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Abstract

Existing methods for optimal control struggle to deal with the complexity commonly en-
countered in real-world systems, including dimensionality, process error, model bias and
data heterogeneity. Instead of tackling these system complexities directly, researchers have
typically sought to simplify models to fit optimal control methods. But when is the optimal
solution to an approximate, stylized model better than an approximate solution to a more
accurate model? While this question has largely gone unanswered owing to the difficulty
of finding even approximate solutions for complex models, recent algorithmic and compu-
tational advances in deep reinforcement learning (DRL) might finally allow us to address
these questions. DRL methods have to date been applied primarily in the context of games
or robotic mechanics, which operate under precisely known rules. Here, we demonstrate
the ability for DRL algorithms using deep neural networks to successfully approximate
solutions (the “policy function” or control rule) in a non-linear three-variable model for a
fishery without knowing or ever attempting to infer a model for the process itself. We find
that the reinforcement learning agent discovers a policy that outperforms both constant
escapement and constant mortality policies—the standard family of policies considered in
fishery management. This DRL policy has the shape of a constant escapement policy whose
escapement values depend on the stock sizes of other species in the model.

Keywords Optimal Control - Reinforcement Learning - Uncertainty - Decision Theory

1 Introduction

Much effort has been spent grappling with the complexity of our natural world in contrast to the relative
simplicity of the models we use to understand it. Heroic amounts of data and computation are being brought
to bear on developing better, more realistic models of our environments and ecosystems, in hopes of improving
our capacity to address the many planetary crises. But despite these efforts and advances, we remain faced
with the difficult task of figuring out how best to respond to these crises. While simplified process models for
the population dynamics have historically allowed for exploration of large decision spaces, the new wave of
rich models are applied to highly oversimplified descriptions of potential actions they seek to inform. For
instance, Global Circulation Models (GCMs) such as HadCM3 (Pope et al. 2000; C. Gordon et al. 2000;
Collins, Tett, and Cooper 2001) model earth’s climate using 1.5M variables, while the comparably vast
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potential action space is modeled much more minimalistically, with 5 SSP socioeconomic storylines and 7
SSP-RCP marker scenarios summarizing the action space at the IPCC (Riahi et al. 2017).

Even as our research community develops simulations of the natural world that fit only in supercomputers,
we analyze a space of policies that would fit on index cards. Similar combinations of rich process models and
highly simplified decision models (often not even given the status of ‘model’) are common. Modeling the
potential action space as one of a handful of discrete scenarios is sometimes a well justified acknowledgement
of the constraints faced by real-world decision-makers — particularly in the context of multilateral decisions —
and may seem to reflect a division of responsibilities between ‘scientists’ modeling the ‘natural processes’
and policy-makers who make the decisions. But, more often, this simplification of decision choices is simply
mathematically or conceptually convenient. This simplification reflects trade-offs between tractablity and
complexity at the basis of any mathematical modeling — if we make both the state space and action space too
realistic, the problem of finding the best sequence of actions quickly becomes intractable. However, emerging
data-driven methods from machine learning offer a new choice — algorithms that can find good strategies in
previously intractable problems, but at the cost of opacity.

In this paper, we focus on a well-developed application of model-based management of the natural world
that has long illustrated the trade-offs between model complexity and policy complexity: the management of
marine fisheries. Fisheries management is both an important issue to society as well as a rich and frequent
test-bed of ecological management more generally. Fisheries are an essential natural resource that provide the
primary source of protein for one in every four humans, and have faced widely documented declines due to
over-fishing Costello et al. (2016). Fisheries management centers around the process of sampling populations
to determine fishing quotas based on population estimates. This decision is often guided by a model of the
dynamics of the system. Our paper focuses on the decision side of this problem rather than the measurement
step.

Fisheries management has roots in both the fields of ecosystem management and natural resource economics.
Both fields might trace their origins to the notion of maximum sustainable yield (MSY), introduced in-
dependently by a fisheries ecologist (Schaefer 1954) and the economist (H. S. Gordon and Press 1954) in
the same year. From this shared origin, each field would depart from the simplifying assumptions of the
Gordon-Schaefer model in divergent ways, leading to different techniques for deriving policies from models.The
heart of the management problem is easily understood: a manager seeks to set quotas on fishing that will
ensure the long-term profitability and sustainability of the industry. Mathematical approaches developed
over the past century may be roughly divided between these two fields: (A) ecologists, focused on ever more
realistic models of the biological processes of growth and recruitment of fish while considering a relatively
stylized suite of potential management strategies, and (B) economists, focused on far more stylized models of
the ecology while exploring a far less constrained set of possible policies. The economist’s approach can be
characterized by the mathematics of a Markov decision process (MDP Colin W. Clark 1973; Colin W. Clark
1990; Marescot et al. 2013), in which the decision-maker must observe the stock each year and recommend
a possible action. In this approach, the policy space that must be searched is exponentially large — for a
management horizon of T decisions and a space of N actions, the number of possible policies is N7. In
contrast, fisheries ecologists and ecosystem management typically search a space of policies that does not
scale with the time horizon. Under methods such as “Management Strategy Evaluation” (MSE, (Punt et
al. 2016)) a manager identifies a candidate set of “strategies” a priori, and then compares the performance
of each strategy over a suite of simulations to determine which strategy gives the best outcome (i.e. best
expected utility). This approach is far more amenable to complex simulations of fisheries dynamics and more
closely corresponds to how most marine fishing quotas are managed today in the United States (see stock
assessments documented in RAM Legacy Stock Assessment Database 2020).
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Text Box 1: Classical approaches to sustainable fisheries

There are several existing approaches that have been used to manage fisheries, most prominently
including constant escapement policies and constant mortality policies. We collectively refer
to these as classical, and will compare their performance to RL-based management strategies. While
often complex models of the ecosystem are used to estimate the size of fish population of interest, these
classical strategies derive an optimal harvest policy using a simple model for the system dynamics.
Across these strategies, setting the harvest quota has the shared aspect of reducing the complex
dynamics of the fishery ecosystem to a single equation governing the harvested population, X.

A common example is the surplus production model that assumes logistic population growth in the
absence of exploitation (Gordon, 1954; Schaefer, 1954):

Xt+1 — Xt = ’I'Xt(]. — Xt/K) — ht = L(Xt) — ht

The interaction between X and its environment is summarized to two parameters, the maximum
intrinsic growth rate r, and the carrying capacity K. In the equation above, h; is the harvest at time
step t. The goal is to choose the harvest policy h : X; — h¢, such that long-term catch is maximized.

An advantage of one dimensional approaches is that the optimal policy is intuitive and often known
exactly. For example, in the logistic equation pointed out above, the maximum growth rate occurs at
a population size X = K/2. The optimizer is an escapement policy, which corresponds to a harvest,
h, that keeps the system at its optimal growth rate as much as possible:

X; —a, if Xy >a
ht =
0, else,

where a is the stock size at which growth is maximized. For example, in the logistic growth example
above, a = K/2.

