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The fast-paced development of computational tools has enabled
tremendous scientific progress inrecent years. However, this rapid
surge of technological capability also comes at a cost, asitleads to an
increase in the complexity of software environments and potential
compatibility issues across systems. Advanced workflows in processing
or analysis often require specific software versions and operating
systems to run smoothly, and discrepancies across machines and
researchers canimpede reproducibility and efficient collaboration.

As aresult, scientific teams are increasingly relying on containers
toimplement robust, dependable research ecosystems. Originally
popularized in software engineering, containers have become common
in scientific projects, particularly in large collaborative efforts. In

this Primer, we describe what containers are, how they work and the
rationale for their use in scientific projects. We review state-of-the-
artimplementations in diverse contexts and fields, with examplesin
various scientific fields. Finally, we discuss the possibilities enabled by
the widespread adoption of containerization, especially in the context
of openand reproducible research, and propose recommendations

to facilitate seamless implementation across platforms and domains,
including within high-performance computing clusters such as those
typically available at universities and research institutes.
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Introduction

Inthe past few decades, science has become increasingly collaborative,
with modern scientific workflows typically involving multiple people,
often spread across research teams and locations'. The distributed
nature of modern scientific research has had a substantial impact on
scientific discovery, enabling researchers to tackle complex problems
thatrequire adiverse range of expertise and resources, from genomic
sequencing®’ to epidemiological modelling* and climate predictions’.
This shift towardsincorporating more dataand techniques from vari-
oussources hasled to science becoming more computational®”. Scien-
tists often build upon workflows of each other and share data and code
publicly'®", Given the tremendous amount of work and effort that often
goes into collaborative projects, reusability is key to enable efficient,
cumulative research and reproducibility hasbecome aninherent part
of modern scientific training' .

In this context, computational reproducibility — the ability to
obtain consistent and verifiable results from a computational experi-
ment or analysis when the same input data, code and software envi-
ronment are used — has become central to many research projects.
Although the move towards more collaborative and open practices
is undeniably beneficial to the scientific enterprise'?, the complex-
ity afforded by shared and predominantly computational scientific
workflows has also brought challenges®. With users distributed across
machines, platforms and software versions, compatibility issues are
bound to arise, with the potential to impede effective use and devel-
opment —anissue colloquially referred to as dependency hell (Box 1).
Collaborators attempting to reproduce or build upon existing work
often face challenges that at best slow down scientific projects or in
extreme cases can prevent reuse or collaboration altogether®*,

Containers provide an answer to these challenges®. Broadly speak-
ing, containers encapsulate all information needed to run computer
codeinafully configured environment. Thisincludes specific software
versions, aswell as their dependencies and operating system configura-
tions”. More specifically, containers solve five major problems associ-
ated with deploying and managing applicationsin scientific research.
By allowing researchers to package their code, data and dependen-
cies into a self-contained environment, containers solve issues of
reproducibility. Containers also allow researchers to share their work
with others more easily, enabling more efficient collaboration and
faster progress, and run their code on different operating systems
and hardware while circumventing compatibility issues. Containers
can be seamlessly deployed to cloud environments®, enabling seam-
less scalability. Finally, by enabling researchers to allocate resources
more efficiently and avoid unnecessary consumption or conflicts with
other projects, containers allow more efficient project management.

Inthis Primer, we provide the reader with a comprehensive overview
of containerization in scientific research, including practical use and
implementations, illustrated with examples. We focus on the Docker
ecosystem?® (docker.com), as it is the most common platform used to
build and share containers”, but also discuss alternatives such as Singu-
larity*>* or Podman®2. We consider challenges and limitations, in particu-
lar with respect to efficiency and compatibility with high-performance
computing (HPC) environments, and provide guidance on implemen-
tation. We close with a discussion of the future of containerization and
reproducibility in arapidly evolving computational environment.

Experimentation
Thissectionintroduces containers and provides the basics torunand
personalize containerization fromthe perspective of a user. Examples

are provided in the Docker ecosystem, for which a brief overview is
provided.

Introducing containers

A container is a self-contained and executable package that includes
all of the necessary components for running a software application,
such as system tools, libraries settings and the application itself, as
well as any operating system components that are not provided by
the host operating system. This means that containers are completely
isolated from one another and the host operating system, and they can
run anywhere, regardless of the environment. Applications can then
berun consistently across different environments, including different
operating systems and hardware configurations. Specifically, contain-
erswork by packaging anapplicationandits dependenciesintoasingle
containerimage, which canthenbe run onany host that has a container
runtime installed. The container runtime handles the execution of the
application and manages the resources it requires, such as memory
and central processing units (CPUs).

One of the main advantages of using containers is their port-
ability. Because containers include all dependencies of an applica-
tion, they can be moved between different environments. This allows
developers to build and test applications on their own machines and
then deploy them to other environments without worrying about
compatibility issues. Containers take up less space and require fewer
resources than traditional virtual machines (see Table 1 for a com-
parison of virtual machines and containers), making them well suited
for use in cloud computing environments®. Containers also isolate
applications fromeach other and the host system, which help prevent
conflicts between applications. In addition, modern language-based
package management tools, such as Python virtual environments,
offerasolutionto further reduce the chances of encountering depend-
ency conflicts even within a container. Python virtual environments
enable developers to create isolated environments with their own
sets of dependencies, configuration and settings for each project.
This means that even if multiple containers are running on the same
host, each container can have its own Pythonvirtual environment with
its specific dependencies, avoiding conflicts and ensuring smooth
operation.

The selection of virtual machines or containers depends on the
specific needs and requirements of the application or process. Histori-
cally, virtual machines have been preferred when the research requires
a highly isolated environment, for example, when the integrity of
the research data and environment is critical, such as in medical or
pharmacological research. Virtual machines offer fundamentally
moreisolation than containers, which canbe anadvantage in certain
situations. However, developments in container technology such
as namespaces, SELinux and AppArmor have improved container
isolation and made themsuitable forawider range of research applica-
tions. Namespaces, forinstance, have been akey enabling technology
for containerization, and are now well established. In addition, tech-
nologies such as Singularity®® and Shifter** have provided concrete
solutions for accessing specific hardware resources, such as graph-
ics processing units (GPUs) or HPC clusters. In general, the choice
between virtual machines and containers will depend on the specific
needs of the researcher and the degree of isolation required for the
given application or process.

Containers are often preferable in most practical cases, especially
insituationsin whicharesearcher needs to run multiple experiments
concurrently. In this case, using containers allows the researcher to
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run each experiment inits own container, which can be easily started,
stopped and modified without affecting the other experiments. This
is not possible with virtual machines, which require a separate oper-
ating system for each experiment. Virtual machines also tend to be
much heavier and more resource-intensive than containers, which
canbeanimportant disadvantage in certain scenarios. Similarly, akey
feature of containers over virtual machines is the ability to combine
individual containers together, with each providing a different app.
Containers are also advantageous when a researcher needs to scale
their experiments or share their experiments with co-workers, as
containers contain all the necessary dependencies and configura-
tion settings in a lightweight package. Finally, containers cannot be
matched when it comes to enabling reproducibility in a lightweight
and portable manner: researchers can reproduce their experiments
by creating an identical container with the same dependencies and
configuration settings.

The Docker platform

Containers are built on top of containerization platforms, which pro-
vide a standard format for packaging and distributing applications.
These platforms include tools for creating, managing and deploying
containers. One such platformis Docker, which was designed to make
iteasier to create, deploy and run applications by using containers.

