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Abstract: From out-competing grandmasters in chess to informing high-stakes healthcare decisions,
emerging methods from artificial intelligence are increasingly capable of making complex and strategic
decisions in diverse, high-dimensional, and uncertain situations. But can these methods help us devise
robust strategies for managing environmental systems under great uncertainty? Here we explore how
reinforcement learning, a subfield of artificial intelligence, approaches decision problems through a lens
similar to adaptive environmental management: learning through experience to gradually improve decisions
with updated knowledge. We review where reinforcement learning (RL) holds promise for improving
evidence-informed adaptive management decisions even when classical optimization methods are
intractable. For example, model-free deep RL might help identify quantitative decision strategies even when
models are nonidentifiable. Finally, we discuss technical and social issues that arise when applying
reinforcement learning to adaptive management problems in the environmental domain. Our synthesis
suggests that environmental management and computer science can learn from one another about the
practices, promises, and perils of experience-based decision-making.
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Introduction

Given the urgency of environmental crises and the impending risk of crossing planetary tipping points,
developing management strategies in the face of uncertainty is increasingly critical. Decision making under
uncertainty, central to most contemporary environmental policy and practice, is referenced in contexts that
span scales and systems, ranging from multilateral initiatives to halt biodiversity loss (1) and mitigate
climate change (2) to local measures for habitat protection (3) and water allocation (4). But uncertainty -
and the possibility of triggering regime shifts - persist as challenges to effective conservation decision-
making (5), motivating conservation science, policy, and practice to focus not only on making decisions
given uncertainty but iteratively reducing uncertainty through adaptive decision-making.

Since the coining of the term adaptive management in the 1970’s (6), attempts to apply the paradigm of
“learning while doing” have proliferated across the environmental domain (Box 2) (7,8). But the theoretic
underpinnings of adaptive management - reducing uncertainty around a discrete set of autonomous models
(systems that do not explicitly depend on independent variables) or model parameter values over time to
take actions that maximize a notion of expected utility - have proven to be difficult in application (9,10),



buckling under the problem complexity and sociopolitical nuance within which real environmental
decisions are made (11,12). Notably, the decision-theoretic methods commonly used to solve adaptive
management problems (e.g., Bayesian model updating and dynamic programming) generally assume that
uncertainties are not only known but can be precisely quantified in probabilities (13). This, in turn, hinges
on the assumption that models of environmental systems are identifiable and autonomous, which is often
not true, particularly in the case of systems with tipping points or in the context of rapid environmental
changes due to anthropogenic pressures (14).

In light of the limitations of decision-theoretic methods, multiple alternative approaches have emerged to
inform the management of complex systems under uncertainty (e.g., scenario planning and resilience
thinking (5)) For example, statistical early warning signals of tipping points (e.g., critical slowing down)
allow us to punt on the issue of model misspecification. Notably, early warning signals, scenario planning,
and other “resilience thinking” approaches all shift away from quantifying a decision policy (e.g., a model
which suggests a fishing quota of X metric tons) and towards classifying (e.g., “the system is / isn’t
approaching a tipping point”, or “scenario B is preferable to scenario C”). Hereafter, we will call these
“classification” approaches. Despite long-standing calls to better integrate decision theory and classification
approaches (13), classification has continued to retreat from the decision problem all together, focusing
instead on advanced computational tools - like deep learning - to better predict complex systems dynamics
while avoiding the need to explicitly consider actions or the expected utility of a given strategy. For
example, (15) uses machine learning to classify critical transitions into four possible classes but does not
suggest action strategies given a belief state in the system dynamics.

At first glance, focusing on system classification is compelling: if we can identify a proximate tipping point
or predict a threshold response in a system - regardless of the exact underlying model (e.g.,(15)) - surely a
manager can leverage that knowledge to compose a good management strategy? But is washing our hands
of devising quantitative decision strategies for complex systems really a good idea? Heuristic approaches
to decision-making notably fail to design effective sequential decision strategies (in contrast to iterative or
static decision strategies) compared to formal approaches (16). This leads us to ask if the limitations of a
heuristic decision are better than those faced by traditional model-based decision theory (17).

If we can predict thresholds more successfully without models, can we also derive quantitative decision
strategies for those systems more effectively without models (and the assumptions of model-based decision-
theoretic approaches)? Within the field of computer science, a rapidly emerging class of machine learning
algorithms has proven remarkably effective at making complex sequential decisions without first learning
a model of the system (18). Interestingly, these model-free reinforcement learning (RL) algorithms often
mimic what any good manager does in the same situation: forgoing learning over an explicit set of process-
based models and relying instead on knowledge from successes and failures experienced by repeatedly
making decisions. But unlike a human manager, RL algorithms can process near real-time and high-
dimensional data as well as learn strategies by interacting with a wide diversity of simulations and scenarios
(19) that would be infeasible for a human to process. Moreover, RL algorithms show promise to more
effectively manage systems with unknown tipping points than fixed “rule-of-thumb” strategies (20).