This type of bang-bang policy tends to be the optimal solution for these types of control problems.
A drawback of these solutions in the fishery context, is the possible presence of several time steps
with zero harvest. To mend this, certain suboptimal solutions have been constructed for fishery
management.

One ubiquitous solution is based on a constant mortality policy:
ht = aXt,

for some constant a. The policy with optimal value of a is known as a mazimum sustainable yield
(MSY) policy. In the logistic example above, this optimum mortality rate is a = 7K /4. Under this
policy, the stock size at the maximum growth rate Xjssy = K/2 is approached asymptotically from
any positive initial state X, € (0, K). Thus, in equilibrium the MSY policy tends to match the results
of constant escapement, namely, having the harvest rate be the maximum sustainable yield of the
model:

MSY = h(XMsy) = 'I‘K/4

That is, at the MSY biomass, X5y, the logistic growth of X is cancelled exactly by the harvest.

This MSY policy fixes the drawback of the escapement policy—h(X) > 0 for all X > 0. It, however,
has its own drawbacks, as it is particularly sensitive to misestimates of the parameter . Due to this,
similar but more conservative policies are often applied where the constant rate of fishing mortality is
< Mprsy. This control rule consists on reducing the inclination of the line defined by h(X) using
a prefactor a in h(X) = a - rX/2. Plausible examples are oo = 0.8 or 0.9; here we examine an 80%
MSY constant mortality policy.
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Model name | Model eqs. | N. Sp. | Harv. Sp. | Stationary?
Model 1 (3) 1 X Yes
Model 2 (4) 3 X Yes
Model 3 (4) 3 X andY Yes
Model 4 (4) 3 X and Y No

Table 1: Table of models considered in this paper. Here, N. Sp. is the number of species in the model, Harv.
Sp. is the species of the model which are harvested, and Stationary? refers to whether the parameters
of the model have fixed values (or, on the contrary, if they vary in time). The only non-stationary case
presented in the paper is where rx drifts linearly with time. In the code repository associated to the paper,
we consider other possible choices of non-stationarity.

Recent advances in machine learning may allow us to once again bridge these approaches, while also bringing
new challenges of their own. Novel data-driven methods have allowed these models to evolve into ever more
complex and realistic simulations used in fisheries management, where models with over 100 parameters
are not uncommon (RAM Legacy Stock Assessment Database 2020). Constrained by computational limits,
MDP approaches have been intractable on suitably realistic models and largely confined to more academic
applications (Costello et al. 2016). However, advances in Deep Reinforcement Learning, (DRL) a sub-field of
machine learning, have recently demonstrated remarkable performance in a range of such MDP problems,
from video games (Bellemare et al. 2013; Mnih et al. 2013) to fusion reactions (Degrave et al. 2022; Seo et al.
2022) to the remarkable dialog abilities of ChatGPT (OpenAl 2022). RL methods also bring many challenges
of their own: being notoriously difficult to train and evaluate, requiring immense computational costs, and
presenting frequent challenges with reproducibility. A review of all these issues is beyond our scope but can
be found elsewhere (Lapeyrolerie et al. 2022; Chapman et al. 2023). Here, though, we will focus on the issue
of opacity and interpretability raised by these methods. In contrast with optimization algorithms currently
used in either ecosystem management or resource economics, RL algorithms have no guarantees of or metrics
for convergence to an optimal solution. In general, one can only assess the performance of these black box
methods relative to alternatives.

In most US fisheries, the mortality policy is often piecewise linear (often with one constant and one linear piece),
and the allowable biological catch (ABC) or total allowable catch (TAC) is set at some heuristic (e.g. 80%)
below the ‘overfishing limit’, Fp gy, i.e. the highest (constant) mortality that can be sustained indefinitely
(in the model — reality of course does not permit such definitions). This fixed mortality management can be
seen, for instance, in most of the fisheries listed in the widely used R.A. Myers Legacy Stock Assessment
Database. Here, we have focused on purely constant mortality policies, rather than piecewise linear mortality
funcitons, for simplicity. Escapement-based management is less common, except in salmonoids, as it requires
closing a fishery whenever the measured biomass falls below Bjp/sy .

In this article, we compare against two common methods: constant mortality (CMort) and constant escapement
(CEsc), introduced in Text Box 1.}

We consider the problem of devising harvest strategies in a for a series of ecosystem models with increasing
complexity (Table 1): 1) one species, one fishery: a simple single-species recruitment model based on (May
1977); 2) three species, one fishery: a three-species generalization of model 1), where one of the species is
harvested; 3) three species, two fisheries: the same three-species model as above but with two harvested
species; 4) three species, two fisheries, parameter variation: a three-species model of which two are harvested,
as above, with a time-varying parameter. This last model is meant to be a toy model of climate change’s
effect on the system. Across all of these scenarios, two goals are balanced in the decision process: maximizing
long-term catch and preventing stock sizes to fall below some a-priori threshold.

This way, we evaluate classical management strategies (CMort and CEsc) and DRL-based strategies on four
different models. This experimental design is summrized in Fig. 1.

YA repository with all the relevant code to reproduce our results may be found at https://github.com/
boettiger-lab/approx-model-or-approx-soln in the “src” subdirectory. The data used is found in the “data”
subdirectory, but the user may use the code provided to generate new data sets.
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Reward: 0.95 Reward: 0.98 Reward: 1 Reward: 1
Perc: 0.77 Perc: 1 Perc: 0.93 Perc: 0.98

C. Mort Reward: 0.44 Reward: 0.99 Reward: 0.90 Reward: 0.90
Perc: 0.56 Perc: 1 Perc: 0.75 Perc: 0.8

C. Esc Reward: 1 Reward: 0.99 Reward: 0.70 Reward: 0.74
Perc: 0.56 Perc: 0.97 Perc: 0.57 Perc: 0.54

Model 1 Model 2 > Model 3 > Model 4 Z'
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Figure 1: An experimental-design type of visualization of the management scenarios considered in this
paper. On the x-axis are four different fishery management problems (Table 1). We represent the Model 4’s
non-stationarity with a clock next to the X variable, and we intend to use it as an example of a possible
simplified model for the effects of climate change. On the y-axis we have different management strategies
with which one may control each of the models. On the bottom we have the constant escapement strategy
(CEsc), based on calling off all fishing below a certain threshold population value. Above that is the constant
mortality strategy (CMort), where one optimizes over constant fishing effort strategies. Finally, on top we
have DRL-based strategies where policies are in general functions of the full state of the system, and they are
parametrized by a neural network. The specific DRL-based strategy is referred to as PPO+GP in the main
text, due to the algorithm used to produce the policy. The results plotted are the average reward obtained by
the strategy over 100 episodes, and the fraction of those episodes which do not end with a near-extinction
event (denoted Perc for Percentage). We have normalized to the highest reward in each column in order to
enhance the comparison between strategies. For illustrative purposes we have color-coded the results using a
two-dimensional color legend displayed on the bottom left.