We chose to focus on Docker for several reasons. First, Docker is
relatively easy to use; ithasasimple and intuitive interface that makes
itstraightforward to use and deploy containers. Second, withavast and
engaged community or users and developers, Docker hasbecome the
de facto standard for containerization, providing thousands of preb-
uilt container images that can be used as a starting point for building
applications, as well as support for addressing challenges that might
arise at any stage of container development. Third, Docker supports
multiple operating systems including Windows, Linux and Mac, mak-
ing it easier to deploy applications across different environments.
Fourth, Docker allows scaling applications up or down on the basis of
demand, makingitanideal choice for cloud-based deployment. Finally,
with its built-in security features such as image signing and container
scanning, Docker ensures the security of applications and prevents
vulnerability, althoughits seamlessintegration with other tools enables
the management and deployment of applications at scale.

By allowing developers to abstract away the complexities of the
underlyinginfrastructure, Docker allows users to focus on writing code,
enabling writing and testing of applications on their own machines and
then deploying them to any environment running Docker. Although
Linux runs within Docker containers, users can access the platform
through a Windows or Mac computer. Docker consists of three com-
ponents: the Docker software, Docker objects and online Docker
registries, such as the Docker Hub (Fig. 1).

The Docker software itself consists of two parts: the Docker client
and the Docker daemon. The Docker clientis the primary way that users
interact with Docker. Itisacommand-lineinterface that allows users to
issue commands to the Docker daemon, such as building, running and
distributing containers. The Docker daemon is the background
service that manages the containers: it listens for commands from
the Docker client and performs the necessary actions to create and
run containers. The Docker daemon can run on the same host as the
Docker client, or it can be remotely accessed through the network.
In addition to the command-line interface, Docker also provides a
user interface called Docker Desktop, which is available on both Mac
and Windows operating systems. The Docker Desktop user interface

Box 1

Dependency hell in scientific
research

Dependency hell describes a situation in which a software
application or system becomes dependent on other software
packages, libraries or frameworks, and the dependencies between
these packages become complex and intertwined. This can make
it difficult or impossible to update or maintain the system, as any
changes to one package may have unintended consequences on
others. Dependency hell can also occur when there are conflicts
between different versions of the same dependency, or when one
dependency requires another dependency that is incompatible with
a different dependency in the system. This can lead to problems
such as broken builds, runtime errors or instability in the system.

An example of dependency hell is described as follows:
aresearcher is trying to use a specific software (software X), but is
unable to because they lack the appropriate version of a dependent
library (library Y) required to install software X, and the correct
version library Y requires software Z, which in turn requires the
installation of library W, and so on, until all the dependencies
are met for software X. Dependency hell can also arise when
different software packages require different versions of the
same library, creating conflicts that can be difficult to resolve.
Altogether, this issue can be time-consuming and frustrating, and
it can substantially delay progress. Dependencies can be either
internal or external to each software, with the potential for issues
to compound. Internal dependencies are those that are within
the research software itself and can include different modules,
libraries or classes that are part of the software and are used to
perform specific tasks. Internal dependencies are generally easier
to manage and control, as they are part of the research software and
can be developed and maintained by the research team. External
dependencies are dependencies that are not part of the research
software but are required for its use. These can include external
libraries, frameworks and other software packages that the research
software depends on. They can be more challenging to manage as
they are not under the control of the research team and may change
or become unavailable over time.

provides agraphical way for users to manage containers, images and
other Docker resources.

The main Docker objects are images and containers. A Docker
image contains everything needed to run a piece of software, includ-
ingthe application code, libraries, dependencies and runtime. Docker
images are built from Dockerfiles, which include details on which
baseimage to use, commands to run and files and directories to copy.
The main difference between Docker images and Docker containers
is that images are static and cannot be changed or modified, whereas
containers are dynamic and canbe started, stopped and modified while
theyare running (Box 2). Images are used to create containers, butonce
acontaineris created, it can be modified and runindependently of the
image that was used to create it.
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Table 1| Containers versus virtual machines

Feature Containers Virtual machines
Resource Share the host operating system and the host kernel, making them Require more resources than containers, as each virtual machine needs
usage lightweight and efficient its own copy of the operating system and resources are divided among all
the virtual machines running on the host machine
Deployment Can be deployed and run quickly and smoothly, as they do not Require a full operating system installation and can take longer to deploy
require a full operating system installation and run
Portability Highly portable and can run on any host system with the same Can also be portable but require virtualization software that must be
architecture — ideal for moving applications between environments  installed on each host system, making them less flexible for moving
between environments
Isolation Less isolated; although they share the same operating system Completely isolated from one another and the host operating system.
and kernel as the host machine, they are still isolated from one Each virtual machine has its own copy of the operating system and
another and can run different applications and processes. More runs in its own self-contained environment. Useful for creating multiple
lightweight and efficient, as they do not require a separate copy environments that need to be separate from one another, such as for
of the operating system for each container testing or development purposes
Scalability Can be scaled up or down as needed, making them ideal for Can also be scaled, but it may be more challenging, as adding or removing

applications that require horizontal scaling

virtual machines requires changes to the virtualization environment itself

Finally, the third Docker componentis Docker Hub, a cloud-based
registry service for storing and distributing Docker images. It allows
users to create and share Docker images with others, as well as to dis-
cover and download prebuilt images created by other users. Docker
Hub also provides features such as automated builds, version control
and collaboration tools. It is the default registry for Docker users and
is used by many organizations to store and share their containerized
applications. For readers familiar with the Git ecosystem, one can think
of therelationship between Docker and Docker Hub as that of Gitand
GitHub®?, Alternatives to Docker Hub abound; one very popular is
GitHub Container Registry.

Personalizing containers

Reusing existing containers saves time and effort, but researchers
often need to create personalized containers. Here are some steps
to personalize containers. Personalization of containers requires
identifying the specific software and data to be used, including con-
sideration of programming languages, libraries and packages, as
well as data type, storage and access. The inclusion of a Dockerfile,
which tells the Docker engine what to do when building the image, also
mustinclude the software, libraries and other dependencies needed.
Researchers can also use the ‘docker commit’ command to person-
alize a container by creating a new image from a running container
and modifying it with additional software or configuration changes.
However, it is important to note that using docker commit reduces
visibility and may make the container less reproducible and reliable
than using a Dockerfile.

Itisimportant to emphasize that using language-based package
managers in containers, such as pip for Python or npm for Node.js,
can facilitate the installation of software packages and dependencies
withinthe container. This helps ensure that the container is reproduc-
ibleandreliable, asit allows for fine-grained control over the versions
of packages installed. The resulting Docker image will contain all the
software and data specified in the Dockerfile, as well as any additional
files or resources that were included in the image.

The container runtime can be further customized by setting envi-
ronment variables, mounting volumes and specifying network con-
figurations. The entry point and command can be customized to allow
the specific actions that the container will take upon launch. After a
container has been created, users may want to expose certain ports

from the container to the host system, which allows accessing network
services running inside the container from outside the container. This
is typically done using port mapping, which involves mapping a port
onthehost systemto a portinthe container.

Oncebuilt, the container mustbe tested, and tools such as strace
and gdb areused to debug any issues. By personalizing their containers,
researchers can ensure that their researchis reproducible, collabora-
tive and portable, making it easier to share and build upon®. An over-
view of common Docker commandsis provided in the Supplementary
information.

Complements and alternatives to Docker

Docker benefits from a rich ecosystem of interrelated components
thatarein constantdevelopment, owing toits growing popularity. The
Docker ecosystemincludes various open-source and commercial tools,
services and technologies that facilitate the development, deployment
and management of containerized applications. It extends the capabili-
ties of the Docker platform and enables integration with other systems
and technologies. These componentsinclude Docker Engine (the core
container engine that allows building, running and managing contain-
ers), Docker Compose (atool for defining and running multicontainer
applications), Docker Swarm (a container orchestration platform for
managing large clusters of Docker nodes), Docker Machine (a tool
for provisioning and managing Docker hosts) and many others, each
serving a specific purpose.