In this paper, we first highlight the limitations and assumptions of decision-theoretic approaches that have
driven a wedge between the theory and practice of adaptive environmental management. We then explore



examples of successful reinforcement learning applications, highlighting which specific RL methods and
concepts might provide a promising path forward to overcome some limitations of model-based adaptive
management (Table 1). Despite the promise of these emerging methods, the problem of making strategic
decisions in nonidentifiable and/or nonautonomous (systems subjected to external inputs) systems is not
easily solved by even the best algorithms. We simultaneously suggest that RL research might benefit from
the insights gleaned from trying to tackle pressing environmental problems (Table 1). Finally, we
emphasize that while RL approaches may, at last, allow algorithms to help human decision-makers better
grapple with real-world complexities, such a transition will raise new challenges for equity, governance,
and accountability.

Adaptive management: translating theory to practice

Given the limitations of model-based approaches to adaptive management (Box 1), the practice of adaptive
management - and its integration into policy - has deviated from formal definitions of decision theory
(Figure 1). Rather, implemented adaptive management strategies often take “rule-of-thumb” approaches,
substituting human judgment and the experience of decision-makers in place of computationally intensive
models (7,21). While more loosely defined and human-informed adaptive management processes overcome
some of the technical shortcomings of model-based adaptive management (e.g., by allowing for
consideration of greater system complexity and the social context of decisions), these approaches also face
several limitations. Beyond the myriad of potential non-technical risks, such as goal slippage, manager
turnover, and sensitivity to political asymmetries and institutional change (22), “rules of thumb” face
technical constraints. For example, the exponentially increasing amount of monitoring data from automated
sensors (23) quickly becomes impractical for humans to integrate into a heuristic decision process.

Thorough reviews of the application (7,8), theory (24), and legal implications (25) of adaptive management
already exist in the literature. In Figure 1A-B, we summarize the adaptive management paradigm. It should
be noted that while adaptive management is not appropriate in all settings, the benefits of leveraging
adaptive over nonadaptive approaches are particularly apparent in contexts where there is deep uncertainty
about system dynamics—a setting in which RL might hold the most promise. In the remainder of this
section, we illustrate, through examples, the key gaps between adaptive management as it is expressed in
theory and the requirements for its effective implementation in practice. While decision-makers deviations
from scientific and/or algorithmic recommendations and definitions of adaptive management (Figure 1B)
are often viewed with skepticism, we explore how this deviation frequently reflects the inability of models
integrated into decision-theoretic frameworks to sufficiently account for real-world complexity and
challenges (Box 1).

Take, for example, the Tallapoosa River, where an upstream hydropower dam had uncertain effects on the
integrity of the river's species-rich ecological community, prompting a decade-long adaptive management
effort (9,26) (Box 1A). Monitoring how multiple ecological indicators and stakeholder preferences respond
to flow alterations was used to iteratively update a model (a state-space transition model) of the system,
which was integrated into a decision-theoretic framework to optimize flow regimes (26). While the river
monitoring effort held promise to instruct more responsive and informed decisions, the high-dimensional
system (which included multiple species and ecosystem indicators, recreational interests, dam revenue,
seasonal temperature) and nearly unlimited potential flow regime strategies were reduced to three system



"states" and four potential flow regime "actions" over which the formal adaptive management problem
learned and optimized (26). Would a more realistic representation of the systems, at least mirroring the
scope of monitoring data collected and a more extensive set of possible actions, have allowed the solutions
to capture nuanced and temporal tradeoffs between human use and ecological demands in this system?

Unfortunately, what adaptive management models add in social and ecological complexity they often lose
in the number of models and parameters over which they learn due to computational constraints. For
example, in the case of adaptively managing horseshoe crab harvests in the Delaware Bay (Box 1C),
proposed frameworks included multi-species population models and a broader set of potential actions but
consider only two competing models over which to reduce uncertainty and derive decision strategies (27).
Beyond the challenges of capturing complexity and uncertainty of system states and actions, model-based
adaptive management frameworks face limitations to inform decision-making in the context of global
environmental change (24). For example, in the case of adaptively setting quotas for waterfowl harvest in
the United States (Box 1B), the increasingly nonautonomous (“nonstationary”) nature of the system (due
to climate change not being included as part of the population model) is beginning to limit the applicability
of the model-based decision theoretic methodology to devising decision strategies (28). Of course, climate
dynamics could be integrated into the models. However, this further complicates both the model and the
computational requirements to solve for optimal decision strategies using dynamic programming, as well
as introduces additional uncertainty.

