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Abstract

The fast-paced development of computational tools has enabled 

tremendous scienti�c progress in recent years. However, this rapid 

surge of technological capability also comes at a cost, as it leads to an 

increase in the complexity of software environments and potential 

compatibility issues across systems. Advanced work�ows in processing 

or analysis often require speci�c software versions and operating 

systems to run smoothly, and discrepancies across machines and 

researchers can impede reproducibility and e�cient collaboration. 

As a result, scienti�c teams are increasingly relying on containers 

to implement robust, dependable research ecosystems. Originally 

popularized in software engineering, containers have become common 

in scienti�c projects, particularly in large collaborative e�orts. In 

this Primer, we describe what containers are, how they work and the 

rationale for their use in scienti�c projects. We review state-of-the-

art implementations in diverse contexts and �elds, with examples in 

various scienti�c �elds. Finally, we discuss the possibilities enabled by 

the widespread adoption of containerization, especially in the context 

of open and reproducible research, and propose recommendations 

to facilitate seamless implementation across platforms and domains, 

including within high-performance computing clusters such as those 

typically available at universities and research institutes.
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are provided in the Docker ecosystem, for which a brief overview is 

provided.

Introducing containers
A container is a self-contained and executable package that includes 

all of the necessary components for running a software application, 

such as system tools, libraries settings and the application itself, as 

well as any operating system components that are not provided by 

the host operating system. This means that containers are completely 

isolated from one another and the host operating system, and they can 

run anywhere, regardless of the environment. Applications can then 

be run consistently across different environments, including different 

operating systems and hardware configurations. Specifically, contain-

ers work by packaging an application and its dependencies into a single 

container image, which can then be run on any host that has a container 

runtime installed. The container runtime handles the execution of the 

application and manages the resources it requires, such as memory 

and central processing units (CPUs).

One of the main advantages of using containers is their port-

ability. Because containers include all dependencies of an applica-

tion, they can be moved between different environments. This allows 

developers to build and test applications on their own machines and 

then deploy them to other environments without worrying about 

compatibility issues. Containers take up less space and require fewer 

resources than traditional virtual machines (see Table 1 for a com-

parison of virtual machines and containers), making them well suited 

for use in cloud computing environments33. Containers also isolate 

applications from each other and the host system, which help prevent 

conflicts between applications. In addition, modern language-based 

package management tools, such as Python virtual environments, 

offer a solution to further reduce the chances of encountering depend-

ency conflicts even within a container. Python virtual environments 

enable developers to create isolated environments with their own 

sets of dependencies, configuration and settings for each project. 

This means that even if multiple containers are running on the same 

host, each container can have its own Python virtual environment with 

its specific dependencies, avoiding conflicts and ensuring smooth 

operation.

The selection of virtual machines or containers depends on the 

specific needs and requirements of the application or process. Histori-

cally, virtual machines have been preferred when the research requires 

a highly isolated environment, for example, when the integrity of 

the research data and environment is critical, such as in medical or 

pharmacological research. Virtual machines offer fundamentally 

more isolation than containers, which can be an advantage in certain 

situations. However, developments in container technology such 

as namespaces, SELinux and AppArmor have improved container 

isolation and made them suitable for a wider range of research applica-

tions. Namespaces, for instance, have been a key enabling technology 

for containerization, and are now well established. In addition, tech-

nologies such as Singularity30 and Shifter34 have provided concrete 

solutions for accessing specific hardware resources, such as graph-

ics processing units (GPUs) or HPC clusters. In general, the choice 

between virtual machines and containers will depend on the specific 

needs of the researcher and the degree of isolation required for the 

given application or process.

Containers are often preferable in most practical cases, especially 

in situations in which a researcher needs to run multiple experiments 

concurrently. In this case, using containers allows the researcher to 

Introduction
In the past few decades, science has become increasingly collaborative, 

with modern scientific workflows typically involving multiple people, 

often spread across research teams and locations1. The distributed 

nature of modern scientific research has had a substantial impact on 

scientific discovery, enabling researchers to tackle complex problems 

that require a diverse range of expertise and resources, from genomic 

sequencing2,3 to epidemiological modelling4 and climate predictions5. 

This shift towards incorporating more data and techniques from vari-

ous sources has led to science becoming more computational6–9. Scien-

tists often build upon workflows of each other and share data and code 

publicly10,11. Given the tremendous amount of work and effort that often 

goes into collaborative projects, reusability is key to enable efficient, 

cumulative research and reproducibility has become an inherent part 

of modern scientific training12–18.

In this context, computational reproducibility — the ability to 

obtain consistent and verifiable results from a computational experi-

ment or analysis when the same input data, code and software envi-

ronment are used — has become central to many research projects. 

Although the move towards more collaborative and open practices 

is undeniably beneficial to the scientific enterprise19–22, the complex-

ity afforded by shared and predominantly computational scientific 

workflows has also brought challenges23. With users distributed across 

machines, platforms and software versions, compatibility issues are 

bound to arise, with the potential to impede effective use and devel-

opment — an issue colloquially referred to as dependency hell (Box 1). 

Collaborators attempting to reproduce or build upon existing work 

often face challenges that at best slow down scientific projects or in 

extreme cases can prevent reuse or collaboration altogether24,25.

Containers provide an answer to these challenges26. Broadly speak-

ing, containers encapsulate all information needed to run computer 

code in a fully configured environment. This includes specific software 

versions, as well as their dependencies and operating system configura-

tions27. More specifically, containers solve five major problems associ-

ated with deploying and managing applications in scientific research. 

By allowing researchers to package their code, data and dependen-

cies into a self-contained environment, containers solve issues of 

reproducibility. Containers also allow researchers to share their work 

with others more easily, enabling more efficient collaboration and 

faster progress, and run their code on different operating systems 

and hardware while circumventing compatibility issues. Containers 

can be seamlessly deployed to cloud environments28, enabling seam-

less scalability. Finally, by enabling researchers to allocate resources 

more efficiently and avoid unnecessary consumption or conflicts with 

other projects, containers allow more efficient project management.

In this Primer, we provide the reader with a comprehensive overview 

of containerization in scientific research, including practical use and 

implementations, illustrated with examples. We focus on the Docker 

ecosystem29 (docker.com), as it is the most common platform used to 

build and share containers27, but also discuss alternatives such as Singu-

larity30,31 or Podman32. We consider challenges and limitations, in particu-

lar with respect to efficiency and compatibility with high-performance 

computing (HPC) environments, and provide guidance on implemen-

tation. We close with a discussion of the future of containerization and 

reproducibility in a rapidly evolving computational environment.

Experimentation
This section introduces containers and provides the basics to run and 

personalize containerization from the perspective of a user. Examples 
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run each experiment in its own container, which can be easily started, 

stopped and modified without affecting the other experiments. This 

is not possible with virtual machines, which require a separate oper-

ating system for each experiment. Virtual machines also tend to be 

much heavier and more resource-intensive than containers, which 

can be an important disadvantage in certain scenarios. Similarly, a key 

feature of containers over virtual machines is the ability to combine 

individual containers together, with each providing a different app. 

Containers are also advantageous when a researcher needs to scale 

their experiments or share their experiments with co-workers, as 

containers contain all the necessary dependencies and configura-

tion settings in a lightweight package. Finally, containers cannot be 

matched when it comes to enabling reproducibility in a lightweight 

and portable manner: researchers can reproduce their experiments 

by creating an identical container with the same dependencies and 

configuration settings.