Inadditiontothe core Docker ecosystem, several tools have been
developed thatrely on Docker toimplement additional functionalities
or features. For example, the Rocker project®®*’ provides containers
with environments that can accommodate R users straightforwardly.
It includes tools for building Docker images, creating and managing
containers and automating tasks using shell scripts. Rocker is specifi-
cally designed for scientific research and includes several prebuilt
images for common scientific computing tasks. Similarly, containerit*’
makes it easy to package research software and dependencies into con-
tainers and includes tools for building and managing Docker images
and containers. It is intended to be used as acommand-line tool and
can help automate the creation of containers for research software.
Both Rocker and containerit are tools that are designed to help scien-
tists create and manage containers for scientific research; Rocker is
geared towards building and managing container-based workflows
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forreproducibleresearch, whereas containeritis focused on creating
containers for research software.

Relatedly, the R package liftr*, which uses Docker to containerize
and render RMarkdown documents, can also be used for reproducible
reporting. To make it easier from the perspective of a user, an RStudio
add-inisavailable, which enables self-contained implementation from
within R. Further guidelines exist on how to build reproducible data
analysis workflows, including viacombining tools such as R Markdown,
Git, Make and Docker*.

Although Docker is still the most popular containerization plat-
formwith the largest ecosystem and user community, there are other
alternatives available. These include not only Singularity and Podman
but also OpenShift, LXC, Rocket or Mesos. We discuss two popular
alternatives, Singularity (a containerization platform specifically
designed for HPC environments) and Podman (a command-line tool
that is designed to be used in a similar way to Docker but with a few
key differences), in Table 2, including by comparing their features and
functionalities with those of Docker.

Results

By using containers, researchers can address several issues that can
arise over the course of aresearch project or research programme,
including reproducibility, collaboration, compatibility, scalability
and management. Here, we discuss these five problems in the context
of compatibility across systems, reliability across versions, resource
allocation and the facilitation of large-scale collaboration.

Compatibility across systems
Containers are able to abstract the application from the underlying
hardware and operating system*. This means that the same container-
ized application can be run on various different systems, thus drasti-
cally reducing compatibility issues, allowing researchers to share and
compare dataandresults. If different systems are not compatible, it can
be difficult to exchange data and collaborate on research projects***.
Several advantages of containerization also stemindirectly from
improved compatibility across systems. For example, containers
establish a standard for data storage and analysis, simplifying com-
parison and validation of results. In neuroscience, containerization
has helped implement a standardized functional MRI preprocessing
pipeline known as fmriprep. Similarly, projects such as the Experi-
ment Factory*® in the behavioural sciences have facilitated the use

Docker run

[ oocorctems | —
Fig.1| Docker architecture. Docker uses of a client-server architecture, whereby
the Docker client talks with the docker daemon — a software component that
runs on the Docker host and helps build, run and distribute containers. The

Docker client and daemon can run either on the same system or remotely.
The Docker daemon interacts with Docker Hub through the Docker command-line

of Docker containers to ensure that experiments can run smoothly
across platforms.

Reliability across versions

Another benefit of using containers is the ability to ensure reliabil-
ity across different versions of the software*"*. This is particularly
important when it comes to deploying and maintaining applications
inaproduction environment, as it can be challenging to ensure that the
application will run smoothly and consistently across different versions
of the operating system or other dependencies®.

Containers canhelp ensure reliability across versions by providing
aconsistent runtime environment for the application, regardless of the
underlying operating system or hardware. Containers also provideiso-
lation between different applications and their dependencies, as each
container hasitsown dedicated resources and is unaware of the exist-
ence of other containersifthey are not actively networked together*’.
Finally, containers can make it easier to manage and maintain appli-
cations in a production environment®, For example, containers can
be used to automate the deployment and updates of applications®,
ensuringthatthe correct versions are deployed to the correctlocations,
thereby reducing the risk of errors or downtime caused by manual
deployment processes, as well as making it easier to roll back to a
previous version if necessary™.

Resource allocation

Containersstreamline resource allocation, reduce resource consump-
tion and minimize conflicts between research projects, facilitating
project management and promoting smooth coordination among
researchers. Because they encapsulate all the dependencies and configu-
rationsrequired fortheir research withinaself-contained unit, containers
allowresearcherstocreate reproducible and isolated environments that
do not interfere with other research projects. Containers also ensure
that research projects do not consume unnecessary resources, asonly
therequired dependenciesareincludedinthe containerimage, avoiding
any unnecessary overhead.

Implications for large-scale collaborative efforts

Containerization improves efficiency; teams can standardize their
development environments, reducing conflicts and improving com-
patibility between different systems*, making it easier to share code
andresources and to ensure that code written on one system will work
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interface client, which provides an interface for users to interact with the Docker
API. The Docker command-line interface client sends requests to the Docker
daemon, which then communicates with Docker Hub to pull, push or manage
Dockerimages and containers.
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Box 2

Getting started with containers

Here we walk you through the steps to get started with containers,
including how to install the necessary tools and run your first Docker
container.

Step 1: install a container runtime
To install Docker, follow these steps:
e Go to the Docker website (docker.com).
o Follow the instructions to install Docker on your machine. This will
typically involve downloading an installer and running it on your
machine.

Step 2: pull a container image
Once you have installed Docker, you can start pulling container
images from a public registry, such as Docker Hub, or you can also set
up your own private registry. To pull a container image from Docker
Hub, use the following command:

$ docker pull <image names:<tags>

Images on Docker Hub are typically tagged with version information or
other identifiers to help ensure reproducibility of research workflows.
It is important to specify a specific tag when pulling an image to
ensure that you get the same version every time. For example, to pull
the latest version of the Ubuntu environment, you would run:

$ docker pull ubuntu:latest

Step 3: run a container
Now that you have pulled a container image, you can run it as a
container using the following command:

$ docker run <image name>

correctly on another. Because containers are platform-independent,
researchers are also able to work on different platforms, with seamless
deployment to HPC environments. In HPC environments, itis common
to haveacluster of machines with different operating systems, different
versions of libraries and other dependencies; containerization helps
overcome this problem by ensuring that the application and its depen-
denciesareallincludedinthecontainer** andthatthe containeris portable
and can run on any system with a compatible container runtime®.

Containers can be scaled up or down as needed and they are
portable, allowing teams to respond quickly to changing demands
and to work across multiple platforms or locations**¢.The latter
can be particularly useful for teams that need to move applications
between different stages of the development or deployment process
orbetween different environments such as test, staging and production.

Finally, containers can be easily integrated with collaboration
tools that allow multiple developers to work on a project at the same
time, such as Git”. For example, developers can use Git to track changes
to the application code and its dependencies, and when they are
ready to share their changes with the team, they can use Git to push
the changes to a central repository. Other team members can then
pull the changes and use the containerized application with all its
dependencies and requirements.

For example, to run the Ubuntu container that you just pulled, you
would run:
$ docker run ubuntu

This will start a new container on the basis of the Ubuntu image
and give you a command prompt inside the container. From here,
you can run any commands you would normally run on a Ubuntu
machine.

Step 4: stop and remove a container
When you are finished with a container, you can stop it and remove
it from your machine using the following command:

$ docker stop <container name>

To remove a container, use the following command:
$ docker rm <container name>

You can find the name of your container by running the docker ps
command, which will list all running containers.

