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AbstractÐSome unique characteristics of biological data are
(1) that they are always High-Dimension and Low-Sample-Size
(HDLSS) and (2) there are changes in the data distribution, such
as an imbalance in classes, distribution and covariate shifts,
etc. In this paper, we propose a Group Lasso with Checkpoints
SElection (GL CSE) algorithm to tackle both issues. To address
the first issue, we utilize a group Lasso regression model tailored
for HDLSS data to perform feature selection on predefined
groups of features, alleviating overfitting and being invariant
under group-wise orthogonal reparameterizations. To address
the second issue, we propose the checkpoint selection method to
extract important model checkpoints while training on group
Lasso via two proposed metrics, i.e., the average KL-divergence
between training and validation features and the Frobenius
error of the covariance matrices between training and validation
features. Both metrics aim to select model checkpoints with
minimal drifts between the training and validation features. The
results of our experiments indicate that our proposed GL CSE
algorithm achieves better performance compared to other
baseline methods in terms of the MSE and R2 measurements.
Specifically, on the biological age dataset, our GL CSE method
achieves 0.8799 and 0.9883 for the MSE and R2 measurements,
respectively. Additionally, we also show that our proposed
checkpoint selection method performs better than regular K-
fold cross-validation. Specifically, on the biological age dataset,
GL CSE (Q2) achieves 0.9045 MSE and 0.9880 R2, respectively,
which outperforms the regular K-fold cross-validation results,
i.e., 1.0612 MSE and 0.9871 R2, respectively.

Index TermsÐHDLSS, biological data, group Lasso regres-
sion, checkpoint

I. INTRODUCTION

High-dimensional, low-sample-size (HDLSS) data refers

to datasets that have a large number of variables/features

(high-dimensional) but a limited number of observa-

tions/examples (low-sample-size). The problem with tradi-

tional machine learning methods, such as logistic regression,

discriminant analysis, and k-nearest neighbors, is that they

often encounter difficulties when handling HDLSS data [1].

These challenges include overfitting, low prediction accuracy,

and computational inefficiencies.

To overcome these challenges, researchers have developed

several techniques for analyzing HDLSS data. One approach

is to use methods that do not involve dimensionality reduction

(DR), such as regularized regression, decision trees, and

support vector machines. These techniques work by explicitly

modeling the relationships between the features and the target

variable, without reducing the dimensionality of the data. For

instance, Shen et al. [14] proposed a no-separated data max-

imum dispersion classifier that finds a projecting direction

that maximizes the interval in which all training samples

scatter. Gunduz and Fokoue [1] compared the predictive per-

formances of robust classification techniques with a special

concentration on robust discriminant analysis. However, this

category of approaches trains on high-dimensional features,

resulting in a large model size and time-consuming training

that is often impractical. Additionally, specialized analysis

techniques are required to address the unique characteristics

of biological data regression. For example, in biostatistics,

datasets often have features grouped by biological pathways,

which require specialized analysis techniques. Therefore,

when conducting biological data regression, it’s essential to

assess the structural identifiability of models to determine

whether model parameters can be uniquely determined prior

to regression and what data are required to achieve that.

Consequently, we propose a DR based method named Group

Lasso with Checkpoints SElection (GL CSE) algorithm. An-

other main approach involves using DR techniques as a pre-

processing step before regression, including methods such

as principal component analysis (PCA) [10], linear discrim-

inant analysis (LDA) [17], t-distributed stochastic neighbor

embedding (t-SNE) [15], and others. These techniques work

by transforming the original high-dimensional data into a

lower-dimensional space that retains the most significant

features while minimizing information loss. Some examples

of methods in this category are DR based on feature selec-

tion [5] (e.g., L1-penalized logistic regression [3] and HSIC-

Lasso [16]), transformation-based projection [7], manifold-

based approaches [11], regularity [8], ensemble learning [13],

neural networks [12], and multi-view learning [9]. By reduc-

ing the data’s dimensionality, these techniques can enhance

traditional machine learning models’ performance while re-

ducing computational complexity, making it feasible to train a

small model and deploy it on devices with limited resources.