The Docker platform
Containers are built on top of containerization platforms, which pro-

vide a standard format for packaging and distributing applications. 

These platforms include tools for creating, managing and deploying 

containers. One such platform is Docker, which was designed to make 

it easier to create, deploy and run applications by using containers.

We chose to focus on Docker for several reasons. First, Docker is 

relatively easy to use; it has a simple and intuitive interface that makes 

it straightforward to use and deploy containers. Second, with a vast and 

engaged community or users and developers, Docker has become the 

de facto standard for containerization, providing thousands of preb-

uilt container images that can be used as a starting point for building 

applications, as well as support for addressing challenges that might 

arise at any stage of container development. Third, Docker supports 

multiple operating systems including Windows, Linux and Mac, mak-

ing it easier to deploy applications across different environments. 

Fourth, Docker allows scaling applications up or down on the basis of 

demand, making it an ideal choice for cloud-based deployment. Finally, 

with its built-in security features such as image signing and container 

scanning, Docker ensures the security of applications and prevents 

vulnerability, although its seamless integration with other tools enables 

the management and deployment of applications at scale.

By allowing developers to abstract away the complexities of the 

underlying infrastructure, Docker allows users to focus on writing code, 

enabling writing and testing of applications on their own machines and 

then deploying them to any environment running Docker. Although 

Linux runs within Docker containers, users can access the platform 

through a Windows or Mac computer. Docker consists of three com-

ponents: the Docker software, Docker objects and online Docker 

registries, such as the Docker Hub (Fig. 1).

The Docker software itself consists of two parts: the Docker client 

and the Docker daemon. The Docker client is the primary way that users 

interact with Docker. It is a command-line interface that allows users to 

issue commands to the Docker daemon, such as building, running and  

distributing containers. The Docker daemon is the background 

service that manages the containers: it listens for commands from 

the Docker client and performs the necessary actions to create and 

run containers. The Docker daemon can run on the same host as the 

Docker client, or it can be remotely accessed through the network. 

In addition to the command-line interface, Docker also provides a 

user interface called Docker Desktop, which is available on both Mac 

and Windows operating systems. The Docker Desktop user interface 

provides a graphical way for users to manage containers, images and 

other Docker resources.

The main Docker objects are images and containers. A Docker 

image contains everything needed to run a piece of software, includ-

ing the application code, libraries, dependencies and runtime. Docker 

images are built from Dockerfiles, which include details on which 

base image to use, commands to run and files and directories to copy. 

The main difference between Docker images and Docker containers 

is that images are static and cannot be changed or modified, whereas 

containers are dynamic and can be started, stopped and modified while 

they are running (Box 2). Images are used to create containers, but once 

a container is created, it can be modified and run independently of the 

image that was used to create it.

Box 1

Dependency hell in scienti�c 
research

Dependency hell describes a situation in which a software 

application or system becomes dependent on other software 

packages, libraries or frameworks, and the dependencies between 

these packages become complex and intertwined. This can make 

it di�icult or impossible to update or maintain the system, as any 

changes to one package may have unintended consequences on 

others. Dependency hell can also occur when there are conflicts 

between di�erent versions of the same dependency, or when one 

dependency requires another dependency that is incompatible with 

a di�erent dependency in the system. This can lead to problems 

such as broken builds, runtime errors or instability in the system.

An example of dependency hell is described as follows: 

a researcher is trying to use a specific software (software X), but is 

unable to because they lack the appropriate version of a dependent 

library (library Y) required to install software X, and the correct 

version library Y requires software Z, which in turn requires the 

installation of library W, and so on, until all the dependencies 

are met for software X. Dependency hell can also arise when 

di�erent software packages require di�erent versions of the 

same library, creating conflicts that can be di�icult to resolve. 

Altogether, this issue can be time-consuming and frustrating, and 

it can substantially delay progress. Dependencies can be either 

internal or external to each software, with the potential for issues 

to compound. Internal dependencies are those that are within 

the research software itself and can include di�erent modules, 

libraries or classes that are part of the software and are used to 

perform specific tasks. Internal dependencies are generally easier 

to manage and control, as they are part of the research software and 

can be developed and maintained by the research team. External 

dependencies are dependencies that are not part of the research 

software but are required for its use. These can include external 

libraries, frameworks and other software packages that the research 

software depends on. They can be more challenging to manage as 

they are not under the control of the research team and may change 

or become unavailable over time.

https://hub.docker.com
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Finally, the third Docker component is Docker Hub, a cloud-based 

registry service for storing and distributing Docker images. It allows 

users to create and share Docker images with others, as well as to dis-

cover and download prebuilt images created by other users. Docker 

Hub also provides features such as automated builds, version control 

and collaboration tools. It is the default registry for Docker users and 

is used by many organizations to store and share their containerized 

applications. For readers familiar with the Git ecosystem, one can think 

of the relationship between Docker and Docker Hub as that of Git and 

GitHub35,36. Alternatives to Docker Hub abound; one very popular is 

GitHub Container Registry.

Personalizing containers
Reusing existing containers saves time and effort, but researchers 

often need to create personalized containers. Here are some steps 

to personalize containers. Personalization of containers requires 

identifying the specific software and data to be used, including con-

sideration of programming languages, libraries and packages, as 

well as data type, storage and access. The inclusion of a Dockerfile, 

which tells the Docker engine what to do when building the image, also 

must include the software, libraries and other dependencies needed. 

Researchers can also use the ‘docker commit’ command to person-

alize a container by creating a new image from a running container 

and modifying it with additional software or configuration changes. 

However, it is important to note that using docker commit reduces 

visibility and may make the container less reproducible and reliable 

than using a Dockerfile.

It is important to emphasize that using language-based package 

managers in containers, such as pip for Python or npm for Node.js, 

can facilitate the installation of software packages and dependencies 

within the container. This helps ensure that the container is reproduc-

ible and reliable, as it allows for fine-grained control over the versions 

of packages installed. The resulting Docker image will contain all the 

software and data specified in the Dockerfile, as well as any additional 

files or resources that were included in the image.

The container runtime can be further customized by setting envi-

ronment variables, mounting volumes and specifying network con-

figurations. The entry point and command can be customized to allow 

the specific actions that the container will take upon launch. After a 

container has been created, users may want to expose certain ports 

from the container to the host system, which allows accessing network 

services running inside the container from outside the container. This 

is typically done using port mapping, which involves mapping a port 

on the host system to a port in the container.

Once built, the container must be tested, and tools such as strace 

and gdb are used to debug any issues. By personalizing their containers, 

researchers can ensure that their research is reproducible, collabora-

tive and portable, making it easier to share and build upon37. An over-

view of common Docker commands is provided in the Supplementary 

information.

Complements and alternatives to Docker
Docker benefits from a rich ecosystem of interrelated components 

that are in constant development, owing to its growing popularity. The 

Docker ecosystem includes various open-source and commercial tools, 

services and technologies that facilitate the development, deployment 

and management of containerized applications. It extends the capabili-

ties of the Docker platform and enables integration with other systems 

and technologies. These components include Docker Engine (the core 

container engine that allows building, running and managing contain-

ers), Docker Compose (a tool for defining and running multicontainer 

applications), Docker Swarm (a container orchestration platform for 

managing large clusters of Docker nodes), Docker Machine (a tool 

for provisioning and managing Docker hosts) and many others, each 

serving a specific purpose.

In addition to the core Docker ecosystem, several tools have been 

developed that rely on Docker to implement additional functionalities 

or features. For example, the Rocker project38,39 provides containers 

with environments that can accommodate R users straightforwardly. 