Regarding control for these 4 models, we show the following. Model 1: DRL-based strategies recover the
optimal constant escapement (CEsc) policy function. Constant mortality (CMort) performs considerably
worse than these three.? Model 2: Here, all management strategies perform similarly. Model 3: For this
model, DRL outperforms both classical strategies, with CMort surprisingly performing significantly better
than CEsc. In particular, we observe that DRL strategies are more sensitive to stochastic variations of the
system which allows it to adaptively manage the system to prevent population collapses below the threshold.
Model 4: Here, the performance gap between DRL and both classical strategies is maintained.

We show that in the most complex scenario, Model 4, CMort is faced with a tradeoff—the optimal mortality
rate leads a rather large fraction of episodes ending with a population crash, whose negative reward is
counteracted with a higher economic output.® Conversely, more conservative, lower, mortality rates lead to
lower total reward on average. The DRL approach side-steps this trade-off by optimizing over a more complex
family of possible policies—policies parametrized by a neural network, as opposed to policies labeled by a
single parameter (the mortality rate).

2As will be explained later, all our models are stochastic. If we set stochasticity to zero in Model 1, CMort matches
the performance of the other management strategies.

3In our mathematical formulation of the decision problem, we have assumed for simplicity that the fishing effort
cost is zero and that fish price is stable over time. This way, we equate economic output with harvested biomass.
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Our findings paint a picture of how a single-species optimal management strategy may lose performance rather
dramatically when controlling a more complex ecosystem. Here, DRL performs better from both economical
and conservation points of view. Moreover, rather unintuitively, CMort — known to be suboptimal and
unsustainable for single-species models — can turn out to even outperform the CEsc — the single-species optimal
strategy — for complex ecosystems. Finally, within this regime of complex, possibly varying, ecosystems, we
show that DRL consistently finds a policy which effectively either matches the best classical strategy, or
outperforms it. We strengthen this result with a stability investigation: we show that random perturbations
in the model’s parameter values used do not significantly vary the conclusion that DRL outperforms CEsc.

2 Mathematical models of fisheries considered

Here we mathematically introduce the four fishery models for which we compare different management
strategies. In general, the class of models that appear in this context are stochastic, first order, finite
difference equations. For n species, these models have the general form

AXy = fx (V) +nx0 — Mx X,
AY; = fy (Ni) + v — My'Yy

1
AZi = f2(N) + 120 — My Z,s (1)

where Ny = (X3, Y3, Z;, ...) € R is a vector of populations, AX; := X; 1 — Xy, f; : R" — R are arbitrary
functions, and where 7, ; are Gaussian random variables. Here, M; = M;(N;) € Ry is a state-dependent fish
mortality arising from harvesting the i-th species (sometimes this is referred to as fishing effort).

The term Mx X; is the total X harvest at time ¢. This formulation of stock recruitment as a discrete finite
difference process is common among fisheries, as opposed to continuous time formulations which involve
instantaneous growth rates. This growth rate simplifies e.g. the possibly seasonal nature of reproduction
(which would need to be accounted for in a realistic continuous-time model) by simply considering the total
recruitment experienced by the population over a full year.

The fishing efforts are the control variables of our problem—these may be set by the manager at each time-step
to specified values. We make two further simplifying assumptions on the control problem: 1. Full observation:
the manager is able to accurately measure Ny and use that measurement to inform their decision. 2. Perfect
execution: the action chosen by the manager is implemented perfectly (i.e., there is no noise affecting the
actual value of the fishing efforts).

Model 1 is a single-species classical model of ecological tipping points. Models 2-4 are all three-species models
with similar dynamics. Following this logic, the first subsection will be dedicated to the single-species model
and the second will focus on the three-species models.

2.1 The single species model

Optimal control policies for fisheries are frequently based on 1-dimensional models, n = 1, as described in
Text Box 1. The most familiar model of f(X) is that of logistic growth, for which

f(Xt) = T‘Xt(l — Xt/K) = L(Xt, r, K) (2)

Real world ecological systems are obviously far more complicated than this simple model suggests. One
particularly important aspect that has garnered much attention is the potential for the kind of highly
non-linear functions that can support dynamics such as alternative stable states and hysteresis. A seminal
example of such dynamics was introduced in (May 1977), using a one-dimensional model of a prey (resource)
species under the pressure of a (fixed) predator. In the notation of eq. (1),

BHX}?
2+ X?
In the following, we will denote
) ) BHX}?
F(Xt7H7 5,6) = C24»)(152'
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Figure 2: The fixed point diagram for the unharvested dynamics of Model 1 as a function of varying the
parameter SH, assuming zero noise. Stable fixed points (also known as attractors) are plotted using a solid
line, while the unstable fixed point is shown as a dotted line.

The model has six parameters: the growth rate r and carrying capacity K for X, a constant population H of
a species which preys on X, the maximal predation rate 5, the predation rate half-maximum biomass ¢, and
the variance 0% of the stochastic term 1y ;. (Here and in the following we will center all random variables at
zero.)

Eq. (3) is an interesting study case of a tipping point (saddle-node bifurcation) (see Fig. 2). Holding the
value of (8 fixed, for intermediate values of H there exist two stable fixed points for the state X; of the system,
these two attractors separated by an unstable fixed point. At a certain threshold value of H, however, the
top stable fixed point collides with the unstable fixed point and both are annihilated. For this value of H,
and for higher values, only the lower fixed point remains. This also creates the phenomenon of hysteresis,
where returning H to its original value is not sufficient to restore X; to the original stable state.

This structure implies two things. First, that a drift in H could lead to catastrophic consequences, with the
population X; plummeting to the lower fixed stable point. Second, that if the evolution of X, is stochastic,
then, even at values of H below the threshold point, the system runs a sizeable danger of tipping over towards
the lower stable point.

2.2 The three species models

Models 2-4 are three-species models and they are all closely related—in fact, their natural dynamics
(i.e. dynamics under zero harvest) is essentially given by the same equations:

fx(Ny) = L(Xs; rx, Kx) — F(Xy, Zs; B,¢) — exy Xi Vs,
fy(Ny) = L(Ys; vy, Ky) — DF(Y:, Zi; B,¢) — exy XiY, (4)
fz(Ni) = (b(X¢ + DY;) — dz)Zs.

