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Abstract: From out-competing grandmasters in chess to informing high-stakes healthcare decisions, 

emerging methods from artificial intelligence are increasingly capable of making complex and strategic 

decisions in diverse, high-dimensional, and uncertain situations. But can these methods help us devise 

robust strategies for managing environmental systems under great uncertainty? Here we explore how 

reinforcement learning, a subfield of artificial intelligence, approaches decision problems through a lens 
similar to adaptive environmental management: learning through experience to gradually improve decisions 

with updated knowledge. We review where reinforcement learning (RL) holds promise for improving 

evidence-informed adaptive management decisions even when classical optimization methods are 
intractable. For example, model-free deep RL might help identify quantitative decision strategies even when 

models are nonidentifiable. Finally, we discuss technical and social issues that arise when applying 

reinforcement learning to adaptive management problems in the environmental domain. Our synthesis 
suggests that environmental management and computer science can learn from one another about the 

practices, promises, and perils of experience-based decision-making. 
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Introduction 

Given the urgency of environmental crises and the impending risk of crossing planetary tipping points, 

developing management strategies in the face of uncertainty is increasingly critical. Decision making under 

uncertainty, central to most contemporary environmental policy and practice, is referenced in contexts that 

span scales and systems, ranging from multilateral initiatives to halt biodiversity loss (1) and mitigate 

climate change (2) to local measures for habitat protection (3) and water allocation (4). But uncertainty - 

and the possibility of triggering regime shifts - persist as challenges to effective conservation decision-

making (5), motivating conservation science, policy, and practice to focus not only on making decisions 

given uncertainty but iteratively reducing uncertainty through adaptive decision-making. 

 

Since the coining of the term adaptive management in the 1970’s (6), attempts to apply the paradigm of 

“learning while doing” have proliferated across the environmental domain (Box 2)  (7,8). But the theoretic 

underpinnings of adaptive management - reducing uncertainty around a discrete set of autonomous models 

(systems that do not explicitly depend on independent variables) or model parameter values over time to 

take actions that maximize a notion of expected utility - have proven to be difficult in application (9,10), 
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buckling under the problem complexity and sociopolitical nuance within which real environmental 

decisions are made (11,12). Notably, the decision-theoretic methods commonly used to solve adaptive 

management problems (e.g., Bayesian model updating and dynamic programming) generally assume that 

uncertainties are not only known but can be precisely quantified in probabilities (13). This, in turn, hinges 

on the assumption that models of environmental systems are identifiable and autonomous, which is often 

not true, particularly in the case of systems with tipping points or in the context of rapid environmental 

changes due to anthropogenic pressures (14). 

 

In light of the limitations of decision-theoretic methods, multiple alternative approaches have emerged to 

inform the management of complex systems under uncertainty (e.g., scenario planning and resilience 

thinking (5)) For example, statistical early warning signals of tipping points (e.g., critical slowing down) 

allow us to punt on the issue of model misspecification. Notably, early warning signals, scenario planning, 

and other “resilience thinking” approaches all shift away from quantifying a decision policy (e.g., a model 

which suggests a fishing quota of X metric tons) and towards classifying (e.g., “the system is / isn’t 

approaching a tipping point”, or “scenario B is preferable to scenario C”). Hereafter, we will call these 

“classification” approaches. Despite long-standing calls to better integrate decision theory and classification 

approaches (13), classification has continued to retreat from the decision problem all together, focusing 

instead on advanced computational tools - like deep learning - to better predict complex systems dynamics 

while avoiding the need to explicitly consider actions or the expected utility of a given strategy. For 

example, (15) uses machine learning to classify critical transitions into four possible classes but does not 

suggest action strategies given a belief state in the system dynamics.   

 

At first glance, focusing on system classification is compelling: if we can identify a proximate tipping point 

or predict a threshold response in a system - regardless of the exact underlying model (e.g.,(15)) - surely a 

manager can leverage that knowledge to compose a good management strategy?  But is washing our hands 

of devising quantitative decision strategies for complex systems really a good idea? Heuristic approaches 

to decision-making notably fail to design effective sequential decision strategies (in contrast to iterative or 

static decision strategies) compared to formal approaches (16). This leads us to ask if the limitations of a 

heuristic decision are better than those faced by traditional model-based decision theory (17).  

 

If we can predict thresholds more successfully without models, can we also derive quantitative decision 

strategies for those systems more effectively without models (and the assumptions of model-based decision-

theoretic approaches)? Within the field of computer science, a rapidly emerging class of machine learning 

algorithms has proven remarkably effective at making complex sequential decisions without first learning 

a model of the system (18). Interestingly, these model-free reinforcement learning (RL) algorithms often 

mimic what any good manager does in the same situation: forgoing learning over an explicit set of process-

based models and relying instead on knowledge from successes and failures experienced by repeatedly 

making decisions. But unlike a human manager, RL algorithms can process near real-time and high-

dimensional data as well as learn strategies by interacting with a wide diversity of simulations and scenarios 

(19) that would be infeasible for a human to process. Moreover, RL algorithms show promise to more 

effectively manage systems with unknown tipping points than fixed “rule-of-thumb” strategies (20).  