It includes tools for building Docker images, creating and managing 

containers and automating tasks using shell scripts. Rocker is specifi-

cally designed for scientific research and includes several prebuilt 

images for common scientific computing tasks. Similarly, containerit40 

makes it easy to package research software and dependencies into con-

tainers and includes tools for building and managing Docker images 

and containers. It is intended to be used as a command-line tool and 

can help automate the creation of containers for research software. 

Both Rocker and containerit are tools that are designed to help scien-

tists create and manage containers for scientific research; Rocker is 

geared towards building and managing container-based workflows 

Table 1 | Containers versus virtual machines

Feature Containers Virtual machines

Resource 

usage

Share the host operating system and the host kernel, making them 

lightweight and efficient

Require more resources than containers, as each virtual machine needs 

its own copy of the operating system and resources are divided among all 

the virtual machines running on the host machine

Deployment Can be deployed and run quickly and smoothly, as they do not 

require a full operating system installation

Require a full operating system installation and can take longer to deploy 

and run

Portability Highly portable and can run on any host system with the same 

architecture — ideal for moving applications between environments

Can also be portable but require virtualization software that must be 

installed on each host system, making them less flexible for moving 

between environments

Isolation Less isolated; although they share the same operating system 

and kernel as the host machine, they are still isolated from one 

another and can run different applications and processes. More 

lightweight and efficient, as they do not require a separate copy 

of the operating system for each container

Completely isolated from one another and the host operating system. 

Each virtual machine has its own copy of the operating system and 

runs in its own self-contained environment. Useful for creating multiple 

environments that need to be separate from one another, such as for 

testing or development purposes

Scalability Can be scaled up or down as needed, making them ideal for 

applications that require horizontal scaling

Can also be scaled, but it may be more challenging, as adding or removing 

virtual machines requires changes to the virtualization environment itself

https://hub.docker.com
https://github.com/features/packages
https://github.com/amrabed/strace-docker
https://github.com/haggaie/docker-gdb
https://rocker-project.org/
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correctly on another. Because containers are platform-independent, 

researchers are also able to work on different platforms, with seamless 

deployment to HPC environments. In HPC environments, it is common 

to have a cluster of machines with different operating systems, different 

versions of libraries and other dependencies; containerization helps  

overcome this problem by ensuring that the application and its depen-

dencies are all included in the container54 and that the container is portable  

and can run on any system with a compatible container runtime49.

Containers can be scaled up or down as needed and they are 

portable, allowing teams to respond quickly to changing demands 

and to work across multiple platforms or locations55,56.The latter 

can be particularly useful for teams that need to move applications 

between different stages of the development or deployment process 

or between different environments such as test, staging and production.

Finally, containers can be easily integrated with collaboration 

tools that allow multiple developers to work on a project at the same 

time, such as Git57. For example, developers can use Git to track changes 

to the application code and its dependencies, and when they are 

ready to share their changes with the team, they can use Git to push 

the changes to a central repository. Other team members can then 

pull the changes and use the containerized application with all its  

dependencies and requirements.

Applications
Containers are being used in a growing number of scientific fields, 

enabling efficient, collaborative forms of research. Here, we describe 

usage in several disciplines — neuroscience, ecology, genomics, astron-

omy, physics and environmental science — with concrete examples of 

container implementations in each case.

Neuroscience
Containers have gained popularity in recent years as a means of pack-

aging and distributing software and code in neuroscience and are 

currently used for a number of applications, such as neuroimaging 

data analysis. Neuroimaging data can be extremely large and com-

plex58,59; using containers, researchers can share tools for neuroimag-

ing analysis, such as MRI processing software or brain connectivity 

analysis tools28,60,61. These developments facilitate the analysis and 

visualization of brain imaging data, as well as sharing reproducible 

results. For example, tools for neuroimaging analysis, including those 

for processing and analysing MRI data, are provided as Docker images 

by the FSL project.

Containers are also used to provide neural simulation software, 

such as NEURON or NEST, to enable running simulations on differ-

ent computer systems and sharing them. Similarly, the NeuroDebian 

Box 2

Getting started with containers
Here we walk you through the steps to get started with containers, 

including how to install the necessary tools and run your first Docker 

container.

Step 1: install a container runtime

To install Docker, follow these steps:

 • Go to the Docker website (docker.com).

 • Follow the instructions to install Docker on your machine. This will 

typically involve downloading an installer and running it on your 

machine.

Step 2: pull a container image

Once you have installed Docker, you can start pulling container 

images from a public registry, such as Docker Hub, or you can also set 

up your own private registry. To pull a container image from Docker 

Hub, use the following command:

$ docker pull <image name>:<tag>

Images on Docker Hub are typically tagged with version information or 

other identifiers to help ensure reproducibility of research workflows. 

It is important to specify a specific tag when pulling an image to 

ensure that you get the same version every time. For example, to pull 

the latest version of the Ubuntu environment, you would run:

$ docker pull ubuntu:latest

Step 3: run a container

Now that you have pulled a container image, you can run it as a 

container using the following command:

$ docker run <image name>

For example, to run the Ubuntu container that you just pulled, you 

would run:

$ docker run ubuntu

This will start a new container on the basis of the Ubuntu image 

and give you a command prompt inside the container. From here, 

you can run any commands you would normally run on a Ubuntu 

machine.

Step 4: stop and remove a container

When you are finished with a container, you can stop it and remove 

it from your machine using the following command:

$ docker stop <container name>

To remove a container, use the following command:

$ docker rm <container name>

You can find the name of your container by running the docker ps 

command, which will list all running containers.

Step 5: use preset or personalized environments

For most research projects, we want to have a whole environment 

setup with all tools and dependencies needed for the entirety of the 

project. Many preconfigured Docker images exist for such purposes, 

but you can also create an environment from scratch to suit your 

personalized research needs and then save it into your own Docker 

image, which can then be used by collaborators. Detailed, step-by-

step instructions on how to do this have been published elsewhere102. 

See the Docker documentation to learn more.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://neuron.yale.edu/neuron
https://nest-simulator.org
https://neuro.debian.net
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project provides Docker images for tools for neural data analysis, 

including tools for processing and analysing electrophysiology data62. 

In the area of brain–computer interfaces, containers are being increas-

ingly used to package software tools for EEG analysis software or BCI 

control software. For example, the BCI2000 project provides Docker 

images that facilitate development and testing for brain–computer 

interface systems63.

More generally, containers are also used for data sharing and col-

laboration — as neuroscientists often work with sensitive or proprietary 

data, containers can provide a secure and controlled environment for 

sharing and accessing data, enabling more effective collaborations64. 

For example, containers can be configured to run with limited permis-

sions and user accounts, making it possible to give access to specific 

data only to authorized users. This built-in flexibility enables easy 

collaboration and data processing, while simultaneously providing 

a secure and controlled environment in which data are isolated and 

protected when necessary.

Ecology
In ecology, Docker is often used to run simulations of ecosystem 

dynamics65,66. Containers can be used to package and deploy the 

necessary code and data for running complex ecosystem simula-

tions; for example, the Ecopath with Ecosim project provides Docker 

images for ecological simulation models that can be used to explore the 

impacts of different management scenarios. This allows ecologists to 

easily share and reproduce results67, as well as scale their simulations 

to large compute resources.

