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Abstract—Some unique characteristics of biological data are
(1) that they are always High-Dimension and Low-Sample-Size
(HDLSS) and (2) there are changes in the data distribution, such
as an imbalance in classes, distribution and covariate shifts,
etc. In this paper, we propose a Group Lasso with Checkpoints
SElection (GL_CSE) algorithm to tackle both issues. To address
the first issue, we utilize a group Lasso regression model tailored
for HDLSS data to perform feature selection on predefined
groups of features, alleviating overfitting and being invariant
under group-wise orthogonal reparameterizations. To address
the second issue, we propose the checkpoint selection method to
extract important model checkpoints while training on group
Lasso via two proposed metrics, i.e., the average KL-divergence
between training and validation features and the Frobenius
error of the covariance matrices between training and validation
features. Both metrics aim to select model checkpoints with
minimal drifts between the training and validation features. The
results of our experiments indicate that our proposed GL_CSE
algorithm achieves better performance compared to other
baseline methods in terms of the MSE and R?> measurements.
Specifically, on the biological age dataset, our GL_CSE method
achieves 0.8799 and 0.9883 for the MSE and R? measurements,
respectively. Additionally, we also show that our proposed
checkpoint selection method performs better than regular K-
fold cross-validation. Specifically, on the biological age dataset,
GL_CSE (Q2) achieves 0.9045 MSE and 0.9880 R2, respectively,
which outperforms the regular K-fold cross-validation results,
i.e., 1.0612 MSE and 0.9871 R?, respectively.

Index Terms—HDLSS, biological data, group Lasso regres-
sion, checkpoint

I. INTRODUCTION

High-dimensional, low-sample-size (HDLSS) data refers
to datasets that have a large number of variables/features
(high-dimensional) but a limited number of observa-
tions/examples (low-sample-size). The problem with tradi-
tional machine learning methods, such as logistic regression,
discriminant analysis, and k-nearest neighbors, is that they
often encounter difficulties when handling HDLSS data [1].
These challenges include overfitting, low prediction accuracy,
and computational inefficiencies.

To overcome these challenges, researchers have developed
several techniques for analyzing HDLSS data. One approach
is to use methods that do not involve dimensionality reduction
(DR), such as regularized regression, decision trees, and
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support vector machines. These techniques work by explicitly
modeling the relationships between the features and the target
variable, without reducing the dimensionality of the data. For
instance, Shen et al. [14] proposed a no-separated data max-
imum dispersion classifier that finds a projecting direction
that maximizes the interval in which all training samples
scatter. Gunduz and Fokoue [1] compared the predictive per-
formances of robust classification techniques with a special
concentration on robust discriminant analysis. However, this
category of approaches trains on high-dimensional features,
resulting in a large model size and time-consuming training
that is often impractical. Additionally, specialized analysis
techniques are required to address the unique characteristics
of biological data regression. For example, in biostatistics,
datasets often have features grouped by biological pathways,
which require specialized analysis techniques. Therefore,
when conducting biological data regression, it’s essential to
assess the structural identifiability of models to determine
whether model parameters can be uniquely determined prior
to regression and what data are required to achieve that.
Consequently, we propose a DR based method named Group
Lasso with Checkpoints SElection (GL_CSE) algorithm. An-
other main approach involves using DR techniques as a pre-
processing step before regression, including methods such
as principal component analysis (PCA) [10], linear discrim-
inant analysis (LDA) [17], t-distributed stochastic neighbor
embedding (t-SNE) [15], and others. These techniques work
by transforming the original high-dimensional data into a
lower-dimensional space that retains the most significant
features while minimizing information loss. Some examples
of methods in this category are DR based on feature selec-
tion [5] (e.g., L1-penalized logistic regression [3] and HSIC-
Lasso [16]), transformation-based projection [7], manifold-
based approaches [11], regularity [8], ensemble learning [13],
neural networks [12], and multi-view learning [9]. By reduc-
ing the data’s dimensionality, these techniques can enhance
traditional machine learning models’ performance while re-
ducing computational complexity, making it feasible to train a
small model and deploy it on devices with limited resources.
For instance, the maximum margin criterion (MMC) [4] was
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proposed as an improvement over linear discriminant anal-
ysis (LDA) for high-dimensional, low-sample-size (HDLSS)
datasets by avoiding the need to solve the inverse of a low-
rank between-class scatter matrix. However, this approach
may suffer from degradation in classification performance
due to data piling.