Step 5: use preset or personalized environments

For most research projects, we want to have a whole environment
setup with all tools and dependencies needed for the entirety of the
project. Many preconfigured Docker images exist for such purposes,
but you can also create an environment from scratch to suit your
personalized research needs and then save it into your own Docker
image, which can then be used by collaborators. Detailed, step-by-
step instructions on how to do this have been published elsewhere'.
See the Docker documentation to learn more.

Applications

Containers are being used in a growing number of scientific fields,
enabling efficient, collaborative forms of research. Here, we describe
usage in several disciplines — neuroscience, ecology, genomics, astron-
omy, physics and environmental science — with concrete examples of
container implementations in each case.

Neuroscience
Containers have gained popularity inrecent years as ameans of pack-
aging and distributing software and code in neuroscience and are
currently used for anumber of applications, such as neuroimaging
data analysis. Neuroimaging data can be extremely large and com-
plex*®*’; using containers, researchers can share tools for neuroimag-
ing analysis, such as MRI processing software or brain connectivity
analysis tools****°, These developments facilitate the analysis and
visualization of brain imaging data, as well as sharing reproducible
results. For example, tools for neuroimaging analysis, including those
for processing and analysing MRI data, are provided as Docker images
by the FSL project.

Containers are also used to provide neural simulation software,
such as NEURON or NEST, to enable running simulations on differ-
ent computer systems and sharing them. Similarly, the NeuroDebian
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project provides Docker images for tools for neural data analysis,
including tools for processing and analysing electrophysiology data®.
Intheareaofbrain-computerinterfaces, containers are being increas-
ingly used to package software tools for EEG analysis software or BCI
control software. For example, the BCI2000 project provides Docker
images that facilitate development and testing for brain-computer
interface systems®.

More generally, containers are also used for data sharing and col-
laboration — as neuroscientists often work with sensitive or proprietary
data, containers can provide a secure and controlled environment for
sharing and accessing data, enabling more effective collaborations®*.
For example, containers can be configured to run with limited permis-
sions and user accounts, making it possible to give access to specific
data only to authorized users. This built-in flexibility enables easy
collaboration and data processing, while simultaneously providing
asecure and controlled environment in which data are isolated and
protected when necessary.

Ecology

In ecology, Docker is often used to run simulations of ecosystem
dynamics®®. Containers can be used to package and deploy the
necessary code and data for running complex ecosystem simula-
tions; for example, the Ecopath with Ecosim project provides Docker
images for ecological simulation models that canbe used to explore the
impacts of different management scenarios. This allows ecologists to
easily share and reproduce results®, as well as scale their simulations
to large compute resources.

Containers can be used to package and distribute software tools
for data processing and analysis, such as Geographical Information
System (GIS) software or machine learning libraries. This is often useful
toanalyse and visualize spatial data or to apply machinelearning tech-
niques to ecological data. The QGIS project provides Docker images
for the QGIS GIS software that can be used to analyse and visualize
spatial data. Containers are also used to share software tools for envi-
ronmental monitoring®®, such as sensor networks or remote-sensing
platforms, making it easier for ecologists to collect and analyse data
fromfield sites or tointegrate datafrom multiple sources. Forexample,
the Environmental Data Commons project provides Docker images for
environmental monitoringtools that can be used to collect and analyse
datafrom field sites.

Finally, containers can also be used to distribute data manage-
ment and analysis tools, such as databases or data visualization soft-
ware. These help ecologists store, organize and analyse large data
sets. For example, the EcoData Retriever project provides a Docker
image for downloading and cleaning up ecological data from various
sources®. Containersare also central to the packaging and distribution
of ecological modelling software, such as population dynamics mod-
els or ecosystem models used to build and test models of ecological
systems. The Ecological Niche Modeling on Docker project provides
Dockerimages for ecological modellinginR, including tools for building
and fitting models and visualizing results.

Genomics

In the field of genomics, containers are routinely used to package
and distribute software tools for analysing various types of genomic
data’ 72, For example, in the DNA sequencing data analysis, the BioCon-
tainers project” provides Docker images for tools, including tools for
read alignmentand variant calling. Docker images for toolsin the gene
expression analysis (suchas RNA sequencing (RNA-seq) and microarray

analyses) are provided by the Bioconductor project™. Similarly, Docker
images for toolsin population genetics and evolutionary analyses are
provided by the EIGENSOFT project.

For genome annotation, the GFF3 Tools project” provides Docker
images for tools such as gene prediction software and functional anno-
tation tools, whereas Docker images for tools for structural variation
analysis, such as copy number variation analysis software and trans-
location detection tools, are provided by the Breakdancer project.
A number of projects provide Docker images for tools for functional
genomics, such as gRNA design and validation to aid in CRISPR-related
research’.

Table 2 | Docker, Singularity and Podman feature comparison

Feature Docker Singularity Podman
Container runtime Yes Yes Yes
Container image Yes Yes Yes
management
Container Yes® No No
orchestration
Support for multiple  Yes Yes Yes
operating systems
Integration with Yes® YesP Yes®
scientific workflow
tools
Support for Yes® Yes® Yes®
reproducible
research
Support for data Yes® Yes® Yes®
management®
Compatibility with Yes Yes Yes
Docker images
Support for legacy Yes® Yes?® No
softwaref
Support for OS-level No Yes No
virtualization
Rootless mode No Yes Yes
Build-time Yes No Yes
customization
Image format Docker Image Singularity OClImage
Format (DIF) Image Format Format
(SIF)
Security features User Run containers  Seccomp
namespaces, as unprivileged support
AppArmor users
profiles
Networking and Docker Custom Host system
storage options networking networking networking with
options custom options
Ecosystem and Large and mature  Limited but Limited but
community growing growing

OCI, Open Container Initiative. *Via tools such as Docker Swarm and Kubernetes. ®Via tools such
as Snakemake, Nextflow, WholeTale, Binder and CodeOcean. ®Via tools such as WholeTale,
Binder and CodeOcean. “Data management refers to the process of collecting, storing,
organizing, preserving, maintaining and using data in a way that ensures its quality, security,
accessibility and reliability over time. ®Via tools such as DatalLad and XNAT. Legacy software
refers to software that is no longer being actively developed or maintained or to software that
was written for an older operating system or hardware architecture. Via tools such as Shifter.
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Containers can also be used to share tools for the RNA-seq analy-
sis”””78 such as read alignment tools or expression quantification
software, facilitating the analysis and interpretation of RNA-seq data.
Some examples of tools that can be packaged in containers for RNA-seq
analysis include STAR”®*® and Salmon®. Recently, containerized soft-
ware hasbeen developed to share tools for epigenomics analysis, such
as DNA methylation analysis software or chromatin accessibility tools,
including Bismark and ATAC-seq Pipeline®.

Finally, containerization has a central role in the development of
tools for analysing genetic variation data, such as single-nucleotide vari-
ant calling software or structural variation detection tools®**°, These
include tools for genetic variation analysis suchas GATK and SVTyper.

Astronomy

Containersareincreasingly being used in the field of astronomy, making
iteasier for astronomerstoaccess and use specialized software and data
and enabling reproducibility and collaboration®®-*¢, One application of
containersinastronomy is the packaging and distribution of software
tools for analysing astronomical data. The Astropy project® provides
aDocker image for the Astropy python library, which is a widely used
toolkit for astronomy and astrophysics and includes tools for handling
and manipulating astronomical data, such as reading and writing FITS
files, performing coordinate transformations and fitting models to data.
By packaging the Astropy libraryinacontainer, astronomers can seam-
lessly install and use the library on their own systems, while minimizing
issues with dependencies or conflicts with other software®*?°,

Astronomy research ofteninvolves the use of specialized software
and datathat may be difficult to obtain orinstall. By creating a Docker
image thatincludes all the necessary software and data, astronomers
can share their research environment with others, enabling them
to reproduce and verify results of each other. The Sloan Digital Sky
Survey provides Docker images” to facilitate reuse by astronomers
and astrophysicists, whereas the Marble Station project provides a
Linux environment with spectroscopic and photometric tools that are
commonly used in astronomy.