Containers can be used to package and distribute software tools 

for data processing and analysis, such as Geographical Information 

System (GIS) software or machine learning libraries. This is often useful 

to analyse and visualize spatial data or to apply machine learning tech-

niques to ecological data. The QGIS project provides Docker images 

for the QGIS GIS software that can be used to analyse and visualize 

spatial data. Containers are also used to share software tools for envi-

ronmental monitoring68, such as sensor networks or remote-sensing 

platforms, making it easier for ecologists to collect and analyse data 

from field sites or to integrate data from multiple sources. For example, 

the Environmental Data Commons project provides Docker images for 

environmental monitoring tools that can be used to collect and analyse 

data from field sites.

Finally, containers can also be used to distribute data manage-

ment and analysis tools, such as databases or data visualization soft-

ware. These help ecologists store, organize and analyse large data 

sets. For example, the EcoData Retriever project provides a Docker 

image for downloading and cleaning up ecological data from various 

sources69. Containers are also central to the packaging and distribution 

of ecological modelling software, such as population dynamics mod-

els or ecosystem models used to build and test models of ecological 

systems. The Ecological Niche Modeling on Docker project provides 

Docker images for ecological modelling in R, including tools for building 

and fitting models and visualizing results.

Genomics
In the field of genomics, containers are routinely used to package 

and distribute software tools for analysing various types of genomic 

data70–72. For example, in the DNA sequencing data analysis, the BioCon-

tainers project73 provides Docker images for tools, including tools for 

read alignment and variant calling. Docker images for tools in the gene 

expression analysis (such as RNA sequencing (RNA-seq) and microarray 

analyses) are provided by the Bioconductor project74. Similarly, Docker 

images for tools in population genetics and evolutionary analyses are 

provided by the EIGENSOFT project.

For genome annotation, the GFF3 Tools project75 provides Docker 

images for tools such as gene prediction software and functional anno-

tation tools, whereas Docker images for tools for structural variation 

analysis, such as copy number variation analysis software and trans-

location detection tools, are provided by the Breakdancer project. 

A number of projects provide Docker images for tools for functional 

genomics, such as gRNA design and validation to aid in CRISPR-related 

research76.

Table 2 | Docker, Singularity and Podman feature comparison

Feature Docker Singularity Podman

Container runtime Yes Yes Yes

Container image 

management

Yes Yes Yes

Container 

orchestration

Yesa No No

Support for multiple 

operating systems

Yes Yes Yes

Integration with 

scientific workflow 

tools

Yesb Yesb Yesb

Support for 

reproducible 

research

Yesc Yesc Yesc

Support for data 

managementd

Yese Yese Yese

Compatibility with 

Docker images

Yes Yes Yes

Support for legacy 

softwaref

Yesg Yesg No

Support for OS-level 

virtualization

No Yes No

Rootless mode No Yes Yes

Build-time 

customization

Yes No Yes

Image format Docker Image 

Format (DIF)

Singularity 

Image Format 

(SIF)

OCI Image 

Format

Security features User 

namespaces, 

AppArmor 

profiles

Run containers 

as unprivileged 

users

Seccomp 

support

Networking and 

storage options

Docker 

networking

Custom 

networking 

options

Host system 

networking with 

custom options

Ecosystem and 

community

Large and mature Limited but 

growing

Limited but 

growing

OCI, Open Container Initiative. aVia tools such as Docker Swarm and Kubernetes. bVia tools such 

as Snakemake, Nextflow, WholeTale, Binder and CodeOcean. cVia tools such as WholeTale, 

Binder and CodeOcean. dData management refers to the process of collecting, storing, 

organizing, preserving, maintaining and using data in a way that ensures its quality, security, 

accessibility and reliability over time. eVia tools such as DataLad and XNAT. fLegacy software 

refers to software that is no longer being actively developed or maintained or to software that 

was written for an older operating system or hardware architecture. gVia tools such as Shifter.

https://bci2000.org/
https://ecopath.org/
https://qgis.org
https://edc.occ-data.org
https://ecologicaldata.org/node/42
https://github.com/ghuertaramos/ENMOD
https://biocontainers.pro
https://biocontainers.pro
https://bioconductor.org
https://hsph.harvard.edu/alkes-price/software/eigensoft
https://github.com/genome/breakdancer
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Containers can also be used to share tools for the RNA-seq analy-

sis71,77,78, such as read alignment tools or expression quantification 

software, facilitating the analysis and interpretation of RNA-seq data. 

Some examples of tools that can be packaged in containers for RNA-seq 

analysis include STAR79,80 and Salmon81. Recently, containerized soft-

ware has been developed to share tools for epigenomics analysis, such 

as DNA methylation analysis software or chromatin accessibility tools, 

including Bismark and ATAC-seq Pipeline82.

Finally, containerization has a central role in the development of 

tools for analysing genetic variation data, such as single-nucleotide vari-

ant calling software or structural variation detection tools83–85. These 

include tools for genetic variation analysis such as GATK and SVTyper.

Astronomy
Containers are increasingly being used in the field of astronomy, making 

it easier for astronomers to access and use specialized software and data 

and enabling reproducibility and collaboration86–88. One application of 

containers in astronomy is the packaging and distribution of software 

tools for analysing astronomical data. The Astropy project89 provides 

a Docker image for the Astropy python library, which is a widely used 

toolkit for astronomy and astrophysics and includes tools for handling 

and manipulating astronomical data, such as reading and writing FITS 

files, performing coordinate transformations and fitting models to data. 

By packaging the Astropy library in a container, astronomers can seam-

lessly install and use the library on their own systems, while minimizing 

issues with dependencies or conflicts with other software89,90.

Astronomy research often involves the use of specialized software 

and data that may be difficult to obtain or install. By creating a Docker 

image that includes all the necessary software and data, astronomers 

can share their research environment with others, enabling them 

to reproduce and verify results of each other. The Sloan Digital Sky 

Survey provides Docker images91 to facilitate reuse by astronomers 

and astrophysicists, whereas the Marble Station project provides a 

Linux environment with spectroscopic and photometric tools that are 

commonly used in astronomy.

Finally, containers can be used in astronomy to facilitate collabo-

ration and data sharing92. The SciServer project provides a scalable 

collaborative data-driven science platform for astronomers and other 

scientists, using a Docker-based architecture87. SciServer enables 

astronomers to access and work with data stored on the platform, 

regardless of their own computing environment.

Physics
Containers have been used in the field of physics for some time, mainly 

to distribute software tools for analysing physics data93,94.The CERN 

Container Registry provides container images for various tools and 

libraries that are commonly used in particle physics, including software 

for analysing particle collision data and simulations. Physics research 

often involves the use of specialized software and data that may be 

difficult to obtain or install. By creating a container image that includes 

all the necessary software and data, physicists can share their research 

environment with others, enabling them to reproduce and verify 

results of each other. GEANT4 (ref. 95), also developed by CERN, offers 

resources for simulating the passage of particles through matter, with 

practical uses in high-energy, nuclear and accelerator physics. The LIGO 

Open Science Center96 provides a Docker image for the LIGO Data Grid, 

a cloud-based platform for storing and accessing data from the LIGO 

gravitational wave detectors, so as to allow physicists to work with data 

stored on the LIGO Data Grid.

Environmental science
Containers are increasingly relevant to the field of environmental 

science; the Planet Research Data Commons for environmental and 

earth science research provides container images for various tools 

and libraries that are commonly used in environmental science, includ-

ing software for analysing data on air quality, water quality and land 

use. These tools are designed to help address important environmental 

issues such as adapting to climate change97, saving threatened species98 

and reversing ecosystem deterioration99.

