
Nature Reviews Methods Primers | (2023) 3:50 1

nature reviews methods primers https://doi.org/10.1038/s43586-023-00236-9

Primer

0123456789();:

 Check for updates

Containers for computational
reproducibility

David Moreau   1 , Kristina Wiebels1 & Carl Boettiger   2

Abstract

The fast-paced development of computational tools has enabled

tremendous scienti�c progress in recent years. However, this rapid

surge of technological capability also comes at a cost, as it leads to an

increase in the complexity of software environments and potential

compatibility issues across systems. Advanced work�ows in processing

or analysis often require speci�c software versions and operating

systems to run smoothly, and discrepancies across machines and

researchers can impede reproducibility and e�cient collaboration.

As a result, scienti�c teams are increasingly relying on containers

to implement robust, dependable research ecosystems. Originally

popularized in software engineering, containers have become common

in scienti�c projects, particularly in large collaborative e�orts. In

this Primer, we describe what containers are, how they work and the

rationale for their use in scienti�c projects. We review state-of-the-

art implementations in diverse contexts and �elds, with examples in

various scienti�c �elds. Finally, we discuss the possibilities enabled by

the widespread adoption of containerization, especially in the context

of open and reproducible research, and propose recommendations

to facilitate seamless implementation across platforms and domains,

including within high-performance computing clusters such as those

typically available at universities and research institutes.

Sections

Introduction

Experimentation

Results

Applications

Reproducibility and data

deposition

Limitations and optimizations

Outlook

1School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand.
2Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley,

CA, USA.  e-mail: d.moreau@auckland.ac.nz

https://doi.org/10.1038/s43586-023-00236-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s43586-023-00236-9&domain=pdf
http://orcid.org/0000-0002-1957-1941
http://orcid.org/0000-0002-1642-628X
mailto:d.moreau@auckland.ac.nz

Nature Reviews Methods Primers | (2023) 3:50 2

0123456789();:

Primer

are provided in the Docker ecosystem, for which a brief overview is

provided.

Introducing containers
A container is a self-contained and executable package that includes

all of the necessary components for running a software application,

such as system tools, libraries settings and the application itself, as

well as any operating system components that are not provided by

the host operating system. This means that containers are completely

isolated from one another and the host operating system, and they can

run anywhere, regardless of the environment. Applications can then

be run consistently across different environments, including different

operating systems and hardware configurations. Specifically, contain-

ers work by packaging an application and its dependencies into a single

container image, which can then be run on any host that has a container

runtime installed. The container runtime handles the execution of the

application and manages the resources it requires, such as memory

and central processing units (CPUs).

One of the main advantages of using containers is their port-

ability. Because containers include all dependencies of an applica-

tion, they can be moved between different environments. This allows

developers to build and test applications on their own machines and

then deploy them to other environments without worrying about

compatibility issues. Containers take up less space and require fewer

resources than traditional virtual machines (see Table 1 for a com-

parison of virtual machines and containers), making them well suited

for use in cloud computing environments33. Containers also isolate

applications from each other and the host system, which help prevent

conflicts between applications. In addition, modern language-based

package management tools, such as Python virtual environments,

offer a solution to further reduce the chances of encountering depend-

ency conflicts even within a container. Python virtual environments

enable developers to create isolated environments with their own

sets of dependencies, configuration and settings for each project.

This means that even if multiple containers are running on the same

host, each container can have its own Python virtual environment with

its specific dependencies, avoiding conflicts and ensuring smooth

operation.

The selection of virtual machines or containers depends on the

specific needs and requirements of the application or process. Histori-

cally, virtual machines have been preferred when the research requires

a highly isolated environment, for example, when the integrity of

the research data and environment is critical, such as in medical or

pharmacological research. Virtual machines offer fundamentally

more isolation than containers, which can be an advantage in certain

situations. However, developments in container technology such

as namespaces, SELinux and AppArmor have improved container

isolation and made them suitable for a wider range of research applica-

tions. Namespaces, for instance, have been a key enabling technology

for containerization, and are now well established. In addition, tech-

nologies such as Singularity30 and Shifter34 have provided concrete

solutions for accessing specific hardware resources, such as graph-

ics processing units (GPUs) or HPC clusters. In general, the choice

between virtual machines and containers will depend on the specific

needs of the researcher and the degree of isolation required for the

given application or process.

Containers are often preferable in most practical cases, especially

in situations in which a researcher needs to run multiple experiments

concurrently. In this case, using containers allows the researcher to

Introduction
In the past few decades, science has become increasingly collaborative,

with modern scientific workflows typically involving multiple people,

often spread across research teams and locations1. The distributed

nature of modern scientific research has had a substantial impact on

scientific discovery, enabling researchers to tackle complex problems

that require a diverse range of expertise and resources, from genomic

sequencing2,3 to epidemiological modelling4 and climate predictions5.

This shift towards incorporating more data and techniques from vari-

ous sources has led to science becoming more computational6–9. Scien-

tists often build upon workflows of each other and share data and code

publicly10,11. Given the tremendous amount of work and effort that often

goes into collaborative projects, reusability is key to enable efficient,

cumulative research and reproducibility has become an inherent part

of modern scientific training12–18.

In this context, computational reproducibility — the ability to

obtain consistent and verifiable results from a computational experi-

ment or analysis when the same input data, code and software envi-

ronment are used — has become central to many research projects.

Although the move towards more collaborative and open practices

is undeniably beneficial to the scientific enterprise19–22, the complex-

ity afforded by shared and predominantly computational scientific

workflows has also brought challenges23. With users distributed across

machines, platforms and software versions, compatibility issues are

bound to arise, with the potential to impede effective use and devel-

opment — an issue colloquially referred to as dependency hell (Box 1).

Collaborators attempting to reproduce or build upon existing work

often face challenges that at best slow down scientific projects or in

extreme cases can prevent reuse or collaboration altogether24,25.

Containers provide an answer to these challenges26. Broadly speak-

ing, containers encapsulate all information needed to run computer

code in a fully configured environment. This includes specific software

versions, as well as their dependencies and operating system configura-

tions27. More specifically, containers solve five major problems associ-

ated with deploying and managing applications in scientific research.

By allowing researchers to package their code, data and dependen-

cies into a self-contained environment, containers solve issues of

reproducibility. Containers also allow researchers to share their work

with others more easily, enabling more efficient collaboration and

faster progress, and run their code on different operating systems

and hardware while circumventing compatibility issues. Containers

can be seamlessly deployed to cloud environments28, enabling seam-

less scalability. Finally, by enabling researchers to allocate resources

more efficiently and avoid unnecessary consumption or conflicts with

other projects, containers allow more efficient project management.

In this Primer, we provide the reader with a comprehensive overview

of containerization in scientific research, including practical use and

implementations, illustrated with examples. We focus on the Docker

ecosystem29 (docker.com), as it is the most common platform used to

build and share containers27, but also discuss alternatives such as Singu-

larity30,31 or Podman32. We consider challenges and limitations, in particu-

lar with respect to efficiency and compatibility with high-performance

computing (HPC) environments, and provide guidance on implemen-

tation. We close with a discussion of the future of containerization and

reproducibility in a rapidly evolving computational environment.

Experimentation
This section introduces containers and provides the basics to run and

personalize containerization from the perspective of a user. Examples

Nature Reviews Methods Primers | (2023) 3:50 3

0123456789();:

Primer

run each experiment in its own container, which can be easily started,

stopped and modified without affecting the other experiments. This

is not possible with virtual machines, which require a separate oper-

ating system for each experiment. Virtual machines also tend to be

much heavier and more resource-intensive than containers, which

can be an important disadvantage in certain scenarios. Similarly, a key

feature of containers over virtual machines is the ability to combine

individual containers together, with each providing a different app.

Containers are also advantageous when a researcher needs to scale

their experiments or share their experiments with co-workers, as

containers contain all the necessary dependencies and configura-

tion settings in a lightweight package. Finally, containers cannot be

matched when it comes to enabling reproducibility in a lightweight

and portable manner: researchers can reproduce their experiments

by creating an identical container with the same dependencies and

configuration settings.

The Docker platform
Containers are built on top of containerization platforms, which pro-

vide a standard format for packaging and distributing applications.

These platforms include tools for creating, managing and deploying

containers. One such platform is Docker, which was designed to make

it easier to create, deploy and run applications by using containers.

We chose to focus on Docker for several reasons. First, Docker is

relatively easy to use; it has a simple and intuitive interface that makes

it straightforward to use and deploy containers. Second, with a vast and

engaged community or users and developers, Docker has become the

de facto standard for containerization, providing thousands of preb-

uilt container images that can be used as a starting point for building

applications, as well as support for addressing challenges that might

arise at any stage of container development. Third, Docker supports

multiple operating systems including Windows, Linux and Mac, mak-

ing it easier to deploy applications across different environments.

Fourth, Docker allows scaling applications up or down on the basis of

demand, making it an ideal choice for cloud-based deployment. Finally,

with its built-in security features such as image signing and container

scanning, Docker ensures the security of applications and prevents

vulnerability, although its seamless integration with other tools enables

the management and deployment of applications at scale.

By allowing developers to abstract away the complexities of the

underlying infrastructure, Docker allows users to focus on writing code,

enabling writing and testing of applications on their own machines and

then deploying them to any environment running Docker. Although

Linux runs within Docker containers, users can access the platform

through a Windows or Mac computer. Docker consists of three com-

ponents: the Docker software, Docker objects and online Docker

registries, such as the Docker Hub (Fig. 1).

The Docker software itself consists of two parts: the Docker client

and the Docker daemon. The Docker client is the primary way that users

interact with Docker. It is a command-line interface that allows users to

issue commands to the Docker daemon, such as building, running and

distributing containers. The Docker daemon is the background

service that manages the containers: it listens for commands from

the Docker client and performs the necessary actions to create and

run containers. The Docker daemon can run on the same host as the

Docker client, or it can be remotely accessed through the network.

In addition to the command-line interface, Docker also provides a

user interface called Docker Desktop, which is available on both Mac

and Windows operating systems. The Docker Desktop user interface

provides a graphical way for users to manage containers, images and

other Docker resources.

The main Docker objects are images and containers. A Docker

image contains everything needed to run a piece of software, includ-

ing the application code, libraries, dependencies and runtime. Docker

images are built from Dockerfiles, which include details on which

base image to use, commands to run and files and directories to copy.

The main difference between Docker images and Docker containers

is that images are static and cannot be changed or modified, whereas

containers are dynamic and can be started, stopped and modified while

they are running (Box 2). Images are used to create containers, but once

a container is created, it can be modified and run independently of the

image that was used to create it.

Box 1

Dependency hell in scienti�c
research

Dependency hell describes a situation in which a software

application or system becomes dependent on other software

packages, libraries or frameworks, and the dependencies between

these packages become complex and intertwined. This can make

it di�icult or impossible to update or maintain the system, as any

changes to one package may have unintended consequences on

others. Dependency hell can also occur when there are conflicts

between di�erent versions of the same dependency, or when one

dependency requires another dependency that is incompatible with

a di�erent dependency in the system. This can lead to problems

such as broken builds, runtime errors or instability in the system.