In each of the cases in Box 1, human decision-makers wrestle with a growing number of complexities,
competing needs, and pressures left unanswered by the existing decision theoretic adaptive management
paradigms. These mismatches limit the utility of existing model-based optimization approaches to the
decision-making process and risk unintended consequences of relying on best-fit models in decision
processes. Importantly, proposals to leverage adaptive management for higher-dimensional environmental
problems, such as climate mitigation (29) and protected area design and management (30,31), are likely
only to widen the gap between model-based theory and the realities of management decisions in practice.
While classification approaches enable skirting the decision problem all together, less constrained
approximate methods for finding optimal strategies have also been suggested for dealing with high-
dimensional natural resource management problems for decades (32). In the following sections, we explore
how emerging methods from deep reinforcement learning might allow us to leverage the benefits of both
heuristic and computational approaches to adaptive management, improving our capacity to manage
systems under uncertainty (Table 1, Figure 1C).
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Figure 1: (A) Decision theoretic approaches to adaptive management - what we refer to as “model-based”
adaptive management - formulate problems as Markov decision processes (MDPs) with unknown state
transition probabilities (for a helpful overview of MDPs for ecology, see (16,33)). At each time step ¢, the
agent takes an action a, on an environment, and the environment transitions from the current state s, to the
next state s;+; and provides the agent with a reward r. After taking an action, the agent observes the system
state and rewards to update its belief of the underlying dynamics of that system to inform the decision
strategy (“policy”) which selects the next action. (B) While theory provides a formalized way to “learn”
about systems while acting on them, in practice, adaptive management decisions are usually made by
humans who may or may not use the output of models to support decisions but often rely on experience
with the complex systems and sociopolitical context not captured by stylized system models. (C) Like
classical model-based optimization approaches, the task for a reinforcement agent is to learn a “policy” that
maps the state of the system to an action the agent should take to maximize the expected sum of future
rewards (29). This can be done by interacting with historical data or simulators. However, the process by
which RL learns optimal policies is fundamentally different from (A). (D) Unlike the classical methods
used in model-based adaptive management, reinforcement learning allows action strategies to be developed
without learning over a predetermined set of potential models.



Box 1: Examples of model-based adaptive management and their key challenges.

(A) Adaptive Flow Regimes: Tallapoosa River

For nearly a decade, the United States Geological Survey
(USGS) implemented adaptive management on the
Tallapoosa River to determine optimal flows under multiple
competing stakeholder objectives. The iterative decision
model included annual monitoring of ecosystem indicators
to vary flow regimes optimally. Despite the adaptive
decision framework, the best management strategies to
provide both adequate hydrologic and thermal habitats
while sufficing recreational values remain a central
controversy in the system (26).

Objective: ensure the conservation of at-risk species
and meet ecosystem service objectives

Learning: passive learning of ecosystem dynamics
and the valuation of ecosystem services

States: discrete set of ecosystem indicators, ecosystem
values

Actions: four flow allocation strategies

Key challenges faced: multiple competing objectives,
noisy observations, delayed feedbacks, stochasticity,
high dimensionality

(B) Adaptive Harvest Management: Waterfowl

Since 1995, the United States Fish and Wildlife Service
has used an adaptive management framework to regulate
duck harvests. Harvest quotas rely on an iterative cycle of
monitoring, assessment, and decision-making. Based on
monitoring data, managers continually refine models of the
relationships between hunting regulation, harvests, and
waterfowl abundance. While significant updates to the
model weights have occurred over the past 20 years, non-
stationarity due to global change challenges the current
methodology (28).

Objectives: sustainable harvest of waterfowl
Learning: passive learning of population dynamics in
response to harvest regimes

States: waterfowl abundance

Actions: annual harvest quotas

Key challenges faced: non-stationarity,
feedbacks, stochasticity, multiple objectives

delayed

polyphemus)

(C) Adaptive Harvest Management: Red Knots (Calidris canutus rufas) and Horseshoe Crabs (Limulidae

Following increased harvest of horseshoe crabs in the
Delaware Bay during the 1990s, migratory shorebird
populations declined steeply. Recognizing this decline, the
fisheries commission began regulating the horseshoe crab
harvest. Proposed adaptive management frameworks focus
on two competing models of red knot population dynamics
and horseshoe crab harvests, seeking to iteratively improve
harvest policies for both objectives (27).