A related application is for the reproducibility of research envi-

ronments. For example, the EarthData project provides container 

images for various tools and data that are commonly used in environ-

mental science, including software for analysing data from satellites 

and remote-sensing instruments, and data sets such as the NASA Earth 

Observing System data100. GRASS GIS — a free and open-source GIS 

software — can be used for data analysis, visualization and spatial 

modelling. The GRASS GIS container image provides a preconfigured 

environment for running GRASS GIS, including all necessary dependen-

cies, libraries and configurations. Similarly, GeoServer is a container 

that provides a preconfigured environment for running analyses on 

geospatial data and enables data processing, analysing and sharing. 

Together, these tools facilitate collaboration between environmental 

scientists worldwide101.

Reproducibility and data deposition
Providing reproducible content is a fundamental aspect of scientific 

research and has been discussed at length elsewhere, either generally23 

or in the context of containerization102,103. Here, we focus on best prac-

tices for sharing containers, commenting and documenting and elabo-

rate on how these can help communicate and disseminate research 

findings to maximize their value.

Sharing containers
Containers can help researchers share their work with co-workers, 

regardless of the underlying hardware or operating system, and help 

improve the reproducibility of research results104. By providing a 

consistent environment for running experiments, researchers can 

ensure that their results are not affected by differences in hardware or 

software configurations. This can be particularly important in fields 

such as machine learning or data analysis, in which small differences 

in environment can lead to significant differences in results105,106. Shar-

ing both the Dockerfile and the Docker image when sharing contain-

ers is considered best practice because it allows others to reproduce 

the exact same environment and configuration of the containerized 

application. However, simply having a Dockerfile does not guarantee 

the same build every time. There are several factors that can affect the 

build, such as the version of the base image, the availability of pack-

ages or the version of the software used. A Dockerfile may be created 

that specifies the base image and includes instructions to install the 

required versions of dependencies, as well as instructions to copy 

the source code of the application into the container to configure the 

environment variables. If other researchers use different versions of 

the dependencies or if the dependencies are not available, the build 

can be different. Nonetheless, sharing both the Dockerfile and the 

container image is still essential for enabling reproducibility, as it pro-

vides a starting point for other researchers to build upon and modify 

for their own purposes.

To ensure that others can reproduce the exact same build, it is best 

practice to also share the image of the container in a Docker registry 

https://github.com/alexdobin/STAR
https://combine-lab.github.io/salmon
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://github.com/ENCODE-DCC/atac-seq-pipeline
https://gatk.broadinstitute.org
https://github.com/hall-lab/svtyper
https://astropy.org
https://github.com/marblestation/docker-astro
https://sciserver.org
https://hub.docker.com/u/cern
https://hub.docker.com/u/cern
https://geant4.web.cern.ch
https://losc.ligo.org
https://losc.ligo.org
https://ardc.edu.au/program/planet-research-data-commons
https://earthdata.nasa.gov
https://grass.osgeo.org
https://geoserver.org
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such as Docker Hub or Quay. Sharing the container in this way allows 

others to download and run it without having to build it themselves, 

which guarantees that they are running the same environment and 

configuration as the original application. In addition, for certain 

applications, sharing the data set used in the training process with 

the container could be both useful and facilitate reproduction of 

simulations or experiments. It is worth pointing out that it is possible 

to construct Dockerfiles to be reproducible, for example, by freezing 

older versions of container images using RStudio Package Manager, 

yet even so images that are not pulled by anyone from Docker Hub for 

extended periods of time get purged, and Dockerfiles are not guaran-

teed to build indefinitely. Alternatives to specialized registries exist 

for sharing containers; for example, researchers can also use a cloud 

platform such as Amazon Web Services or Google Cloud Platform to 

host and share containers. These platforms provide tools for building, 

storing and distributing containers and can be useful for sharing large 

or complex containers.

Finally, researchers can implement more advanced workflows 

to build and share their work, for example, by generating automated 

Docker builds. One common approach to do that is to configure auto-

mated builds in Docker Hub, which will re-build an image whenever 

changes are pushed to the source code repository. The advanced 

features of Docker Compose — a tool that allows defining and run-

ning multicontainer applications — can help implement automated 

builds when dealing with multiple containers. Similarly, Jenkins is a 

commonly used open-source automation server that facilitates auto-

mation of diverse tasks such as creating and launching Docker images. 

A Jenkins pipeline can be set up that will build an image and push it 

to a registry when certain conditions are met, like when changes are 

pushed to the source code repository. Alternatively, GitHub Actions 

is a Continuous Integration/Continuous Deployment (CI/CD) platform 

that allows developers to automate their workflow on GitHub such 

as building and testing code, deploying code to different environ-

ments and managing dependencies. GitHub Actions allows creat-

ing custom workflows that are triggered by events such as commits, 

pull requests and releases and has been implemented successfully in 

research workflows107. Other options include TravisCI, GitLabCI and 

CircleCI — all CI/CD tools specifically designed for automating the 

software development process and provide integration with various 

services, including Docker.

Best practices in commenting and documenting
Containers are self-contained units of software that include all of the 

dependencies and resources needed to run an application and, as 

such, they can be complex and difficult to understand. For research 

development projects, effective commenting and documentation are 

essential. Commenting refers to explanations, descriptions and notes 

within the source code, which aids in understanding the purpose of the 

code, whereas documentation, which is typically external to the code 

and presented in the form of a README file or user manual, provides 

additional details103. Proper commenting and documentation can help 

make containers more readable and maintainable and facilitate the use 

and utility of containerized software108. Table 3 provides important best 

practices for commenting and documenting in the process of sharing 

containers. By following these best practices and using appropriate 

tools, researchers can share their containers with others seamlessly and 

effectively. In addition to these general best practices, it is also impor-

tant to follow any required field-specific guidelines or conventions 

(F1000Research guidelines)109–111.

Communication and dissemination of research findings
Containers can facilitate the communication and dissemination of 

findings in a number of ways. First and foremost, they allow researchers 

to share their software applications with other researchers, regardless 

of the operating system or hardware being used, allowing for greater 

collaboration and the potential for faster progress in their respec-

tive fields. Containers also allow for the creation of fully reproduc-

ible research environments, ensuring that findings can be accurately 

replicated and verified. In addition, containers make it easier for 

researchers to publish their findings in an accessible format by creat-

ing a self-contained package that can be easily deployed and run by 

anyone with access to the container.

Containers have emerged as a promising approach for archiving 

research software alongside a publication. Many computing-focused 

archives, such as the ACM Digital Library, offer services for archiving 

research software. However, the adoption of such services has been 

low, and there is a need for better archiving practices that can ensure 

long-term preservation and reproducibility of research software. 