An example of dependency hell is described as follows:

a researcher is trying to use a specific software (software X), but is

unable to because they lack the appropriate version of a dependent

library (library Y) required to install software X, and the correct

version library Y requires software Z, which in turn requires the

installation of library W, and so on, until all the dependencies

are met for software X. Dependency hell can also arise when

di�erent software packages require di�erent versions of the

same library, creating conflicts that can be di�icult to resolve.

Altogether, this issue can be time-consuming and frustrating, and

it can substantially delay progress. Dependencies can be either

internal or external to each software, with the potential for issues

to compound. Internal dependencies are those that are within

the research software itself and can include di�erent modules,

libraries or classes that are part of the software and are used to

perform specific tasks. Internal dependencies are generally easier

to manage and control, as they are part of the research software and

can be developed and maintained by the research team. External

dependencies are dependencies that are not part of the research

software but are required for its use. These can include external

libraries, frameworks and other software packages that the research

software depends on. They can be more challenging to manage as

they are not under the control of the research team and may change

or become unavailable over time.

https://hub.docker.com

Nature Reviews Methods Primers | (2023) 3:50 4

0123456789();:

Primer

Finally, the third Docker component is Docker Hub, a cloud-based

registry service for storing and distributing Docker images. It allows

users to create and share Docker images with others, as well as to dis-

cover and download prebuilt images created by other users. Docker

Hub also provides features such as automated builds, version control

and collaboration tools. It is the default registry for Docker users and

is used by many organizations to store and share their containerized

applications. For readers familiar with the Git ecosystem, one can think

of the relationship between Docker and Docker Hub as that of Git and

GitHub35,36. Alternatives to Docker Hub abound; one very popular is

GitHub Container Registry.

Personalizing containers
Reusing existing containers saves time and effort, but researchers

often need to create personalized containers. Here are some steps

to personalize containers. Personalization of containers requires

identifying the specific software and data to be used, including con-

sideration of programming languages, libraries and packages, as

well as data type, storage and access. The inclusion of a Dockerfile,

which tells the Docker engine what to do when building the image, also

must include the software, libraries and other dependencies needed.

Researchers can also use the ‘docker commit’ command to person-

alize a container by creating a new image from a running container

and modifying it with additional software or configuration changes.

However, it is important to note that using docker commit reduces

visibility and may make the container less reproducible and reliable

than using a Dockerfile.

It is important to emphasize that using language-based package

managers in containers, such as pip for Python or npm for Node.js,

can facilitate the installation of software packages and dependencies

within the container. This helps ensure that the container is reproduc-

ible and reliable, as it allows for fine-grained control over the versions

of packages installed. The resulting Docker image will contain all the

software and data specified in the Dockerfile, as well as any additional

files or resources that were included in the image.

The container runtime can be further customized by setting envi-

ronment variables, mounting volumes and specifying network con-

figurations. The entry point and command can be customized to allow

the specific actions that the container will take upon launch. After a

container has been created, users may want to expose certain ports

from the container to the host system, which allows accessing network

services running inside the container from outside the container. This

is typically done using port mapping, which involves mapping a port

on the host system to a port in the container.

Once built, the container must be tested, and tools such as strace

and gdb are used to debug any issues. By personalizing their containers,

researchers can ensure that their research is reproducible, collabora-

tive and portable, making it easier to share and build upon37. An over-

view of common Docker commands is provided in the Supplementary

information.

Complements and alternatives to Docker
Docker benefits from a rich ecosystem of interrelated components

that are in constant development, owing to its growing popularity. The

Docker ecosystem includes various open-source and commercial tools,

services and technologies that facilitate the development, deployment

and management of containerized applications. It extends the capabili-

ties of the Docker platform and enables integration with other systems

and technologies. These components include Docker Engine (the core

container engine that allows building, running and managing contain-

ers), Docker Compose (a tool for defining and running multicontainer

applications), Docker Swarm (a container orchestration platform for

managing large clusters of Docker nodes), Docker Machine (a tool

for provisioning and managing Docker hosts) and many others, each

serving a specific purpose.

In addition to the core Docker ecosystem, several tools have been

developed that rely on Docker to implement additional functionalities

or features. For example, the Rocker project38,39 provides containers

with environments that can accommodate R users straightforwardly.

It includes tools for building Docker images, creating and managing

containers and automating tasks using shell scripts. Rocker is specifi-

cally designed for scientific research and includes several prebuilt

images for common scientific computing tasks. Similarly, containerit40

makes it easy to package research software and dependencies into con-

tainers and includes tools for building and managing Docker images

and containers. It is intended to be used as a command-line tool and

can help automate the creation of containers for research software.

Both Rocker and containerit are tools that are designed to help scien-

tists create and manage containers for scientific research; Rocker is

geared towards building and managing container-based workflows

Table 1 | Containers versus virtual machines

Feature Containers Virtual machines

Resource

usage

Share the host operating system and the host kernel, making them

lightweight and efficient

Require more resources than containers, as each virtual machine needs

its own copy of the operating system and resources are divided among all

the virtual machines running on the host machine

Deployment Can be deployed and run quickly and smoothly, as they do not

require a full operating system installation

Require a full operating system installation and can take longer to deploy

and run

Portability Highly portable and can run on any host system with the same

architecture — ideal for moving applications between environments

Can also be portable but require virtualization software that must be

installed on each host system, making them less flexible for moving

between environments

Isolation Less isolated; although they share the same operating system

and kernel as the host machine, they are still isolated from one

another and can run different applications and processes. More

lightweight and efficient, as they do not require a separate copy

of the operating system for each container

Completely isolated from one another and the host operating system.

Each virtual machine has its own copy of the operating system and

runs in its own self-contained environment. Useful for creating multiple

environments that need to be separate from one another, such as for

testing or development purposes

Scalability Can be scaled up or down as needed, making them ideal for

applications that require horizontal scaling

Can also be scaled, but it may be more challenging, as adding or removing

virtual machines requires changes to the virtualization environment itself

https://hub.docker.com
https://github.com/features/packages
https://github.com/amrabed/strace-docker
https://github.com/haggaie/docker-gdb
https://rocker-project.org/

Nature Reviews Methods Primers | (2023) 3:50 6

0123456789();:

Primer

correctly on another. Because containers are platform-independent,

researchers are also able to work on different platforms, with seamless

deployment to HPC environments. In HPC environments, it is common

to have a cluster of machines with different operating systems, different

versions of libraries and other dependencies; containerization helps

overcome this problem by ensuring that the application and its depen-

dencies are all included in the container54 and that the container is portable

and can run on any system with a compatible container runtime49.

Containers can be scaled up or down as needed and they are

portable, allowing teams to respond quickly to changing demands

and to work across multiple platforms or locations55,56.The latter

can be particularly useful for teams that need to move applications

between different stages of the development or deployment process

or between different environments such as test, staging and production.

Finally, containers can be easily integrated with collaboration

tools that allow multiple developers to work on a project at the same

time, such as Git57. For example, developers can use Git to track changes

to the application code and its dependencies, and when they are

ready to share their changes with the team, they can use Git to push

the changes to a central repository. Other team members can then

pull the changes and use the containerized application with all its

dependencies and requirements.

Applications
Containers are being used in a growing number of scientific fields,

enabling efficient, collaborative forms of research. Here, we describe

usage in several disciplines — neuroscience, ecology, genomics, astron-

omy, physics and environmental science — with concrete examples of

container implementations in each case.

Neuroscience
Containers have gained popularity in recent years as a means of pack-

aging and distributing software and code in neuroscience and are

currently used for a number of applications, such as neuroimaging

data analysis. Neuroimaging data can be extremely large and com-

plex58,59; using containers, researchers can share tools for neuroimag-

ing analysis, such as MRI processing software or brain connectivity

analysis tools28,60,61. These developments facilitate the analysis and

visualization of brain imaging data, as well as sharing reproducible

results. For example, tools for neuroimaging analysis, including those

for processing and analysing MRI data, are provided as Docker images

by the FSL project.

Containers are also used to provide neural simulation software,

such as NEURON or NEST, to enable running simulations on differ-

ent computer systems and sharing them. Similarly, the NeuroDebian

Box 2

Getting started with containers
Here we walk you through the steps to get started with containers,

including how to install the necessary tools and run your first Docker

container.

Step 1: install a container runtime

To install Docker, follow these steps:

 • Go to the Docker website (docker.com).

 • Follow the instructions to install Docker on your machine. This will

typically involve downloading an installer and running it on your

machine.

Step 2: pull a container image

Once you have installed Docker, you can start pulling container

images from a public registry, such as Docker Hub, or you can also set

up your own private registry. To pull a container image from Docker

Hub, use the following command:

$ docker pull <image name>:<tag>

Images on Docker Hub are typically tagged with version information or

other identifiers to help ensure reproducibility of research workflows.

It is important to specify a specific tag when pulling an image to

ensure that you get the same version every time. For example, to pull

the latest version of the Ubuntu environment, you would run:

$ docker pull ubuntu:latest

Step 3: run a container

Now that you have pulled a container image, you can run it as a

container using the following command:

$ docker run <image name>

For example, to run the Ubuntu container that you just pulled, you

would run:

$ docker run ubuntu

This will start a new container on the basis of the Ubuntu image

and give you a command prompt inside the container. From here,

you can run any commands you would normally run on a Ubuntu

machine.

Step 4: stop and remove a container

When you are finished with a container, you can stop it and remove

it from your machine using the following command:

$ docker stop <container name>

To remove a container, use the following command:

$ docker rm <container name>

You can find the name of your container by running the docker ps

command, which will list all running containers.

Step 5: use preset or personalized environments

For most research projects, we want to have a whole environment

setup with all tools and dependencies needed for the entirety of the

project. Many preconfigured Docker images exist for such purposes,

but you can also create an environment from scratch to suit your

personalized research needs and then save it into your own Docker

image, which can then be used by collaborators. Detailed, step-by-

step instructions on how to do this have been published elsewhere102.

See the Docker documentation to learn more.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://neuron.yale.edu/neuron
https://nest-simulator.org
https://neuro.debian.net

Nature Reviews Methods Primers | (2023) 3:50 7

0123456789();:

Primer

project provides Docker images for tools for neural data analysis,

including tools for processing and analysing electrophysiology data62.

In the area of brain–computer interfaces, containers are being increas-

ingly used to package software tools for EEG analysis software or BCI

control software. For example, the BCI2000 project provides Docker

images that facilitate development and testing for brain–computer

interface systems63.

More generally, containers are also used for data sharing and col-

laboration — as neuroscientists often work with sensitive or proprietary

data, containers can provide a secure and controlled environment for

sharing and accessing data, enabling more effective collaborations64.

For example, containers can be configured to run with limited permis-

sions and user accounts, making it possible to give access to specific

data only to authorized users. This built-in flexibility enables easy

collaboration and data processing, while simultaneously providing

a secure and controlled environment in which data are isolated and

protected when necessary.