Objective: ensure the conservation of at-risk species
while also meeting harvest objectives

Learning: passive learning of multispecies dynamics
States: red knot abundance and fecundity, horseshoe
crab abundance

Actions: harvest quota for horseshoe crabs

Key challenges faced: model set limitations,
dimensionality, delayed feedbacks, multiple objectives

Reinforcement learning as model-free adaptive management

Reinforcement learning has proven better than humans at making strategic, adaptive, and complex decisions

across a diversity of problems and domains. While RL’s most cited feats are in the context of games (e.g.,
chess) (34) and robotic tasks (35), RL algorithms are increasingly used to solve planning problems across
a variety of noisy and uncertain real-world settings, from healthcare (36) and energy systems (37) to

biological systems (38) and economic policy (39).

The problem setup for reinforcement learning closely mirrors model-based adaptive management (Figure

1). Like classical model-based optimization approaches (16), an RL agent aims to learn a “policy” (decision
strategy) that maps the state of the system to the best action to take to maximize the expected sum of future




rewards (20). However, the process by which RL learns optimal policies can be fundamentally different.
Unlike classical dynamic programming methods leveraged in adaptive management examples from Box 1,
which require specifying state transition matrices (state-space models of the system over which to learn)
(16) (Box 1, Figure 1A, Figure 1D), model-free reinforcement learning allows action strategies to be
developed without a predetermined model (Figure 1C), bypassing the need to iteratively learn a ‘best
model’ of system dynamics altogether (Figure 1D). Importantly, RL learns action strategies through
experience, which can include simulated experience, experience derived from historical data, and/or real-
world experience.

First, RL can learn from simulated experience. A notable example is Atari, where researchers achieved
human-level performance across dozens of Atari video games by training RL agents over millions of
timesteps (decisions) (19) (Box 3A). Instead of fine-tuning a new model for each of the game, a single RL
agent using the same neural network architecture and hyperparameters was applied to 49 different Atari
games, reaching performance comparable to a professional human game player across a majority of the
games. Without the goal of learning a single system transition matrix, the RL agent learns generic concepts
that allow for strategic decision-making in a diversity of settings. Beyond gameplay, simulators can also
model physical environments such as atmospheric wind conditions, as used to build a simulator to train an
RL agent to navigate high-pressure balloons in the stratosphere (Box 2B). In the context of adaptive
management, simulators could be designed to describe water flow, species population dynamics, or a
changing climate. Leveraging simulated experience to learn policies for adaptive management problems
could provide a means to integrate more complex system dynamics and action sets, such as in
nonautonomous environments.

While RL allows us to relax assumptions required by most model-based adaptive management frameworks
(e.g., MDPs), managing nonautonomous systems remains a hard problem for both computer and
environmental science. We do not suggest that RL will readily overcome this challenge, but rather that in
complex socio-ecological settings (e.g., the Tallapoosa River, Box 1A), RL might outperform both human
heuristics and model-based adaptive management methods through exploring a set of complex simulated
environments millions of times, accruing orders of magnitude more feedback than a system that could only
interact with the real environment (40).

Notably, simulated experience is not the only way RL can learn decision strategies. Deep RL has been
shown to learn effective policies from historical data in the absence of a simulator by stitching together
trajectories of system observations (“offline reinforcement learning”) (41,42). For example, in hospitals—
which often have decades of historical records about patient status, treatment, and outcomes—this offline
approach was taken to learn individualized treatments for sepsis patients (Box 2C). Of course, the extensive
data available in some societal domains like healthcare is less common in environment systems. In some
environmental challenges, such as water and air quality monitoring, sensors are already constantly taking
samples potentially allowing for the tracking of the impact of specific actions. While this level of
monitoring data is not available for many other ecological management problems, improved sensing of
everything from vegetation dynamics to species occurrence (43) are trending the field in that direction and
likely making RL-based management more feasible.



A key challenge in the environmental domain will be off-policy evaluation, to estimate the performance of
policies that were never observed in the offline data (44). A large body of techniques for off-policy
evaluation have been developed for RL for observational healthcare (45). Additional observations collected
through real-world (“online”) experience may then be used to improve the policy further or “adaptively”

update policies while taking actions.

Emerging methods in RL have the potential to address more than just the issue of dimensionality and
nonautonomous dynamics in natural resource management problems. From making effective decisions in

environments with sparse rewards to addressing systems with multiple competing objectives, in Table 1,
we map adaptive management challenges to RL methods that might help address them.

Box 2: Examples of reinforcement learning applications and the key challenges they address.

(A) Playing strategic games: Atari

Dealing with high-dimensional inputs to make effective
decisions across different tasks and situations remains a key
challenge for RL. Atari consists of 49 distinct video games
with visual inputs and has become a go-to benchmark for
developing RL algorithms. Using deep Q-learning, a single
RL agent was trained across dozens of games to outcompete
human players (19).