Containerization can offer several advantages for archiving research 

software. By encapsulating all dependencies and configurations of 

Table 3 | Best practices for commenting and documenting 
containers

Best practice Example

Clearly document the 

purpose of the container

# This container provides a preconfigured 

environment for running the my-science-app 

application

Include detailed instructions 

for how to use the container

# To use this container:

# 1. Pull the image from the Docker registry:

$ docker pull myusername/my-web-app

# 2. Run the container: docker run -p 

8080:80 myusername/my-web-app

# 3. Access the app at http://localhost:8080

Provide example usage or run 

commands

# Here is an example of how to run the 

container with a custom configuration file:

$ docker run -p 8080:80 -v/path/to/

config:/etc/my-web-app myusername/

my-web-app‘

List any environment 

variables that the container 

expects to be set

# The container expects the following 

environment variables to be set:

# - DB_USERNAME (username for the database)

# - DB_PASSWORD (password for the database)

# - DB_HOST (hostname of the database server)

Document any ports exposed 

by the container

# This container exposes port 80 for HTTP 

traffic

List any external 

dependencies

# This container requires access to a 

MongoDB server running on hostname 

mongodb.example.com

Document any data or 

volume mounts used by the 

container

# This container expects a volume to 

be mounted at /var/www/html for the 

application code

Reference any related 

projects, links or 

documentation

# This container is based on the official Node.

js Docker image, see more details at https://

hub.docker.com/_/node/

Add any version information # Current version: 1.0.0

Add any licensing information # Licensed under the CC BY 4.0 licence

https://quay.io
https://aws.amazon.com
https://cloud.google.com
https://jenkins.io
https://github.com/features/actions
https://f1000research.com/for-authors/article-guidelines/software-tool-articles
https://dl.acm.org
https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://creativecommons.org/licenses/by/4.0/
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the software into a single container image, containers provide a self-

contained and portable environment that can be easily shared and 

preserved. Specifically, container images can be archived as part of 

the publication or deposited in a container registry for long-term 

preservation. Moreover, containers allow for the reproducibility 

of research findings by ensuring that the software environment 

remains consistent, even as the underlying infrastructure changes  

over time.

Researchers can ensure effective archiving with containers by 

adopting several recommended practices. This involves using well-

defined and well-maintained container images, with clear documen-

tation on the included software dependencies and configurations. 

Additionally, all software dependencies and configurations should 

be well documented, including versions of libraries, software and 

operating systems. Widely used and supported container formats, 

such as Docker, Singularity or Podman, should be chosen on the basis 

of target archive or repository requirements. Metadata and docu-

mentation, such as a README file providing instructions for using the 

container, research software information and licensing details should 

be provided with the container image. Following these best practices, 

archiving research software with containers can be a valuable approach 

for ensuring long-term preservation and reproducibility of scientific 

findings.

Limitations and optimizations
Although containers are powerful and versatile, they also have impor-

tant limitations. In this section, we discuss some of the pros and cons 

of containerization and explore key restrictions. We also discuss com-

patibility with HPC environments, which have become increasingly 

popular among computational research groups.

Costs of containerization
Despite its numerous advantages, there are also some costs associ-

ated with using containers in scientific research112. One of the main 

drawbacks is the learning curve involved in using containerization 

tools and technologies. Researchers need to familiarize themselves 

Glossary

Clusters

Groups of machines that work together 

to run containerized applications.

Compute resources

The resources required by a container 

to run, including central processing 

units, memory and storage.

Containerization platform

A complete system for building, 

deploying and managing containerized 

applications, typically including a 

container runtime, and additional 

tools and services for things such as 

container orchestration, networking, 

storage and security.

Container runtime

The software responsible for running 

and managing containers on a host 

machine, involving tasks such as 

starting and stopping containers, 

allocating resources to them and 

providing an isolated environment 

for them to run in.

Continuous Integration/

Continuous Deployment

(CI/CD). A software development 

practice that involves continuously 

integrating code changes into a 

shared repository and continuously 

deploying changes to a production 

environment.

Dependencies

Software components that a 

particular application relies on to run 

properly, including libraries, tools and 

frameworks.

Distributed-control model

A deployment model in which 

control is distributed among multiple 

independent nodes, rather than being 

centralized in a single control node.

Docker engine

The containerization technology that 

Docker uses, consisting of the Docker 

daemon running on the computer and 

the Docker client that communicates 

with the daemon to execute 

commands.

Dockerfiles

A script that contains instructions for 

building a Docker image.

Environment variables

A variable that is passed to a container 

at runtime, allowing the container to 

configure itself on the basis of the value 

of the variable.

High-performance computing

The use of supercomputers and 

parallel processing techniques to solve 

complex computational problems that 

require a large amount of processing 

power, memory and storage capacity.

Host operating system

Primary operating system running on 

the physical computer or server in 

which virtual machines or containers are 

created and managed.

Image

A preconfigured package that 

contains all the necessary files and 

dependencies for running a piece of 

software in a container.

Namespaces

Virtualization mechanisms for 

containers, which allow multiple 

containers to share the same system 

resources without interfering with 

each other.

Networking

The process of connecting multiple 

containers together and to external 

networks, allowing communication 

between containers and the outside 

world.

Orchestration

The process of automating the 

deployment, scaling and management 

of containerized applications in a 

cluster.

Orchestration platform

System for automating the deployment, 

scaling and management of 

containerized applications.

Port mapping

The process of exposing the network 

ports of a container to the host machine, 

allowing communication between 

the container and the host or other 

networked systems.

Production environment

Live, operational system in which 

software applications are deployed and 

used by end-users.

Runtime environment

Specific set of software and hardware 

configurations that are present and 

available for an application to run on, 

including the operating system, libraries, 

system tools and other dependencies.

Scaling

The process of increasing or decreasing 

the number of running instances of 

a containerized application to meet 

changing demand.

Shared-control model

Deployment model in which a single 

central entity has control over multiple 

resources or nodes.

Volumes

A storage mechanism for containers, 

which allows data to persist outside the 

file system of the container, including 

after a container has been deleted or 

replaced.
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with containerization concepts, such as images, containers and 

registries, as well as how to use tools such as Docker to manage 

and deploy containers. This can require a significant amount of 

time and resources, especially for researchers who are new to con-

tainerization. To address this challenge, it is often helpful to start 

with the basics, that is, focusing on understanding the concepts 

and fundamentals of containerization, such as what a container is, 

how it works and the benefits of using containers. Getting hands-

on experience creating and running containers using tools such as 

Docker in practice scenarios helps users learn to work with contain-

ers. Online communities dedicated to containerization and related 

technologies, such as forums and social media groups, can provide 

resources, tips and best practices from experienced developers. In 

addition, there are a plenty of online tutorials, books and courses 

available that teach both the basics and more advanced concepts  

of containerization.

Building container images requires a certain level of expertise and 

specialized knowledge, which can be challenging and time-consuming 

to obtain. In addition, building, testing and deploying container images 

can require dedicated staff, infrastructure and resources — these can 

include servers, storage and networking, as well as the orchestration 

software needed to manage and deploy the containers. These resources 

come at a cost, which can increase when scaling and maintaining the 

infrastructure.

In addition to the cost of infrastructure and resources, there are 

also sustainability costs associated with the use and maintenance of 

containers. The energy consumption of containerized workloads can 

be substantial, as they require server and networking infrastructure 

to support their operation. Serverless computing — a cloud comput-

ing model that allows developers to deploy and run code without 

the need to manage infrastructure — has been proposed as a way to 

mitigate these costs via dynamic allocation of computing resources 

on the basis of current workload demands. However, it is important 

to note that the suitability of serverless computing for long-running 

computations in scientific research may depend on various factors, 

such as the specific requirements of the computation, the avail-

able budget and trade-offs among cost, performance and conveni-

ence. For certain types of computations or workloads, serverless 

computing may still be a viable option, especially when considering 

factors such as ease of deployment, automatic scaling and reduced  

operational overhead.

In most cases, the benefits of using containers in scientific research 

outweigh the costs of learning and managing containerization tools 

and technologies. Containers are often seen as a middle ground 

between the lightweight and easy-to-use nature of package manag-

ers and the comprehensive isolation and reproducibility of virtual 

machines. Containers provide a balance between these two extremes, 

offering a higher level of isolation and reproducibility compared with 

package managers, while being more resource-efficient and port-

able than virtual machines. This is one of the reasons containers have 

become widely adopted in various contexts such as continuous inte-

gration, industry and cloud use and increasingly in research, in which 

reproducibility, portability and resource efficiency are crucial factors 

for success. However, it is important for researchers to carefully con-

sider their needs and resources when deciding whether to use contain-

ers in their research projects. One important aspect to consider is the 

current efficiency of the research workflow and how it can be influenced 

by containerization. We now turn to specific limitations and concrete 

solutions to build more efficient workflows in scientific research.