Over the past decade, biological data regression has
achieved breakthroughs in applications, e.g., pre-regression
and post-regression diagnostics, with large sample size [2].
However, when facing high dimension, low sample size
(HDLSS) data, such as predicting biological age ' using
DNA methylation data, regression models face two main
challenges: 1) Sparsity: HDLSS data often contains a large
set of features but only a few number of samples, resulting in
a sparse dataset. This sparsity can make it infeasible to find
meaningful patterns in the data. 2) Drift in Data Distribution:
Biological data can exhibit changes in the data distribution
over time, causing an imbalance in classes, domain shifts, and
other issues that make it difficult to generalize the regression
model to new data.

Recently, in order to address the data sparsity problem, Li
et al. [6] proposed a logistic regression with adaptive sparse
group lasso penalty (LR-ASGL) to simultaneously perform
cancer diagnosis and adaptive gene selection. However, ap-
plications of penalized regression models should be further
extended to a group setting, because developing generic
regression models for a wider range of HDLSS biological
data is desired. Therefore, our study focuses on HDLSS
data regression in a broad biological domain, e.g., biolog-
ical age prediction, acute myeloid leukemia (AML)/acute
lymphoblastic leukemia (ALL) identification, lung disease
identification, and B-cell chronic lymphocytic leukemia (B-
CLL) identification. To tackle the data sparsity problem, we
utilize a group Lasso regression model specifically designed
for HDLSS biological data to perform feature selection on
predefined feature groups, leading to improved regression
performance.

To address the data drifting problem, we propose the
GL_CSE algorithm. This algorithm selects important model
checkpoints while training on the group Lasso via two
novel metrics: the average KL-divergence between training
and validation features and the Frobenius error of the co-
variance matrices between training and validation features.
Both metrics encourage the selection of model checkpoints
with a more slight drift between training and validation
features. Specifically, the first metric ensures the selection of
checkpoints with low KL-divergences between training and
validation features. The second metric ensures the selection
of checkpoints with smaller Frobenius errors of the covari-
ance matrices between training and validation features.

Our contributions are as follows: 1) Our proposed
GL_CSE algorithm provides generic effective regression

Uhttps://www.kaggle.com/competitions/aging

models on a wide range of HDLSS biological data, e.g.,
biological age prediction, AML_ALL identification, lung dis-
ease identification, and B-CLL identification. 2) To address
the two aforementioned challenges, we propose the GL_CSE
algorithm, which selects essential model checkpoints while
training on the group Lasso using two metrics: (1) the average
KL-divergence between training and validation features and
(2) the Frobenius error of the covariance matrices between
training and validation features. Both metrics promote the
selection of model checkpoints with minimal drift between
training and validation features.

II. METHOD

In this section, we will first introduce group Lasso re-
gression and the two proposed metrics, i.e., average KL-
divergence between training and validation features (ekp)
and the Frobenius error of the covariance matrices between
training and validation features (ep). We will then introduce
the proposed GL_CSE algorithm.

A. Group Lasso Regression

Given D samples X = {z1, 23, ..., xp} and the labels ) =
{y1,92,..,yp}, ©; € RN and y; € R, we first split the
data into training set, test set, and validation set with ratios
Poain = Lomnl g = el = Il o obtain Xy

train x| > 'test x| > 'val x| trains
ytrain’ ‘Xtest’ tests Xval and val-

The goal of a Lasso regression model [3] is to find the
value of the parameters S that minimizes the sum of squared
errors as follows:

min {1 = X813 + Al } - ()

BERN

A large X value places greater importance on the penalization,
resulting in more zero parameters among the 3 values. This is
particularly useful in high-dimensional data, where there are
more features than observations, but only a small fraction
of the features are expected to significantly contribute to
regression performance. However, in some cases, the features
in X naturally have a grouped structure. For example, in bio-
statistics, the datasets often have features grouped by patient
characteristics. Lasso regression provides individual sparse
solutions, rather than group sparse solutions. Therefore, we
will use group Lasso regression for biological data to promote
sparsity within feature groups.