Finally, containers can be used inastronomy to facilitate collabo-
ration and data sharing®”. The SciServer project provides a scalable
collaborative data-driven science platform for astronomers and other
scientists, using a Docker-based architecture®. SciServer enables
astronomers to access and work with data stored on the platform,
regardless of their own computing environment.

Physics

Containers have been used in the field of physics for some time, mainly
to distribute software tools for analysing physics data®*“*The CERN
Container Registry provides container images for various tools and
libraries that are commonly used in particle physics, including software
for analysing particle collision dataand simulations. Physics research
often involves the use of specialized software and data that may be
difficult to obtain orinstall. By creating a containerimage thatincludes
allthe necessary software and data, physicists can share their research
environment with others, enabling them to reproduce and verify
results of each other. GEANT4 (ref. 95), also developed by CERN, offers
resources for simulating the passage of particles through matter, with
practical uses in high-energy, nuclear and accelerator physics. The LIGO
OpenScience Center® provides a Docker image for the LIGO Data Grid,
acloud-based platform for storing and accessing data from the LIGO
gravitational wave detectors, so as to allow physicists to work with data
stored on the LIGO Data Grid.

Environmental science

Containers are increasingly relevant to the field of environmental
science; the Planet Research Data Commons for environmental and
earth science research provides container images for various tools
and libraries that are commonly used inenvironmental science, includ-
ing software for analysing data on air quality, water quality and land
use. These tools are designed to help addressimportant environmental
issues such as adapting to climate change”, saving threatened species’
and reversing ecosystem deterioration®’.

Arelated application is for the reproducibility of research envi-
ronments. For example, the EarthData project provides container
images for various tools and data that are commonly used in environ-
mental science, including software for analysing data from satellites
and remote-sensing instruments, and datasets such asthe NASA Earth
Observing System data'®’. GRASS GIS — a free and open-source GIS
software — can be used for data analysis, visualization and spatial
modelling. The GRASS GIS containerimage provides a preconfigured
environment for running GRASS GIS, including all necessary dependen-
cies, libraries and configurations. Similarly, GeoServer is a container
that provides a preconfigured environment for running analyses on
geospatial data and enables data processing, analysing and sharing.
Together, these tools facilitate collaboration between environmental

scientists worldwide'®.

Reproducibility and data deposition

Providing reproducible content is a fundamental aspect of scientific
researchand hasbeen discussed at length elsewhere, either generally?
orinthe context of containerization'>'>, Here, we focus on best prac-
tices for sharing containers, commenting and documenting and elabo-
rate on how these can help communicate and disseminate research
findings to maximize their value.

Sharing containers
Containers can help researchers share their work with co-workers,
regardless of the underlying hardware or operating system, and help
improve the reproducibility of research results'®*. By providing a
consistent environment for running experiments, researchers can
ensure that their results are not affected by differencesin hardware or
software configurations. This can be particularly important in fields
such as machine learning or data analysis, in which small differences
in environment can lead to significant differences in results'®'°®. Shar-
ing both the Dockerfile and the Docker image when sharing contain-
ersis considered best practice because it allows others to reproduce
the exact same environment and configuration of the containerized
application. However, simply having a Dockerfile does not guarantee
thesamebuild every time. There are several factors that can affect the
build, such as the version of the base image, the availability of pack-
ages or the version of the software used. A Dockerfile may be created
that specifies the base image and includes instructions to install the
required versions of dependencies, as well as instructions to copy
thesource code of the applicationinto the container to configure the
environment variables. If other researchers use different versions of
the dependencies or if the dependencies are not available, the build
can be different. Nonetheless, sharing both the Dockerfile and the
container image s still essential for enabling reproducibility, as it pro-
vides astarting point for other researchers to build upon and modify
for their own purposes.

Toensure that others canreproduce the exact same build, itis best
practice to also share the image of the container in a Docker registry
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such as Docker Hub or Quay. Sharing the container in this way allows
others to download and run it without having to build it themselves,
which guarantees that they are running the same environment and
configuration as the original application. In addition, for certain
applications, sharing the data set used in the training process with
the container could be both useful and facilitate reproduction of
simulations or experiments. Itisworth pointing out that it is possible
to construct Dockerfiles to be reproducible, for example, by freezing
older versions of container images using RStudio Package Manager,
yet even soimages that are not pulled by anyone from Docker Hub for
extended periods of time get purged, and Dockerfiles are not guaran-
teed to build indefinitely. Alternatives to specialized registries exist
for sharing containers; for example, researchers can also use a cloud
platform such as Amazon Web Services or Google Cloud Platform to
hostand share containers. These platforms provide tools for building,
storing and distributing containers and can be useful for sharinglarge
or complex containers.

Finally, researchers can implement more advanced workflows
to build and share their work, for example, by generating automated
Docker builds. One common approach to do thatisto configure auto-
mated builds in Docker Hub, which will re-build an image whenever
changes are pushed to the source code repository. The advanced
features of Docker Compose — a tool that allows defining and run-
ning multicontainer applications — can help implement automated
builds when dealing with multiple containers. Similarly, Jenkins is a
commonly used open-source automation server that facilitates auto-
mation of diverse tasks such as creating and launching Dockerimages.
AJenkins pipeline can be set up that will build an image and push it
to aregistry when certain conditions are met, like when changes are
pushed to the source code repository. Alternatively, GitHub Actions
isa Continuous Integration/Continuous Deployment (CI/CD) platform
that allows developers to automate their workflow on GitHub such
as building and testing code, deploying code to different environ-
ments and managing dependencies. GitHub Actions allows creat-
ing custom workflows that are triggered by events such as commits,
pullrequests and releases and has been implemented successfully in
research workflows'””. Other options include TravisCl, GitLabCl and
CircleClI — all CI/CD tools specifically designed for automating the
software development process and provide integration with various
services, including Docker.

Best practices in commenting and documenting

Containers are self-contained units of software that include all of the
dependencies and resources needed to run an application and, as
such, they can be complex and difficult to understand. For research
development projects, effective commenting and documentation are
essential. Commenting refers to explanations, descriptions and notes
withinthe source code, whichaidsin understanding the purpose of the
code, whereas documentation, whichis typically external to the code
and presented in the form of a README file or user manual, provides
additional details'®. Proper commenting and documentation can help
make containers more readable and maintainable and facilitate the use
and utility of containerized software'°®, Table 3 provides important best
practices forcommenting and documentingin the process of sharing
containers. By following these best practices and using appropriate
tools, researchers canshare their containers with others seamlessly and
effectively.Inaddition to these general best practices, itis alsoimpor-
tant to follow any required field-specific guidelines or conventions
(F1000Research guidelines)'*™",

Communication and dissemination of research findings
Containers can facilitate the communication and dissemination of
findingsin anumber of ways. Firstand foremost, they allow researchers
tosharetheir software applications with other researchers, regardless
of the operating system or hardware being used, allowing for greater
collaboration and the potential for faster progress in their respec-
tive fields. Containers also allow for the creation of fully reproduc-
ible research environments, ensuring that findings can be accurately
replicated and verified. In addition, containers make it easier for
researchers to publish their findings in an accessible format by creat-
ing a self-contained package that can be easily deployed and run by
anyone with access to the container.