Ecology
In ecology, Docker is often used to run simulations of ecosystem

dynamics65,66. Containers can be used to package and deploy the

necessary code and data for running complex ecosystem simula-

tions; for example, the Ecopath with Ecosim project provides Docker

images for ecological simulation models that can be used to explore the

impacts of different management scenarios. This allows ecologists to

easily share and reproduce results67, as well as scale their simulations

to large compute resources.

Containers can be used to package and distribute software tools

for data processing and analysis, such as Geographical Information

System (GIS) software or machine learning libraries. This is often useful

to analyse and visualize spatial data or to apply machine learning tech-

niques to ecological data. The QGIS project provides Docker images

for the QGIS GIS software that can be used to analyse and visualize

spatial data. Containers are also used to share software tools for envi-

ronmental monitoring68, such as sensor networks or remote-sensing

platforms, making it easier for ecologists to collect and analyse data

from field sites or to integrate data from multiple sources. For example,

the Environmental Data Commons project provides Docker images for

environmental monitoring tools that can be used to collect and analyse

data from field sites.

Finally, containers can also be used to distribute data manage-

ment and analysis tools, such as databases or data visualization soft-

ware. These help ecologists store, organize and analyse large data

sets. For example, the EcoData Retriever project provides a Docker

image for downloading and cleaning up ecological data from various

sources69. Containers are also central to the packaging and distribution

of ecological modelling software, such as population dynamics mod-

els or ecosystem models used to build and test models of ecological

systems. The Ecological Niche Modeling on Docker project provides

Docker images for ecological modelling in R, including tools for building

and fitting models and visualizing results.

Genomics
In the field of genomics, containers are routinely used to package

and distribute software tools for analysing various types of genomic

data70–72. For example, in the DNA sequencing data analysis, the BioCon-

tainers project73 provides Docker images for tools, including tools for

read alignment and variant calling. Docker images for tools in the gene

expression analysis (such as RNA sequencing (RNA-seq) and microarray

analyses) are provided by the Bioconductor project74. Similarly, Docker

images for tools in population genetics and evolutionary analyses are

provided by the EIGENSOFT project.

For genome annotation, the GFF3 Tools project75 provides Docker

images for tools such as gene prediction software and functional anno-

tation tools, whereas Docker images for tools for structural variation

analysis, such as copy number variation analysis software and trans-

location detection tools, are provided by the Breakdancer project.

A number of projects provide Docker images for tools for functional

genomics, such as gRNA design and validation to aid in CRISPR-related

research76.

Table 2 | Docker, Singularity and Podman feature comparison

Feature Docker Singularity Podman

Container runtime Yes Yes Yes

Container image

management

Yes Yes Yes

Container

orchestration

Yesa No No

Support for multiple

operating systems

Yes Yes Yes

Integration with

scientific workflow

tools

Yesb Yesb Yesb

Support for

reproducible

research

Yesc Yesc Yesc

Support for data

managementd

Yese Yese Yese

Compatibility with

Docker images

Yes Yes Yes

Support for legacy

softwaref

Yesg Yesg No

Support for OS-level

virtualization

No Yes No

Rootless mode No Yes Yes

Build-time

customization

Yes No Yes

Image format Docker Image

Format (DIF)

Singularity

Image Format

(SIF)

OCI Image

Format

Security features User

namespaces,

AppArmor

profiles

Run containers

as unprivileged

users

Seccomp

support

Networking and

storage options

Docker

networking

Custom

networking

options

Host system

networking with

custom options

Ecosystem and

community

Large and mature Limited but

growing

Limited but

growing

OCI, Open Container Initiative. aVia tools such as Docker Swarm and Kubernetes. bVia tools such

as Snakemake, Nextflow, WholeTale, Binder and CodeOcean. cVia tools such as WholeTale,

Binder and CodeOcean. dData management refers to the process of collecting, storing,

organizing, preserving, maintaining and using data in a way that ensures its quality, security,

accessibility and reliability over time. eVia tools such as DataLad and XNAT. fLegacy software

refers to software that is no longer being actively developed or maintained or to software that

was written for an older operating system or hardware architecture. gVia tools such as Shifter.

https://bci2000.org/
https://ecopath.org/
https://qgis.org
https://edc.occ-data.org
https://ecologicaldata.org/node/42
https://github.com/ghuertaramos/ENMOD
https://biocontainers.pro
https://biocontainers.pro
https://bioconductor.org
https://hsph.harvard.edu/alkes-price/software/eigensoft
https://github.com/genome/breakdancer

Nature Reviews Methods Primers | (2023) 3:50 8

0123456789();:

Primer

Containers can also be used to share tools for the RNA-seq analy-

sis71,77,78, such as read alignment tools or expression quantification

software, facilitating the analysis and interpretation of RNA-seq data.

Some examples of tools that can be packaged in containers for RNA-seq

analysis include STAR79,80 and Salmon81. Recently, containerized soft-

ware has been developed to share tools for epigenomics analysis, such

as DNA methylation analysis software or chromatin accessibility tools,

including Bismark and ATAC-seq Pipeline82.

Finally, containerization has a central role in the development of

tools for analysing genetic variation data, such as single-nucleotide vari-

ant calling software or structural variation detection tools83–85. These

include tools for genetic variation analysis such as GATK and SVTyper.

Astronomy
Containers are increasingly being used in the field of astronomy, making

it easier for astronomers to access and use specialized software and data

and enabling reproducibility and collaboration86–88. One application of

containers in astronomy is the packaging and distribution of software

tools for analysing astronomical data. The Astropy project89 provides

a Docker image for the Astropy python library, which is a widely used

toolkit for astronomy and astrophysics and includes tools for handling

and manipulating astronomical data, such as reading and writing FITS

files, performing coordinate transformations and fitting models to data.

By packaging the Astropy library in a container, astronomers can seam-

lessly install and use the library on their own systems, while minimizing

issues with dependencies or conflicts with other software89,90.

Astronomy research often involves the use of specialized software

and data that may be difficult to obtain or install. By creating a Docker

image that includes all the necessary software and data, astronomers

can share their research environment with others, enabling them

to reproduce and verify results of each other. The Sloan Digital Sky

Survey provides Docker images91 to facilitate reuse by astronomers

and astrophysicists, whereas the Marble Station project provides a

Linux environment with spectroscopic and photometric tools that are

commonly used in astronomy.

Finally, containers can be used in astronomy to facilitate collabo-

ration and data sharing92. The SciServer project provides a scalable

collaborative data-driven science platform for astronomers and other

scientists, using a Docker-based architecture87. SciServer enables

astronomers to access and work with data stored on the platform,

regardless of their own computing environment.

Physics
Containers have been used in the field of physics for some time, mainly

to distribute software tools for analysing physics data93,94.The CERN

Container Registry provides container images for various tools and

libraries that are commonly used in particle physics, including software

for analysing particle collision data and simulations. Physics research

often involves the use of specialized software and data that may be

difficult to obtain or install. By creating a container image that includes

all the necessary software and data, physicists can share their research

environment with others, enabling them to reproduce and verify

results of each other. GEANT4 (ref. 95), also developed by CERN, offers

resources for simulating the passage of particles through matter, with

practical uses in high-energy, nuclear and accelerator physics. The LIGO

Open Science Center96 provides a Docker image for the LIGO Data Grid,

a cloud-based platform for storing and accessing data from the LIGO

gravitational wave detectors, so as to allow physicists to work with data

stored on the LIGO Data Grid.

Environmental science
Containers are increasingly relevant to the field of environmental

science; the Planet Research Data Commons for environmental and

earth science research provides container images for various tools

and libraries that are commonly used in environmental science, includ-

ing software for analysing data on air quality, water quality and land

use. These tools are designed to help address important environmental

issues such as adapting to climate change97, saving threatened species98

and reversing ecosystem deterioration99.

A related application is for the reproducibility of research envi-

ronments. For example, the EarthData project provides container

images for various tools and data that are commonly used in environ-

mental science, including software for analysing data from satellites

and remote-sensing instruments, and data sets such as the NASA Earth

Observing System data100. GRASS GIS — a free and open-source GIS

software — can be used for data analysis, visualization and spatial

modelling. The GRASS GIS container image provides a preconfigured

environment for running GRASS GIS, including all necessary dependen-

cies, libraries and configurations. Similarly, GeoServer is a container

that provides a preconfigured environment for running analyses on

geospatial data and enables data processing, analysing and sharing.

Together, these tools facilitate collaboration between environmental

scientists worldwide101.

Reproducibility and data deposition
Providing reproducible content is a fundamental aspect of scientific

research and has been discussed at length elsewhere, either generally23

or in the context of containerization102,103. Here, we focus on best prac-

tices for sharing containers, commenting and documenting and elabo-

rate on how these can help communicate and disseminate research

findings to maximize their value.

Sharing containers
Containers can help researchers share their work with co-workers,

regardless of the underlying hardware or operating system, and help

improve the reproducibility of research results104. By providing a

consistent environment for running experiments, researchers can

ensure that their results are not affected by differences in hardware or

software configurations. This can be particularly important in fields

such as machine learning or data analysis, in which small differences

in environment can lead to significant differences in results105,106. Shar-

ing both the Dockerfile and the Docker image when sharing contain-

ers is considered best practice because it allows others to reproduce

the exact same environment and configuration of the containerized

application. However, simply having a Dockerfile does not guarantee

the same build every time. There are several factors that can affect the

build, such as the version of the base image, the availability of pack-

ages or the version of the software used. A Dockerfile may be created

that specifies the base image and includes instructions to install the

required versions of dependencies, as well as instructions to copy

the source code of the application into the container to configure the

environment variables. If other researchers use different versions of

the dependencies or if the dependencies are not available, the build

can be different. Nonetheless, sharing both the Dockerfile and the

container image is still essential for enabling reproducibility, as it pro-

vides a starting point for other researchers to build upon and modify

for their own purposes.

To ensure that others can reproduce the exact same build, it is best

practice to also share the image of the container in a Docker registry

https://github.com/alexdobin/STAR
https://combine-lab.github.io/salmon
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://github.com/ENCODE-DCC/atac-seq-pipeline
https://gatk.broadinstitute.org
https://github.com/hall-lab/svtyper
https://astropy.org
https://github.com/marblestation/docker-astro
https://sciserver.org
https://hub.docker.com/u/cern
https://hub.docker.com/u/cern
https://geant4.web.cern.ch
https://losc.ligo.org
https://losc.ligo.org
https://ardc.edu.au/program/planet-research-data-commons
https://earthdata.nasa.gov
https://grass.osgeo.org
https://geoserver.org

Nature Reviews Methods Primers | (2023) 3:50 9

0123456789();:

Primer

such as Docker Hub or Quay. Sharing the container in this way allows

others to download and run it without having to build it themselves,

which guarantees that they are running the same environment and

configuration as the original application. In addition, for certain

applications, sharing the data set used in the training process with

the container could be both useful and facilitate reproduction of

simulations or experiments. It is worth pointing out that it is possible

to construct Dockerfiles to be reproducible, for example, by freezing

older versions of container images using RStudio Package Manager,

yet even so images that are not pulled by anyone from Docker Hub for

extended periods of time get purged, and Dockerfiles are not guaran-

teed to build indefinitely. Alternatives to specialized registries exist

for sharing containers; for example, researchers can also use a cloud

platform such as Amazon Web Services or Google Cloud Platform to

host and share containers. These platforms provide tools for building,

storing and distributing containers and can be useful for sharing large

or complex containers.