Thus, assume the N features are divided into G groups,
with N, indicating the number in group g, we use a matrix
X, to represent the matrix of features of the g-th group, with
corresponding parameter vector 3,. The group Lasso can be
solved as follows [6]:

2

min
BERN

g g
Hy_zxgﬂg +>‘Z VNglIBgll2 ¢ (@)
g=1 g=1

2
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where the \/]Tg terms accounts for the varying group sizes,
and |[|-||, is the Euclidean norm (not squared). The group
Lasso regression applies a similar procedure as Lasso, but at
the group level, where an entire group of features may be
excluded from the model based on the value of A.

B. Average KL-Divergence (egr)

Each feature x; ,, in Xyin and Xy, has a sample space X,
For probability distributions Py, train and Py, va defined on &,
the KL-divergence between P, irain and P, va is defined as:

KLDn(Pn,train || Ipn’\,al) frng (3)
Poval(Tin
o Z P train (T4 ) log (W) )
Ti,nC€Xn n,train(ffi}n)

Thus, the egy, for all N features can be computed as follows:

1 N
KL= 3 nz::l KLD,,. %)

C. Frobenius Error of the Covariance Matrices (€f)

The covariance matrix CMy,,,, of Xiin can be computed
as the matrix whose (i, 7) entry is the covariance as follows:

= E[(zi,; — Elz4])(zi,; — Elzi5])],  (5)

where the operator E denotes the mean value. The covariance

matrix CMy,, of &,y can be computed in the same way.

Thus, the er can be computed as:
HCMXm\in - CMXm

€p = ullF (6)
r HCM-XIrain ||F

D. The Proposed GL_CSE Algorithm

In order to encourage the selection of model checkpoints
with minimal drifts between the training and validation fea-
tures, we propose a GL_CSE algorithm to extract important
model checkpoints while training on group Lasso via the
above two proposed metrics. During the training process, we
set the thresholds I'ky, and I'r for ek and ep, respectively, we
will only select checkpoints C that satisfy both exp < T'gp
and eg < I'p. During the training process, the first metric
exr ensures the selection of checkpoints with low KL-
divergences between training and validation features, while
the second metric er ensures the selection of checkpoints with
smaller Frobenius errors of the covariance matrices between
training and validation features. The pseudocode is shown
in Algorithm 1. For each episode ¢, we will first randomly
shuffle the data X with the labels ) and split the dataset
into K folds. For each fold j, we will then split Xiain, Xrests
and X, in Line 5. If both thresholds are satisfied, we will
save the checkpoint C*/ for the i-th episode and j-th fold
into the selected checkpoints set C*. It should be noted that
while group Lasso is used, the computation of the two metrics
we proposed is done by considering all features with equal
parameters.

CM Xi strain Xj

,train

Algorithm 1 The GL_CSE Algorithm

Require: Episode number E, the fold number K, and C* =
{o}.
Ensure: Checkpoints C*.
1: for i < 1to E do

2: Randomly shuffle the data X' with the labels ).

3: Split the dataset into K folds.

4: for j + 1to K do

5: Take the j-th fold as X, take the (j + 1)% K"
fold as X,,, and take the remaining folds as Xji,.

6: if exy < I'kp (in Equation 4) and e < I'r (in
Equation 6) then

7 Solve B using the group Lasso in Equation 2
on ')(lraim

8: Ch = B

9: C*=CruChH

10 end if

11: end for

12: end for

III. EVALUATION

In this section, we will discuss the experimental settings,
datasets, baselines, evaluation measurements, and experimen-
tal results obtained from the GL_CSE algorithm.

A. Settings

All datasets considered are split into a training set, a test
set, and a validation set with ratios 7y, = 0.8, 7y = 0.1,
and ryy = 0.1. We set the fold number KX = 10 and
the total episode number E = 50. Penalization parameter
A is selected by minimizing 5-fold cross-validated error.
Thresholds I'ky, and I'r are set as the first quartile (Q1) and
the second quartile (Q2) of all ek and eg values, respectively.
Principle component analysis (PCA) [10] is used to project
the original high-dimensional features to a matrix of principal
components. The number of the projected features is selected
to maintain an explained variance of 95%. This step is
implemented via the built-in modules in Scikit-learn 2.