The three species modeled are X, Y and Z. Species Z preys on both X and Y, while the latter two compete
for resources. There are thirteen parameters in this model: The growth rate and carrying capacity, rx, Kx,
ry and Ky, of X and Y. A parameter cxyy mediating a Lotka-Volterra competition between X and Y. A
maximum predation rate S and a predation rate half-maximum biomass ¢ specifying how Z forages on X
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and Y. A parameter D regulating a relative preference of Z to prey on Y. A death rate dz and a parameter
b scaling the birth rate of Z. Finally, the noise variances ox, oy and oz.

The three models will branch off of eq. (4) in the following way. Model 2: here, only X is harvested, that is,
in the notation of eq. (1), we fix My = Mz = 0 and leave My as a control variable. All parameters here
are constant. Model 3: as Model 1, but with X and Y being harvested. In other words, we set Mz = 0
and leave Mx and My as control variables. Model 4: here X and Y are harvested, but now we include a
non-stationary parameter:

1-t/200, < 100,
rx =rx() = {1/2, t > 100. 5)

All other parameters are constant. Eq. (5) is intended to reflect in a simple manner a possible effect of
climate change: where the reproductive rate of X is reduced linearly over time until it stabilizes.

3 Reinforcement learning

Reinforcement learning (RL) is a way of approaching sequential decision problems through machine learning.
All applications of RL can be conceptually separated into two parts: an agent and an environment which the
agent interacts with. That is, the agent performs actions within the environment.

After the agent takes an action, the environment will transition to a new state and return a numerical reward
to the agent. (See Fig. 1 in (Lapeyrolerie et al. 2022) for a conceptual description of reinforcement learning
algorithms.) The rewards encode the agent’s goal. The main task of any RL algorithm is then to maximize
the cumulative reward received. This objective is achieved by aggregating experience in what is called the
training period and learning from such experience.

The environment is commonly a computer simulation. It is important to note here the role that real time-series
data of stock sizes can play in this process. This data is not used directly to train the RL agent, but rather
to estimate the model defining the environment. This environment is subsequently used to train the agent.
In this paper, we focus on the second step—we take the estimated model of reality as a given, and train an
RL agent on it.*

Specifically, we consider four environments corresponding to each of the models considered (Table 1). At
each time step, the agent observes the state S and enacts some harvest—reducing X; to X; — Mx (Ny) - X4,
and, for Models 3 and 4, also reducing Y; to Y; — My (V) - Y;. Here the fish mortality-rates-from-harvest
(i.e. Mx = Mx(N;) and My = My (N;)), are the agent’s action at time ¢. This secures a reward of Mx (N;) X
for Models 1 and 2, and, similarly, a reward of Mx (N;)X + My (N;)Y for Models 3 and 4. After this harvest
portion of the time step, the environment evolves naturally according to eqgs. (3) and (4) (Sec. 2).

As mentioned previously, discretising time allows a simplification of the possibly seasonal mating behavioral
patterns of the species involved. This approximation is commonly used in fisheries for species with annual
reproductive cycles (see e.g. (Mangel 2006), Chap. 6). Moreover, the separation of each time-step into a
harvest period and a natural growth period assumes that harvest has little disruption on the reproductive
process. A detailed model which includes such a disruption is outside of the scope of this work.

3.1 Mathematical framework for RL

The RL environment can be formally described as a discrete time partially observable Markov decision process
(POMDP). This formalization is rather flexible and allows one, e.g., to account for situations where the
agent may not fully observe the environment state, or where the only observations available to the agent are
certain functions of the underlying state. For the sake of clarity, we will only present here the subclass of
POMDPs which are relevant to our work: fully observable MDPs (henceforth MDPs for short). An MDP
may be defined by the following data:

o S: state space, the set of states of the environment,

o A: action space, the set of actions which the agent may choose from,

“In this sense, it is important to note that the classical management strategies we compare against have a similar
flow of information. Namely, data is used to estimate a dynamical model, and this model is used to generate a policy
function. The difference to our approach is located in the process of *how™* the model is used to optimize a policy.
Because of this difference, RL-based approaches can produce good heuristic solutions for complex problems.
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o T(Niy1|Nyyag,t): transition operator, a conditional distribution which describes the dynamics of the
system (where N; € S are states of the environment),?

o 7(Ng,ag,t): reward function, the reward obtained after performing action a; € A in state Ny,

o d(Ny): initial state distribution, the initial state of the environment is sampled from this distribution,

v € [0,1]: discount factor.

At a time ¢, the MDP agent observes the full state s; of the environment and chooses an action based on this
observation according to a policy function m(a;|N;). In return, it receives a discounted reward ~v'r(a;, Ny).
The discount factor helps regularize the agent, helping the optimization algorithm find solutions which pay
off within a timescale of ¢t ~ log(y~1)~1.

With any fixed policy function, the agent will traverse a path 7 = (Ny, ag, N1, a1 ..., Ny, ) sampled
randomly from the distribution
thn. —1
p(r) =d(No) [ (@ N)T(Niga| Ny, t).
t=0

Reinforcement learning seeks to optimize 7 such that the expected rewards are maximal,
7 = argmax E..,_[R(7)],

where,
thn. —1

R(r)= ) 7'r(ae, Ny, t),
t=0
is the cumulative reward of path 7. The function J(7) := E;~,_ [R(7)] is called the expected return.

3.2 Deep Reinforcement Learning

The optimal policy function 7 often lives in a high or even infinite-dimensional space. This makes it unfeasible
to directly optimize w. In practice, an alternative approach is used: m is optimized over a much lower-
dimensional parameterized family of functions.® Deep reinforcement learning uses this strategy, focusing on
function families parameterized by neural networks. (See Fig. 1 and App. A in (Lapeyrolerie et al. 2022)
for a conceptual introduction to the use of reinforcement learning in the context of conservation decision
making.)

We will focus on deep reinforcement learning throughout this paper. Within the DRL literature there is a
wealth of algorithms from which to choose to optimize 7, each with its pros and cons. Most of these are based
on gradient ascent by using the technique of back-propagation to efficiently compute the gradient. Here we
have used only one such algorithm (prozimal policy optimization (PPQO)) to draw a clear comparison between
the RL-based and the classical fishery management approaches. In practice, further improvements can be
expected by a careful selection of the optimization algorithm. (See, e.g., (Francois-Lavet et al. 2018) for an
overview of different optimization schemes used in DRL.)

3.3 Model-free reinforcement learning

Within control theory, the classical setup is one where we use as much information from the model as possible
in order to derive an optimal solution. Here, one may find a vast literature on model-based methods to attain

STransition operators are commonly discussed without having a direct time-dependence for simplicity, but the
inclusion of ¢ as an argument to T does not alter the structure of the learning problem appreciably.