 

In this paper, we first highlight the limitations and assumptions of decision-theoretic approaches that have 

driven a wedge between the theory and practice of adaptive environmental management. We then explore 
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examples of successful reinforcement learning applications, highlighting which specific RL methods and 

concepts might provide a promising path forward to overcome some limitations of model-based adaptive 

management (Table 1). Despite the promise of these emerging methods, the problem of making strategic 

decisions in nonidentifiable and/or nonautonomous (systems subjected to external inputs) systems is not 

easily solved by even the best algorithms. We simultaneously suggest that RL research might benefit from 

the insights gleaned from trying to tackle pressing environmental problems (Table 1). Finally, we 

emphasize that while RL approaches may, at last, allow algorithms to help human decision-makers better 

grapple with real-world complexities, such a transition will raise new challenges for equity, governance, 

and accountability.  

Adaptive management: translating theory to practice 

Given the limitations of model-based approaches to adaptive management (Box 1), the practice of adaptive 

management - and its integration into policy - has deviated from formal definitions of decision theory 

(Figure 1). Rather, implemented adaptive management strategies often take “rule-of-thumb” approaches, 

substituting human judgment and the experience of decision-makers in place of computationally intensive 

models (7,21). While more loosely defined and human-informed adaptive management processes overcome 

some of the technical shortcomings of model-based adaptive management (e.g., by allowing for 

consideration of greater system complexity and the social context of decisions), these approaches also face 

several limitations. Beyond the myriad of potential non-technical risks, such as goal slippage, manager 

turnover, and sensitivity to political asymmetries and institutional change (22), “rules of thumb” face 

technical constraints. For example, the exponentially increasing amount of monitoring data from automated 

sensors (23) quickly becomes impractical for humans to integrate into a heuristic decision process.   

 

Thorough reviews of the application (7,8), theory (24), and legal implications (25) of adaptive management 

already exist in the literature. In Figure 1A-B, we summarize the adaptive management paradigm. It should 

be noted that while adaptive management is not appropriate in all settings, the benefits of leveraging 

adaptive over nonadaptive approaches are particularly apparent in contexts where there is deep uncertainty 

about system dynamics—a setting in which RL might hold the most promise. In the remainder of this 

section, we illustrate, through examples, the key gaps between adaptive management as it is expressed in 

theory and the requirements for its effective implementation in practice. While decision-makers deviations 

from scientific and/or algorithmic recommendations and definitions of adaptive management (Figure 1B) 

are often viewed with skepticism, we explore how this deviation frequently reflects the inability of models 

integrated into decision-theoretic frameworks to sufficiently account for real-world complexity and 

challenges (Box 1).  

 

Take, for example, the Tallapoosa River, where an upstream hydropower dam had uncertain effects on the 

integrity of the river's species-rich ecological community, prompting a decade-long adaptive management 

effort (9,26) (Box 1A). Monitoring how multiple ecological indicators and stakeholder preferences respond 

to flow alterations was used to iteratively update a model (a state-space transition model) of the system, 

which was integrated into a decision-theoretic framework to optimize flow regimes (26). While the river 

monitoring effort held promise to instruct more responsive and informed decisions, the high-dimensional 

system (which included multiple species and ecosystem indicators, recreational interests, dam revenue, 

seasonal temperature) and nearly unlimited potential flow regime strategies were reduced to three system 
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"states" and four potential flow regime "actions'' over which the formal adaptive management problem 

learned and optimized (26).  Would a more realistic representation of the systems, at least mirroring the 

scope of monitoring data collected and a more extensive set of possible actions, have allowed the solutions 

to capture nuanced and temporal tradeoffs between human use and ecological demands in this system? 

 

Unfortunately, what adaptive management models add in social and ecological complexity they often lose 

in the number of models and parameters over which they learn due to computational constraints. For 

example, in the case of adaptively managing horseshoe crab harvests in the Delaware Bay (Box 1C), 

proposed frameworks included multi-species population models and a broader set of potential actions but 

consider only two competing models over which to reduce uncertainty and derive decision strategies (27). 

Beyond the challenges of capturing complexity and uncertainty of system states and actions, model-based 

adaptive management frameworks face limitations to inform decision-making in the context of global 

environmental change (24). For example, in the case of adaptively setting quotas for waterfowl harvest in 

the United States (Box 1B), the increasingly nonautonomous (“nonstationary”) nature of the system (due 

to climate change not being included as part of the population model) is beginning to limit the applicability 

of the model-based decision theoretic methodology to devising decision strategies (28). Of course, climate 

dynamics could be integrated into the models. However, this further complicates both the model and the 

computational requirements to solve for optimal decision strategies using dynamic programming, as well 

as introduces additional uncertainty. 