B. Datasets

The following real-biological HDLSS datasets are consid-
ered in our experiments: 1) Biological age dataset * in which
contains 100 DNA Methylation samples in 100 classes. Every
sample consists of 483756 features. 2) ALL_AML dataset 4
in which comprises 72 samples, divided into two classes:
ALL and AML. The class ALL has 47 samples, while AML
has 25 samples. Every sample contains 7129 values for gene
expression. 3) LUNG dataset > contains a total of 203 sam-
ples across 5 classes: adenocarcinomas, squamous cell lung

Zhttps://scikit-learn.org/stable/
3https://www.kaggle.com/competitions/aging
“https://www.kaggle.com/datasets/crawford/gene-expression
Shttps://jundongl.github.io/scikit-feature/datasets.html
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carcinomas, pulmonary carcinoids, small-cell lung carcino-
mas, and normal lung. The number of samples for each class
is 139, 21, 20, 6, and 17, respectively. Each sample consists
of 3312 features. 4) CLL_SUB_111 dataset © consists of
111 samples of gene expressions obtained from high-density
oligonucleotide arrays. The dataset contains three classes,
which represent genetically and clinically distinct subgroups
of B-CLL. Every sample consists of 11340 features.
The data statistics are summarized in Table 1.

TABLE I: Statistics for real-world datasets.

Data # of Samples  # of Features  # of Classes
Biological age | 100 483756 100
ALL_AML 72 7129 2

LUNG 203 3312 5
CLL_SUB_I111 | 111 11340 3

C. Baselines

To evaluate the performance of our method, we compare
our method with the following two popular regression base-
lines: 1) L1-penalized logistic regression [3] (log R-L1).
This method performs linear feature selection with the L1
regularization for regression problems. 2) HSIC-Lasso [16].
This method is a nonlinear method that uses kernels to
learn a sparse model on kernelized labels and features. It is
also recognized as the state-of-the-art minimum redundancy
maximum relevance (mRMR) model.

D. Evaluation Metrics

We will compare our GL_CSE with the above two ap-
proaches, i.e., log’R-L.1 and HSIC-Lasso, using the two
evaluation measurements as follows: 1) The mean squared
error (MSE) is a measure of the average squared difference
between the predicted values and the true values. It is
calculated using the following formula:

Dle<l
1 .
MSE = =3 (4 — 4:)°, @
test s

where y; is the true value of the i*" label, yj; is the
predicted value of the it" label, and Diey represents the
number of samples in the test set.

2) The R-squared (R?) value is a statistical measure that
represents the proportion of the variance in the dependent
variable that is explained by the independent variable(s). It
is calculated using the following formula:

SSres
SStor”

where SSs is the sum of squares of residuals (the differ-
ence between the true labels and the predicted labels), which

test

can be computed as: SS;s = Zi’;l (yi — )2

RZ=1-

®)

Shttps:/jundongl.github.io/scikit-feature/datasets.html

SSiot 1s the total sum of squares (the difference between
the true labels and the mean of the true labels), and it is
computed as: SSy; = Z?:‘ei‘ (y; — 9;)?, where ; is the mean

of the true labels.

E. Experimental Results

Our experiments address two main questions: 1) Does the
GL_CSE method show a better performance in biological
data regression compared to the other popular regression
methods? 2) Is our checkpoint selection strategy better than
the other checkpoint selection methods, such as K-fold cross-
validation?

We will address these questions in subsection III-E1 and
subsection III-E2. In subsection III-E3, we will conduct
an ablation study that demonstrates the importance of the
proposed checkpoints selection module in our GL_CSE.

1) Performances: In Table II, we will report the experi-
mental results of our GL_CSE compared with two baselines,
i.e., log R-L1 and HSIC-Lasso using MSE and R2 measure-
ments. In this experiment, I'g; and I'r are set as the Q1 of
all exr, and ep values, respectively.

TABLE II: Experimental Results on MSE and R?.