SPolicies are, in general, functions from state space to policy space. In our paper, these are 7 : [0,1]*® — Ry for
the single fishery case, and 7 : [0,1]*® — Ri for two fisheries. The space of all such functions is highly singular,
spanning a non-separable Hilbert space. Even restricting ourselves to continuous policy functions, we end up with a
set of policies which span the infinite dimensional space L([0,1]*®). One way to avoid optimizing over an infinite
dimensional ambient space is to discretize state space into a set of bins. This approach runs into tractability problems:
First, the dimension of policy space scales exponentially with the number of species. Second, even for a fixed number
of species (e.g., 3), the dimension optimized over can be prohibitively large—for example if one uses 1000 bins for each
population in a three-species model, the overall number of parameters being optimized over is 10°. Neural networks
with much smaller number of parameters, on the other hand, can be quite expressive and sufficient to find a rather
good (if not optimal) policy function.
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optimal, or near-optimal, control (see, e.g., (Zhang, Li, and Liao 2019; Sethi and Sethi 2019; Anderson and
Moore 2007)).

The classical sustainable fishery management approaches summarized in Text Box 1, for instance, are
model-based controls. As we saw there, these controls may run into trouble in the case where there are
inaccuracies in the model parameter estimates.

There are many situations, however, in which the exact model of the system is not known or not tractable. This
is a standard situation in ecology: mathematical models capture the most prominent aspects of the ecosystem’s
dynamics, while ignoring or summarizing most of its complexity. In this case, it is clear, model-based controls
run a grave danger of mismanaging the system.

Reinforcement learning, on the other hand, can provide a model-free approach to control theory. While a
model is often used to generate training data, this model is not directly used by model-free RL algorithms.
This provides more flexibility to use RL in instances where the model of the system is not accurately known.
In fact, it has been shown that model-free RL outperforms model-based alternatives in such instances (Janner
et al. 2019). (For recent surveys of model-based reinforcement learning, which we do not focus on here, see
(Moerland et al. 2023; Polydoros and Nalpantidis 2017).)

This context provides a motivation for this paper. Indeed, models for ecosystem dynamics are only ever
approximate and incomplete descriptions of reality. This way, it is plausible that model-free RL controls
could outperform currently used model-based controls in ecological management problems.

Model-free DRL provides, moreover, a framework within which agents can be trained to be generally competent
over a variety of different models. This could more faithfully capture the ubiquitous uncertainty around
ecosystem models. The aforementioned framework—known as curriculum learning—is considerably more
intensive on computational resources than the “vanilla” DRL methods we have used in this paper.” Due to
the increased computational requirements of this framework, we have left the exploration in this direction for
future work.

4 Methods

The Environment. We considered the problem of managing four increasingly complex models (see Table 1).
To recap, these four environments are a single-species growth model (3) for a harvested species; a three-species
model (4) with a single harvested species; the same three-species model but with two harvested species; and,
finally, a three-species model with a time-varying parameter and two harvested species.

The policies explored were functions from states N; to either a single number Mx (N;) = 7(Vy) (for Models 1
and 2), or a pair of numbers (Mx (Ny), My (Ny)) = 7(N;) (for Models 3 and 4).

Our goal was to evaluate the performance of different policy strategies over a specified window of time. We
chose this window to be 200 time-steps, where each discrete time-step represents the dynamical evolution
of the system over a year. Each time-step was composed of two parts: First, a harvest period where the
harvest is collected from the system (e.g. the population X is reduced to X; — X; — Mx(N;)X}). Second, a
recruitment and interaction period, where the system’s state evolves according to its natural dynamics.

Training and evaluating management strategies were performed by simulating episodes. An episode begins
at a fixed initial state and the system is controlled with a management policy until ¢ = 200, or until a
“near-extinction event” occurs—that is, until any of the populations go below a given threshold,

Xt S Xthresh.7 th S }/thresh.a or, Z S Zthresh.- (6)

In our setting we have chosen Xipresh. = Yinresh. = Zthresh. = 0.05 as a rule of thumb—given that under
natural (unharvested) dynamics the populations range within values of 0.5 to 1, this would represent on the
order of a 90-95% population decrease from their “natural” level.

The reward function defining our policy optimization problem had two components. The first was economical:
the total biomass harvested over an episode. The second seeked to reflect conservation goals: if a near-
extinction event occurred at time ¢, the episode was ended early and a negative reward of —100/t was awarded.
This reward function balanced the extractive motivation of the fishery with conservation goals which went
beyond the scope of long-term sustainable harvests commonly used in fishery management.

TAll our agents were trained in a local server with two commercial GPUs. The training time was between 30
minutes and one hour in each case.
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Training a DRL agent. We trained a DRL agent parametrized by a neural network with two hidden,
64-neuron, layers, on a local server with 2 commercial GPUs. We used the Ray framework® for training,
specifically we used the Ray PPOConfig class to build the policy optimization algorithm using the default
values for all hyper-parameters. In particular, no hyperparameter tuning was performed. The agent was
trained for 300 iterations of the PPO optimization step for the three-species cases. The total training time
was on the order of 30 minutes to 1 hour. For the single-species model, the training iterations were scaled
down to 100 and the training time was around 10 minutes.

The state space used was normalized case-by-case as follows: Model 1: a line segment [0, 1], Models 2-4: a
cube [0,1]*3. We used simulated data to derive a bound on the population sizes typically observed, and thus
be able to normalize states to a finite volume.

Policies obtained from the PPO algorithm can be “noisy” as their optimization algorithm is randomized (see,
e.g. App. B for a visualization of the PPO policy obtained for Model 4). We smoothed this policy out using
a Gaussian process regressor interpolation. Details for this interpolation process can be found in App. C.

Tuning the CMort strategy. In order to estimate the optimum mortality rate, we optimized over a grid of
possible mortality rates. Namely, for Models 1 and 2, grid of 101 mortality rates was laid in the interval
[0,0.5]; for Models 3 and 4, a 51 x 51 grid was set in the square [0,0.5]2. The latter had a slightly coarser
grid due to the high memory cost of using the denser grid. Since the approach for tuning was completely
analogous for all models evaluated, here we discuss only Model 4. For each one of these choices of mortality
rates, say (Mx, My ), we simulated 100 episodes based on (4): At each time step the state (X, Y, Z;) was
observed, a harvest of MxX; + MyY; was collected and then the system evolved according to its natural
dynamics (4). The optimal mortality rate was the value (M%, M;) for which the mean episode reward was
maximal.

Tuning the CEsc strategy. This tuning procedure was analogous to that of the CMort strategy just
summarized. Namely: A grid of 101 escapement values was laid out on the interval [0, 1] for Models 1 and 2;
and a 51 x 51 grid on [0, 1]? was laid out for Models 3 and 4. Each grid point represented a CEsc policy. We
used each of these policies to manage 100 replicate episodes. The optimal policy was the policy with the
highest average reward obtained. A visualization of the tuning outcome for Model 4 is shown in Fig. 3.