Finally, researchers can implement more advanced workflows

to build and share their work, for example, by generating automated

Docker builds. One common approach to do that is to configure auto-

mated builds in Docker Hub, which will re-build an image whenever

changes are pushed to the source code repository. The advanced

features of Docker Compose — a tool that allows defining and run-

ning multicontainer applications — can help implement automated

builds when dealing with multiple containers. Similarly, Jenkins is a

commonly used open-source automation server that facilitates auto-

mation of diverse tasks such as creating and launching Docker images.

A Jenkins pipeline can be set up that will build an image and push it

to a registry when certain conditions are met, like when changes are

pushed to the source code repository. Alternatively, GitHub Actions

is a Continuous Integration/Continuous Deployment (CI/CD) platform

that allows developers to automate their workflow on GitHub such

as building and testing code, deploying code to different environ-

ments and managing dependencies. GitHub Actions allows creat-

ing custom workflows that are triggered by events such as commits,

pull requests and releases and has been implemented successfully in

research workflows107. Other options include TravisCI, GitLabCI and

CircleCI — all CI/CD tools specifically designed for automating the

software development process and provide integration with various

services, including Docker.

Best practices in commenting and documenting
Containers are self-contained units of software that include all of the

dependencies and resources needed to run an application and, as

such, they can be complex and difficult to understand. For research

development projects, effective commenting and documentation are

essential. Commenting refers to explanations, descriptions and notes

within the source code, which aids in understanding the purpose of the

code, whereas documentation, which is typically external to the code

and presented in the form of a README file or user manual, provides

additional details103. Proper commenting and documentation can help

make containers more readable and maintainable and facilitate the use

and utility of containerized software108. Table 3 provides important best

practices for commenting and documenting in the process of sharing

containers. By following these best practices and using appropriate

tools, researchers can share their containers with others seamlessly and

effectively. In addition to these general best practices, it is also impor-

tant to follow any required field-specific guidelines or conventions

(F1000Research guidelines)109–111.

Communication and dissemination of research findings
Containers can facilitate the communication and dissemination of

findings in a number of ways. First and foremost, they allow researchers

to share their software applications with other researchers, regardless

of the operating system or hardware being used, allowing for greater

collaboration and the potential for faster progress in their respec-

tive fields. Containers also allow for the creation of fully reproduc-

ible research environments, ensuring that findings can be accurately

replicated and verified. In addition, containers make it easier for

researchers to publish their findings in an accessible format by creat-

ing a self-contained package that can be easily deployed and run by

anyone with access to the container.

Containers have emerged as a promising approach for archiving

research software alongside a publication. Many computing-focused

archives, such as the ACM Digital Library, offer services for archiving

research software. However, the adoption of such services has been

low, and there is a need for better archiving practices that can ensure

long-term preservation and reproducibility of research software.

Containerization can offer several advantages for archiving research

software. By encapsulating all dependencies and configurations of

Table 3 | Best practices for commenting and documenting
containers

Best practice Example

Clearly document the

purpose of the container

This container provides a preconfigured

environment for running the my-science-app

application

Include detailed instructions

for how to use the container

To use this container:

1. Pull the image from the Docker registry:

$ docker pull myusername/my-web-app

2. Run the container: docker run -p

8080:80 myusername/my-web-app

3. Access the app at http://localhost:8080

Provide example usage or run

commands

Here is an example of how to run the

container with a custom configuration file:

$ docker run -p 8080:80 -v/path/to/

config:/etc/my-web-app myusername/

my-web-app‘

List any environment

variables that the container

expects to be set

The container expects the following

environment variables to be set:

- DB_USERNAME (username for the database)

- DB_PASSWORD (password for the database)

- DB_HOST (hostname of the database server)

Document any ports exposed

by the container

This container exposes port 80 for HTTP

traffic

List any external

dependencies

This container requires access to a

MongoDB server running on hostname

mongodb.example.com

Document any data or

volume mounts used by the

container

This container expects a volume to

be mounted at /var/www/html for the

application code

Reference any related

projects, links or

documentation

This container is based on the official Node.

js Docker image, see more details at https://

hub.docker.com/_/node/

Add any version information # Current version: 1.0.0

Add any licensing information # Licensed under the CC BY 4.0 licence

https://quay.io
https://aws.amazon.com
https://cloud.google.com
https://jenkins.io
https://github.com/features/actions
https://f1000research.com/for-authors/article-guidelines/software-tool-articles
https://dl.acm.org
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://creativecommons.org/licenses/by/4.0/

Nature Reviews Methods Primers | (2023) 3:50 10

0123456789();:

Primer

the software into a single container image, containers provide a self-

contained and portable environment that can be easily shared and

preserved. Specifically, container images can be archived as part of

the publication or deposited in a container registry for long-term

preservation. Moreover, containers allow for the reproducibility

of research findings by ensuring that the software environment

remains consistent, even as the underlying infrastructure changes

over time.

Researchers can ensure effective archiving with containers by

adopting several recommended practices. This involves using well-

defined and well-maintained container images, with clear documen-

tation on the included software dependencies and configurations.

Additionally, all software dependencies and configurations should

be well documented, including versions of libraries, software and

operating systems. Widely used and supported container formats,

such as Docker, Singularity or Podman, should be chosen on the basis

of target archive or repository requirements. Metadata and docu-

mentation, such as a README file providing instructions for using the

container, research software information and licensing details should

be provided with the container image. Following these best practices,

archiving research software with containers can be a valuable approach

for ensuring long-term preservation and reproducibility of scientific

findings.

Limitations and optimizations
Although containers are powerful and versatile, they also have impor-

tant limitations. In this section, we discuss some of the pros and cons

of containerization and explore key restrictions. We also discuss com-

patibility with HPC environments, which have become increasingly

popular among computational research groups.

Costs of containerization
Despite its numerous advantages, there are also some costs associ-

ated with using containers in scientific research112. One of the main

drawbacks is the learning curve involved in using containerization

tools and technologies. Researchers need to familiarize themselves

Glossary

Clusters

Groups of machines that work together

to run containerized applications.

Compute resources

The resources required by a container

to run, including central processing

units, memory and storage.

Containerization platform

A complete system for building,

deploying and managing containerized

applications, typically including a

container runtime, and additional

tools and services for things such as

container orchestration, networking,

storage and security.

Container runtime

The software responsible for running

and managing containers on a host

machine, involving tasks such as

starting and stopping containers,

allocating resources to them and

providing an isolated environment

for them to run in.

Continuous Integration/

Continuous Deployment

(CI/CD). A software development

practice that involves continuously

integrating code changes into a

shared repository and continuously

deploying changes to a production

environment.

Dependencies

Software components that a

particular application relies on to run

properly, including libraries, tools and

frameworks.

Distributed-control model

A deployment model in which

control is distributed among multiple

independent nodes, rather than being

centralized in a single control node.

Docker engine

The containerization technology that

Docker uses, consisting of the Docker

daemon running on the computer and

the Docker client that communicates

with the daemon to execute

commands.

Dockerfiles

A script that contains instructions for

building a Docker image.

Environment variables

A variable that is passed to a container

at runtime, allowing the container to

configure itself on the basis of the value

of the variable.

High-performance computing

The use of supercomputers and

parallel processing techniques to solve

complex computational problems that

require a large amount of processing

power, memory and storage capacity.

Host operating system

Primary operating system running on

the physical computer or server in

which virtual machines or containers are

created and managed.

Image

A preconfigured package that

contains all the necessary files and

dependencies for running a piece of

software in a container.

Namespaces

Virtualization mechanisms for

containers, which allow multiple

containers to share the same system

resources without interfering with

each other.

Networking

The process of connecting multiple

containers together and to external

networks, allowing communication

between containers and the outside

world.

Orchestration

The process of automating the

deployment, scaling and management

of containerized applications in a

cluster.

Orchestration platform

System for automating the deployment,

scaling and management of

containerized applications.

Port mapping

The process of exposing the network

ports of a container to the host machine,

allowing communication between

the container and the host or other

networked systems.

Production environment

Live, operational system in which

software applications are deployed and

used by end-users.

Runtime environment

Specific set of software and hardware

configurations that are present and

available for an application to run on,

including the operating system, libraries,

system tools and other dependencies.

Scaling

The process of increasing or decreasing

the number of running instances of

a containerized application to meet

changing demand.

Shared-control model

Deployment model in which a single

central entity has control over multiple

resources or nodes.

Volumes

A storage mechanism for containers,

which allows data to persist outside the

file system of the container, including

after a container has been deleted or

replaced.

Nature Reviews Methods Primers | (2023) 3:50 11

0123456789();:

Primer

with containerization concepts, such as images, containers and

registries, as well as how to use tools such as Docker to manage

and deploy containers. This can require a significant amount of

time and resources, especially for researchers who are new to con-

tainerization. To address this challenge, it is often helpful to start

with the basics, that is, focusing on understanding the concepts

and fundamentals of containerization, such as what a container is,

how it works and the benefits of using containers. Getting hands-

on experience creating and running containers using tools such as

Docker in practice scenarios helps users learn to work with contain-

ers. Online communities dedicated to containerization and related

technologies, such as forums and social media groups, can provide

resources, tips and best practices from experienced developers. In

addition, there are a plenty of online tutorials, books and courses

available that teach both the basics and more advanced concepts

of containerization.

Building container images requires a certain level of expertise and

specialized knowledge, which can be challenging and time-consuming

to obtain. In addition, building, testing and deploying container images

can require dedicated staff, infrastructure and resources — these can

include servers, storage and networking, as well as the orchestration

software needed to manage and deploy the containers. These resources

come at a cost, which can increase when scaling and maintaining the

infrastructure.

In addition to the cost of infrastructure and resources, there are

also sustainability costs associated with the use and maintenance of

containers. The energy consumption of containerized workloads can

be substantial, as they require server and networking infrastructure

to support their operation. Serverless computing — a cloud comput-

ing model that allows developers to deploy and run code without

the need to manage infrastructure — has been proposed as a way to

mitigate these costs via dynamic allocation of computing resources

on the basis of current workload demands. However, it is important

to note that the suitability of serverless computing for long-running

computations in scientific research may depend on various factors,

such as the specific requirements of the computation, the avail-

able budget and trade-offs among cost, performance and conveni-

ence. For certain types of computations or workloads, serverless

computing may still be a viable option, especially when considering

factors such as ease of deployment, automatic scaling and reduced

operational overhead.

In most cases, the benefits of using containers in scientific research

outweigh the costs of learning and managing containerization tools

and technologies. Containers are often seen as a middle ground

between the lightweight and easy-to-use nature of package manag-

ers and the comprehensive isolation and reproducibility of virtual

machines. Containers provide a balance between these two extremes,

offering a higher level of isolation and reproducibility compared with

package managers, while being more resource-efficient and port-

able than virtual machines. This is one of the reasons containers have

become widely adopted in various contexts such as continuous inte-

gration, industry and cloud use and increasingly in research, in which

reproducibility, portability and resource efficiency are crucial factors

for success. However, it is important for researchers to carefully con-

sider their needs and resources when deciding whether to use contain-

ers in their research projects. One important aspect to consider is the

current efficiency of the research workflow and how it can be influenced

by containerization. We now turn to specific limitations and concrete

solutions to build more efficient workflows in scientific research.