Containers have emerged as a promising approach for archiving
research software alongside a publication. Many computing-focused
archives, such asthe ACM Digital Library, offer services for archiving
research software. However, the adoption of such services has been
low, and thereisaneed for betterarchiving practices that canensure
long-term preservation and reproducibility of research software.
Containerization can offer several advantages for archiving research
software. By encapsulating all dependencies and configurations of

Table 3 | Best practices for commenting and documenting
containers

Best practice Example

Clearly document the
purpose of the container

# This container provides a preconfigured
environment for running the my-science-app
application

#To use this container:

#1. Pull the image from the Docker registry:
$ docker pull myusername/my-web-app
#2. Run the container: docker run -p
8080:80 myusername/my-web-app

# 3. Access the app at http://localhost:8080

Include detailed instructions
for how to use the container

Provide example usage or run
commands

# Here is an example of how to run the
container with a custom configuration file:

$ docker run -p 8080:80 -v/path/to/
config:/etc/my-web-app myusername/
my-web-app"'

List any environment
variables that the container
expects to be set

# The container expects the following
environment variables to be set:
# - DB_USERNAME (username for the database)

#- DB_PASSWORD (password for the database)
#- DB_HOST (hostname of the database server)

Document any ports exposed
by the container

# This container exposes port 80 for HTTP
traffic

List any external
dependencies

# This container requires access to a
MongoDB server running on hostname
mongodb.example.com

Document any data or
volume mounts used by the
container

# This container expects a volume to
be mounted at /var/www/html for the
application code

Reference any related
projects, links or
documentation

# This container is based on the official Node.
js Docker image, see more details at https://
hub.docker.com/_/node/

Add any version information

# Current version: 1.0.0

Add any licensing information

# Licensed under the CC BY 4.0 licence
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Glossary

Clusters
Groups of machines that work together
to run containerized applications.

Compute resources

The resources required by a container
to run, including central processing
units, memory and storage.

Containerization platform

A complete system for building,
deploying and managing containerized
applications, typically including a
container runtime, and additional

tools and services for things such as
container orchestration, networking,
storage and security.

Container runtime

The software responsible for running
and managing containers on a host
machine, involving tasks such as
starting and stopping containers,
allocating resources to them and
providing anisolated environment
forthemtorunin.

Continuous Integration/
Continuous Deployment
(CI/CD). A software development
practice that involves continuously
integrating code changes into a
shared repository and continuously
deploying changes to a production
environment.

Dependencies

Software components that a
particular application relies on to run
properly, including libraries, tools and
frameworks.

Host operating system

Primary operating system running on
the physical computer or server in
which virtual machines or containers are
created and managed.

Distributed-control model

A deployment model in which
control is distributed among multiple
independent nodes, rather than being
centralized in a single control node.

Image

A preconfigured package that
contains all the necessary files and
dependencies for running a piece of
software in a container.

Port mapping

The process of exposing the network
ports of a container to the host machine,
allowing communication between

the container and the host or other
networked systems.

Production environment

Live, operational system in which
software applications are deployed and
used by end-users.

Docker engine

The containerization technology that
Docker uses, consisting of the Docker
daemon running on the computer and
the Docker client that communicates
with the daemon to execute
commands.

Dockerfiles
A script that contains instructions for
building a Docker image.

Environment variables

A variable that is passed to a container
at runtime, allowing the container to
configure itself on the basis of the value
of the variable.

High-performance computing
The use of supercomputers and
parallel processing techniques to solve
complex computational problems that
require a large amount of processing
power, memory and storage capacity.

Namespaces

Virtualization mechanisms for
containers, which allow multiple
containers to share the same system
resources without interfering with
each other.

Runtime environment

Specific set of software and hardware
configurations that are present and
available for an application to run on,
including the operating system, libraries,
system tools and other dependencies.

Networking

The process of connecting multiple
containers together and to external

networks, allowing communication

between containers and the outside
world.

Orchestration

The process of automating the
deployment, scaling and management
of containerized applicationsina
cluster.

Orchestration platform

System for automating the deployment,
scaling and management of
containerized applications.

Scaling

The process of increasing or decreasing
the number of running instances of

a containerized application to meet
changing demand.

Shared-control model
Deployment model in which a single
central entity has control over multiple
resources or nodes.

Volumes

A storage mechanism for containers,
which allows data to persist outside the
file system of the container, including
after a container has been deleted or
replaced.

the softwareinto asingle containerimage, containers provide a self-
contained and portable environment that can be easily shared and
preserved. Specifically, container images can be archived as part of
the publication or deposited in a container registry for long-term
preservation. Moreover, containers allow for the reproducibility
of research findings by ensuring that the software environment
remains consistent, even as the underlying infrastructure changes
over time.

Researchers can ensure effective archiving with containers by
adopting several recommended practices. This involves using well-
defined and well-maintained container images, with clear documen-
tation on the included software dependencies and configurations.
Additionally, all software dependencies and configurations should
be well documented, including versions of libraries, software and
operating systems. Widely used and supported container formats,
such as Docker, Singularity or Podman, should be chosen on the basis
of target archive or repository requirements. Metadata and docu-
mentation, such asaREADME file providing instructions for using the

container, research software information and licensing details should
be provided with the container image. Following these best practices,
archivingresearch software with containers can be a valuable approach
for ensuring long-term preservation and reproducibility of scientific
findings.

Limitations and optimizations

Although containers are powerful and versatile, they also have impor-
tant limitations. In this section, we discuss some of the pros and cons
of containerization and explore key restrictions. We also discuss com-
patibility with HPC environments, which have become increasingly
popular among computational research groups.

Costs of containerization

Despite its numerous advantages, there are also some costs associ-
ated with using containers in scientific research™. One of the main
drawbacks is the learning curve involved in using containerization
tools and technologies. Researchers need to familiarize themselves
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with containerization concepts, such as images, containers and
registries, as well as how to use tools such as Docker to manage
and deploy containers. This can require a significant amount of
time and resources, especially for researchers who are new to con-
tainerization. To address this challenge, it is often helpful to start
with the basics, that is, focusing on understanding the concepts
and fundamentals of containerization, such as what a container is,
how it works and the benefits of using containers. Getting hands-
on experience creating and running containers using tools such as
Docker in practice scenarios helps users learn to work with contain-
ers. Online communities dedicated to containerization and related
technologies, such as forums and social media groups, can provide
resources, tips and best practices from experienced developers. In
addition, there are a plenty of online tutorials, books and courses
available that teach both the basics and more advanced concepts
of containerization.

Building containerimages requires a certain level of expertise and
specialized knowledge, which canbe challenging and time-consuming
toobtain.Inaddition, building, testing and deploying container images
canrequire dedicated staff, infrastructure and resources — these can
include servers, storage and networking, as well as the orchestration
software needed to manage and deploy the containers. These resources
come at a cost, which can increase when scaling and maintaining the
infrastructure.

Inaddition to the cost of infrastructure and resources, there are
also sustainability costs associated with the use and maintenance of
containers. The energy consumption of containerized workloads can
be substantial, as they require server and networking infrastructure
to supporttheir operation. Serverless computing —a cloud comput-
ing model that allows developers to deploy and run code without
the need to manage infrastructure — has been proposed as a way to
mitigate these costs viadynamic allocation of computing resources
on the basis of current workload demands. However, it isimportant
to note that the suitability of serverless computing for long-running
computations in scientific research may depend on various factors,
such as the specific requirements of the computation, the avail-
able budget and trade-offs among cost, performance and conveni-
ence. For certain types of computations or workloads, serverless
computing may still be a viable option, especially when considering
factors such as ease of deployment, automatic scaling and reduced
operational overhead.