Limitations of containerization
Containerization may not be suitable for certain types of research 

that depend on the kernel level or on hardware. This can be a particu-

lar issue for machine learning workflows that rely on GPU accelera-

tion, as containers may not be able to access the necessary hardware 

resources30,32, because they are designed to be hardware-agnostic and 

rely on the kernel of the host system to interface with hardware. As a 

result, the host operating system kernel version and configuration 

can have an impact on the behaviour and performance of containers. 

For example, if a container requires a specific kernel feature that is 

not available in the host operating system kernel, it may not function 

correctly or may require modifications. Similarly, if the host operat-

ing system kernel has specific security settings or restrictions, they 

may apply to containers as well. This can be a challenge for machine 

learning workflows that require access to specialized hardware such as 

GPUs, as containers may not have direct access to these resources. It is 

therefore important to consider the compatibility and dependencies 

of the host operating system kernel when working with containers to 

ensure proper functionality and reproducibility.

There are several solutions that can be implemented to address 

these potential limitations. Containerization technologies exist that 

can facilitate better access to host resources, such as Podman or Singu-

larity (Table 2). By allowing the containers to run as regular processes 

on the host operating system, without requiring a separate daemon 

or root privileges, these tools provide a more native experience and 

facilitate access to host resources more directly and efficiently. This 

can be especially important for low-level access to system resources, 

such as kernel-level features or hardware devices. By contrast, Docker 

relies on a daemon process to manage container execution, which can 

introduce additional layers of abstraction and potential performance 

overhead. In addition, Docker containers typically run as the root user 

by default, which can pose security risks and limit access to certain 

system resources. As a best practice, it is recommended to set the USER 

in Docker containers to a non-root user to mitigate potential security 

risks and restrict unnecessary access to system resources, following 

the principle of least privilege. This can help improve the security 

posture of Docker containers and reduce the risk of unauthorized 

access or exploits.

If specific access to the kernel or to hardware resources is required, 

it is also possible to use virtual machines, which can provide access to 

host resources through virtualization (Table 1). The choice between 

containerization and virtual machines does not have to be dichoto-

mous; however, hybrid solutions exist, such as running a containerized 

application on top of a virtual machine, which allows the container-

ized application to have the portability and isolation benefits of con-

tainerization while also having access to the host resources through 

the virtual machine.

It may not always be possible to fully replicate the environment 

in which research was conducted, which can be particularly chal-

lenging when using containers to replicate research environments 

with complex dependencies or that rely on specific hardware con-

figurations113. In these cases, it may be difficult to fully replicate the 

environment using containers, which can limit the reproducibility of 

the research. Specific resources can help make the environment more 

portable and reproducible; for example, Platform as a Service (PaaS) 

is a cloud computing service that allows developers to create, launch 

and manage applications without the need to handle the underlying 

infrastructure. Examples include Heroku, Google App Engine and 

Microsoft Azure. PaaS can provide resources, scaling and dependency 
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management, which can help make the environment more portable 

and reproducible. Similarly, Infrastructure as a Service (IaaS), a cloud 

computing service, offers virtualized computing resources, such as 

storage, networking and virtual machines. Some examples of IaaS 

providers are Amazon Web Services, Microsoft Azure and Google 

Cloud Platform. IaaS gives users additional control over the underly-

ing infrastructure, including hardware and operating system, and 

can configure it to match the desired environment for their research. 

Alternatively, hardware abstraction layer (HAL) is a layer of software 

or hardware that abstracts the underlying hardware and operating 

system, allowing applications to run in a more isolated and portable 

manner. HAL can help isolate the application and its dependencies 

from the underlying hardware and operating system, providing a 

consistent environment for reproducible research. Containerization 

technologies such as Docker can be considered as a form of HAL, as 

they abstract the underlying host system and provide a consistent 

environment for running applications.

Containers can introduce additional complexity to research 

workflows, as researchers may need to manage and maintain multiple 

containerized environments. This can be time-consuming and may 

require additional training and support for researchers. Container 

orchestration tools such as Docker Swarm or Kubernetes can help 

manage this complexity by providing an abstraction layer that simpli-

fies the process of deploying and scaling containers. Docker Swarm 

and Kubernetes handle both Embarrassingly parallel (EP) and non-EP 

workflows. EP workflows refer to workflows that can be parallelized 

and run in isolation, in which each task can be executed independently 

of the others, making them well suited for container orchestration. 

Non-EP workflows, on the contrary, have interdependent tasks that 

require coordination and communication between containers, which 

can be more challenging to manage. The two orchestration tools may 

require different configurations and setups depending on the workflow 

requirements.

For deployment, Docker Swarm uses a shared-control model, 

whereas Kubernetes uses a distributed-control model. Docker Swarm 

is tightly integrated with the Docker ecosystem and is optimized for 

use with Docker containers. Kubernetes, on the contrary is more flex-

ible and can work with any container runtime, not just Docker. Both 

Docker Swarm and Kubernetes can scale to thousands of nodes, but 

Kubernetes has better support for autoscaling and can scale appli-

cations more quickly. Kubernetes has a wider range of features and 

capabilities, including support for rolling updates, resource quotas 

and pod security policies. Docker Swarm has fewer features but is 

generally easier to use and set up. Overall, Kubernetes is generally 

considered to be a more powerful and feature-rich platform, but it 

can be more complex to use, whereas Docker Swarm is a good choice 

for users who want a simpler, more streamlined solution for container  

orchestration.

Researchers are starting to incorporate containers into larger 

workflow management systems, which provide a framework for orches-

trating and executing complex scientific workflows. Workflow manage-

ment systems such as Nextflow, CWL and Snakemake, among others, 

have gained traction in the scientific community owing to their support 

for containerization114. Automation tools such as Ansible, Puppet and  

Chef can be used to automate the process of building, deploying  

and managing containers. Researchers can also rely on container man-

agement platforms such as Google Kubernetes Engine or Amazon 

Elastic Container Service to access a user-friendly interface for man-

aging containers. For optimal results, it is important to consider the 

specific requirements of the research and the size and structure of the 

organization when selecting and implementing a solution.

Adapting containers to HPC environments
Challenges can also arise when attempting to deploy containers 

over HPC environments115,116. These environments typically consist 

of clusters of computers with powerful processors, large amounts of  

memory and high-speed interconnects that allow the computers to 

work together in a coordinated way. They are often used to solve prob-

lems that require large amounts of data processing or simulations that 

would be too time-consuming or impossible to perform on a single 

computer. Yet, the complexity HPC often produces also adds hurdles 

to containerization. For example, containers can introduce overhead 

when compared with traditional virtualization technologies, as they 

run isolated processes and require additional system resources to 

manage the containers. Although containers are generally considered 

lightweight compared with virtual machines, this can result in higher 

overhead when running performance-critical workloads on HPC sys-

tems. However, the lightweight nature of containers can also improve 

resource utilization, as multiple containers can be run on the same host 

without significant performance degradation. This trade-off between 

overhead and resource utilization should be carefully considered when 

deciding whether to use containers for HPC workloads. Furthermore, 

the degree of isolation containers provide between different applica-

tions and their dependencies may not be sufficient for all HPC work-

loads that require tight control over system resources such as CPU, 

memory and input/output (I/O).