Limitations of containerization
Containerization may not be suitable for certain types of research

that depend on the kernel level or on hardware. This can be a particu-

lar issue for machine learning workflows that rely on GPU accelera-

tion, as containers may not be able to access the necessary hardware

resources30,32, because they are designed to be hardware-agnostic and

rely on the kernel of the host system to interface with hardware. As a

result, the host operating system kernel version and configuration

can have an impact on the behaviour and performance of containers.

For example, if a container requires a specific kernel feature that is

not available in the host operating system kernel, it may not function

correctly or may require modifications. Similarly, if the host operat-

ing system kernel has specific security settings or restrictions, they

may apply to containers as well. This can be a challenge for machine

learning workflows that require access to specialized hardware such as

GPUs, as containers may not have direct access to these resources. It is

therefore important to consider the compatibility and dependencies

of the host operating system kernel when working with containers to

ensure proper functionality and reproducibility.

There are several solutions that can be implemented to address

these potential limitations. Containerization technologies exist that

can facilitate better access to host resources, such as Podman or Singu-

larity (Table 2). By allowing the containers to run as regular processes

on the host operating system, without requiring a separate daemon

or root privileges, these tools provide a more native experience and

facilitate access to host resources more directly and efficiently. This

can be especially important for low-level access to system resources,

such as kernel-level features or hardware devices. By contrast, Docker

relies on a daemon process to manage container execution, which can

introduce additional layers of abstraction and potential performance

overhead. In addition, Docker containers typically run as the root user

by default, which can pose security risks and limit access to certain

system resources. As a best practice, it is recommended to set the USER

in Docker containers to a non-root user to mitigate potential security

risks and restrict unnecessary access to system resources, following

the principle of least privilege. This can help improve the security

posture of Docker containers and reduce the risk of unauthorized

access or exploits.

If specific access to the kernel or to hardware resources is required,

it is also possible to use virtual machines, which can provide access to

host resources through virtualization (Table 1). The choice between

containerization and virtual machines does not have to be dichoto-

mous; however, hybrid solutions exist, such as running a containerized

application on top of a virtual machine, which allows the container-

ized application to have the portability and isolation benefits of con-

tainerization while also having access to the host resources through

the virtual machine.

It may not always be possible to fully replicate the environment

in which research was conducted, which can be particularly chal-

lenging when using containers to replicate research environments

with complex dependencies or that rely on specific hardware con-

figurations113. In these cases, it may be difficult to fully replicate the

environment using containers, which can limit the reproducibility of

the research. Specific resources can help make the environment more

portable and reproducible; for example, Platform as a Service (PaaS)

is a cloud computing service that allows developers to create, launch

and manage applications without the need to handle the underlying

infrastructure. Examples include Heroku, Google App Engine and

Microsoft Azure. PaaS can provide resources, scaling and dependency

Nature Reviews Methods Primers | (2023) 3:50 12

0123456789();:

Primer

management, which can help make the environment more portable

and reproducible. Similarly, Infrastructure as a Service (IaaS), a cloud

computing service, offers virtualized computing resources, such as

storage, networking and virtual machines. Some examples of IaaS

providers are Amazon Web Services, Microsoft Azure and Google

Cloud Platform. IaaS gives users additional control over the underly-

ing infrastructure, including hardware and operating system, and

can configure it to match the desired environment for their research.

Alternatively, hardware abstraction layer (HAL) is a layer of software

or hardware that abstracts the underlying hardware and operating

system, allowing applications to run in a more isolated and portable

manner. HAL can help isolate the application and its dependencies

from the underlying hardware and operating system, providing a

consistent environment for reproducible research. Containerization

technologies such as Docker can be considered as a form of HAL, as

they abstract the underlying host system and provide a consistent

environment for running applications.

Containers can introduce additional complexity to research

workflows, as researchers may need to manage and maintain multiple

containerized environments. This can be time-consuming and may

require additional training and support for researchers. Container

orchestration tools such as Docker Swarm or Kubernetes can help

manage this complexity by providing an abstraction layer that simpli-

fies the process of deploying and scaling containers. Docker Swarm

and Kubernetes handle both Embarrassingly parallel (EP) and non-EP

workflows. EP workflows refer to workflows that can be parallelized

and run in isolation, in which each task can be executed independently

of the others, making them well suited for container orchestration.

Non-EP workflows, on the contrary, have interdependent tasks that

require coordination and communication between containers, which

can be more challenging to manage. The two orchestration tools may

require different configurations and setups depending on the workflow

requirements.

For deployment, Docker Swarm uses a shared-control model,

whereas Kubernetes uses a distributed-control model. Docker Swarm

is tightly integrated with the Docker ecosystem and is optimized for

use with Docker containers. Kubernetes, on the contrary is more flex-

ible and can work with any container runtime, not just Docker. Both

Docker Swarm and Kubernetes can scale to thousands of nodes, but

Kubernetes has better support for autoscaling and can scale appli-

cations more quickly. Kubernetes has a wider range of features and

capabilities, including support for rolling updates, resource quotas

and pod security policies. Docker Swarm has fewer features but is

generally easier to use and set up. Overall, Kubernetes is generally

considered to be a more powerful and feature-rich platform, but it

can be more complex to use, whereas Docker Swarm is a good choice

for users who want a simpler, more streamlined solution for container

orchestration.

Researchers are starting to incorporate containers into larger

workflow management systems, which provide a framework for orches-

trating and executing complex scientific workflows. Workflow manage-

ment systems such as Nextflow, CWL and Snakemake, among others,

have gained traction in the scientific community owing to their support

for containerization114. Automation tools such as Ansible, Puppet and

Chef can be used to automate the process of building, deploying

and managing containers. Researchers can also rely on container man-

agement platforms such as Google Kubernetes Engine or Amazon

Elastic Container Service to access a user-friendly interface for man-

aging containers. For optimal results, it is important to consider the

specific requirements of the research and the size and structure of the

organization when selecting and implementing a solution.

Adapting containers to HPC environments
Challenges can also arise when attempting to deploy containers

over HPC environments115,116. These environments typically consist

of clusters of computers with powerful processors, large amounts of

memory and high-speed interconnects that allow the computers to

work together in a coordinated way. They are often used to solve prob-

lems that require large amounts of data processing or simulations that

would be too time-consuming or impossible to perform on a single

computer. Yet, the complexity HPC often produces also adds hurdles

to containerization. For example, containers can introduce overhead

when compared with traditional virtualization technologies, as they

run isolated processes and require additional system resources to

manage the containers. Although containers are generally considered

lightweight compared with virtual machines, this can result in higher

overhead when running performance-critical workloads on HPC sys-

tems. However, the lightweight nature of containers can also improve

resource utilization, as multiple containers can be run on the same host

without significant performance degradation. This trade-off between

overhead and resource utilization should be carefully considered when

deciding whether to use containers for HPC workloads. Furthermore,

the degree of isolation containers provide between different applica-

tions and their dependencies may not be sufficient for all HPC work-

loads that require tight control over system resources such as CPU,

memory and input/output (I/O).

HPC environments can also lead to limitations in terms of com-

patibility, as these systems typically have complex and specialized

infrastructure — such as parallel file systems — that may not be easily

integrated with container technologies. This architecture can lead to dif-

ficulties when trying to use containers in HPC environments. Scalability

can also be an issue, as HPC environments may in some instances not

be well suited for running large numbers of simultaneously executing

containers on a shared infrastructure. Finally, in university and research

settings, HPC environments may require additional security measures

to protect against unauthorized access, especially when dealing with

sensitive patient-level data or patent information. In this context, con-

tainers can pose security risks, as they may not provide the same level of

isolation and control as traditional virtualization technologies.

Despite these challenges, the use of containerization in HPC

environments provides very attractive features and opportunities for

researchers. One of the main advantages of using containers in HPC

environments is their portability117, which allows HPC workloads to be

deployed on a wide range of hardware and operating systems, without

the need to worry about compatibility issues or manual configuration.

This can greatly simplify the process of deploying and managing HPC

applications, especially in large-scale environments in which there may

be many different hardware configurations and operating systems

in use. Containers also improve resource utilization in HPC environ-

ments118; because they are lightweight and only contain the resources

that are necessary for the application to run, they can be more efficient

at utilizing hardware resources such as CPU, memory and storage. With

containers, HPC applications can be more efficiently scheduled and

run on available resources, potentially improving overall performance

and minimizing resource contention. Containers can also be used to

improve the security and isolation of HPC workloads, as dependen-

cies can be isolated from the rest of the system, reducing the risk of

interference or conflicts with other applications. Finally, although HPC

https://ansible.com
https://puppet.com
https://chef.io

Nature Reviews Methods Primers | (2023) 3:50 13

0123456789();:

Primer

resources have traditionally been accessed using specialized software

and protocols, the use of containers can allow researchers to access HPC

resources in a more cloud-native way119, that is, in a way that is similar to

how one would access cloud computing resources. This increases flex-

ibility and scalability in a user-friendly way, in contrast to strict reliance

on specialized software and protocols. For example, by using contain-

erized workflows and tools such as Singularity, researchers can access

HPC resources using familiar container orchestration tools and APIs,

such as those provided by Kubernetes120, making it easier for research-

ers to access and manage HPC resources, allowing a seamless integra-

tion with other tools and services. Additionally, the use of containerized

workflows can enable researchers to scale their workloads more easily

across HPC resources, as containers can be seamlessly transferred and

executed on different HPC systems. This can be particularly useful for

researchers who need to run large-scale simulations or data analyses

that require significant computing resources.

There are several tools and platforms available that can be used

to support the use of containers in HPC environments34. For example,

the Open Container Initiative is a standard for building and running

containerized applications and is supported by a range of container

engines and orchestration tools such as Docker, Kubernetes and Mesos.

These tools can be used to manage and deploy containerized HPC

applications at scale, allowing organizations to take advantage of the

benefits of containerization in their HPC environments.

Outlook
Containers offer many benefits for scientific research, including the

ability to package and distribute software and data in a consistent and

portable manner, enabling reproducibility and collaboration and facili-

tating the use of cloud computing121. As the use of containers becomes

more widespread, it is likely that they will become an increasingly

important tool in scientific computing. Containers can make it easier

for scientists to access and use specialized software and data and can

facilitate the sharing and reproducibility of research environments122.

This may lead to the development of new container-based tools and

platforms specifically designed for scientific computing.

Containers will also become more and more useful in data-

intensive research, in which large amounts of data are generated and

analysed, and uptake in this space is expected to increase123–125. By using

containers to package and distribute data analysis tools, scientists can

easily share and reproduce their results and can also take advantage of

the scalability and flexibility of cloud computing126. As scientists rely

more and more on automated and reproducible research workflows,

it is also likely that they will increasingly turn to containers to package

and distribute these workflows. We have discussed a few of the available

platforms and repositories in this article, but options will undoubtedly

grow quickly in the future, as containers continue to have an important

role in scientific research.