For instance, the maximum margin criterion (MMC) [4] was
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proposed as an improvement over linear discriminant anal-

ysis (LDA) for high-dimensional, low-sample-size (HDLSS)

datasets by avoiding the need to solve the inverse of a low-

rank between-class scatter matrix. However, this approach

may suffer from degradation in classification performance

due to data piling.

Over the past decade, biological data regression has

achieved breakthroughs in applications, e.g., pre-regression

and post-regression diagnostics, with large sample size [2].

However, when facing high dimension, low sample size

(HDLSS) data, such as predicting biological age 1 using

DNA methylation data, regression models face two main

challenges: 1) Sparsity: HDLSS data often contains a large

set of features but only a few number of samples, resulting in

a sparse dataset. This sparsity can make it infeasible to find

meaningful patterns in the data. 2) Drift in Data Distribution:

Biological data can exhibit changes in the data distribution

over time, causing an imbalance in classes, domain shifts, and

other issues that make it difficult to generalize the regression

model to new data.

Recently, in order to address the data sparsity problem, Li

et al. [6] proposed a logistic regression with adaptive sparse

group lasso penalty (LR-ASGL) to simultaneously perform

cancer diagnosis and adaptive gene selection. However, ap-

plications of penalized regression models should be further

extended to a group setting, because developing generic

regression models for a wider range of HDLSS biological

data is desired. Therefore, our study focuses on HDLSS

data regression in a broad biological domain, e.g., biolog-

ical age prediction, acute myeloid leukemia (AML)/acute

lymphoblastic leukemia (ALL) identification, lung disease

identification, and B-cell chronic lymphocytic leukemia (B-

CLL) identification. To tackle the data sparsity problem, we

utilize a group Lasso regression model specifically designed

for HDLSS biological data to perform feature selection on

predefined feature groups, leading to improved regression

performance.

To address the data drifting problem, we propose the

GL CSE algorithm. This algorithm selects important model

checkpoints while training on the group Lasso via two

novel metrics: the average KL-divergence between training

and validation features and the Frobenius error of the co-

variance matrices between training and validation features.

Both metrics encourage the selection of model checkpoints

with a more slight drift between training and validation

features. Specifically, the first metric ensures the selection of

checkpoints with low KL-divergences between training and

validation features. The second metric ensures the selection

of checkpoints with smaller Frobenius errors of the covari-

ance matrices between training and validation features.

Our contributions are as follows: 1) Our proposed

GL CSE algorithm provides generic effective regression

1https://www.kaggle.com/competitions/aging

models on a wide range of HDLSS biological data, e.g.,

biological age prediction, AML ALL identification, lung dis-

ease identification, and B-CLL identification. 2) To address

the two aforementioned challenges, we propose the GL CSE

algorithm, which selects essential model checkpoints while

training on the group Lasso using two metrics: (1) the average

KL-divergence between training and validation features and

(2) the Frobenius error of the covariance matrices between

training and validation features. Both metrics promote the

selection of model checkpoints with minimal drift between

training and validation features.

II. METHOD

In this section, we will first introduce group Lasso re-

gression and the two proposed metrics, i.e., average KL-

divergence between training and validation features (ϵKL)

and the Frobenius error of the covariance matrices between

training and validation features (ϵF). We will then introduce

the proposed GL CSE algorithm.

A. Group Lasso Regression

Given D samples X = {x1, x2, ..., xD} and the labels Y =
{y1, y2, ..., yD}, xi ∈ R

N and yi ∈ R
1, we first split the

data into training set, test set, and validation set with ratios

rtrain = |Xtrain|
|X | , rtest = |Xtest|

|X | , rval = |Xval|
|X | , to obtain Xtrain,

Ytrain, Xtest, Ytest, Xval and Yval.

The goal of a Lasso regression model [3] is to find the

value of the parameters β that minimizes the sum of squared

errors as follows:

min
β∈RN

{

∥Y − Xβ∥
2

2
+ λ∥β∥1

}

. (1)

A large λ value places greater importance on the penalization,

resulting in more zero parameters among the β values. This is

particularly useful in high-dimensional data, where there are

more features than observations, but only a small fraction

of the features are expected to significantly contribute to

regression performance. However, in some cases, the features

in X naturally have a grouped structure. For example, in bio-

statistics, the datasets often have features grouped by patient

characteristics. Lasso regression provides individual sparse

solutions, rather than group sparse solutions. Therefore, we

will use group Lasso regression for biological data to promote

sparsity within feature groups.