HPC environments can also lead to limitations in terms of com-

patibility, as these systems typically have complex and specialized 

infrastructure — such as parallel file systems — that may not be easily 

integrated with container technologies. This architecture can lead to dif-

ficulties when trying to use containers in HPC environments. Scalability 

can also be an issue, as HPC environments may in some instances not 

be well suited for running large numbers of simultaneously executing 

containers on a shared infrastructure. Finally, in university and research 

settings, HPC environments may require additional security measures 

to protect against unauthorized access, especially when dealing with 

sensitive patient-level data or patent information. In this context, con-

tainers can pose security risks, as they may not provide the same level of 

isolation and control as traditional virtualization technologies.

Despite these challenges, the use of containerization in HPC 

environments provides very attractive features and opportunities for 

researchers. One of the main advantages of using containers in HPC 

environments is their portability117, which allows HPC workloads to be 

deployed on a wide range of hardware and operating systems, without 

the need to worry about compatibility issues or manual configuration. 

This can greatly simplify the process of deploying and managing HPC 

applications, especially in large-scale environments in which there may 

be many different hardware configurations and operating systems 

in use. Containers also improve resource utilization in HPC environ-

ments118; because they are lightweight and only contain the resources 

that are necessary for the application to run, they can be more efficient 

at utilizing hardware resources such as CPU, memory and storage. With 

containers, HPC applications can be more efficiently scheduled and 

run on available resources, potentially improving overall performance 

and minimizing resource contention. Containers can also be used to 

improve the security and isolation of HPC workloads, as dependen-

cies can be isolated from the rest of the system, reducing the risk of 

interference or conflicts with other applications. Finally, although HPC 

https://ansible.com
https://puppet.com
https://chef.io
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resources have traditionally been accessed using specialized software 

and protocols, the use of containers can allow researchers to access HPC 

resources in a more cloud-native way119, that is, in a way that is similar to 

how one would access cloud computing resources. This increases flex-

ibility and scalability in a user-friendly way, in contrast to strict reliance 

on specialized software and protocols. For example, by using contain-

erized workflows and tools such as Singularity, researchers can access 

HPC resources using familiar container orchestration tools and APIs, 

such as those provided by Kubernetes120, making it easier for research-

ers to access and manage HPC resources, allowing a seamless integra-

tion with other tools and services. Additionally, the use of containerized 

workflows can enable researchers to scale their workloads more easily 

across HPC resources, as containers can be seamlessly transferred and 

executed on different HPC systems. This can be particularly useful for 

researchers who need to run large-scale simulations or data analyses 

that require significant computing resources.

There are several tools and platforms available that can be used 

to support the use of containers in HPC environments34. For example, 

the Open Container Initiative is a standard for building and running 

containerized applications and is supported by a range of container 

engines and orchestration tools such as Docker, Kubernetes and Mesos. 

These tools can be used to manage and deploy containerized HPC 

applications at scale, allowing organizations to take advantage of the 

benefits of containerization in their HPC environments.

Outlook
Containers offer many benefits for scientific research, including the 

ability to package and distribute software and data in a consistent and 

portable manner, enabling reproducibility and collaboration and facili-

tating the use of cloud computing121. As the use of containers becomes 

more widespread, it is likely that they will become an increasingly 

important tool in scientific computing. Containers can make it easier 

for scientists to access and use specialized software and data and can 

facilitate the sharing and reproducibility of research environments122. 

This may lead to the development of new container-based tools and 

platforms specifically designed for scientific computing.

Containers will also become more and more useful in data-

intensive research, in which large amounts of data are generated and 

analysed, and uptake in this space is expected to increase123–125. By using 

containers to package and distribute data analysis tools, scientists can 

easily share and reproduce their results and can also take advantage of 

the scalability and flexibility of cloud computing126. As scientists rely 

more and more on automated and reproducible research workflows, 

it is also likely that they will increasingly turn to containers to package 

and distribute these workflows. We have discussed a few of the available 

platforms and repositories in this article, but options will undoubtedly 

grow quickly in the future, as containers continue to have an important 

role in scientific research.

Container orchestration tools such as Kubernetes and Docker 

Swarm will further enable scientists to deploy and manage complex 

research workflows across multiple machines, improving the efficiency 

and scalability of their research127. These platforms allow researchers to 

deploy and manage their scientific applications and tools and enable the 

creation of scalable and fault-tolerant environments for running experi-

ments and simulations, thus allowing researchers to prioritize and allo-

cate resources to their most important tasks. Tools such as containerd 

and Docker Composed are helping to change the landscape of pos-

sibilities in containerization, providing convenience and enhancing 

capabilities for users. Containerd is an open-source container runtime 

that is designed to be lightweight and modular, which is becoming 

increasingly popular for managing containers in cloud environments, 

particularly in conjunction with Kubernetes. Docker Compose is a tool 

that allows developers to define and run multicontainer applications 

using a simple YAML configuration file, simplifying the definition and 

management of complex containerized environments.

Other recent developments such as Dev Containers are likely to gain 

prominence in the research space. Dev Containers allow specifying the 

container environment to use in conjunction with GitHub Codespaces, 

a feature that facilitates creating new development enviro nments in the 

cloud — directly within GitHub — with the specific versions of languages, 

frameworks and tools that are required for a project. Dev Containers 

are defined using a configuration file called a ‘devcontainer.json’ file, 

which specifies the container image that should be used, along with 

any additional configuration options such as environ ment variables, 

volumes and ports. These files automatically launch the container 

environment in the codespace, allowing researchers to switch between 

different container environments.

Finally, recent developments in cloud are changing the way con-

tainers are being used and shared. Specifically, the trend towards 

building cloud-native applications, which are designed to be scalable 

and resilient, has led to the adoption of containerization to package and 

deploy these applications. Cloud-native applications often use micro-

services architecture, which relies on containers to manage individual 

components and services. Relatedly, serverless computing is often 

used in conjunction with containerization to package and deploy code 

in a more efficient and scalable manner. Together, these features can in 

turn allow researchers to effortlessly scale their computations across 

multiple machines, potentially improving the efficiency and speed of 

their research.

The implications of containerization are vast and far-ranging and 

could impact the whole ecosystem of scientific research. Containers 

have the potential to heavily influence scientific publishing, via tools 

such as WholeTale128, Binder and CodeOcean, which are designed to 

facilitate the integration between published research and container-

ized research129. These tools enable researchers to create and share 

reproducible research environments using containers and provide 

platforms for publishing and sharing research that is based on contain-

ers, with additional features and functionality specifically designed for 

reproducible research above and beyond those available with Docker. 

It is also possible that funding agencies will recognize the value of 

containerization to ensure quality and reproducibility of scientific 

research130,131 and thus require containerization for funded projects in 

the future. This may necessitate the development of new infrastructure, 

training and support for researchers — factors that funders will need to 

consider to successfully implement a requirement for containerization 

in scientific research.

In our view, the use of containerization in scientific research is a 

natural evolution that is likely to become standard practice132. Con-

tainerization is booming, with constant innovation and development, 

and has become the norm in fields such as software development and 

engineering133. There is no reason scientists should not leverage this 

tool to improve scientific practices, as well as the quality and impact 

of their research. Many scientists already share data and materials 

with their publications12,134–136 — containerization is the next natural 

step in this direction102,137, with the potential to revolutionize scientific 

research and discovery.
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