Container orchestration tools such as Kubernetes and Docker

Swarm will further enable scientists to deploy and manage complex

research workflows across multiple machines, improving the efficiency

and scalability of their research127. These platforms allow researchers to

deploy and manage their scientific applications and tools and enable the

creation of scalable and fault-tolerant environments for running experi-

ments and simulations, thus allowing researchers to prioritize and allo-

cate resources to their most important tasks. Tools such as containerd

and Docker Composed are helping to change the landscape of pos-

sibilities in containerization, providing convenience and enhancing

capabilities for users. Containerd is an open-source container runtime

that is designed to be lightweight and modular, which is becoming

increasingly popular for managing containers in cloud environments,

particularly in conjunction with Kubernetes. Docker Compose is a tool

that allows developers to define and run multicontainer applications

using a simple YAML configuration file, simplifying the definition and

management of complex containerized environments.

Other recent developments such as Dev Containers are likely to gain

prominence in the research space. Dev Containers allow specifying the

container environment to use in conjunction with GitHub Codespaces,

a feature that facilitates creating new development enviro nments in the

cloud — directly within GitHub — with the specific versions of languages,

frameworks and tools that are required for a project. Dev Containers

are defined using a configuration file called a ‘devcontainer.json’ file,

which specifies the container image that should be used, along with

any additional configuration options such as environ ment variables,

volumes and ports. These files automatically launch the container

environment in the codespace, allowing researchers to switch between

different container environments.

Finally, recent developments in cloud are changing the way con-

tainers are being used and shared. Specifically, the trend towards

building cloud-native applications, which are designed to be scalable

and resilient, has led to the adoption of containerization to package and

deploy these applications. Cloud-native applications often use micro-

services architecture, which relies on containers to manage individual

components and services. Relatedly, serverless computing is often

used in conjunction with containerization to package and deploy code

in a more efficient and scalable manner. Together, these features can in

turn allow researchers to effortlessly scale their computations across

multiple machines, potentially improving the efficiency and speed of

their research.

The implications of containerization are vast and far-ranging and

could impact the whole ecosystem of scientific research. Containers

have the potential to heavily influence scientific publishing, via tools

such as WholeTale128, Binder and CodeOcean, which are designed to

facilitate the integration between published research and container-

ized research129. These tools enable researchers to create and share

reproducible research environments using containers and provide

platforms for publishing and sharing research that is based on contain-

ers, with additional features and functionality specifically designed for

reproducible research above and beyond those available with Docker.

It is also possible that funding agencies will recognize the value of

containerization to ensure quality and reproducibility of scientific

research130,131 and thus require containerization for funded projects in

the future. This may necessitate the development of new infrastructure,

training and support for researchers — factors that funders will need to

consider to successfully implement a requirement for containerization

in scientific research.

In our view, the use of containerization in scientific research is a

natural evolution that is likely to become standard practice132. Con-

tainerization is booming, with constant innovation and development,

and has become the norm in fields such as software development and

engineering133. There is no reason scientists should not leverage this

tool to improve scientific practices, as well as the quality and impact

of their research. Many scientists already share data and materials

with their publications12,134–136 — containerization is the next natural

step in this direction102,137, with the potential to revolutionize scientific

research and discovery.

Published online: xx xx xxxx

https://containerd.io/
https://mybinder.org/
http://codeocean.com

Nature Reviews Methods Primers | (2023) 3:50 14

0123456789();:

Primer

References
1. Hsiehchen, D., Espinoza, M. & Hsieh, A. Multinational teams and diseconomies of scale

in collaborative research. Sci. Adv. 1, e1500211 (2015).

2. International Human Genome Sequencing Consortium. Initial sequencing and analysis

of the human genome. Nature 409, 860–921 (2001).

3. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types.

Nature 502, 333–339 (2013).

4. DeGrace, M. M. et al. Defining the risk of SARS-CoV-2 variants on immune protection.

Nature 605, 640–652 (2022).

5. Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation

to climate change. Nat. Clim. Change 11, 989–1000 (2021).

6. Donoho, D. L. An invitation to reproducible computational research. Biostatistics 11,

385–388 (2010).

7. Prabhu, P. et al. in State of the Practice Reports 1–12 (Association for Computing

Machinery, 2011).

8. Humphreys, P. in Science in the Context of Application (eds Carrier, M. & Nordmann, A.)

131–142 (Springer Netherlands, 2011).

9. Cio�i-Revilla, C. in Introduction to Computational Social Science: Principles and

Applications (ed. Cio�i-Revilla, C.) 35–102 (Springer International Publishing, 2017).

10. Levenstein, M. C. & Lyle, J. A. Data: sharing is caring. Adv. Methods Pract. Psychol. Sci. 1,

95–103 (2018).

11. Kidwell, M. C. et al. Badges to acknowledge open practices: a simple, low-cost, e�ective

method for increasing transparency. PLoS Biol. 14, e1002456 (2016).

12. Auer, S. et al. Science forum: a community-led initiative for training in reproducible

research. eLife https://doi.org/10.7554/eLife.64719 (2021).

13. Epskamp, S. Reproducibility and replicability in a fast-paced methodological world.

Adv. Methods Pract. Psychol. Sci. 2, 145–155 (2019).

14. Pittard, W. S. & Li, S. in Computational Methods and Data Analysis for Metabolomics

(ed. Li, S.) 265–311 (Springer US, 2020).

15. Baker, M. 1,500 Scientists lift the lid on reproducibility. Nature https://doi.org/10.1038/

533452a (2016).

16. Baker, M. Reproducibility: seek out stronger science. Nature 537, 703–704 (2016).

17. Button, K. S., Chambers, C. D., Lawrence, N. & Munafò, M. R. Grassroots training for

reproducible science: a consortium-based approach to the empirical dissertation.

Psychol. Learn. Teach. 19, 77–90 (2020).

18. Wilson, G. et al. Good enough practices in scientific computing. PLoS Comput. Biol. 13,

e1005510 (2017).

This article outlines a set of good computing practices that every researcher can

adopt, regardless of their current level of computational skill. These practices

encompass data management, programming, collaborating with colleagues,

organizing projects, tracking work and writing manuscripts.

19. Vicente-Saez, R. & Martinez-Fuentes, C. Open science now: a systematic literature review

for an integrated definition. J. Bus. Res. 88, 428–436 (2018).

20. McKiernan, E. C. et al. How open science helps researchers succeed. eLife 5, e16800

(2016).

21. Woelfle, M., Olliaro, P. & Todd, M. H. Open science is a research accelerator. Nat. Chem.

3, 745–748 (2011).

22. Evans, J. A. & Reimer, J. Open access and global participation in science. Science 323,

1025 (2009).

23. Sandve, G. K., Nekrutenko, A., Taylor, J. & Hovig, E. Ten simple rules for reproducible

computational research. PLoS Comput. Biol. 9, e1003285 (2013).

24. Fan, G. et al. in Proceedings of the 29th ACM SIGSOFT International Symposium on

Software Testing and Analysis 463–474 (Association for Computing Machinery, 2020).

25. Liu, K. & Aida, K. in 2016 International Conference on Cloud Computing Research and

Innovations (ICCCRI) 56–63 (IEEE, 2016).

26. Hale, J. S., Li, L., Richardson, C. N. & Wells, G. N. Containers for portable, productive,

and performant scientific computing. Comput. Sci. Eng. 19, 40–50 (2017).

27. Boettiger, C., Center for Stock Assessment Research. An introduction to Docker

for reproducible research. Oper. Syst. Rev. https://doi.org/10.1145/2723872.2723882

(2015).

This article explores how Docker can help address challenges in computational

reproducibility in scientific research, examining how Docker combines several areas

from systems research to facilitate reproducibility, portability and extensibility of

computational work.

28. Kiar, G. et al. Science in the cloud (SIC): a use case in MRI connectomics. Gigascience 6,

gix013 (2017).

29. Merkel, D. Docker: lightweight Linux containers for consistent development and

deployment. Seltzer https://www.seltzer.com/margo/teaching/CS508.19/papers/

merkel14.pdf (2013).

This article describes how Docker can package applications and their dependencies

into lightweight containers that move easily between di�erent distros, start up quickly

and are isolated from each other.

30. Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility

of compute. PLoS ONE 12, e0177459 (2017).

31. Sochat, V. V., Prybol, C. J. & Kurtzer, G. M. Enhancing reproducibility in scientific

computing: metrics and registry for Singularity containers. PLoS ONE 12, e0188511 (2017).

This article presents Singularity Hub, a framework to build and deploy Singularity

containers for mobility of compute. The article also introduces Singularity Python

software with novel metrics for assessing reproducibility of such containers.

32. Walsh, D. & Podman team. Podman: A Tool for Managing OCI Containers and Pods.

Github https://github.com/containers/podman (2023).

33. Potdar, A. M., Narayan, D. G., Kengond, S. & Mulla, M. M. Performance evaluation of

Docker container and virtual machine. Procedia Comput. Sci. 171, 1419–1428 (2020).

34. Gerhardt, L. et al. Shifter: containers for HPC. J. Phys. Conf. Ser. 898, 082021 (2017).

35. Ram, K. Git can facilitate greater reproducibility and increased transparency in science.

Source Code Biol. Med. 8, 7 (2013).

36. Vuorre, M. & Curley, J. P. Curating research assets: a tutorial on the git version control

system. Adv. Methods Pract. Psychol. Sci. 1, 219–236 (2018).

37. Clyburne-Sherin, A., Fei, X. & Green, S. A. Computational reproducibility via containers

in psychology. Meta Psychol. 3, 892 (2019).

38. Boettiger, C. & Eddelbuettel, D. An introduction to rocker: Docker containers for R. R J. 9,

527 (2017).

39. Nüst, D. et al. The Rockerverse: packages and applications for containerization with R.

Preprint at https://doi.org/10.48550/arXiv.2001.10641 (2020).

40. Nüst, D. & Hinz, M. containerit: generating Dockerfiles for reproducible research with R.

J. Open Source Softw. 4, 1603 (2019).

41. Xiao, N. Liftr: Containerize R markdown documents for continuous reproducibility

(CRAN, 2019).

42. Peikert, A. & Brandmaier, A. M. A reproducible data analysis workflow with R Markdown,

Git, Make, and Docker. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/8xzqy (2019).

43. Younge, A. J., Pedretti, K., Grant, R. E. & Brightwell, R. in 2017 IEEE International

Conference on Cloud Computing Technology and Science (CloudCom) 74–81 (2017).

44. Freire, J., Bonnet, P. & Shasha, D. in Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data 593–596 (Association for Computing Machinery,

2012).

45. Papin, J. A., Mac Gabhann, F., Sauro, H. M., Nickerson, D. & Rampadarath, A. Improving

reproducibility in computational biology research. PLoS Comput. Biol. 16, e1007881

(2020).

46. Sochat, V. V. et al. The experiment factory: standardizing behavioral experiments.

Front. Psychol. 7, 610 (2016).

47. Khan, F. Z. et al. Sharing interoperable workflow provenance: a review of best practices

and their practical application in CWLProv. Gigascience 8, giz095 (2019).