Thus, assume the N features are divided into G groups,

with Ng indicating the number in group g, we use a matrix

Xg to represent the matrix of features of the g-th group, with

corresponding parameter vector βg . The group Lasso can be

solved as follows [6]:

min
β∈RN







∥

∥

∥

∥

∥

Y −

G
∑

g=1

Xgβg

∥

∥

∥

∥

∥

2

2

+ λ

G
∑

g=1

√

Ng∥βg∥2







, (2)
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where the
√

Ng terms accounts for the varying group sizes,

and ∥·∥
2

is the Euclidean norm (not squared). The group

Lasso regression applies a similar procedure as Lasso, but at

the group level, where an entire group of features may be

excluded from the model based on the value of λ.

B. Average KL-Divergence (ϵKL)

Each feature xi,n in Xtrain and Xval has a sample space Xn.

For probability distributions Pn,train and Pn,val defined on Xn,

the KL-divergence between Pn,train and Pn,val is defined as:

KLDn(Pn,train ∥ Pn,val) = (3)

−
∑

xi,n∈Xn

Pn,train(xi,n) log

(

Pn,val(xi,n)

Pn,train(xi,n)

)

.

Thus, the ϵKL for all N features can be computed as follows:

ϵKL =
1

N

N
∑

n=1

KLDn. (4)

C. Frobenius Error of the Covariance Matrices (ϵF)

The covariance matrix CMXtrain
of Xtrain can be computed

as the matrix whose (i, j) entry is the covariance as follows:

CMXi,trainXj,train
= E[(xi,i − E[xi,i])(xi,j − E[xi,j ])], (5)

where the operator E denotes the mean value. The covariance

matrix CMXval
of Xval can be computed in the same way.

Thus, the ϵF can be computed as:

ϵF =
∥CMXtrain

− CMXval
∥F

∥CMXtrain
∥F

. (6)

D. The Proposed GL CSE Algorithm

In order to encourage the selection of model checkpoints

with minimal drifts between the training and validation fea-

tures, we propose a GL CSE algorithm to extract important

model checkpoints while training on group Lasso via the

above two proposed metrics. During the training process, we

set the thresholds ΓKL and ΓF for ϵKL and ϵF, respectively, we

will only select checkpoints C that satisfy both ϵKL ≤ ΓKL

and ϵF ≤ ΓF. During the training process, the first metric

ϵKL ensures the selection of checkpoints with low KL-

divergences between training and validation features, while

the second metric ϵF ensures the selection of checkpoints with

smaller Frobenius errors of the covariance matrices between

training and validation features. The pseudocode is shown

in Algorithm 1. For each episode i, we will first randomly

shuffle the data X with the labels Y and split the dataset

into K folds. For each fold j, we will then split Xtrain, Xtest,

and Xval in Line 5. If both thresholds are satisfied, we will

save the checkpoint Ci,j for the i-th episode and j-th fold

into the selected checkpoints set C∗. It should be noted that

while group Lasso is used, the computation of the two metrics

we proposed is done by considering all features with equal

parameters.

Algorithm 1 The GL CSE Algorithm

Require: Episode number E, the fold number K, and C∗ =
{ø}.

Ensure: Checkpoints C∗.

1: for i← 1 to E do

2: Randomly shuffle the data X with the labels Y .

3: Split the dataset into K folds.

4: for j ← 1 to K do

5: Take the j-th fold as Xtest, take the (j+1)%Kth

fold as Xval, and take the remaining folds as Xtrain.

6: if ϵKL ≤ ΓKL (in Equation 4) and ϵF ≤ ΓF (in

Equation 6) then

7: Solve β̂ using the group Lasso in Equation 2

on Xtrain.

8: Ci,j = β̂

9: C∗ = C∗ ∪ Ci,j

10: end if

11: end for

12: end for

III. EVALUATION

In this section, we will discuss the experimental settings,

datasets, baselines, evaluation measurements, and experimen-

tal results obtained from the GL CSE algorithm.