Biological Age ALL_AML LUNG CLL_SUB_I11

log R-L1 MSE 5.3042 0.1027 0.1729 0.1245
s R? 0.8009 0.9371 0.9131 0.9014

MSE 5.0412 0.0708 0.1684 0.1017
HSIC-Lasso R? 0.8204 0.9593 0.9294 0.9175

MSE 0.8799 0.0316 0.1192 0.0847
GL_CSE QD) R? 0.9883 0.9991 0.9889 0.9899
The MSE reflects the average difference between the

predicted labels and the true labels. Therefore, a lower MSE
value indicates better predictive power. In contrast, the R?
value ranges from O to 1, where 1 indicates a perfect fit
of the model to the data, and O indicates that the model
does not explain any variability in the data. Therefore, a
higher R? value is desired. In Table II, we highlight the top
performing outcomes in bold. It is noteworthy that across all
the datasets, our proposed GL_CSE method demonstrates su-
perior performance compared to other methods, as evidenced
by both measurements. The HSIC-Lasso method ranks sec-
ond, followed by the log R-L1 method. Specifically, in the
case of the biological age dataset, our GL_CSE achieves
outstanding results, with MSE and R? values of 0.8799 and
0.9883, respectively. HSIC-Lasso performs the second-best,
with MSE and R? values of 5.0412 and 0.8204, respectively.
The log R-L1 method exhibits the weakest performance, with
MSE and R? values of 5.3042 and 0.8009, correspondingly.
It is worth mentioning that these results hold across all
aforementioned datasets.

2) Comparison with K-Fold Cross-Validation: Table 111
presents the performance comparisons of GL_CSE (Best),
GL_CSE (Q1), GL_CSE (Q2), and GL_CSE (K-Fold).
GL_CSE (Best) represents the checkpoint C%J with the best
testing performances on MSE and R?. GL_CSE (Q1) and
GL_CSE (Q2) correspond to setting I'k. and I'r as the Q1
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TABLE III:

Comparisons on GL_CSE (Best), GL_CSE (Q1), GL_CSE (Q2), and GL_CSE (K-Fold).

Biological Age

ALL_AML

LUNG CLL_SUB_111

MSE  0.8799 0.0316 0.1192 0.0486
GL_CSE @) R? 0.9883 0.9991 0.9889 0.9899
MSE  0.9045% 0.0338% 0.1231+ 0.0669*
GL_CSE (2) R? 0.9880" 0.9882" 0.9704" 0.9573"
MSE  1.0612 0.0594 0.1413 0.0694
GL_CSE (K-Fold)| o 0.9871 0.9669 0.9507 0.9497
0.10 logR-L1 0.170 0.12
50 —=— HSIC-Lasso :
0.09 0.165
= ) o o log R-L1
= =4 > 0.160 2010 ™+ HSIC-Lasso

4.5 0.08
log R-L1

—=— HSIC-Lasso
4.0

Original Q2 Q1

007 *————————————a

Original Q2 Q1

(a) Biological Age (b) ALL_AML

0.155 logR-L1

0.08 \

—=— HSIC-Lasso
0.150
Original Q2 Q1 Original Q2 Q1
(c) LUNG (d) CLL_SUB_111

Fig. 1: The MSE on log R-L1, log R-L1 (Q1), log R-L1 (Q2), HSIC-Lasso, HSIC-Lasso (Q1), and HSIC-Lasso (Q2).

0.86 log R-L1 096 oo o ——A

—=— HSIC-Lasso

0.84

~
-4

o5
f\E‘ 0.95

0.82
log R-L1
094 —s— HSIC-Lasso

0.80

Original Q2 Q1 Original Q2 Q1

(a) Biological Age (b) ALL_AML

94
0.94 0.94

0.93

L 093 log R-L1 - log R-L1
= —=— HSIC-Lasso 2092 " e HSIC-Lasso
0.92 0.91
0.90
Original Q2 Q1 Original Q2 Q1
(c) LUNG (d) CLL_SUB_111

Fig. 2: The R? on log R-L1, log R-L1 (Q1), log R-L1 (Q2), HSIC-Lasso, HSIC-Lasso (Q1), and HSIC-Lasso (Q2).