 

In each of the cases in Box 1, human decision-makers wrestle with a growing number of complexities, 

competing needs, and pressures left unanswered by the existing decision theoretic adaptive management 

paradigms. These mismatches limit the utility of existing model-based optimization approaches to the 

decision-making process and risk unintended consequences of relying on best-fit models in decision 

processes. Importantly, proposals to leverage adaptive management for higher-dimensional environmental 

problems, such as climate mitigation (29) and protected area design and management (30,31), are likely 

only to widen the gap between model-based theory and the realities of management decisions in practice. 

While classification approaches enable skirting the decision problem all together, less constrained 

approximate methods for finding optimal strategies have also been suggested for dealing with high-

dimensional natural resource management problems for decades (32). In the following sections, we explore 

how emerging methods from deep reinforcement learning might allow us to leverage the benefits of both 

heuristic and computational approaches to adaptive management, improving our capacity to manage 

systems under uncertainty (Table 1, Figure 1C).  
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Figure 1: (A) Decision theoretic approaches to adaptive management - what we refer to as “model-based” 

adaptive management - formulate problems as Markov decision processes (MDPs) with unknown state 

transition probabilities (for a helpful overview of MDPs for ecology, see (16,33)). At each time step t, the 

agent takes an action , on an environment, and the environment transitions from the current state , to the 

next state st+1 and provides the agent with a reward . After taking an action, the agent observes the system 

state and rewards to update its belief of the underlying dynamics of that system to inform the decision 

strategy (“policy”) which selects the next action. (B) While theory provides a formalized way to “learn” 

about systems while acting on them, in practice, adaptive management decisions are usually made by 

humans who may or may not use the output of models to support decisions but often rely on experience 

with the complex systems and sociopolitical context not captured by stylized system models. (C) Like 

classical model-based optimization approaches, the task for a reinforcement agent is to learn a “policy” that 

maps the state of the system to an action the agent should take to maximize the expected sum of future 

rewards (29). This can be done by interacting with historical data or simulators. However, the process by 

which RL learns optimal policies is fundamentally different from (A). (D) Unlike the classical methods 

used in model-based adaptive management, reinforcement learning allows action strategies to be developed 

without learning over a predetermined set of potential models.  
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Box 1: Examples of model-based adaptive management and their key challenges. 

 

  (A) Adaptive Flow Regimes: Tallapoosa River 

  For nearly a decade, the United States Geological Survey 

(USGS) implemented adaptive management on the 

Tallapoosa River to determine optimal flows under multiple 

competing stakeholder objectives. The iterative decision 

model included annual monitoring of ecosystem indicators 
to vary flow regimes optimally. Despite the adaptive 

decision framework, the best management strategies to 

provide both adequate hydrologic and thermal habitats 

while sufficing recreational values remain a central 

controversy in the system (26). 

Objective: ensure the conservation of at-risk species 

and meet ecosystem service objectives 

Learning: passive learning of ecosystem dynamics 

and the valuation of ecosystem services 

States: discrete set of ecosystem indicators, ecosystem 
values 

Actions: four flow allocation strategies 

Key challenges faced: multiple competing objectives, 

noisy observations, delayed feedbacks, stochasticity, 

high dimensionality 

  (B) Adaptive Harvest Management: Waterfowl  

    Since 1995, the United States Fish and Wildlife Service 

has used an adaptive management framework to regulate 

duck harvests. Harvest quotas rely on an iterative cycle of 

monitoring, assessment, and decision-making. Based on 

monitoring data, managers continually refine models of the 

relationships between hunting regulation, harvests, and 

waterfowl abundance. While significant updates to the 

model weights have occurred over the past 20 years, non-

stationarity due to global change challenges the current 

methodology (28). 

Objectives: sustainable harvest of waterfowl 

Learning: passive learning of population dynamics in 

response to harvest regimes 

States: waterfowl abundance 

Actions: annual harvest quotas  

Key challenges faced: non-stationarity, delayed 

feedbacks, stochasticity, multiple objectives 

 

 (C) Adaptive Harvest Management: Red Knots (Calidris canutus rufas) and Horseshoe Crabs (Limulidae 

polyphemus) 

    Following increased harvest of horseshoe crabs in the 

Delaware Bay during the 1990s, migratory shorebird 

populations declined steeply. Recognizing this decline, the 

fisheries commission began regulating the horseshoe crab 

harvest. Proposed adaptive management frameworks focus 
on two competing models of red knot population dynamics 

and horseshoe crab harvests, seeking to iteratively improve 

harvest policies for both objectives (27). 