Key challenges addressed: high-dimensional input,
diverse tasks, long horizon

Objective: maximize score across a set of Atari games
State: 84 x 84 x 4 color video frames at 60 Hz
Action: discrete, variable for each game

Reward: rescaled game scores

RL approach: deep Q-learning

(B) Flight control: Stratospheric Balloons

Stratospheric balloons are high-altitude balloons that can
reside 15 to 60 kilometers above sea level for months at a
time. These balloons carry up to 1.1 tons of payload,
typically tools used for weather forecasting, satellite
navigation, atmospheric chemistry experiments, and testing
new space technology. Navigation in these high-altitude
settings is dependent on stratospheric winds, of which
relevant meteorological data is sparse, and solar
availability, which is needed to charge the battery. Model-
free reinforcement learning enabled effective navigation
over the Pacific Ocean over 39 days, using distributed Q-
learning (46).

Key challenges addressed: incomplete data, noisy
observations, unreliable solar availability, safe
navigation, long planning horizon

Objective: navigate a super-pressure balloon to float
near weather station

State: 1,083 wind variables. 16 ambient variables
Action: discrete (Ascend, descend, stay)

Reward: distance from a weather station, with
maximum reward within 50 km of the station

RL approach: Model-free Q-learning with experience
replay

(C) Clinical Decision-Making: Sepsis Treatment

Sepsis is a life-threatening excessive immune response to
an infection that may lead to organ failure or death. Treating
sepsis involves a complex mix of antibiotics,
corticosteroids, timing and dosage of drugs, and
intravenous fluids. The treatment regiment for patients in
the intensive care unit (ICU) must be customized to each
individual patient in response to that patient’s response to
medical interventions. Deep Q-learning helped learn
treatment policies to help reduce patient mortality by 1.8—
3.7% (47).

Key challenges addressed: continuous state, sparse
reward signals, stochasticity, delayed feedback,
interpretability

Objective: improve patient survival

State: continuous. 48 values of demographics,
physiological data, and vital signs)

Action: discrete. 5x5 intervention options with
different amounts of IV fluid and vasopressor dosage




Reward: weighted sum of indicators of patient health
including the extent of organ failure and changes in
blood pressure

RL approach: dueling double-deep deep-Q learning

Possibilities and pitfalls of applying RL to adaptive management
problems

If real-world complexity has forced the practice of adaptive management beyond the reach of theory,
emerging paradigms of reinforcement learning appear to at last be putting such challenges within reach of
algorithms (Table 1). But just because this may be possible, is it really a good idea? Adapting reinforcement
learning for adaptive management could open possibilities (20,40) but also introduces new pitfalls while
re-surfacing age-old concerns of algorithmic decision processes (48). We divide these possibilities and
perils into three themes. First, the conceptual shift of an RL approach to learning as something based on
heuristics and experience rather than rigorous mathematical theorems. This can recapitulate some of the
benefits but also the shortcomings of human decision-making. Second, RL still faces the same challenge of
any objective-based decision-making: accurately defining the task at hand. RL overcomes some
computational constraints but still requires defining a scope of possible rewards, states, and actions. We
refer to this as world-making. Third, deep RL's technical and computational needs may limit its application
to the largest technology institutions with access to these resources. This stakeholder shift exacerbates
potential ethical and political consequences. Here we outline both the technical and social components of
these opportunities and challenges across the three main themes of (1) learning, (2) worldmaking, and (3)
shifting stakeholders (Figure 2). We hope both the RL and adaptive management communities recognize
and focus on addressing these challenges when developing and implementing environmental decision-
making.
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Figure 2: Traditional adaptive management relies on modeling the environment using Markov decision
processes, which mirrors a “model-based” approach to RL (green pathway, left). Model-free RL (grey
pathway, center) eschews learning an intermediate model to instead directly estimate the reward for taking
specific actions at a given state. As we outline, reinforcement learning brings both promise and new
challenges for adaptive management for learning, world-making, and shifting stakeholders, which all
impact different components of the RL pipeline.
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Table 1: Emerging methods and approaches in RL have the potential to help overcome a myriad of

challenges in adaptive management, from making effective decisions in complex environments over long
planning horizons to learning strategies in high-stakes situations. The following methods help define a

research agenda for RL researchers seeking to contribute to environmental management.