Parameter values used. The single-species model’s (eq. (3)) dynamic parameters were chosen as
r=K=1, =025 ¢=0.1. (7)
Here, the values of 8 and ¢ were chosen as to make the system be roughly close to its tipping point.

For Models 2 and 3, their dynamic parameters (in eq. (4)) were chosen as follows

TX:KX:’FY:KYZ]., 520.3, c=0.3 (8)
exy =01, b=0.1, D=11, dz=0.1.

Moreover, the variances for the stochastic terms were chosenas

02(Tlx,t) = 02(77Y,t) = Uz(nm) = 0.05.
For Model 4, we used rx (t) given as in eq. (5) and all other parameters were given as in eq. (8).

The values of ¢ and g in the three-species model were slightly different than their values in the one-species
model. These values were chosen heuristically: We observed that choosing the lower value of ¢ = 0.1 in this
case would lead to quick near-extinction events even without a harvest. Moreover, 8 was slightly increased
simply to put more predation pressure on the X and Y populations and make them slightly more fragile.

Stability analysis. To ensure that our results do not strongly depend on our parameter choices, we
performed a stability analysis. Here, we perturbed parameters randomly and measured the difference in
performance between our DRL-based methods and the CEsc strategy. We observed that the difference in
performance is maintained for even relatively high noise strengths. We only considered the most complex
case here, Model 4.

For each value of parametric noise strength oparam., We executed the following procedure: We sampled
100 choices of perturbed parameter values, where the perturbation was as follows—each parameter P was
perturbed to (1 + gp)P where gp was a Gaussian random variable with variance Ugaram‘. For each of these
sample parameter sets, we tuned CEsc and trained the DRL agent. We measured the average reward difference

8https://docs.ray.io/
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Figure 3: Visualization of the cosntant escapement strategy tuning procedure for Model 4. There was a
certain multiplicity in this tuning strategy: a “ridge of optimality” where policies had essentially equivalent
behavior. Throughout our investigation, we tuned constant escapment in several occasions and, on each
occassion, a different optimal policy along the ridge was found. The results for different policies along the
ridge were in practice equivalent, with no discernible difference in performance. We highlighted the ridge
with a white dotted line.

between these two strategies for each of sample (this was done using 100 replicate evaluation episodes).
Finally, we took the mean of this average difference over the 100 perturbed parameter samples.

The parametric noise strength values used were [0.04,0.08,...,0.2].

5 Results

We evaluated each of the four management strategies considered on Models 1-4. To recap, the management
strategies were CEsc, CMort, PPO and a Gaussian process interpolation of PPO (“PPO+G”). Furthermore,
we characterized the trade-off between economic output and sustainability faced by CMort policies. This was
done by evaluating CMort policies with a fraction of the optimal mortality rate (specifically, 80%, 90% and
95%). All evaluations were based on 100 replicate episodes.

We will visualize the results concerning Model 4 in this section, leaving the other models for App. A. This is
the most complex scenario considered and where our results show the most compelling advantage of DRL
methods with respect to classical strategies.

Our main result is summarized in Fig. 4 which displays the total reward distributions for the policy obtained
through each strategy. Here we see that CEsc has a long-tailed distribution of rewards, and its average reward
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Figure 4: Reward distributions for the four strategies considered. These are based on 100 evaluation episodes.
We denote CEsc for constant escapement, CMort for constant mortality, PPO for the output policy of the
PPO optimization algorithm, and PPO GP for the Gaussian process interpolation of the PPO policy.

is much lower than other management strategies. CMort has a shorter-tailed distribution and a much higher
average reward. Finally, both DRL-based strategies have a more concentrated reward distribution and a
higher average reward than CMort.

To assess what is the culprit for the classical strategies’ low performance with respect to the DRL-based
strategies, we plot the duration of each of the 100 evaluation episodes of each strategy in Fig. 5. We see that
early episode ends are prevalent in classical strategies and rare for DRL-based strategies. Early episode ends
tend to happen at lower ¢ values for CEsc than CMort. Thus, distribution of episode durations seems to be
widest for CEsc, followed by CMort, DRL and DRL+GP.

We examine the trade-off between profit and sustainability faced by the CMort strategy in Fig. 6. Two
quantities are plotted: the fraction of evaluation episodes with maximal length (i.e. episodes with no near-
extinction events), and the average reward. On the x-axis we have several sub-optimal mortality rates that
err on the conservative side: e.g. the policy labeled “80% Opt. CMort” has the form

m: (X, Yy, Zi) — (0.8M%, 0.8My),

where (M%, My ) is the optimal CMort strategy. We see that sufficiently conservative policies attain high
sustainability, but only at a high price in terms of profit.” We expect a similar and, possibly, more pronounced
effect for the CEsc strategy but do not analyze this case here.

One problem that is often encountered when using machine learning methods is the interpretability of the
output of these methods. For our PPO strategy, the output is a policy function parametrized by a neural
network 6:

mg : Ny > (Mx (Ny), My (Ny)),

9As noted before, here we equate economic profit with biomass caught. This is done as an approximation to convey
the conceptual message more clearly, and we do not expect our results to significantly change if, e.g., “effort cost” is
included in the reward function. When we refer to “large differences” in profit, or “paying dearly,” we mean that the
ratio between average rewards is considerable—e.g. a 15% loss in profit.
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Figure 5: Hisotgrams of episode lengths and rewards for the four different management strategies considered.
Only the first 50 evaluation episodes (from a total of 100) were included, for ease of visualization. From left
to right, the four management strategies compared are CEsc, CMort, PPO, and PPO+GP.

where Ny = (X4, Y:, Zy) is the state of the system at time ¢, and where Mx and My are the mortalities due
to harvest during that time-step. While the values of the neural network parameters are hard to interpret,
the actual shape of the policy function is much more understandable.

Here we visualize the PPO+GP policy function and provide an interpretation for it, as this function is
smoother and less noisy than the PPO policy function. The PPO policy function is visualized similarly in
App. B.

Given its high dimension, it is not possible to fully display how the policy function obtained “looks like”—we
thus project it down to certain relevant axes. The result of this procedure is shown in Fig. 7. In that figure,
the shape of the optimal escapement strategy is provided for comparison.

We notice that the DRL-derived policy has similarities to a CEsc policy. Here, the key difference is that the
escapement value for each of the fished species is sensitive to variations in the other populations. This can
be seen as color gradients in the plots of (X, Mx) and (Y, My ), where the gradient corresponds to differing
values of Z. Moreover, this can be seen as an anti-correlation in the plot of (X, My )—for optimal CEsc, My
is uncorrelated to X.