Objective: ensure the conservation of at-risk species 

while also meeting harvest objectives 

Learning: passive learning of multispecies dynamics  

States: red knot abundance and fecundity, horseshoe 

crab abundance 
Actions: harvest quota for horseshoe crabs 

Key challenges faced: model set limitations, 

dimensionality, delayed feedbacks, multiple objectives   

Reinforcement learning as model-free adaptive management 

Reinforcement learning has proven better than humans at making strategic, adaptive, and complex decisions 

across a diversity of problems and domains. While RL’s most cited feats are in the context of games (e.g., 

chess) (34) and robotic tasks (35), RL algorithms are increasingly used to solve planning problems across 

a variety of noisy and uncertain real-world settings, from healthcare (36) and energy systems (37) to 

biological systems (38) and economic policy (39). 

 

The problem setup for reinforcement learning closely mirrors model-based adaptive management (Figure 

1). Like classical model-based optimization approaches (16), an RL agent aims to learn a “policy” (decision 

strategy) that maps the state of the system to the best action to take to maximize the expected sum of future 
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rewards (20). However, the process by which RL learns optimal policies can be fundamentally different. 

Unlike classical dynamic programming methods leveraged in adaptive management examples from Box 1, 

which require specifying state transition matrices (state-space models of the system over which to learn) 

(16) (Box 1, Figure 1A, Figure 1D), model-free reinforcement learning allows action strategies to be 

developed without a predetermined model (Figure 1C), bypassing the need to iteratively learn a ‘best 

model’ of system dynamics altogether (Figure 1D). Importantly, RL learns action strategies through 

experience, which can include simulated experience, experience derived from historical data, and/or real-

world experience.  

 

First, RL can learn from simulated experience. A notable example is Atari, where researchers achieved 

human-level performance across dozens of Atari video games by training RL agents over millions of 

timesteps (decisions) (19) (Box 3A). Instead of fine-tuning a new model for each of the game, a single RL 

agent using the same neural network architecture and hyperparameters was applied to 49 different Atari 

games, reaching performance comparable to a professional human game player across a majority of the 

games. Without the goal of learning a single system transition matrix, the RL agent learns generic concepts 

that allow for strategic decision-making in a diversity of settings. Beyond gameplay, simulators can also 

model physical environments such as atmospheric wind conditions, as used to build a simulator to train an 

RL agent to navigate high-pressure balloons in the stratosphere (Box 2B). In the context of adaptive 

management, simulators could be designed to describe water flow, species population dynamics, or a 

changing climate. Leveraging simulated experience to learn policies for adaptive management problems 

could provide a means to integrate more complex system dynamics and action sets, such as in 

nonautonomous environments.  

 

While RL allows us to relax assumptions required by most model-based adaptive management frameworks 

(e.g., MDPs), managing nonautonomous systems remains a hard problem for both computer and 

environmental science. We do not suggest that RL will readily overcome this challenge, but rather that in 

complex socio-ecological settings (e.g., the Tallapoosa River, Box 1A), RL might outperform both human 

heuristics and model-based adaptive management methods through exploring a set of complex simulated 

environments millions of times, accruing orders of magnitude more feedback than a system that could only 

interact with the real environment (40).  

 

Notably, simulated experience is not the only way RL can learn decision strategies. Deep RL has been 

shown to learn effective policies from historical data in the absence of a simulator by stitching together 

trajectories of system observations (“offline reinforcement learning”) (41,42). For example, in hospitals—

which often have decades of historical records about patient status, treatment, and outcomes—this offline 

approach was taken to learn individualized treatments for sepsis patients (Box 2C). Of course, the extensive 

data available in some societal domains like healthcare is less common in environment systems. In some 

environmental challenges, such as water and air quality monitoring, sensors are already constantly taking 

samples potentially allowing for the tracking of the impact of specific actions. While this level of 

monitoring data is not available for many other ecological management problems, improved sensing of 

everything from vegetation dynamics to species occurrence (43) are trending the field in that direction and 

likely making RL-based management more feasible. 
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A key challenge in the environmental domain will be off-policy evaluation, to estimate the performance of 

policies that were never observed in the offline data (44). A large body of techniques for off-policy 

evaluation have been developed for RL for observational healthcare (45). Additional observations collected 

through real-world (“online”) experience may then be used to improve the policy further or “adaptively” 

update policies while taking actions. 
 

Emerging methods in RL have the potential to address more than just the issue of dimensionality and 

nonautonomous dynamics in natural resource management problems. From making effective decisions in 

environments with sparse rewards to addressing systems with multiple competing objectives, in Table 1, 

we map adaptive management challenges to RL methods that might help address them.   

 

 

Box 2: Examples of reinforcement learning applications and the key challenges they address. 

 

  (A) Playing strategic games: Atari 

Dealing with high-dimensional inputs to make effective 

decisions across different tasks and situations remains a key 
challenge for RL. Atari consists of 49 distinct video games 

with visual inputs and has become a go-to benchmark for 

developing RL algorithms.  Using deep Q-learning, a single 

RL agent was trained across dozens of games to outcompete 

human players (19). 

