e., the [7,3,4] code, to correct bit flip and phase flip
errors, respectively. The [7,4,3] Hamming code contains its
dual, and thus can be used in the CSS framework to obtain
a quantum ECC. One logical qubit is encoded into seven
physical qubits, thus enabling the Steane code to detect and
correct a single qubit error. In stabilizer framework, the Steane
code is represented by six generators as shown below:

My | X X X X I I 1
My | X X I I X X I
My | X I X I X I X
My | Z2 Z ZzZ ZzZ I 1 I
Ms |\ zZz Z I I Z Z 1
Mg\ z I Z I Z 1 Z

Each of the above generators is a tensor product of 7
Pauli matrices. It should however be noted that tensor product
symbols ® are often ommited for brevity. The logical operators
are X;, = XXXXXXX and Z;, = ZZZZZZ7Z. Thus, the
two codewords for the Steane code are,

1
0), = 575(\0000000)+|1111000>+|110011o>+\1010101)

+1]0011110) 4 [0101101) + [0110011) + |1001011))
(33)
1)L = X1|0)
- 1
=575
+10011001) + [0101010) + |0110100) + |1001100))
(34)

(10000111) 4 [1111111) + |1100001) + |1010010)

2) Encoder design for Steane code: The parity check
matrix and generator matrix for the (7,4) Hamming code are
described as follows:

1101100 oo

H=| 1011010 | ,G = (35)
0111001 0010011
0001111

We can verify that H is contained in G. Thus, it satisfies the
dual-containing criterion for construction of CSS codes. In the
binary formalism, the parity check matrix for the augmented
parity check matrix can be written as

1101100 0000000
1011010 0000000
0111001 0000000
Ha=1"0000000 1101100 (36)
0000000 1011010
0000000 0111011

Our aim is to transform the above parity check matrix to the
standard form as described in Section IV. First, some columns
are swapped, which is equivalent to swapping qubit positions.
The columns (or equivalently the qubit positions) are swapped
in following order 1 <— 5,24 6,3+ 7,4+ 1,5 2,6 +
4, 7 < 3. This gives us the new augmented H matrix

1001110 0000000
0101011 0000000
0010111 0000000

Hy =1 5000000 1001110 37)
0000000 0101011
0000000 0010111

Performing the operation Rs — R5 + Ry



1001110 0000000
0101011 0000000
0010111 0000000
Hy = 0000000 ‘ 1001110 (38)
0000000 1100101
| 0000000 0010111 |
Performing the operation Rg — Rg + R5
[ 1001110 0000000 |
0101011 0000000
0010111 0000000
Hy = 0000000 ‘ 1001110 (39)
0000000 1100101
| 0000000 1110010 |
Performing the operation Ry — R4 + R5
[ 1001110 0000000 |
0101011 0000000
0010111 0000000
Hy = 0000000 | 0101011 (40)
0000000 1100101
| 0000000 1110010 |

Performing the operation R4 — R4+ Rg we get the standard
form H; as

1001110 0000000
0101011 0000000
0010111 0000000
Hs = 0000000 | 1011001 “h
0000000 1100101
0000000 1110010
We have the following from H.
1 00 111
L=L=(010],4-]1 0 1],
0 0 1 01 1
[0
Ay = | 1 | ,B=0C1 =03x3,C2 = 031,
|1
1 0 1 1
D=1 10]|,E=]1 (42)
|11 1 0

The stabilizers of the code can be written as

M, | X I I X X X I
My | I X I X I X X
My | T I X I X X X
My \Z I I Z Z Z 1
Ms | I Z I Z 1 Z Z
Mg |1 I Z I Z Z Z

The logical operators can be evaluated as described in
Section IV, producing

X =[ 0001101 | 0000000 ] (43)

Z = [ 0000000 | 0110001 | (44)

0 ]

0 ]

0 ]

0 X|—1X] X]

0 X|—1X] X]

0 X]—1X] X]

[4) X] X]

Fig. 13. Encoder for the Steane code.