Adaptive management challenge RL methods and concepts Citation
Dealing with uncertainty
Data used to train RL agents may not be precise or generalize to real- | robust RL aims to learn policies that perform well across a large class of | (49-51)
world settings. possible environments, including environments that may not have been
explicitly encountered during training.
When data is insufficient to reliably predict the outcome of an action, | uncertainty quantification measures and attempts to reduce uncertainty in | (52-54)
decision makers wish to understand the degree of uncertainty. predictive systems. These uncertainty estimates can be used to constrain
the RL policy to avoid taking actions with high uncertainty in outcome,
related to safe RL.
A given model does not precisely describe the true dynamics of the | model misspecification refers to RL settings in which the Markov decision | (55-57)
ecological system, regardless of what values are used to instantiate the | process used to model the environment does not describe reality. Model
parameters. misspecification is typically addressed with robust RL, including model-
free approaches.
For a given set of observed data, multiple sets of parameters used to | non-identifiability describes the challenge of learning and planning under | (58,59)
instantiate the model may have the same probability distribution of being | in the presence of unmeasured state variables (confounders).
the best-fit model.
The reward function may be unknown in advance. inverse RL attempts to recover the reward function given an optimal policy | (60,61)
and environment dynamics.
Limited opportunities to interact with real-world, high-stakes settings
Must learn optimal policies using historical data, without collecting new | offline RL (or batch RL) learns the best policy possible given historical | (41)
data. This challenge arises when data collection is expensive — as is often | observations (a static dataset) without exploration. Requires off-policy
the case in conservation management. evaluation to estimate the performance of policies that were never enacted
in the historical data.
In high-stakes settings, managers wish to be risk-averse to avoid | RL safety trains an RL policy by limiting explorative actions to those that | (62,63)
potentially catastrophic settings, such as unintentionally wiping the | are unlikely to reach very bad states, for example by imposing additional
population of one species. constraints or avoiding actions with high uncertainty.
Decision makers wish to know why a policy calls for a specific action. explainability in RL aims to provide human-understandable explanations | (64,65)
for why an RL method recommends a specific action, in contrast to “black
box” methods.
Decision makers want to have human experts oversee and possibly | human-in-the-loop systems treat humans as experts and defer to these | (66,67)
override an RL agent’s decisions. human experts to make decisions when the RL agent is highly uncertain.
Complex environments with long planning horizons
The underlying rules of the environment may be changing over time, due | non-stationarity refers to changes over time in the underlying dynamics of | (68,69)
to exogenous factors such as climate change or socioeconomic drivers. the MDP. In dynamic settings, the state constantly changes, but with non-
stationarity the transition dynamics and rewards shift as well.
Management decisions may be highly complex, thus difficult to learn | curriculum learning trains an agent on progressively harder tasks, using | (34,70)
from scratch. transfer learning to build off knowledge learned from previous tasks to
subsequent tasks.
Management decisions may require planning challenging multi-step tasks | hierarchical RL decomposes long-horizon tasks into more tractable | (71)
over long time horizons. subtasks.
After we receive a reward, we want to know which action(s) were critical | credit assignment evaluates the utility of individual actions over a long | (72-74)
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to that outcome. This challenge is exasperated by delayed feedback.

sequence of steps.

Rewards may be sparse, especially with delayed feedback, and the benefit | reward shaping provides more gradual, localized feedback to guide the | (75-77)
of intermediate actions may not be immediately obvious. policy toward high-reward states.
Multiple stakeholders, multiple agents
Multiple stakeholders may each have their own objective. multi-objective RL learns optimal decisions in the face of multiple | (78,79)
conflicting objectives. This challenge is most salient when the relative
weighting (importance) of the objectives is not known.
Multiple agents may be acting in an environment simultaneously. multi-agent RL trains agents to act in the presence of other agents. In a | (80,81)

cooperative setting, these agents share a goal but in a competitive setting,
these agents have non-aligned goals which may be in conflict.

Learning

The central difference between model-free deep reinforcement learning and the theory of adaptive

management regards learning. In adaptive management, learning is defined as reducing uncertainty over

parameters or candidate predictive models' of the underlying ecological processes (Figure 1A). Learning

is expressed in terms of quantitatively precise probability distributions and realized through mathematically
precise theorems such as Bayes’ rule to dictate how model ‘beliefs’ (probability distributions) narrow in

response to actions and new information (Figure 1A). By contrast, a human manager does not necessarily

need a predictive model of the process to adjust a decision (Figure 1B). It is possible to propose a policy
without a model based on experience alone. For example, if the estimated waterfowl population (Box 1B)

decreased too much last year compared to the year before, it’s probably a good idea to lower the harvest
quota this year. Of course, the theory may give the same answer with more quantitative precision — how

much to lower the quota (and also just how much to re-adjust “belief” probabilities towards some more

pessimistic growth rates of the species) — but that answer is only as good as the models it considers. The
manager’s experience may factor in variables ignored by the models — a harvest quota of zero may be

socially or politically unacceptable, while past experience of ups and downs may provide an experienced
manager with a notion for the right size of adjustment with nary an equation (82,83).