and Q2 of all eg; and eg values, respectively. GL_CSE (K-
Fold) means conducting the group Lasso with regular K-
fold cross-validation, where K = 10. The GL_CSE (K-
Fold) algorithm will compute the average of the evaluation
measurements over the K validation sets among episodes.
The outcomes of our experiments show that GL_CSE (Q1)
yields results that are comparable to those of GL_CSE
(Best) (indicated in blue). The GL_CSE (Best) indicates the
best performance in terms of both metrics in the testing
data. Specifically, in the case of the biological age dataset,
GL_CSE (Q1) obtains MSE and R? of 0.8799 MSE and
0.9883 R2, respectively, which are comparable to the model
with the optimal test performances, i.e., 0.8738 for MSE
and 0.9894 for R%. Additionally, both GL_CSE (Q1) and
GL_CSE (Q2) outperform GL_CSE (K-Fold) in terms of the
two measurements across all datasets. In particular, for the
biological age dataset, GL_CSE (Q2) achieves 0.9045 for
MSE and 0.9880 for R?, which are superior to the regular K-
fold cross-validation results, i.e., 1.0612 for MSE and 0.9871
for R2.

3) Ablation Study:

In this subsection, we will perform an ablation study
to demonstrate the importance of the checkpoint selection
module in our GL_CSE method. Specifically, we will unravel

the importance of the proposed checkpoint selection mod-
ule using the typical logR-L1 and HSIC-Lasso algorithm.
In Figure 1, Standard, Ql, and Q2 represent conducting
the regular logistic regression together with our proposed
checkpoint selection module. This can be implemented by
replacing the group Lasso objective in Line 7 in Algorithm 1
with the regular logistic regression objective. In Figure 2,
Standard, Q1, and Q2 represent conducting the HSIC-Lasso
regression together with our proposed checkpoint selection
module [16]. In Q1 and Q2, 'y and I'g are set to the Q1 and
Q2 of all ek, and ep values, respectively. In both Figure 1
and Figure 2, we can see that log’R-L1 (Q1) achieves the
optimal performance in terms of MSE and R?, followed
by log R-L1 (Q2), followed by the regular log R-L1. For
example, in Figure 1a and Figure 2a, log R-L1 (Q2) achieves
5.0604 for MSE and 0.8201 for R2, which is superior to
the regular log R-L1 performance, i.e., 5.3042 for MSE and
0.8009 for R2, for the biological age dataset. We can also
see that log R-L1 (Q1) performs the best, with MSE and R?
values of 4.8362 and 0.8405, which are better than the values
obtained by the regular HSIC-Lasso algorithm, i.e., 5.0412
for MSE and 0.8204 for R2, respectively (shown in Table II).
We also observe that HSIC-Lasso (Q1) achieves the optimal
performance in terms of MSE and R2, followed by HSIC-

1796

Authorized licensed use limited to: Texas Tech University. Downloaded on April 23,2024 at 01:11:05 UTC from IEEE Xplore. Restrictions apply.



Lasso (Q2), and then the regular HSIC-Lasso. For example,
in Figure 1a and Figure 2a, HSIC-Lasso (Q2) achieves 4.6714
for MSE and 0.8406 for R2, which are superior to the regular
HSIC-Lasso performance, i.e., 5.0412 for MSE and 0.8204
for R2, respectively, for the biological age dataset. We can
also see that HSIC-Lasso (Q1) achieves the best performance,
i.e., 4.0013 for MSE and 0.8649 for R2, respectively. Thus,
this experiment highlights the significance of our proposed
checkpoint selection module.

IV. CONCLUSION

In this paper, we present the GL_CSE algorithm to address
two critical issues in HDLSS biological data regression: data
sparsity and data drifting. To tackle the data sparsity problem,
we employ a group Lasso regression model. To handle the
data drifting issue, we propose a checkpoint selection method
that extracts essential model checkpoints while training the
group Lasso. The checkpoint selection is performed based
on two proposed metrics, i.e., the average KL-divergence
between training and validation features and the Frobenius
error of the covariance matrices between training and val-
idation features. Our experimental results demonstrate that
our GL_CSE algorithm outperforms other baseline methods
in terms of performance. Furthermore, our proposed check-
point selection component outperforms traditional K-fold
cross-validation. Specifically, on the biological age dataset,
GL_CSE (Q2) achieves 0.9045 for MSE and 0.9880 for R?,
respectively, which is superior to the K-fold cross-validation
results, i.e., 1.0612 for MSE and 0.9871 for R?, respectively.
Our future work includes (1) developing ensemble models
and (2) performing neural architecture search on the selected
models set to enhance the regression performance and select
important group features simultaneously.
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