The encoding circuit can be generated from X and H, by
applying Algorithm 1. The qubit to be encoded is placed at
the 7t" position, followed by 6 qubits initialized to |0). First,
the X |0000000) state is obtained by applying X conditioned
on the last qubit. Applying Algorithm 1, the encoder circuit
thus obtained is shown in Fig. 13.

3) Syndrome measurement circuit and error corrector for
Steane code: The syndrome measurement circuit measures
all the six stabilizers using six ancilla qubits. The syndromes
are unique as shown in Table II. Each qubit in the 7-qubit
Steane code can be affected by three kind of errors, namely
X, Y, and Z errors. So, there are 21 different types of single
qubit errors possible, each of which gives a different syndrome
as shown in Table II. The M;-Mg values in the table can
be explained by the following example. Let us take the fifth
row of the table for example, i.e., IZIII11, which implies
that a Z error has occurred on the second qubit. It is easy
to observe that IZII11I anti-commutes with M; and M,
while it commutes with M35, My, M5, and Mg. Thus, we get
a syndrome of 110000. It can be observed that each syndrome
is unique as shown in Table II. Since this code uses only 21
different syndromes for various single qubit errors, the rest of
the syndromes are unused, unlike the 5-qubit code where all
the syndromes are used.

The syndrome measurement circuit is shown in Fig. 14. Six
ancilla qubits are used to measure each of the six stabiliz-
ers. Measurement of the ancilla qubits gives the syndrome.
Depending on the syndrome, appropriate error correction can
be performed by using suitable X, Z, or Y gate on the ap-
propriate qubit. A syndrome measurement of 000000 implies
that no error has occurred. It should also be noted that any
6 bit syndrome other than the syndromes mentioned in Table
I implies the occurrence of more than a single qubit error,
which cannot be corrected using the Steane code.

VI. NNC CIRCUIT DESIGN

In the circuits we discussed in the previous sections, we
assume that any particular qubit can interact with any other
qubit. This implies that there can be a 2-qubit gate between any
two arbitrary qubits. If interacting qubits are not close to each
other, the underlying qubit interactions become increasingly
prone to noise. Many of the fault-tolerant technologies thus
rely on the nearest neighbour compliance, where the inter-
acting qubits need to be adjacent to each other before they
can interact via 2-qubit gates. Many techniques have been



TABLE 11
SYNDROME TABLE FOR STEANE CODE.

[ [ My [ My [ M3 [ My | Ms Mg [ Decimal value |
X T 1 1 1 1 1 0 0 0 1 0 0 4
zZ 1 1 I 1 1 1 1 0 0 0 0 0 32
Y I 1 1 1 1 I 1 0 0 1 0 0 36
I X 1 1 1 1 I 0 0 0 0 1 0 2
Iz 1 1 1 1 I 0 1 0 0 0 0 16
I Y I I Jj 1 I 0 1 0 0 1 0 18
1 I X 1 1 1 I 0 0 0 0 0 1 1
1 I Z 1 1 1 1 0 0 1 0 0 0 8
1 I Y I 1 1 1 0 0 1 0 0 1 9
1 I I X 1 1 1 0 0 0 1 1 0 6
1 1 I zZ 1 1 ] 1 1 0 0 0 0 48
1 1 I Yy I 1 1 1 1 0 1 1 0 54
1 1 1 I X 1 1 0 0 0 1 0 1 5
1 1 1 I Z 1 1 1 0 1 0 0 0 40
1 1 1 I Yy I 1 1 0 1 1 0 1 45
1 1 1 1 I X 1 0 0 0 1 1 1 7
1 1 1 1 I Z 1 1 1 1 0 0 0 56
1 1 1 1 I Yy I 1 1 1 1 1 1 63
1 1 1 1 1 I X 0 0 0 0 1 1 3
1 1 1 1 ] 1 Z 0 1 1 0 0 0 24
1 1 1 1 ] I Y 0 1 1 0 1 1 27
1 1 1 1 1 1 1 0 0 0 0 0 0 0
0)—H] H—{7—
0)——H] H—{7—
0)——H] H—{7—
0)——H] H—{7—
0)——H] H—{7—
0] i
o o Fig. 15. 2-D array of qubits (represented by black dots). The qubits can only
1 X \Z | interact with their nearest neighbours. The qubits on corners and edges can
~1 3 interact with 2 and 3 qubits respectively. The rest of the qubits can interact
X Z ] with 4 qubits each.
4 )
[¥) < tha)
|Ya) X |¥s)
Fig. 14. Syndrome measurement circuit for Steane code.
) = X X = ltha)