Key challenges addressed: high-dimensional input, 

diverse tasks, long horizon 
Objective: maximize score across a set of Atari games 
State: 84 × 84 × 4 color video frames at 60 Hz 

Action: discrete, variable for each game 
Reward: rescaled game scores 
RL approach: deep Q-learning 

  (B) Flight control: Stratospheric Balloons 

Stratospheric balloons are high-altitude balloons that can 

reside 15 to 60 kilometers above sea level for months at a 

time. These balloons carry up to 1.1 tons of payload, 

typically tools used for weather forecasting, satellite 

navigation, atmospheric chemistry experiments, and testing 
new space technology. Navigation in these high-altitude 

settings is dependent on stratospheric winds, of which 

relevant meteorological data is sparse, and solar 

availability, which is needed to charge the battery. Model-

free reinforcement learning enabled effective navigation 

over the Pacific Ocean over 39 days, using distributed Q-

learning (46). 

Key challenges addressed: incomplete data, noisy 

observations, unreliable solar availability, safe 

navigation, long planning horizon 

Objective: navigate a super-pressure balloon to float 

near weather station 
State: 1,083 wind variables. 16 ambient variables 

Action: discrete (Ascend, descend, stay) 

Reward: distance from a weather station, with 

maximum reward within 50 km of the station 

RL approach: Model-free Q-learning with experience 

replay 

 

  (C) Clinical Decision-Making: Sepsis Treatment 

Sepsis is a life-threatening excessive immune response to 

an infection that may lead to organ failure or death. Treating 

sepsis involves a complex mix of antibiotics, 

corticosteroids, timing and dosage of drugs, and 

intravenous fluids. The treatment regiment for patients in 

the intensive care unit (ICU) must be customized to each 

individual patient in response to that patient’s response to 

medical interventions. Deep Q-learning helped learn 

treatment policies to help reduce patient mortality by 1.8–

3.7% (47). 

Key challenges addressed: continuous state, sparse 

reward signals, stochasticity, delayed feedback, 

interpretability 

Objective: improve patient survival 

State: continuous. 48 values of demographics, 

physiological data, and vital signs) 

Action: discrete. 5×5 intervention options with 

different amounts of IV fluid and vasopressor dosage 
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Reward: weighted sum of indicators of patient health 

including the extent of organ failure and changes in 

blood pressure 

RL approach: dueling double-deep deep-Q learning 

Possibilities and pitfalls of applying RL to adaptive management 

problems 

If real-world complexity has forced the practice of adaptive management beyond the reach of theory, 

emerging paradigms of reinforcement learning appear to at last be putting such challenges within reach of 

algorithms (Table 1). But just because this may be possible, is it really a good idea? Adapting reinforcement 

learning for adaptive management could open possibilities (20,40) but also introduces new pitfalls while 

re-surfacing age-old concerns of algorithmic decision processes (48). We divide these possibilities and 

perils into three themes. First, the conceptual shift of an RL approach to learning as something based on 

heuristics and experience rather than rigorous mathematical theorems. This can recapitulate some of the 

benefits but also the shortcomings of human decision-making. Second, RL still faces the same challenge of 

any objective-based decision-making: accurately defining the task at hand. RL overcomes some 

computational constraints but still requires defining a scope of possible rewards, states, and actions. We 

refer to this as world-making. Third, deep RL's technical and computational needs may limit its application 

to the largest technology institutions with access to these resources. This stakeholder shift exacerbates 
potential ethical and political consequences. Here we outline both the technical and social components of 

these opportunities and challenges across the three main themes of (1) learning, (2) worldmaking, and (3) 

shifting stakeholders (Figure 2). We hope both the RL and adaptive management communities recognize 

and focus on addressing these challenges when developing and implementing environmental decision-

making. 
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Figure 2: Traditional adaptive management relies on modeling the environment using Markov decision 

processes, which mirrors a “model-based” approach to RL (green pathway, left). Model-free RL (grey 

pathway, center) eschews learning an intermediate model to instead directly estimate the reward for taking 

specific actions at a given state. As we outline, reinforcement learning brings both promise and new 

challenges for adaptive management for learning, world-making, and shifting stakeholders, which all 

impact different components of the RL pipeline. 
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Table 1: Emerging methods and approaches in RL have the potential to help overcome a myriad of 

challenges in adaptive management, from making effective decisions in complex environments over long 

planning horizons to learning strategies in high-stakes situations. The following methods help define a 

research agenda for RL researchers seeking to contribute to environmental management.  

 

Adaptive management challenge RL methods and concepts Citation 

Dealing with uncertainty 

Data used to train RL agents may not be precise or generalize to real-

world settings. 

robust RL aims to learn policies that perform well across a large class of 

possible environments, including environments that may not have been 

explicitly encountered during training. 

(49–51) 

 

When data is insufficient to reliably predict the outcome of an action, 

decision makers wish to understand the degree of uncertainty. 

uncertainty quantification measures and attempts to reduce uncertainty in 

predictive systems. These uncertainty estimates can be used to constrain 

the RL policy to avoid taking actions with high uncertainty in outcome, 

related to safe RL. 