This sensitivity of the policy to, for instance, the values of Z can be seen in the sample time series displayed in
Fig. 8. Here, we can see that species Z becomes endangered due to harvesting for all management strategies.
The DRIL-based strategy, however, is sensitive to the values of Z and can respond accordingly by scaling the
fishing effort with the value of Z. In particular, the policy responds to the period of diminishing values of Z
near the end of the episode, by restricting fishing on X and Y, thus promoting Z’s growth. This pattern is
rather common among the whole dataset—early episode ends are largely due to near-extinctions of Z for all
management strategies.

5.1 Recovering constant escapement for a single species

While the optimal control for our single-species model (3) can not be easily proven to be CEsc (since the
right-hand side of that equation is not concave), from experience we can expect CEsc to either be optimal
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Figure 6: Trade-off between reward and probability of a near-extinction event for CMort policies. We
evaluated policies at the full optimal constant escapement value, and also at 0.8, 0.9, 0.95 of the latter. Each
evaluation is based on 100 episodes. On the left we plot the percentage of episodes which last their maximum
time window, i.e. that do not see a near-extinction event. On the right, we plot the mean episdoe reward and
standard deviation for each policy.

or near-optimal. We give evidence for this intuition by showing that our DRL method recovers a CEsc
solution when trained. These results are shown in Fig. 9 Here we show both the output PPO policy, and its
Gaussian process interpolation. This helps build an intuition about the relationship between our “PPO” and
“PPO+GP” management strategies.

There is a presence of certain high-mortality points at low X values in the PPO policy (which in turn
generates a rising fishing mortality for X values below a certain threshold in the PPO+GP policy). This
is likely due to experience of near-extinctions early on in the training process—where, given an impending
extinction, there is a higher reward for intensive fishing. These “jitters” are likely not fully erased through
the optimization algorithm since near-extinction events become extremely rare after only a few training
iterations. This way, the agent does not further explore that region of state space to generate new experience.
We believe the most important aspect of the CEsc policy reproduced by PPO is the fact that there is some
sufficiently-wide window below the threshold of the policy (i.e. below the optimal escapement value), on
which no fishing is performed. That is, there exists some sufficiently large € such that if Xip esn. is the optimal
escapement value of the system, then mppo(X) =0 for all X € [Xihresh. — €, Xthresh.]-

5.2 Stability analysis

In this section we present results intended to show that the effects that we observe in this paper are not the
result of a careful selection of parameter values, but rather arise for a wide variety of parameter values.

Our main result in this respect is Fig. 10. There, we plot the average episode reward difference between the
two DRL-based methods we considered, and the optimal CEsc strategy. This figure shows that, for a wide
range of parameter values, DRL-based strategies can have a considerable advantage over an optimized CEsc
policy (the single-species optimal solution).
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Figure 7: Plots of the PPO+GP policy mppo+gp along several relevant axes. Here Mx and My are the X
and Y components of the policy function. The values of the plots are generated in the following way: For
each variable X, Y, and Z, the time-series of evaluation episodes are used to generate a window of typical
values that variable attains when controlled by mppogp. Then, for each plot either X or Y was varied on
[0,1] along the = axis, while the other variables (resp. Y and Z, or X and Z) were varied within the typical
window computed before. The value of one of the latter two variables were visualized as color.

6 Discussion

Fisheries are complex ecosystems, with interactions between species leading to highly non-linear dynamics.
While current models for population estimation include many important aspects of this complexity, it is
still common to use simplified dynamical models in order to guide decision making. This provides easily
interpretable solutions, such as CMort policies. There is a drawback here, however: due to the simplicity of
these dynamical models, the policies might not respond effectively in many situations—situations where the
predictions of these simple models deviate considerably from reality. Because of this, policies such as MSY
have faced pushback and are believed to have contributed to the depletion of fish stocks (Worm et al. 2006;
Costello et al. 2016).

We propose an alternative approach to the problem of fishery control: to use a more expressive — albeit
more complicated — dynamical model to guide decision making. Furthermore, rather than computing the
optimal control policy for the model (something that is impossible in practice for complex systems), we use
deep reinforcement learning to obtain a “pretty darn good” policy. This policy is estimated in a model-free
setting, i.e., the agent treats the dynamical model (e.g. eq. (4)) as a black box of input-output pairs. By
not relying on precise knowledge of the model’s parameter values, but rather just relying on input-output
statistics, model-free approaches have gained traction in a variety of control theory settings (see, e.g., (Sato
2019; Ramirez, Yu, and Perrusquia 2022; Zeng et al. 2019)).

We compare deep reinforcement learning-based policies against classical management strategies (CMort and
CEsc). While the latter are inspired by the shape of optimal solutions in the single-species setting, they are
optimized in a model-free way as well: e.g. the optimal mortality rate is computed empirically from simulated
data.

Because of the simplicity of the classical policy functions, the optimal such policy may be easily estimated
through a grid-search. This is the case since these policy functions are only specified by one or two parameters
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Figure 8: Time-series of an episode managed with mppo4gp. Here we plot the state of the system on the
bottom panel, and the actions taken (fishing efforts on X and Y—respectively Mx and My ) on the top
panel.
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Figure 9: Left panel: the policy obtained from 100 training iterations of the PPO algorithm on the “single
species, single fishery” model. Right panel: the Gaussian process interpolation of the left panel. We plot
both as scatter data evaluated on a 101-point grid on [0, 1], but these policies may of course be evaluated
continuously—on any possible value of X.
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Figure 10: Mean reward difference between DRL methods (resp. our “PPO” and “PPO+GP” strategies), on
the one hand, and the optimal constant escapement policy (“CEsc”) on the other. The dynamic parameters
in eq. (4) were randomly perturbed from the values given in (8) according to the procedure detailed in Sec.
4. The noise strength of this perturbation is plotted as the x-axis. For each noise strength, 100 parameter
perturbations were sampled—each one giving rise to a realization of the model. For each such realization,
we optimized a CEsc policy and trained a PPO agent. Moreover, we interpolated the PPO policy using a
Gaussian process, as detailed in Sec 4. Then, for each realization we compared the performance of these
policies: we measured the mean reward difference betwen PPO and CEsc, and between PPO+GP and CEsc.
The plot represents the distribution of reward differences observed at a given noise strength—we plot the
mean and the standard deviation of the mean reward differences observed. In an equation, we plot the means
Ep [,u%RL — ugE“], where P are the paramter values, ,uI]%RL is the mean reward for a DRL policy trained
on the problem with parameter values P, and, similarly, uIC?ESC is the mean reward of the optimal constant
escpament policy for parameter values P.

(respectively in the single fishery, or two fishery cases). In contrast, DRL optimizes over the more expressive —
and more complicated — family of policies parametrized by a neural network. Neural networks are often used
as flexible function approximators that can be efficiently optimized over.