proposed in the past to make 1-D and 2-D NNC architectures
[45], [46], [47], [48], [49], [50], [51], [36]. In a 2-D array
of qubits in Fig. 15, the qubits at the corners and edges can
interact with 2 or 3 qubits, while the rest of the qubits can
interact with their 4 closest neighbors.

To design a NNC circuit, we need to use swap gates to
bring the qubits adjacent to each other [36]. It should be
noted that the qubits are not moved physically. Their states
are swapped which is equivalent to moving them to adjacent
positions without doing it physically. A swap gate requires 3
CNOT gates. Thus, it is important to position the qubits and
perform the operations in such a way that the number of swap
gates is minimized. A swap gate is shown in Fig. 16.

Fig. 16. Symbol of a swap gate (top). A swap gate circuit implemented using
3 CNOT gates (bottom).

The procedure to design a NNC circuit is described as
follows:

o The qubits in the original circuit are indexed from 1 to
n.

o Next, we design a 2-D configuration with the indexed
qubits such that for maximum number of 2-qubit gates,
the interacting qubits are already neighbors.

o Subsequently, swap gates are introduced to bring the set
of qubits adjacent to each other, mindful of the next set
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Fig. 17. NNC circuit for the five-qubit encoder. The positions of the qubits
in a 2-D array is shown at the top. The circuit requires 3 swap gates.

of 2-qubit gates in the sequence.
e The process goes on till the whole circuit has been
designed.

It should be noted that the above process may not be optimum,
especially if the number of qubits in the circuit is large. For
circuits containing a small number of qubits, we can expect
optimum results.

A NNC circuit for the five-qubit encoder is shown in Fig.
17. The initial qubit position is shown at the top. Three swap
gates are required to implement the circuit. We also designed a
NNC circuit for the syndrome measurement circuit for the five-
qubit code as shown in Fig. 18. The initial qubit configuration
in the 2-D array is shown at the top. Eight swap gates are
required for the circuit; these require 24 CNOT gates.

Similar to the five-qubit code, NNC circuit can be designed
for the Steane code encoder and syndrome measurement
circuit as well. NNC circuits for Steane code encoder and
syndrome measurement circuits are shown in Figs. 19 and 20,
respectively.

The encoder circuits for the 5-qubit code and Steane code,
which contain 5 qubits and 7 qubits, respectively, were de-
signed using a small number of swap gates. However, the
syndrome measurement circuits for the above codes contain
9 qubits and 13 qubits, respectively, and thus require a large
number of swap gates. NNC circuits for those, as shown in
Figs. 18 and 20, may not be optimal.

VII. RESULTS

The combined encoder and decoder circuits were simu-
lated using IBM Qiskit. Errors were introduced at different
positions to test for correctability. X, Y, and Z errors were
introduced in the circuit by adding the corresponding Pauli
gate after the encoder circuit. The measured syndromes varied
depending on the type of error introduced. An exact match was
found between the syndromes measured and the corresponding
syndromes shown in Tables I and II for the five-qubit and
Steane code, respectively. Depending on the syndromes, the
corresponding Pauli gate can be used to correct the error.

Another important parameter to measure the efficiency of
the quantum circuits is the number of single and multiple qubit
gates used in the quantum circuits. We list the number of gates
used in the quantum circuits presented in this paper in Table
III. We observe that all these circuits were designed using H,
S, CNOT, CY, and CZ gates. The NNC circuit for the 5-qubit
encoder requires 3 swap gates, or equivalently 9 extra CNOT

TABLE III
RESOURCE UTILIZATION SUMMARY FOR THE VARIOUS DESIGNED
QUANTUM CIRCUITS IN TERMS OF NUMBER OF GATES USED.