(52–54) 

A given model does not precisely describe the true dynamics of the 

ecological system, regardless of what values are used to instantiate the 

parameters. 

model misspecification refers to RL settings in which the Markov decision 

process used to model the environment does not describe reality. Model 

misspecification is typically addressed with robust RL, including model-

free approaches. 

(55–57)  

For a given set of observed data, multiple sets of parameters used to 

instantiate the model may have the same probability distribution of being 

the best-fit model. 

non-identifiability describes the challenge of learning and planning under 

in the presence of unmeasured state variables (confounders). 

(58,59) 

The reward function may be unknown in advance. inverse RL attempts to recover the reward function given an optimal policy 

and environment dynamics. 

(60,61) 

Limited opportunities to interact with real-world, high-stakes settings 

Must learn optimal policies using historical data, without collecting new 

data. This challenge arises when data collection is expensive — as is often 

the case in conservation management.  

offline RL (or batch RL) learns the best policy possible given historical 

observations (a static dataset) without exploration. Requires off-policy 

evaluation to estimate the performance of policies that were never enacted 

in the historical data. 

 

(41) 

In high-stakes settings, managers wish to be risk-averse to avoid 

potentially catastrophic settings, such as unintentionally wiping the 

population of one species. 

RL safety trains an RL policy by limiting explorative actions to those that 

are unlikely to reach very bad states, for example by imposing additional 

constraints or avoiding actions with high uncertainty. 

(62,63) 

Decision makers wish to know why a policy calls for a specific action. explainability in RL aims to provide human-understandable explanations 

for why an RL method recommends a specific action, in contrast to “black 

box” methods.  

(64,65) 

Decision makers want to have human experts oversee and possibly 

override an RL agent’s decisions. 

human-in-the-loop systems treat humans as experts and defer to these 

human experts to make decisions when the RL agent is highly uncertain. 

(66,67) 

Complex environments with long planning horizons 

The underlying rules of the environment may be changing over time, due 

to exogenous factors such as climate change or socioeconomic drivers. 

non-stationarity refers to changes over time in the underlying dynamics of 

the MDP. In dynamic settings, the state constantly changes, but with non-

stationarity the transition dynamics and rewards shift as well. 

(68,69) 

Management decisions may be highly complex, thus difficult to learn 

from scratch.  

curriculum learning trains an agent on progressively harder tasks, using 

transfer learning to build off knowledge learned from previous tasks to 

subsequent tasks. 

(34,70) 

Management decisions may require planning challenging multi-step tasks 

over long time horizons. 

hierarchical RL decomposes long-horizon tasks into more tractable 

subtasks.  

(71) 

After we receive a reward, we want to know which action(s) were critical credit assignment evaluates the utility of individual actions over a long (72–74) 
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to that outcome. This challenge is exasperated by delayed feedback. sequence of steps.  

Rewards may be sparse, especially with delayed feedback, and the benefit 

of intermediate actions may not be immediately obvious. 

reward shaping provides more gradual, localized feedback to guide the 

policy toward high-reward states.  

(75–77) 

Multiple stakeholders, multiple agents 

Multiple stakeholders may each have their own objective. multi-objective RL learns optimal decisions in the face of multiple 

conflicting objectives. This challenge is most salient when the relative 

weighting (importance) of the objectives is not known. 

(78,79) 

 

Multiple agents may be acting in an environment simultaneously.  multi-agent RL trains agents to act in the presence of other agents. In a 

cooperative setting, these agents share a goal but in a competitive setting, 

these agents have non-aligned goals which may be in conflict. 

(80,81) 

  

Learning 

 

The central difference between model-free deep reinforcement learning and the theory of adaptive 

management regards learning. In adaptive management, learning is defined as reducing uncertainty over 

parameters or candidate predictive models1 of the underlying ecological processes (Figure 1A). Learning 

is expressed in terms of quantitatively precise probability distributions and realized through mathematically 

precise theorems such as Bayes’ rule to dictate how model ‘beliefs’ (probability distributions) narrow in 

response to actions and new information (Figure 1A). By contrast, a human manager does not necessarily 

need a predictive model of the process to adjust a decision (Figure 1B). It is possible to propose a policy 

without a model based on experience alone. For example, if the estimated waterfowl population (Box 1B) 

decreased too much last year compared to the year before, it’s probably a good idea to lower the harvest 

quota this year. Of course, the theory may give the same answer with more quantitative precision – how 

much to lower the quota (and also just how much to re-adjust “belief” probabilities towards some more 

pessimistic growth rates of the species) – but that answer is only as good as the models it considers. The 

manager’s experience may factor in variables ignored by the models – a harvest quota of zero may be 

socially or politically unacceptable, while past experience of ups and downs may provide an experienced 

manager with a notion for the right size of adjustment with nary an equation (82,83).  