48. Kane, S. P. & Matthias, K. Docker: Up & Running: Shipping Reliable Containers in

Production (‘O’Reilly Media, Inc., 2018).

49. Khan, A. Key characteristics of a container orchestration platform to enable a modern

application. IEEE Cloud Comput. 4, 42–48 (2017).

50. Singh, S. & Singh, N. in 2016 2nd International Conference on Applied and Theoretical

Computing and Communication Technology (iCATccT) 804–807 (2016).

51. Singh, V. & Peddoju, S. K. in 2017 International Conference on Computing,

Communication and Automation (ICCCA) 847–852 (IEEE, 2017).

52. Kang, H., Le, M. & Tao, S. in 2016 IEEE International Conference on Cloud Engineering

(IC2E) 202–211 (IEEE, 2016).

53. Sultan, S., Ahmad, I. & Dimitriou, T. Container security: issues, challenges, and the road

ahead. IEEE Access. 7, 52976–52996 (2019).

54. Ruiz, C., Jeanvoine, E. & Nussbaum, L. in Euro-Par 2015: Parallel Processing Workshops

813–824 (Springer International Publishing, 2015).

55. Nadgowda, S., Suneja, S. & Kanso, A. in 2017 IEEE International Conference on Cloud

Engineering (IC2E) 266–272 (IEEE, 2017).

56. Srirama, S. N., Adhikari, M. & Paul, S. Application deployment using containers with

auto-scaling for microservices in cloud environment. J. Netw. Computer Appl. 160,

102629 (2020).

57. Cito, J. et al. in 2017 IEEE/ACM 14th International Conference on Mining Software

Repositories (MSR) 323–333 (IEEE, 2017).

58. Poldrack, R. A. & Gorgolewski, K. J. Making Big Data open: data sharing in neuroimaging.

Nat. Neurosci. 17, 1510–1517 (2014).

59. Smith, S. M. & Nichols, T. E. Statistical challenges in ‘Big Data’ human neuroimaging.

Neuron 97, 263–268 (2018).

60. Tourbier, S. et al. Connectome Mapper 3: a flexible and open-source pipeline software

for multiscale multimodal human connectome mapping. J. Open Source Softw. 7, 4248

(2022).

61. Nichols, T. E. et al. Best practices in data analysis and sharing in neuroimaging using MRI.

Nat. Neurosci. 20, 299–303 (2017).

62. Halchenko, Y. O. & Hanke, M. Open is not enough. Let’s take the next step: an integrated,

community-driven computing platform for neuroscience. Front. Neuroinform. 6, 22 (2012).

63. Schalk, G. & Mellinger, J. A Practical Guide to Brain–Computer Interfacing with BCI2000:

General-Purpose Software for Brain–Computer Interface Research, Data Acquisition,

Stimulus Presentation, and Brain Monitoring (Springer Science & Business Media, 2010).

64. Kaur, B., Dugré, M., Hanna, A. & Glatard, T. An analysis of security vulnerabilities in

container images for scientific data analysis. Gigascience 10, giab025 (2021).

65. Huang, Y. et al. Realized ecological forecast through an interactive Ecological Platform

for Assimilating Data (EcoPAD, v1.0) into models. Geosci. Model. Dev. 12, 1119–1137 (2019).

66. White, E. P. et al. Developing an automated iterative near‐term forecasting system for an

ecological study. Methods Ecol. Evol. 10, 332–344 (2019).

67. Powers, S. M. & Hampton, S. E. Open science, reproducibility, and transparency in

ecology. Ecol. Appl. 29, e01822 (2019).

68. Ali, A. S., Coté, C., Heidarinejad, M. & Stephens, B. Elemental: an open-source wireless

hardware and software platform for building energy and indoor environmental

monitoring and control. Sensors 19, 4017 (2019).

https://doi.org/10.7554/eLife.64719
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.1145/2723872.2723882
https://www.seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf
https://www.seltzer.com/margo/teaching/CS508.19/papers/merkel14.pdf
https://github.com/containers/podman
https://doi.org/10.48550/arXiv.2001.10641
https://doi.org/10.31234/osf.io/8xzqy

Nature Reviews Methods Primers | (2023) 3:50 15

0123456789();:

Primer

69. Morris, B. D. & White, E. P. The EcoData retriever: improving access to existing ecological

data. PLoS ONE 8, e65848 (2013).

70. Schulz, W. L., Durant, T. J. S., Siddon, A. J. & Torres, R. Use of application containers

and workflows for genomic data analysis. J. Pathol. Inform. 7, 53 (2016).

71. Di Tommaso, P. et al. The impact of Docker containers on the performance of genomic

pipelines. PeerJ 3, e1273 (2015).

72. O’Connor, B. D. et al. The Dockstore: enabling modular, community-focused sharing

of Docker-based genomics tools and workflows. F1000Res. 6, 52 (2017).

73. Bai, J. et al. BioContainers registry: searching bioinformatics and proteomics tools,

packages, and containers. J. Proteome Res. 20, 2056–2061 (2021).

74. Gentleman, R. C. et al. Bioconductor: open software development for computational

biology and bioinformatics. Genome Biol. 5, R80 (2004).

75. Zhu, T., Liang, C., Meng, Z., Guo, S. & Zhang, R. GFF3sort: a novel tool to sort GFF3 files

for tabix indexing. BMC Bioinformatics 18, 482 (2017).

76. Müller Paul, H., Istanto, D. D., Heldenbrand, J. & Hudson, M. E. CROPSR: an automated

platform for complex genome-wide CRISPR gRNA design and validation. BMC

Bioinformatics 23, 74 (2022).

77. Torre, D., Lachmann, A. & Ma’ayan, A. BioJupies: automated generation of interactive

notebooks for RNA-Seq data analysis in the cloud. Cell Syst. 7, 556–561.e3 (2018).

78. Mahi, N. A., Najafabadi, M. F., Pilarczyk, M., Kouril, M. & Medvedovic, M. GREIN: an

interactive web platform for re-analyzing GEO RNA-seq data. Sci. Rep. 9, 7580 (2019).

79. Dobin, A. & Gingeras, T. R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinform. 51,

11.14.1–11.14.19 (2015).

80. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21

(2013).

81. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast

and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419

(2017).

82. Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a Hitchhiker’s guide

to ATAC-seq data analysis. Genome Biol. 21, 22 (2020).

83. Garcia, M. et al. Sarek: a portable workflow for whole-genome sequencing analysis

of germline and somatic variants. Preprint at bioRxiv https://doi.org/10.1101/316976

(2018).

84. Sirén, J. et al. Pangenomics enables genotyping of known structural variants in 5202

diverse genomes. Science 374, abg8871 (2021).

85. Zarate, S. et al. Parliament2: accurate structural variant calling at scale. Gigascience 9,

giaa145 (2020).

86. Morris, D., Voutsinas, S., Hambly, N. C. & Mann, R. G. Use of Docker for deployment

and testing of astronomy software. Astron. Comput. 20, 105–119 (2017).

87. Taghizadeh-Popp, M. et al. SciServer: a science platform for astronomy and beyond.

Astron. Comput. 33, 100412 (2020).

88. Herwig, F. et al. Cyberhubs: virtual research environments for astronomy. Astrophys. J.

Suppl. Ser. 236, 2 (2018).

89. The Astropy Collaboration. et al. The Astropy Project: building an open-science project

and status of the v2.0 Core Package*. Astron. J. 156, 123 (2018).

90. Robitaille, T. P. et al. Astropy: a community Python package for astronomy.

Astron. Astrophys. Suppl. Ser. 558, A33 (2013).

91. Abolfathi, B. et al. The fourteenth data release of the sloan digital sky survey: first

spectroscopic data from the extended Baryon Oscillation Spectroscopic Survey and

from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment.

Astrophys. J. Suppl. Ser. 235, 42 (2018).

92. Nigro, C. et al. Towards open and reproducible multi-instrument analysis in gamma-ray

astronomy. Astron. Astrophys. Suppl. Ser. 625, A10 (2019).

93. Liu, Q., Zheng, W., Zhang, M., Wang, Y. & Yu, K. Docker-based automatic deployment

for nuclear fusion experimental data archive cluster. IEEE Trans. Plasma Sci. IEEE Nucl.

Plasma Sci. Soc. 46, 1281–1284 (2018).

94. Meng, H. et al. An invariant framework for conducting reproducible computational

science. J. Comput. Sci. 9, 137–142 (2015).

95. Agostinelli, S. et al. Geant4 — a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A

506, 250–303 (2003).

96. Vallisneri, M., Kanner, J., Williams, R., Weinstein, A. & Stephens, B. The LIGO open science

center. J. Phys. Conf. Ser. 610, 012021 (2015).

97. Scott, D. & Becken, S. Adapting to climate change and climate policy: progress,

problems and potentials. J. Sustain. Tour. 18, 283–295 (2010).

98. Ebenhard, T. Conservation breeding as a tool for saving animal species from extinction.

Trends Ecol. Evol. 10, 438–443 (1995).

99. Warlenius, R., Pierce, G. & Ramasar, V. Reversing the arrow of arrears: the concept of

‘ecological debt’ and its value for environmental justice. Glob. Environ. Change 30,

21–30 (2015).

100. Acker, J. G. & Leptoukh, G. Online analysis enhances use of NASA Earth science data.

Eos Trans. Am. Geophys. Union 88, 14–17 (2007).

101. Yang, C. et al. Big earth data analytics: a survey. Big Earth Data 3, 83–107 (2019).

102. Wiebels, K. & Moreau, D. Leveraging containers for reproducible psychological research.

Adv. Methods Pract. Psychol. Sci. 4, 25152459211017853 (2021).

This article describes the logic behind containers and the practical problems they

can solve. The tutorial section walks the reader through the implementation of

containerization within a research workflow, with examples using Docker and R. The

article provides a worked example that includes all steps required to set up a container

for a research project, which can be easily adapted and extended.

103. Nüst, D. et al. Ten simple rules for writing Dockerfiles for reproducible data science.

PLoS Comput. Biol. 16, e1008316 (2020).

This article presents a set of rules to help researchers write understandable

Dockerfiles for typical data science workflows. By following these rules, researchers

can create containers suitable for sharing with fellow scientists, for including in

scholarly communication and for e�ective and sustainable personal workflows.

104. Elmenreich, W., Moll, P., Theuermann, S. & Lux, M. Making simulation results

reproducible — survey, guidelines, and examples based on Gradle and Docker. PeerJ

Comput. Sci. 5, e240 (2019).

105. Van Mo�aert, K. & Nowé, A. Multi-objective reinforcement learning using sets of pareto

dominating policies. J. Mach. Learn. Res. 15, 3663–3692 (2014).

106. Gama, J., Sebastião, R. & Rodrigues, P. P. On evaluating stream learning algorithms.

Mach. Learn. 90, 317–346 (2013).

107. Kim, A. Y. et al. Implementing GitHub Actions continuous integration to reduce error

rates in ecological data collection. Methods Ecol. Evol. 13, 2572–2585 (2022).