CNOT
gates

CY
gates

(674
gates

Parameters H gate S gate

Five qubit 4 2 2 2 4
encoder

Five qubit 4 2 11 2 4
encoder NNC

Five qubit 8 0 8 0 8
syndrome
measurement

Five qubit 8 0
syndrome
measurement
NNC

Steane code 3 0 11 0 0
encoder

Steane code 3 0 17 0 0
encoder NNC

32 0 8

Steane code 12 0 12 0 12

syndrome
measurement

Steane code 12 0 60 0 12
syndrome
measurement

NNC

gates. Similarly, the NNC circuit for the Steane code encoder
requires 2 swap gates, or 6 extra CNOT gates. However, the
syndrome measurement circuits for both the 5-qubit code and
7-qubit code require a lot more swap gates. This is because
these circuits contain 9 and 13 qubits, respectively. Thus, on
a 2-D array, it requires a larger number of steps to bring the
required qubits adjacent to each other.

VIII. CONCLUSIONS

In this paper, we discussed a detailed procedure for the
construction of encoding and decoding circuits for stabilizer
codes. We started with Shor’s 9-qubit code and analyzed the
code using stabilizer formalism. For using stabilizer codes in
practical quantum computers, it is essential to design efficient
encoding and decoding circuits. We reviewed a systematic
procedure for encoder circuit design for stabilizer codes, and
using that we formulated an algorithm to generate encod-
ing circuits for general stabilizer code. For the decoder, we
used a syndrome measurement circuit, and depending on the
measured syndromes, we corrected the error using suitable
Pauli gates. To enhance reliability of the designed circuits, it
is important that the circuit is NNC, i.e., for multiple qubit
operations, the qubits must be adjacent to each other. We
explored NNC circuits for both the five-qubit code and Steane
code.

Design of quantum ECCs for codes such as RS codes [25],
[26], [27], LDPC codes [52], [53], [54], hypergraph-product
codes and homological product codes [55], [56], tensor prod-
uct of qunatum and classical codes [57], [58], and polar
codes [28] remains an active area of research. Furthermore,
design of quantum circuits for these codes remains a topic
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Fig. 18. NNC circuit for the five-qubit syndrome measurement circuit. The positions of the qubits in a 2-D array is shown at the top. The circuit requires 8
swap gates.
1) 4 Step A: Applying H gate on qubit 1 followed by S, we
N have
7 5
6 3 1
[1)1) 27(|00000> + 4/10000)) (45)
10) L] 3
0y 215 I Step B: Applying M; controlled at qubit 1 we have,
0)*—H 1
0] x| [¥2) = 75(100000) + (i - 5)[10001))
0)2 x| 1
o S =—(|00000) — |10001)) (46)
0y X} x| X} V2
) 7 . x| x| X Hx] Step C: Applying H gate on qubit 2, we have
Fig. 19. Nearest neighbour compliant circuit for the Steane code encoder. 1
The positions of the qubits in a 2-D array is shown at the top. The circuit |13) ==(]00000) + |01000) — |10001) — |11001))  (47)
requires 2 swap gates. 2
Step D: Applying M, controlled at qubit 2 we have,
of future research. Future work needs to be directed towards
optimization of quantum circuits for these codes with respect |a) :1(|OOOOO> +01001) — |10001) — [11000))  (48)
to the number of gates subject to NNC constraint, and towards 2
development of automated tools for design of these circuits. Step E: Applying H gate on qubit 3, we have
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APPENDIX A Step F: Applying M3 controlled at qubit 3, we have
EVALUATION OF THE OUTPUT STATE OF THE 5-QUBIT
ENCODER CIRCUIT 1
A good exercise would be to evaluate the output state of %) :2\/5(‘0000(» +100101) + |01001) — [01100)
the encoder circuit and verify if it matches with |0) and |1) 110001 + [10100) — |11000) — [11101))  (50)
states in equations 30 and 31.
The initial state 1)y when the fifth qubit is set to |0) is Step G: Applying H gate on qubit 4 followed by S gate,
1o = |00000). we have
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1oy —{H]
10 *—{H] H
10)*—{H} H
! X z]
: X ) ) z] 2]
: X z] z] H
A X X}zl z]
= X X H
1 X X X1z}
1 X X ] H