A. Settings

All datasets considered are split into a training set, a test

set, and a validation set with ratios rtrain = 0.8, rtest = 0.1,

and rval = 0.1. We set the fold number K = 10 and

the total episode number E = 50. Penalization parameter

λ is selected by minimizing 5-fold cross-validated error.

Thresholds ΓKL and ΓF are set as the first quartile (Q1) and

the second quartile (Q2) of all ϵKL and ϵF values, respectively.

Principle component analysis (PCA) [10] is used to project

the original high-dimensional features to a matrix of principal

components. The number of the projected features is selected

to maintain an explained variance of 95%. This step is

implemented via the built-in modules in Scikit-learn 2.

B. Datasets

The following real-biological HDLSS datasets are consid-

ered in our experiments: 1) Biological age dataset 3 in which

contains 100 DNA Methylation samples in 100 classes. Every

sample consists of 483756 features. 2) ALL AML dataset 4

in which comprises 72 samples, divided into two classes:

ALL and AML. The class ALL has 47 samples, while AML

has 25 samples. Every sample contains 7129 values for gene

expression. 3) LUNG dataset 5 contains a total of 203 sam-

ples across 5 classes: adenocarcinomas, squamous cell lung

2https://scikit-learn.org/stable/
3https://www.kaggle.com/competitions/aging
4https://www.kaggle.com/datasets/crawford/gene-expression
5https://jundongl.github.io/scikit-feature/datasets.html
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carcinomas, pulmonary carcinoids, small-cell lung carcino-

mas, and normal lung. The number of samples for each class

is 139, 21, 20, 6, and 17, respectively. Each sample consists

of 3312 features. 4) CLL SUB 111 dataset 6 consists of

111 samples of gene expressions obtained from high-density

oligonucleotide arrays. The dataset contains three classes,

which represent genetically and clinically distinct subgroups

of B-CLL. Every sample consists of 11340 features.

The data statistics are summarized in Table I.

TABLE I: Statistics for real-world datasets.

Data # of Samples # of Features # of Classes

Biological age 100 483756 100
ALL AML 72 7129 2
LUNG 203 3312 5
CLL SUB 111 111 11340 3

C. Baselines

To evaluate the performance of our method, we compare

our method with the following two popular regression base-

lines: 1) L1-penalized logistic regression [3] (logR-L1).

This method performs linear feature selection with the L1
regularization for regression problems. 2) HSIC-Lasso [16].

This method is a nonlinear method that uses kernels to

learn a sparse model on kernelized labels and features. It is

also recognized as the state-of-the-art minimum redundancy

maximum relevance (mRMR) model.

D. Evaluation Metrics

We will compare our GL CSE with the above two ap-

proaches, i.e., logR-L1 and HSIC-Lasso, using the two

evaluation measurements as follows: 1) The mean squared

error (MSE) is a measure of the average squared difference

between the predicted values and the true values. It is

calculated using the following formula:

MSE =
1

Dtest

Dtest
∑

i=1

(yi − ŷi)
2, (7)

where yi is the true value of the ith label, ŷi is the

predicted value of the ith label, and Dtest represents the

number of samples in the test set.

2) The R-squared (R2) value is a statistical measure that

represents the proportion of the variance in the dependent

variable that is explained by the independent variable(s). It

is calculated using the following formula:

R2 = 1−
SSres

SStot

, (8)

where SSres is the sum of squares of residuals (the differ-

ence between the true labels and the predicted labels), which

can be computed as: SSres =
∑Dtest

i=1
(yi − ŷi)

2.

6https://jundongl.github.io/scikit-feature/datasets.html

SStot is the total sum of squares (the difference between

the true labels and the mean of the true labels), and it is

computed as: SStot =
∑Dtest

i=1
(yi − ȳi)

2, where ȳi is the mean

of the true labels.

E. Experimental Results

Our experiments address two main questions: 1) Does the

GL CSE method show a better performance in biological

data regression compared to the other popular regression

methods? 2) Is our checkpoint selection strategy better than

the other checkpoint selection methods, such as K-fold cross-

validation?