 

Model-free RL capitalizes on this experience-driven approach to decision-making. The RL agent does not 

need to predict future states; it decides what action to take given only experience from past states and 

resulting rewards (or costs). The RL researcher places an untrained agent in a novel environment (usually 

a computer simulation, e.g., in the Atari example (Box 2A)), in which the agent takes exploratory actions 

while adjusting its policy to improve long-term reward. From repeated simulations over hundreds of 

 
1 Some authors distinguish between model uncertainty that is ‘structural’ in nature, e.g., if recruitment follows a 

Ricker-shaped curve or a Beverton-Holt shaped curve, versus uncertainty that is only of a ‘parametric’ nature – e.g., 

the value of initial growth rate “r” in a Ricker model.  In practice the lines are blurry as it is often possible for a 

structurally flexible enough model to represent both families of curves in terms of the choice of some additional 
parameters. In fact, the deep neural networks underlying most of modern machine learning including RL-based 

methods owe their success to being precisely such highly flexible function approximators.  The key observation of 

model-free RL is that the functions seek to approximate are not the process itself – the probability from any possible 

current state to any possible future state under any possible action – but rather, the often smaller map between 

possible states to the space of possible actions – the ‘policy function’ or ‘value function’ the manager should adopt.   
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thousands of episodes, the agent will extensively explore the space of actions and outcomes. The process 

is sometimes compared to a newborn first exploring the world around them. Like the newborn, this RL 

agent is not entirely naive – the researcher must select among a myriad of specific algorithms each with 

very different approaches to solving the reinforcement learning problem. The researcher, just like the parent 

of a newborn, may present a modified system of rewards and costs to coax along the desired learning more 

efficiently in a process called reward shaping (Table 1). Reward shaping becomes particularly useful when 

there is a big payoff only after a long sequence of actions (e.g., rewarding distance to the end of a maze 

rather than only completion). 

  

When trained in a single environment, the strategies that RL agents learn rarely generalize to even small 

deviations from past experience. The agent will often overfit to the smallest details – the units of 

measurement, the duration of the particular episode. More generally applicable strategies can be found by 

presenting the agent with a wide variety of environments. For example, one pervasive challenge in learning 

from simulated experience is the “sim2real” gap, the difference between an RL agent's performance in a 

simulated environment versus a real environment (84). Robust RL techniques may help close the sim2real 

gap and avoid overfitting (85) (Table 1). A wealth of emerging approaches seek to improve generalizability. 

Curriculum learning algorithms seek to provide the most efficient way to interleave different environments 

(Table 1). In adversarial learning, a second agent seeks to learn and propose alterations to the environment 

that are most likely to fool the focal agent into poor performance.  
 

Most large-scale ecological simulation systems still fall short of capturing the many processes involved 

(40) but are already beyond the reach of dynamic programming methods of classical adaptive management. 

Collectively, advances in the ecological realism of simulations and computational RL methods make it 

feasible to train intelligent agents across a wide variety of simulated environments. Historical observations 

can only be paired with historical actions, and thus never provide an agent much insight into the outcomes 

of the actions not taken but can nevertheless be used to supplement and ground-truth training based on 

simulation (Table 1). A more fraught question concerns the role of RL-based learning in real-world 

contexts. Like the distinction between active and passive adaptive management, RL is typically divided 

between ‘training’ and ‘evaluation’ loops. In the training loop, the RL agent explores their action space to 

discover and adjust their decision strategy (‘active learning’). In the evaluation loop, acting is essentially 

passive, with the RL agent seeking to maximize expected utility without updating their decision strategy. 

Evaluation need not always be passive in RL (especially in ‘low-stakes’ real-world scenarios, such as a 

physical robot learning to walk or handle objects) but mirrors the general preference of managers to rely on 

passive adaptive management in high-stakes scenarios. 

World-making 

 

While RL might allow quantitative adaptive management to consider more realistic state and action spaces, 

reducing the numerical constraints on problems only refracts the issue of distilling a complex environment: 

how do we bound an environmental state, define management objectives, and determine a set of available 

actions while ensuring these represent environmental realities and values of those most impacted by the 

decisions? How do we create sufficient simulations or decide on the appropriate data streams to train 

algorithms with? RL might expand the scope and range of problems that we can solve, but it does not 

remove the sociopolitical considerations inherent to how those problems are defined.  
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Let’s imagine reformulating the waterfowl harvest problem as a RL problem. We could simply create a 

simulation of the states and their responses to actions in alignment with the current model-based 

formalization (Box 1B): the action space is an annual harvest quota to maximize expected long-term yields 

and the state space is a one-dimensional representation of waterfowl stock. But given fewer constraints, we 

might represent the waterfowl stock as part of a larger ecological (or socio-ecological) system responding 

to human land use, climatic shifts, and weather extremes, overcoming shortcomings of current methods, 

like the consideration of nonautonomous systems. Even if the action space remained the same (harvest 

quota), the algorithm's optimal policy would change. The action space could similarly be expanded to better 

capture the possibility of decisions (e.g., to a temporally and spatially dynamic closure rather than a single 

harvest quota), changing not only the policy and its impact on resource users, but the underlying system 

trajectory. These changes seem benign, if not beneficial, but it is easy to envision how the imagination and 

values of the algorithm designer impact not only the conceptualization of the environment (state spaces), 

but the solutions derived, and actions taken, which ultimately feedback to create the reality of that system 

(48). Leaving us to question what parts of the system are included in the simulations and how that might 

shift the distribution of benefits and costs. 