Model-free RL capitalizes on this experience-driven approach to decision-making. The RL agent does not
need to predict future states; it decides what action to take given only experience from past states and

resulting rewards (or costs). The RL researcher places an untrained agent in a novel environment (usually

a computer simulation, e.g., in the Atari example (Box 2A)), in which the agent takes exploratory actions
while adjusting its policy to improve long-term reward. From repeated simulations over hundreds of

' Some authors distinguish between model uncertainty that is ‘structural’ in nature, e.g., if recruitment follows a

Ricker-shaped curve or a Beverton-Holt shaped curve, versus uncertainty that is only of a “parametric’ nature — e.g.,

[

the value of initial growth rate “r

in a Ricker model. In practice the lines are blurry as it is often possible for a
structurally flexible enough model to represent both families of curves in terms of the choice of some additional

parameters. In fact, the deep neural networks underlying most of modern machine learning including RL-based
methods owe their success to being precisely such highly flexible function approximators. The key observation of

model-free RL is that the functions seek to approximate are not the process itself — the probability from any possible
current state to any possible future state under any possible action — but rather, the often smaller map between
possible states to the space of possible actions — the ‘policy function’ or ‘value function’ the manager should adopt.
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thousands of episodes, the agent will extensively explore the space of actions and outcomes. The process
is sometimes compared to a newborn first exploring the world around them. Like the newborn, this RL
agent is not entirely naive — the researcher must select among a myriad of specific algorithms each with
very different approaches to solving the reinforcement learning problem. The researcher, just like the parent
of a newborn, may present a modified system of rewards and costs to coax along the desired learning more
efficiently in a process called reward shaping (Table 1). Reward shaping becomes particularly useful when
there is a big payoff only after a long sequence of actions (e.g., rewarding distance to the end of a maze
rather than only completion).

When trained in a single environment, the strategies that RL agents learn rarely generalize to even small
deviations from past experience. The agent will often overfit to the smallest details — the units of
measurement, the duration of the particular episode. More generally applicable strategies can be found by
presenting the agent with a wide variety of environments. For example, one pervasive challenge in learning
from simulated experience is the “sim2real” gap, the difference between an RL agent's performance in a
simulated environment versus a real environment (84). Robust RL techniques may help close the sim2real
gap and avoid overfitting (85) (Table 1). A wealth of emerging approaches seek to improve generalizability.
Curriculum learning algorithms seek to provide the most efficient way to interleave different environments
(Table 1). In adversarial learning, a second agent seeks to learn and propose alterations to the environment
that are most likely to fool the focal agent into poor performance.

Most large-scale ecological simulation systems still fall short of capturing the many processes involved
(40) but are already beyond the reach of dynamic programming methods of classical adaptive management.
Collectively, advances in the ecological realism of simulations and computational RL methods make it
feasible to train intelligent agents across a wide variety of simulated environments. Historical observations
can only be paired with historical actions, and thus never provide an agent much insight into the outcomes
of the actions not taken but can nevertheless be used to supplement and ground-truth training based on
simulation (Table 1). A more fraught question concerns the role of RL-based learning in real-world
contexts. Like the distinction between active and passive adaptive management, RL is typically divided
between ‘training’ and ‘evaluation’ loops. In the training loop, the RL agent explores their action space to
discover and adjust their decision strategy (‘active learning’). In the evaluation loop, acting is essentially
passive, with the RL agent seeking to maximize expected utility without updating their decision strategy.
Evaluation need not always be passive in RL (especially in ‘low-stakes’ real-world scenarios, such as a
physical robot learning to walk or handle objects) but mirrors the general preference of managers to rely on
passive adaptive management in high-stakes scenarios.

World-making

While RL might allow quantitative adaptive management to consider more realistic state and action spaces,
reducing the numerical constraints on problems only refracts the issue of distilling a complex environment:
how do we bound an environmental state, define management objectives, and determine a set of available
actions while ensuring these represent environmental realities and values of those most impacted by the
decisions? How do we create sufficient simulations or decide on the appropriate data streams to train
algorithms with? RL might expand the scope and range of problems that we can solve, but it does not
remove the sociopolitical considerations inherent to how those problems are defined.
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Let’s imagine reformulating the waterfowl harvest problem as a RL problem. We could simply create a
simulation of the states and their responses to actions in alignment with the current model-based
formalization (Box 1B): the action space is an annual harvest quota to maximize expected long-term yields
and the state space is a one-dimensional representation of waterfowl stock. But given fewer constraints, we
might represent the waterfowl stock as part of a larger ecological (or socio-ecological) system responding
to human land use, climatic shifts, and weather extremes, overcoming shortcomings of current methods,
like the consideration of nonautonomous systems. Even if the action space remained the same (harvest
quota), the algorithm's optimal policy would change. The action space could similarly be expanded to better
capture the possibility of decisions (e.g., to a temporally and spatially dynamic closure rather than a single
harvest quota), changing not only the policy and its impact on resource users, but the underlying system
trajectory. These changes seem benign, if not beneficial, but it is easy to envision how the imagination and
values of the algorithm designer impact not only the conceptualization of the environment (state spaces),
but the solutions derived, and actions taken, which ultimately feedback to create the reality of that system
(48). Leaving us to question what parts of the system are included in the simulations and how that might
shift the distribution of benefits and costs.