Fig. 20. NNC circuit for the Steane code syndrome measurement circuit. The positions of the qubits in a 2-D array is shown at the top. The circuit requires
16 swap gates.

1 1
[7) = (100000 + [00010) + [00101) + 7/00111) th2) = (100001 + (i - ~)[10000))
+101001) + 4[01011) — [01100) — §]01110 1
01001) +|01011) — {01100) —4]01110) ——_(]00001) + [10000)) (55)
~ 10001) — |10011) + [10100) + 7|10110) V2

— [11000) —[11010) — [11101) —[11111)) (1) Step C: Applying H gate on qubit 2, we have

Step H: Applying M, controlled at qubit 4, we have
1
[1)3) =§(|00001> +(01001) + |10000) + |11000))  (56)
1
[1g) = Z(|OOOOO> + 4 -400011) + |00101)

+i(—i - —1)[00110) 4 01001) + i(—)|01010)
—|01100) — i(—1 - 4)[01111) — |10001)

Step D: Applying My controlled at qubit 2 we have,

1
—i(—1-—4)[10010) + [10100) 4 (i - —1 - —1)[10111) [%4) =5(]00001) + [01000) + |10000) + [11001))  (57)
— [11000) — i(—1-4)[11011) — |11101) , ,

. . Step E: Applying H gate on qubit 3, we have
—i(=1-—1-—i)[11110)) (52)

1
= ~(]00000) — |00011) + [00101) — [00110) 1

4 |1hs) =——(|00001) 4 |00101) 4 |01000) + [01100)
+101001) + [01010) — [01100) — |01111) 22
— [10001) + |10010) + [10100) — [10111) +[10000) + [10100) + [11001) + [11101)) ~ (58)

— [11000) — [11011) — [11101) — [11110)) Step F: Applying Mj controlled at qubit 3, we have

(53)
1
— =——o(]00001 00100 01000) — |01101
We observe that |ig) matches with state |0) in equation ) 2\/5(‘ )+ )+ )~ )
(30). - +[10000) — |10101) + [11001) + [11100))  (59)
Now, we will verify state |1). The initial state 1)y when the
fifth qubit is set to |1) is 1o = |00001). Step G: Applying H gate on qubit 4 followed by S gate,
Step A: Applying H gate on qubit 1 followed by S, we we have
have 1
[r) = 7(/00001) + 8J00011) +[00100) +i[00110)
1 , B .
1) =L (100001) + #[10001)) 54 +(01000) + i[01010) — [01101) — §|01111)

V2 + [10000) + |10010) — |10101) — i[10111)

Step B: Applying M; controlled at qubit 1, we have, + [11001) +4[11011) + [11100) + 4[11110)) (60)



Step H: Applying M, controlled at qubit 4, we have

[g) = i(|00001> + 1 - (—4)|00010) + [00100)

+i(—1-14)[00111) + [01000) + i(i)|01011)

—|01101) — i(—1 - —)[01110) + [10000)
+i(—1-4)[10011) — [10101) — i(—1 - —1 - —i)|10110)
+ [11001) 4 i(—1 - —i)|11010) + |11100)

(=1 —1-9)|11111)) (61)
1
= ;(100001) +(00010) + |00100) + 00111)
+(01000) — [01011) — |01101) + |01110)
+[10000) + [10011) — [10101) — |10110)
+[11001) — [11010) + [11100) — |11111))
(62)

We observe that [¢)s) matches with state |1) in equation
3D).
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