Inmost cases, the benefits of using containersin scientific research
outweigh the costs of learning and managing containerization tools
and technologies. Containers are often seen as a middle ground
between the lightweight and easy-to-use nature of package manag-
ers and the comprehensive isolation and reproducibility of virtual
machines. Containers provide abalance between these two extremes,
offeringa higher level of isolation and reproducibility compared with
package managers, while being more resource-efficient and port-
able than virtual machines. This is one of the reasons containers have
become widely adopted in various contexts such as continuous inte-
gration, industry and cloud use and increasingly in research, in which
reproducibility, portability and resource efficiency are crucial factors
for success. However, it isimportant for researchers to carefully con-
sidertheir needs and resources when deciding whether to use contain-
ersintheirresearch projects. Oneimportant aspect to consider is the
currentefficiency of the research workflow and how it canbeinfluenced
by containerization. We now turn to specific limitations and concrete
solutions to build more efficient workflows in scientific research.

Limitations of containerization

Containerization may not be suitable for certain types of research
that depend on the kernel level or on hardware. This can be a particu-
lar issue for machine learning workflows that rely on GPU accelera-
tion, as containers may not be able to access the necessary hardware
resources’>*, because they are designed to be hardware-agnostic and
rely on the kernel of the host system to interface with hardware. As a
result, the host operating system kernel version and configuration
can have animpact on the behaviour and performance of containers.
For example, if a container requires a specific kernel feature that is
not available in the host operating system kernel, it may not function
correctly or may require modifications. Similarly, if the host operat-
ing system kernel has specific security settings or restrictions, they
may apply to containers as well. This can be a challenge for machine
learning workflows that require access to specialized hardware such as
GPUs, as containers may not have direct access to these resources. Itis
thereforeimportant to consider the compatibility and dependencies
of the host operating system kernel when working with containers to
ensure proper functionality and reproducibility.

There are several solutions that can be implemented to address
these potential limitations. Containerization technologies exist that
canfacilitate better access to host resources, such as Podman or Singu-
larity (Table 2). By allowing the containers to run as regular processes
on the host operating system, without requiring a separate daemon
or root privileges, these tools provide a more native experience and
facilitate access to host resources more directly and efficiently. This
can be especially important for low-level access to system resources,
suchaskernel-level features or hardware devices. By contrast, Docker
relies onadaemon process to manage container execution, which can
introduce additional layers of abstraction and potential performance
overhead. Inaddition, Docker containerstypically run as the root user
by default, which can pose security risks and limit access to certain
systemresources. As abest practice, itisrecommended to set the USER
in Docker containers to a non-root user to mitigate potential security
risks and restrict unnecessary access to system resources, following
the principle of least privilege. This can help improve the security
posture of Docker containers and reduce the risk of unauthorized
access or exploits.

If specificaccesstothe kernel or to hardware resourcesisrequired,
itisalso possible to use virtual machines, which can provide access to
host resources through virtualization (Table 1). The choice between
containerization and virtual machines does not have to be dichoto-
mous; however, hybrid solutions exist, such asrunning a containerized
application on top of a virtual machine, which allows the container-
ized application to have the portability and isolation benefits of con-
tainerization while also having access to the host resources through
the virtual machine.

It may not always be possible to fully replicate the environment
in which research was conducted, which can be particularly chal-
lenging when using containers to replicate research environments
with complex dependencies or that rely on specific hardware con-
figurations™. In these cases, it may be difficult to fully replicate the
environment using containers, which can limit the reproducibility of
theresearch. Specific resources can help make the environment more
portable and reproducible; for example, Platform as a Service (PaaS)
isacloud computing service that allows developers to create, launch
and manage applications without the need to handle the underlying
infrastructure. Examples include Heroku, Google App Engine and
Microsoft Azure. PaaS can provide resources, scalingand dependency
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management, which can help make the environment more portable
andreproducible. Similarly, Infrastructure as a Service (1aaS), a cloud
computing service, offers virtualized computing resources, such as
storage, networking and virtual machines. Some examples of laaS
providers are Amazon Web Services, Microsoft Azure and Google
Cloud Platform. laaS gives users additional control over the underly-
ing infrastructure, including hardware and operating system, and
can configure it to match the desired environment for their research.
Alternatively, hardware abstraction layer (HAL) is a layer of software
or hardware that abstracts the underlying hardware and operating
system, allowing applications to run in a more isolated and portable
manner. HAL can help isolate the application and its dependencies
from the underlying hardware and operating system, providing a
consistentenvironment for reproducible research. Containerization
technologies such as Docker can be considered as a form of HAL, as
they abstract the underlying host system and provide a consistent
environment for running applications.

Containers can introduce additional complexity to research
workflows, asresearchers may need to manage and maintain multiple
containerized environments. This can be time-consuming and may
require additional training and support for researchers. Container
orchestration tools such as Docker Swarm or Kubernetes can help
manage this complexity by providing an abstraction layer that simpli-
fies the process of deploying and scaling containers. Docker Swarm
and Kubernetes handle both Embarrassingly parallel (EP) and non-EP
workflows. EP workflows refer to workflows that can be parallelized
andruninisolation,inwhich eachtask canbe executed independently
of the others, making them well suited for container orchestration.
Non-EP workflows, on the contrary, have interdependent tasks that
require coordination and communication between containers, which
can be more challenging to manage. The two orchestration tools may
require different configurations and setups depending on the workflow
requirements.

For deployment, Docker Swarm uses a shared-control model,
whereas Kubernetes uses a distributed-control model. Docker Swarm
is tightly integrated with the Docker ecosystem and is optimized for
use with Docker containers. Kubernetes, on the contrary is more flex-
ible and can work with any container runtime, not just Docker. Both
Docker Swarm and Kubernetes can scale to thousands of nodes, but
Kubernetes has better support for autoscaling and can scale appli-
cations more quickly. Kubernetes has a wider range of features and
capabilities, including support for rolling updates, resource quotas
and pod security policies. Docker Swarm has fewer features but is
generally easier to use and set up. Overall, Kubernetes is generally
considered to be a more powerful and feature-rich platform, but it
can be more complex to use, whereas Docker Swarm is a good choice
for users who want asimpler, more streamlined solution for container
orchestration.

Researchers are starting to incorporate containers into larger
workflow management systems, which provide aframework for orches-
trating and executing complex scientific workflows. Workflow manage-
ment systems such as Nextflow, CWL and Snakemake, among others,
have gained traction in the scientific community owing to their support
for containerization*. Automation tools such as Ansible, Puppet and
Chef can be used to automate the process of building, deploying
and managing containers. Researchers canalso rely on container man-
agement platforms such as Google Kubernetes Engine or Amazon
Elastic Container Service to access a user-friendly interface for man-
aging containers. For optimal results, it is important to consider the

specificrequirements of the research and the size and structure of the
organization when selecting and implementing a solution.

Adapting containers to HPC environments

Challenges can also arise when attempting to deploy containers
over HPC environments'>"®. These environments typically consist
of clusters of computers with powerful processors, large amounts of
memory and high-speed interconnects that allow the computers to
worktogetherinacoordinated way. They are often used to solve prob-
lems that require large amounts of data processing or simulations that
would be too time-consuming or impossible to perform on a single
computer. Yet, the complexity HPC often produces also adds hurdles
to containerization. For example, containers canintroduce overhead
when compared with traditional virtualization technologies, as they
runisolated processes and require additional system resources to
manage the containers. Although containers are generally considered
lightweight compared with virtual machines, this canresultin higher
overhead when running performance-critical workloads on HPC sys-
tems. However, the lightweight nature of containers can alsoimprove
resource utilization, as multiple containers can be run on the same host
without significant performance degradation. Thistrade-offbetween
overhead andresource utilization should be carefully considered when
deciding whether to use containers for HPC workloads. Furthermore,
the degree of isolation containers provide between different applica-
tions and their dependencies may not be sufficient for all HPC work-
loads that require tight control over system resources such as CPU,
memory and input/output (1/0).