We showed that for sufficiently complex management scenarios — Models 3 and 4 — DRL-based management
strategies perform significantly better than CEsc. This with respect to both average rewards received and
conservation goals. In this sense, an approximate solution to a more complicated and expressive model, can
outperform the optimal solution of the single-species problem—even when the parameters of the single-species
solution are empirically optimized.

We found that the optimal CMort policy surprisingly performs much better than CEsc (Fig. 4). However,
it can be observed in Fig. 6 that the CMort strategy faces a trade-off: high sustainability is achieved for
sub-optimal mortality rates, but only at a significant decrease in the mean episode reward. We expect that
with increasing ecosystem complexity this phenomenon might become more pronounced. We can understand
this as a consequence of the rigidity of classical strategies: the simplicity of their expressions, depending only
on a few parameters, means that policy optimization is constrained to a rather reduced subset of the space of
possible policies.

The question of when multi-species models are well-approximated by single-species models was studied in
detail in (Burgess et al. 2017). Here our approach is dual to that of the aforementioned paper. Rather
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than first optimizing a single-species model to approximate a more complex model and then finding the
MSY value for the single-species model, we used simulated data to optimize CMort and CEsc directly on the
three-species model. We do not investigate further whether our three-species models are well approximated
by a single-species model in the sense of (Burgess et al. 2017). However: 1) Because the interaction terms in
(4) are about an order of magnitude smaller than rx and ry, Models 2-4 are “close” in parameter-space to a
single-species model. 2) The fact that for Model 2 all strategies match in performance suggests that (4) might
be well-approximated by a single species model. This in turn suggests that the reason that DRL outperforms
both single-species strategies for Models 3 and 4 is not due a lack of a single-species approximation for either
X or Y, but due to the complexity of having two harvested species. Moreover, the non-stationarity in Model
4 maintained the advantage of DRL over CEsc and CMort. Here, one may have expected an exacerbation of
that advantage due to non-stationarities introducing biases to single-species approximate models (Burgess et
al. 2017). We did, however, measure a decrease in the sustainability of CEsc in Model 4 with respect to
Model 3.

Finally, we performed a stability analysis to ensure that the advantage of DRL-based techniques over CEsc is
a ubiquitous phenomenon and not a result of a lucky selection of parameter values. We found (in Fig. 10)
that an advantage can be observed even for relatively high-noise perturbations of the parameters—noise
with a variance of 20% of the parameter values. The aforementioned Figure summarizes the statistics of
100 parameter perturbations so that we may expect perturbations of up to 60% (i.e. three sigmas) in the
parameter values to appear in these statistics.

6.1 Future directions

There are a number of interesting directions that would be interseting to explore in future work.

First, benchmarking our results against increasingly more compex and realistic fishery models. This would
include non-stationarities in the dynamical parameters to accurately reflect the effects of climate change
on the ecosystem. This added complexity would likely pose a computational challenge—in future work we
will likely need to test several different DRL training algorithms (see e.g. (Lapeyrolerie et al. 2022) for a
non-exhaustive list), and it is very likely that hyperparameter tuning will need to be performed. Moreover,
it may be that larger neural networks than the one we used in this research will be needed for the policy
function. This all will mean that considerable technical work will be needed in order to make this next step
computationally feasible (e.g. we might need to make more extensive use of GPUs and parallelization).

Second, to account for noisy estimates of the system’s state and imperfect policy implementation. This could
be done straightforwardly, albeit it might increase the training time before DRL approaches converge, as well
as introducing the need for hyperparameter tuning.

Third, to account for the systematic uncertainties behind the dynamics of the ecosystem—that is, to account
for model biases with respect to reality. Here, one can employ tools from curriculum learning in order to
train an agent that is generally capable of good management over a range of different dynamical models. This
way, one can incorporate different models—expressing different aspects of the ecosystem—into the learning
process of the agent. We believe that this step will likely be necessary if DRL algorithms are to be applied
successfully in the fishery management problem. Curriculum learning is rather expensive computationally,
however, and involves a non-trivial curriculum design which will guide the agent in its learning process. This
way, considerable technical work would be needed for this direction.

6.2 Acknowledgements

The title of this piece references a mathematical biology workshop at NIMBioS organized by Paul Armsworth,
Alan Hastings, Megan Donahue, and Carl Towes in 2011 which first sought to emphasize ‘pretty darn good’
control solutions to more realistic problems over optimal control to idealized ones. This material is based
upon work supported by the National Science Foundation under Grant No. DBI-1942280.

A Appendix: Results for stationary models

In the main text we focused on the non-stationary model (“three species, two fisheries, non-stationary” in
Table 1) for the sake of space and because our results were most compelling there. Here we present the
reward distributions for the other models considered—the three stationary models, lines 1-3 in Table 1. These
results are shown in Figs. 11, 12 and 13.
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Figure 11: Reward distributions for the four strategies considered. These are based on 100 evaluation episodes
of Model 3 in Table 1. We denote CEsc for constant escapement, CMort for constant mortality, PPO for the
output policy of the PPO optimization algorithm, and PPO GP for the Gaussian process interpolation of the
PPO policy.

B Appendix: PPO policy function for non-stationary model

In the main text, Fig. 7, we presented a visualization of the PPO+GP policy function obtained for the “three
species, two fisheries, non-stationary” model. This policy function is a Gaussian process regression of scatter
data of the PPO policy function. In Fig. 14 we present a representation of this scatter data in a similar
format as Fig. 7.

C Appendix: Gaussian process interpolation

Here we summarize the procedure used to interpolate the PPO policy (visualized in Fig. 14). We use the
GaussianProcessRegressor object of the sklearn Python library with a kernel given by

RBF (length scale = 10) + WhiteNoise(noise level = 0.1).

This interpolation method is applied to scatter data of the PPO policy evaluated on 3 different grids on
(X,Y, Z) states: Gx, a 51 x5 x 5 grid; Gy, a5 x 51 x 5 grid; and Gz, a 5 x 5 x 51 grid. This combination of
grids was used instead of a single dense grid in order to reduce the computational intensity of the interpolation
procedure. For Gx, the 5 values for Y and Z were varied in a “popular window,” i.e. episode time-series
data was used to determine windows of Y and Z values which were most likely. The grids Gy and Gz were
generated in a similar fashion, mutatis mutandis.'® The length scale and noise level values of this kernel were
chosen arbitrarily—no hyperparameter tuning was needed to produce satisfactory interpolation, as will be
shown in the results section.

9The raw dataset is found at the data/results_data/2FISHERY /RXDRIFT sub-directory in the repository with
the source code and data linked above. Scatter plots visualizing this policy are shown in App. B.
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Figure 12: Reward distributions for the four strategies considered. These are based on 100 evaluation episodes
of Model 2 in Table 1. We denote CEsc for constant escapement, CMort for constant mortality, PPO for the
output policy of the PPO optimization algorithm, and PPO GP for the Gaussian process interpolation of the

PPO policy.
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