Barriers to the adoption of adaptive management strategies arise not only from a lack of realism in system
formalization or capacity to deal with complexity, but also from disagreement over whose values are
represented in the decision objectives and the potential risks of following algorithmic suggestions (86). RL
does not sidestep these issues, but methods such as multiobjective RL (Table 1) can learn optimal decisions
in the face of multiple conflicting objectives, and inverse reinforcement learning can help align the values
as they are represented in formalized rewards with real-world values (“value alignment”) (60,61) (Table 1).
Additionally, reward shaping (Table 1) can help to ensure RL agents do not myopically take actions that
lead to short-term gain over long-term benefits.

Even in light of technical methods to improve the alignment of values and capture multiple objectives, the
issues of world-making are social and normative at their core. Specifying state, action, and rewards in RL
applications will necessarily reflect both epistemic values and contextual values of the developer (87,88).
Which begs the question: who has the power and capacity to define problems and develop RL algorithms?

Shifting stakeholders

Given both the technical expertise and computational requirements needed to train RL algorithms, industry
(specifically big tech) involvement in the development and deployment of these methods is commonplace
across environmental application domains (89). The shift from government-maintained and managed
algorithms - as is currently the case in most environmental adaptive management contexts (such as
waterfow] adaptive management; Box 1B) - to industry-maintained algorithms would create a new set of
actors in the environmental regulatory processes. Because political and financial concerns may influence
the design of RL environments and agents, developing transparent and inclusive participatory processes
will be critical to ethical and equitable development and application of RL to adaptive management
problems.
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Beyond shifting power and creating new environmental actors, RL-derived environmental decisions risk
undermining trust in environmental governance systems by increasing the ambiguity of who is accountable
for future environmental degradation (87). If a decision is derived from an algorithm that relies on trial and
error rather than clearly mapping to a model choice, are poor outcomes anyone’s fault? Moreover, if an RL
agent continues to learn and adapt while interacting with the system (adaptive management, by definition),
how do we ensure that its policies are meaningfully overseen (88)? In this way, RL differs from more
transparent model-based methods in the relative lack of capacity to query solutions, potentially obscuring
biases and compliance with regulations (90). Lessons from RL applications to other safety-critical domains,
such as nuclear fusion (91), and tools from the explainable Al subfield (92,93), might help mitigate these
issues (Table 1). However, problems of explainability and safety become even more pronounced when RL
is proposed for controlling less identifiable and high-dimensional systems, as is the case in many
environmental management contexts.

Ethical Al principles provide some guidance to procedure and practice to ensure safe application of
algorithms. But these guidelines, like the algorithms themselves, are primarily developed in the Global
North, notably missing perspectives from Central and South America, Africa, and Central Asia (94).
Moreover, ethical guidelines rarely address the many dimensions of power implicated in world making; not
only the power to make decisions or define objectives, but power to set the agendas (e.g., defining
objectives, state and action spaces) and shift ideologies (48). Applying decolonial theories to Al application
and development, as discussed in (95), might help address the shortcomings of Al ethics and recenter the
importance of power and representation in procedural and development processes.

While the technical synergies and differences between reinforcement learning and model-based adaptive
management methods are outlined throughout this paper, simultaneously considering the parallels between
Al ethics (94), science technology studies (96), and political ecology (97) are critical when considering
applications of RL to safety critical real-world domains like environmental management.

Conclusion

To bridge the gap between the science and practice of adaptive management there is a need for decision-
centered methods that capture the complexity and uncertainty of ecosystems. Advances in deep learning
have positioned reinforcement learning (RL) as a promising approach to solve sequential problems under
uncertainty, while sidestepping the need to define a set of candidate models or effectively refine our belief
in those models. Here we highlight recent advances in RL methods that overcome several limitations —
such as high-dimensional spaces, imperfect models, and lack of accurate simulators — that have prevented
adaptive management from moving beyond theory in complex situations. Simultaneously we underline key
priorities for RL — such as robustness, safety, and multi-objective rewards — to enable its effective and
responsible deployment for ecological decision-making.
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