 

Barriers to the adoption of adaptive management strategies arise not only from a lack of realism in system 

formalization or capacity to deal with complexity, but also from disagreement over whose values are 

represented in the decision objectives and the potential risks of following algorithmic suggestions (86). RL 

does not sidestep these issues, but methods such as multiobjective RL (Table 1) can learn optimal decisions 

in the face of multiple conflicting objectives, and inverse reinforcement learning can help align the values 

as they are represented in formalized rewards with real-world values (“value alignment”) (60,61) (Table 1). 

Additionally, reward shaping (Table 1) can help to ensure RL agents do not myopically take actions that 

lead to short-term gain over long-term benefits. 

 

Even in light of technical methods to improve the alignment of values and capture multiple objectives, the 

issues of world-making are social and normative at their core. Specifying state, action, and rewards in RL 

applications will necessarily reflect both epistemic values and contextual values of the developer (87,88). 

Which begs the question: who has the power and capacity to define problems and develop RL algorithms?  

Shifting stakeholders  

 

Given both the technical expertise and computational requirements needed to train RL algorithms, industry 

(specifically big tech) involvement in the development and deployment of these methods is commonplace 

across environmental application domains (89). The shift from government-maintained and managed 

algorithms - as is currently the case in most environmental adaptive management contexts (such as 

waterfowl adaptive management; Box 1B) - to industry-maintained algorithms would create a new set of 

actors in the environmental regulatory processes. Because political and financial concerns may influence 

the design of RL environments and agents, developing transparent and inclusive participatory processes 

will be critical to ethical and equitable development and application of RL to adaptive management 

problems.  
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Beyond shifting power and creating new environmental actors, RL-derived environmental decisions risk 

undermining trust in environmental governance systems by increasing the ambiguity of who is accountable 

for future environmental degradation (87). If a decision is derived from an algorithm that relies on trial and 

error rather than clearly mapping to a model choice, are poor outcomes anyone’s fault? Moreover, if an RL 

agent continues to learn and adapt while interacting with the system (adaptive management, by definition), 

how do we ensure that its policies are meaningfully overseen (88)? In this way, RL differs from more 

transparent model-based methods in the relative lack of capacity to query solutions, potentially obscuring 

biases and compliance with regulations (90). Lessons from RL applications to other safety-critical domains, 

such as nuclear fusion (91), and tools from the explainable AI subfield (92,93), might help mitigate these 

issues (Table 1). However, problems of explainability and safety become even more pronounced when RL 

is proposed for controlling less identifiable and high-dimensional systems, as is the case in many 

environmental management contexts. 

 

Ethical AI principles provide some guidance to procedure and practice to ensure safe application of 

algorithms. But these guidelines, like the algorithms themselves, are primarily developed in the Global 

North, notably missing perspectives from Central and South America, Africa, and Central Asia (94). 

Moreover, ethical guidelines rarely address the many dimensions of power implicated in world making; not 

only the power to make decisions or define objectives, but power to set the agendas (e.g., defining 

objectives, state and action spaces) and shift ideologies (48). Applying decolonial theories to AI application 

and development, as discussed in (95), might help address the shortcomings of AI ethics and recenter the 

importance of power and representation in procedural and development processes. 

 

While the technical synergies and differences between reinforcement learning and model-based adaptive 

management methods are outlined throughout this paper, simultaneously considering the parallels between 

AI ethics (94), science technology studies (96), and political ecology (97) are critical when considering 

applications of RL to safety critical real-world domains like environmental management.  

Conclusion 

 

To bridge the gap between the science and practice of adaptive management there is a need for decision-

centered methods that capture the complexity and uncertainty of ecosystems. Advances in deep learning 

have positioned reinforcement learning (RL) as a promising approach to solve sequential problems under 

uncertainty, while sidestepping the need to define a set of candidate models or effectively refine our belief 

in those models. Here we highlight recent advances in RL methods that overcome several limitations — 

such as high-dimensional spaces, imperfect models, and lack of accurate simulators — that have prevented 

adaptive management from moving beyond theory in complex situations. Simultaneously we underline key 

priorities for RL — such as robustness, safety, and multi-objective rewards — to enable its effective and 

responsible deployment for ecological decision-making.  
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