HPC environments can also lead to limitations in terms of com-
patibility, as these systems typically have complex and specialized
infrastructure — such as parallel file systems — that may not be easily
integrated with container technologies. Thisarchitecture canlead to dif-
ficultieswhen trying to use containers in HPC environments. Scalability
can also be an issue, as HPC environments may in some instances not
be well suited for running large numbers of simultaneously executing
containersonasharedinfrastructure. Finally, in university and research
settings, HPC environments may require additional security measures
to protect against unauthorized access, especially when dealing with
sensitive patient-level data or patentinformation. In this context, con-
tainers can pose security risks, as they may not provide the same level of
isolation and control as traditional virtualization technologies.

Despite these challenges, the use of containerization in HPC
environments provides very attractive features and opportunities for
researchers. One of the main advantages of using containers in HPC
environments is their portability'”’, which allows HPC workloads to be
deployed onawiderange of hardware and operating systems, without
theneed to worry about compatibility issues or manual configuration.
This can greatly simplify the process of deploying and managing HPC
applications, especially in large-scale environments in which there may
be many different hardware configurations and operating systems
in use. Containers also improve resource utilization in HPC environ-
ments"®; because they are lightweight and only contain the resources
thatare necessary for the applicationtorun, they canbe more efficient
atutilizing hardware resources such as CPU, memory and storage. With
containers, HPC applications can be more efficiently scheduled and
runonavailable resources, potentiallyimproving overall performance
and minimizing resource contention. Containers can also be used to
improve the security and isolation of HPC workloads, as dependen-
cies can be isolated from the rest of the system, reducing the risk of
interference or conflicts with other applications. Finally, although HPC
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resources have traditionally been accessed using specialized software
andprotocols, the use of containers can allow researchersto access HPC
resourcesinamore cloud-native way'”, thatis, in away thatis similar to
how one would access cloud computing resources. This increases flex-
ibility and scalability in a user-friendly way, in contrast tostrict reliance
onspecialized software and protocols. For example, by using contain-
erized workflows and tools such as Singularity, researchers can access
HPC resources using familiar container orchestration tools and APIs,
such as those provided by Kubernetes'?°, making it easier for research-
erstoaccess and manage HPC resources, allowing a seamless integra-
tionwithothertools and services. Additionally, the use of containerized
workflows can enable researchers to scale their workloads more easily
across HPCresources, as containers can be seamlessly transferred and
executed on different HPC systems. This can be particularly useful for
researchers who need to run large-scale simulations or data analyses
that require significant computing resources.

There are several tools and platforms available that can be used
tosupportthe use of containersin HPC environments®*. For example,
the Open Container Initiative is a standard for building and running
containerized applications and is supported by a range of container
engines and orchestration tools such as Docker, Kubernetes and Mesos.
These tools can be used to manage and deploy containerized HPC
applications at scale, allowing organizations to take advantage of the
benefits of containerization in their HPC environments.

Outlook

Containers offer many benefits for scientific research, including the
ability to package and distribute software and dataina consistent and
portable manner, enabling reproducibility and collaboration and facili-
tating the use of cloud computing'”. As the use of containers becomes
more widespread, it is likely that they will become an increasingly
important tool in scientific computing. Containers can make it easier
for scientists to access and use specialized software and data and can
facilitate the sharing and reproducibility of research environments'>.
This may lead to the development of new container-based tools and
platforms specifically designed for scientific computing.

Containers will also become more and more useful in data-
intensive research, in which large amounts of data are generated and
analysed, and uptake in this space is expected to increase'”'>. By using
containers to package and distribute data analysis tools, scientists can
easily share and reproduce their results and can also take advantage of
the scalability and flexibility of cloud computing'®. As scientists rely
more and more on automated and reproducible research workflows,
itisalsolikely that they willincreasingly turn to containers to package
and distribute these workflows. We have discussed a few of the available
platforms and repositoriesinthisarticle, but options willundoubtedly
grow quickly in the future, as containers continue to have animportant
rolein scientific research.

Container orchestration tools such as Kubernetes and Docker
Swarm will further enable scientists to deploy and manage complex
research workflows across multiple machines, improving the efficiency
andscalability of their research'®. These platforms allow researchers to
deploy and manage their scientific applications and tools and enable the
creation of scalable and fault-tolerant environments for running experi-
ments and simulations, thus allowing researchers to prioritize and allo-
cateresources to theirmostimportant tasks. Tools such as containerd
and Docker Composed are helping to change the landscape of pos-
sibilities in containerization, providing convenience and enhancing
capabilities for users. Containerd is an open-source container runtime

that is designed to be lightweight and modular, which is becoming
increasingly popular for managing containersin cloud environments,
particularly in conjunction with Kubernetes. Docker Composeisatool
that allows developers to define and run multicontainer applications
using a simple YAML configuration file, simplifying the definition and
management of complex containerized environments.

Otherrecent developmentssuchas Dev Containersare likely to gain
prominenceinthe researchspace. Dev Containers allow specifying the
container environment to use in conjunction with GitHub Codespaces,
afeature thatfacilitates creating new development environmentsin the
cloud — directly within GitHub — with the specific versions of languages,
frameworks and tools that are required for a project. Dev Containers
are defined using a configuration file called a ‘devcontainer.json’ file,
which specifies the container image that should be used, along with
any additional configuration options such as environment variables,
volumes and ports. These files automatically launch the container
environmentinthe codespace, allowing researchers to switch between
different container environments.

Finally, recent developments in cloud are changing the way con-
tainers are being used and shared. Specifically, the trend towards
building cloud-native applications, which are designed to be scalable
andresilient, hasled to theadoption of containerization to package and
deploy these applications. Cloud-native applications often use micro-
services architecture, whichrelies on containers to manage individual
components and services. Relatedly, serverless computing is often
used in conjunction with containerization to package and deploy code
inamore efficient and scalable manner. Together, these features canin
turn allow researchers to effortlessly scale their computations across
multiple machines, potentiallyimproving the efficiency and speed of
their research.

Theimplications of containerization are vast and far-ranging and
could impact the whole ecosystem of scientific research. Containers
have the potential to heavily influence scientific publishing, via tools
such as WholeTale'”, Binder and CodeOcean, which are designed to
facilitate the integration between published research and container-
ized research'”. These tools enable researchers to create and share
reproducible research environments using containers and provide
platforms for publishing and sharing research thatis based on contain-
ers, with additional features and functionality specifically designed for
reproducible research above and beyond those available with Docker.
It is also possible that funding agencies will recognize the value of
containerization to ensure quality and reproducibility of scientific
research*"'and thus require containerization for funded projectsin
the future. This may necessitate the development of new infrastructure,
training and support for researchers — factors that funders willneed to
consider tosuccessfullyimplement arequirement for containerization
in scientific research.

In our view, the use of containerization in scientific researchis a
natural evolution that is likely to become standard practice™. Con-
tainerization is booming, with constantinnovation and development,
and has become the normin fields such as software development and
engineering'”. There is no reason scientists should not leverage this
tool to improve scientific practices, as well as the quality and impact
of their research. Many scientists already share data and materials
with their publications'>***¢ — containerization is the next natural
stepinthis direction'>™’, with the potential to revolutionize scientific
researchand discovery.
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