108. Wilson, G. et al. Best practices for scientific computing. PLoS Biol. 12, e1001745 (2014).

109. Eglen, S. J. et al. Toward standard practices for sharing computer code and programs

in neuroscience. Nat. Neurosci. 20, 770–773 (2017).

110. No authors listed. Rebooting review. Nat. Biotechnol. 33, 319 (2015).

111. Kenall, A. et al. Better reporting for better research: a checklist for reproducibility.

BMC Neurosci. 16, 44 (2015).

112. Poldrack, R. A. The costs of reproducibility. Neuron 101, 11–14 (2019).

113. Nagarajan, P., Warnell, G. & Stone, P. Deterministic implementations for reproducibility in

deep reinforcement learning. Preprint at arXiv https://doi.org/10.48550/arXiv.1809.05676

(2018).

114. Piccolo, S. R., Ence, Z. E., Anderson, E. C., Chang, J. T. & Bild, A. H. Simplifying the

development of portable, scalable, and reproducible workflows. eLife 10, e71069 (2021).

115. Higgins, J., Holmes, V. & Venters, C. in High Performance Computing 506–513 (Springer

International Publishing, 2015).

116. de Bayser, M. & Cerqueira, R. in 2017 IEEE International Conference on Cloud Engineering

(IC2E) 259–265 (IEEE, 2017).

117. Netto, M. A. S., Calheiros, R. N., Rodrigues, E. R., Cunha, R. L. F. & Buyya, R. HPC cloud

for scientific and business applications: taxonomy, vision, and research challenges.

ACM Comput. Surv. 51, 1–29 (2018).

118. Azab, A. in 2017 IEEE International Conference on Cloud Engineering (IC2E) 279–285

(IEEE, 2017).

119. Qasha, R., Cała, J. & Watson, P. in 2016 IEEE 12th International Conference on e-Science

(e-Science) 81–90 (IEEE, 2016).

120. Saha, P., Beltre, A., Uminski, P. & Govindaraju, M. in Proceedings of the Practice and

Experience on Advanced Research Computing 1–8 (Association for Computing

Machinery, 2018).

121. Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M. & Steinder, M. in 2015 IEEE/ACM

8th International Conference on Utility and Cloud Computing (UCC) 368–371 (IEEE, 2015).

122. Hung, L.-H., Kristiyanto, D., Lee, S. B. & Yeung, K. Y. GUIdock: using Docker containers

with a common graphics user interface to address the reproducibility of research. PLoS

ONE 11, e0152686 (2016).

123. Salza, P. & Ferrucci, F. Speed up genetic algorithms in the cloud using software

containers. Future Gener. Comput. Syst. 92, 276–289 (2019).

124. Pahl, C., Brogi, A., Soldani, J. & Jamshidi, P. Cloud container technologies: a state-of-the-art

review. IEEE Trans. Cloud Comput. 7, 677–692 (2019).

125. Dessalk, Y. D., Nikolov, N., Matskin, M., Soylu, A. & Roman, D. in Proceedings of the 12th

International Conference on Management of Digital EcoSystems 76–83 (Association for

Computing Machinery, 2020).

126. Martín-Santana, S., Pérez-González, C. J., Colebrook, M., Roda-García, J. L. & González-

Yanes, P. in Data Science and Digital Business (eds García Márquez, F. P. & Lev, B.) 121–146

(Springer International Publishing, 2019).

127. Jansen, C., Witt, M. & Krefting, D. in Computational Science and Its Applications — ICCSA

2016 303–318 (Springer International Publishing, 2016).

128. Brinckman, A. et al. Computing environments for reproducibility: capturing the ‘Whole

Tale’. Future Gener. Comput. Syst. 94, 854–867 (2019).

129. Perkel, J. M. Make code accessible with these cloud services. Nature 575, 247–248 (2019).

130. Poldrack, R. A., Gorgolewski, K. J. & Varoquaux, G. Computational and informatic

advances for reproducible data analysis in neuroimaging. Annu. Rev. Biomed. Data Sci. 2,

119–138 (2019).

131. Vaillancourt, P. Z., Coulter, J. E., Knepper, R. & Barker, B. in 2020 IEEE High Performance

Extreme Computing Conference (HPEC) 1–8 (IEEE, 2020).

132. Adufu, T., Choi, J. & Kim, Y. in 17th Asia-Pacific Network Operations and Management

Symposium (APNOMS) 507–510 (IEEE, 2015).

133. Cito, J., Ferme, V. & Gall, H. C. in Web Engineering 609–612 (Springer International

Publishing, 2016).

134. Tedersoo, L. et al. Data sharing practices and data availability upon request di�er across

scientific disciplines. Sci. Data 8, 192 (2021).

135. Tenopir, C. et al. Data sharing by scientists: practices and perceptions. PLoS ONE 6,

e21101 (2011).

136. Gomes, D. G. E. et al. Why don’t we share data and code? Perceived barriers and benefits

to public archiving practices. Proc. Biol. Sci. 289, 20221113 (2022).

137. Weston, S. J., Ritchie, S. J., Rohrer, J. M. & Przybylski, A. K. Recommendations for

increasing the transparency of analysis of preexisting data sets. Adv. Methods Pract.

Psychol. Sci. 2, 214–227 (2019).

https://doi.org/10.1101/316976
https://doi.org/10.48550/arXiv.1809.05676

Nature Reviews Methods Primers | (2023) 3:50 16

0123456789();:

Primer

Acknowledgements
D.M. and K.W. are supported by a Marsden grant from the Royal Society of New Zealand and

a University of Auckland Early Career Research Excellence Award awarded to D.M.

Author contributions
Introduction (D.M., K.W. and C.B.); Experimentation (D.M., K.W. and C.B.); Results (D.M., K.W.

and C.B.); Applications (D.M., K.W. and C.B.); Reproducibility and data deposition (D.M.,

K.W. and C.B.); Limitations and optimizations (D.M., K.W. and C.B.); Outlook (D.M., K.W. and C.B.).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at

https://doi.org/10.1038/s43586-023-00236-9.

Peer review information Nature Reviews Methods Primers thanks Beth Ciimini, Stephen

Piccolo and the other, anonymous, reviewer(s) for their contribution to the peer review

of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional a�iliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this

article under a publishing agreement with the author(s) or other rightsholder(s); author self-

archiving of the accepted manuscript version of this article is solely governed by the terms

of such publishing agreement and applicable law.

Related links
ACM Digital Library: https://dl.acm.org

Amazon Web Services: https://aws.amazon.com

Ansible: https://ansible.com

Astropy: https://astropy.org

ATAC-seq Pipeline: https://github.com/ENCODE-DCC/atac-seq-pipeline

BCI2000 project: https://bci2000.org/

Binder: https://mybinder.org/

Bioconductor: https://bioconductor.org

BioContainers: https://biocontainers.pro

Bismark: https://www.bioinformatics.babraham.ac.uk/projects/bismark/

Breakdancer: https://github.com/genome/breakdancer

CERN Container Registry: https://hub.docker.com/u/cern

Chef: https://chef.io

CodeOcean: http://codeocean.com

Containerd: https://containerd.io/

Docker Hub: https://hub.docker.com

EarthData: https://earthdata.nasa.gov

EcoData Retriever: https://ecodataretriever.org

Ecological Niche Modelling on Docker: https://github.com/ghuertaramos/ENMOD

Ecopath: https://ecopath.org/

EIGENSOFT: https://hsph.harvard.edu/alkes-price/software/eigensoft

Environmental Data Commons: https://edc.occ-data.org

Experiment Factory: https://expfactory.github.io

F1000Research guidelines: https://f1000research.com/for-authors/article-guidelines/

software-tool-articles

fmriprep: https://fmriprep.org

FSL project: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

GATK: https://gatk.broadinstitute.org

gdb: https://github.com/haggaie/docker-gdb

GEANT4: https://geant4.web.cern.ch

GeoServer: https://geoserver.org

GitHub Actions: https://github.com/features/actions

GitHub Container Registry: https://github.com/features/packages

Google Cloud Platform: https://cloud.google.com

GRASS GIS: https://grass.osgeo.org

Jenkins: https://jenkins.io

liftr: https://liftr.me/

LIGO Open Science Centre: https://losc.ligo.org

LXC: https://linuxcontainers.org

Marble Station: https://github.com/marblestation/docker-astro

Mesos: https://mesos.apache.org

NEST: https://nest-simulator.org

NeuroDebian: https://neuro.debian.net

NEURON: https://neuron.yale.edu/neuron

OpenShift: https://openshift.com/

Planet Research Data Commons: https://ardc.edu.au/program/planet-research-data-

commons

Podman: https://podman.io/

Puppet: https://puppet.com

QGIS: https://qgis.org

Quay: https://quay.io

Rocker project: https://rocker-project.org/

Rocket: https://github.com/rkt/rkt

Salmon: https://combine-lab.github.io/salmon

SciServer: https://sciserver.org

Singularity: https://sylabs.io/

STAR: https://github.com/alexdobin/STAR

strace: https://github.com/amrabed/strace-docker

SVTyper: https://github.com/hall-lab/svtyper

© Springer Nature Limited 2023

https://doi.org/10.1038/s43586-023-00236-9
https://dl.acm.org
https://aws.amazon.com
https://ansible.com
https://astropy.org
https://github.com/ENCODE-DCC/atac-seq-pipeline
https://bci2000.org/
https://mybinder.org/
https://bioconductor.org
https://biocontainers.pro
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://github.com/genome/breakdancer
https://hub.docker.com/u/cern
https://chef.io
http://codeocean.com
https://containerd.io/
https://hub.docker.com
https://earthdata.nasa.gov
https://ecodataretriever.org
https://github.com/ghuertaramos/ENMOD
https://ecopath.org/
https://hsph.harvard.edu/alkes-price/software/eigensoft
https://edc.occ-data.org
https://expfactory.github.io
https://f1000research.com/for-authors/article-guidelines/software-tool-articles
https://f1000research.com/for-authors/article-guidelines/software-tool-articles
https://fmriprep.org
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://gatk.broadinstitute.org
https://github.com/haggaie/docker-gdb
https://geant4.web.cern.ch
https://geoserver.org
https://github.com/features/actions
https://github.com/features/packages
https://cloud.google.com
https://grass.osgeo.org
https://jenkins.io
https://liftr.me/
https://losc.ligo.org
https://linuxcontainers.org
https://github.com/marblestation/docker-astro
https://mesos.apache.org
https://nest-simulator.org
https://neuro.debian.net
https://neuron.yale.edu/neuron
https://openshift.com/
https://ardc.edu.au/program/planet-research-data-commons
https://ardc.edu.au/program/planet-research-data-commons
https://podman.io/
https://puppet.com
https://qgis.org
https://quay.io
https://rocker-project.org/
https://github.com/rkt/rkt
https://combine-lab.github.io/salmon
https://sciserver.org
https://sylabs.io/
https://github.com/alexdobin/STAR
https://github.com/amrabed/strace-docker
https://github.com/hall-lab/svtyper

	Containers for computational reproducibility

	Introduction

	Dependency hell in scientific research

	Experimentation

	Introducing containers

	The Docker platform

	Getting started with containers