We will address these questions in subsection III-E1 and

subsection III-E2. In subsection III-E3, we will conduct

an ablation study that demonstrates the importance of the

proposed checkpoints selection module in our GL CSE.

1) Performances: In Table II, we will report the experi-

mental results of our GL CSE compared with two baselines,

i.e., logR-L1 and HSIC-Lasso using MSE and R2 measure-

ments. In this experiment, ΓKL and ΓF are set as the Q1 of

all ϵKL and ϵF values, respectively.

TABLE II: Experimental Results on MSE and R2.

Biological Age ALL AML LUNG CLL SUB 111

logR-L1
MSE 5.3042 0.1027 0.1729 0.1245
R2 0.8009 0.9371 0.9131 0.9014

HSIC-Lasso
MSE 5.0412 0.0708 0.1684 0.1017
R2 0.8204 0.9593 0.9294 0.9175

GL CSE (Q1)
MSE 0.8799 0.0316 0.1192 0.0847

R2
0.9883 0.9991 0.9889 0.9899

The MSE reflects the average difference between the

predicted labels and the true labels. Therefore, a lower MSE

value indicates better predictive power. In contrast, the R2

value ranges from 0 to 1, where 1 indicates a perfect fit

of the model to the data, and 0 indicates that the model

does not explain any variability in the data. Therefore, a

higher R2 value is desired. In Table II, we highlight the top

performing outcomes in bold. It is noteworthy that across all

the datasets, our proposed GL CSE method demonstrates su-

perior performance compared to other methods, as evidenced

by both measurements. The HSIC-Lasso method ranks sec-

ond, followed by the logR-L1 method. Specifically, in the

case of the biological age dataset, our GL CSE achieves

outstanding results, with MSE and R2 values of 0.8799 and

0.9883, respectively. HSIC-Lasso performs the second-best,

with MSE and R2 values of 5.0412 and 0.8204, respectively.

The logR-L1 method exhibits the weakest performance, with

MSE and R2 values of 5.3042 and 0.8009, correspondingly.

It is worth mentioning that these results hold across all

aforementioned datasets.

2) Comparison with K-Fold Cross-Validation: Table III

presents the performance comparisons of GL CSE (Best),

GL CSE (Q1), GL CSE (Q2), and GL CSE (K-Fold).

GL CSE (Best) represents the checkpoint Ci,j with the best

testing performances on MSE and R2. GL CSE (Q1) and

GL CSE (Q2) correspond to setting ΓKL and ΓF as the Q1
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Lasso (Q2), and then the regular HSIC-Lasso. For example,

in Figure 1a and Figure 2a, HSIC-Lasso (Q2) achieves 4.6714
for MSE and 0.8406 for R2, which are superior to the regular

HSIC-Lasso performance, i.e., 5.0412 for MSE and 0.8204
for R2, respectively, for the biological age dataset. We can

also see that HSIC-Lasso (Q1) achieves the best performance,

i.e., 4.0013 for MSE and 0.8649 for R2, respectively. Thus,

this experiment highlights the significance of our proposed

checkpoint selection module.

IV. CONCLUSION

In this paper, we present the GL CSE algorithm to address

two critical issues in HDLSS biological data regression: data

sparsity and data drifting. To tackle the data sparsity problem,

we employ a group Lasso regression model. To handle the

data drifting issue, we propose a checkpoint selection method

that extracts essential model checkpoints while training the

group Lasso. The checkpoint selection is performed based

on two proposed metrics, i.e., the average KL-divergence

between training and validation features and the Frobenius

error of the covariance matrices between training and val-

idation features. Our experimental results demonstrate that

our GL CSE algorithm outperforms other baseline methods

in terms of performance. Furthermore, our proposed check-

point selection component outperforms traditional K-fold

cross-validation. Specifically, on the biological age dataset,

GL CSE (Q2) achieves 0.9045 for MSE and 0.9880 for R2,

respectively, which is superior to the K-fold cross-validation

results, i.e., 1.0612 for MSE and 0.9871 for R2, respectively.

Our future work includes (1) developing ensemble models

and (2) performing neural architecture search on the selected

models set to enhance the regression performance and select

important group features simultaneously.
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