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Abstract

We present AircraftVerse, a publicly available aerial vehicle design dataset. Air-
craft design encompasses different physics domains and, hence, multiple modalities
of representation. The evaluation of these cyber-physical system (CPS) designs re-
quires the use of scientific analytical and simulation models ranging from computer-
aided design tools for structural and manufacturing analysis, computational fluid
dynamics tools for drag and lift computation, battery models for energy estimation,
and simulation models for flight control and dynamics. AircraftVerse contains
27,714 diverse air vehicle designs - the largest corpus of engineering designs with
this level of complexity. Each design comprises the following artifacts: a symbolic
design tree describing topology, propulsion subsystem, battery subsystem, and
other design details; a STandard for the Exchange of Product (STEP) model data; a
3D CAD design using a stereolithography (STL) file format; a 3D point cloud for
the shape of the design; and evaluation results from high fidelity state-of-the-art
physics models that characterize performance metrics such as maximum flight
distance and hover-time. We also present baseline surrogate models that use dif-
ferent modalities of design representation to predict design performance metrics,
which we provide as part of our dataset release. Finally, we discuss the potential
impact of this dataset on the use of learning in aircraft design and, more generally,
in CPS. AircraftVerse is accompanied by a data card, and it is released under
Creative Commons Attribution-ShareAlike (CC BY-SA) license. The dataset is
hosted at https://zenodo.org/record/6525446, baseline models and code at
https://github.com/SRI-CSL/AircraftVerse, and the dataset description
at https://aircraftverse.onrender.com/.

1 Introduction

Datasets of complex cyber-physical systems (CPS) are difficult to build and large CPS datasets
are not publicly available. Their availability is limited for multiple reasons, such as: proprietary
restrictions; difficulty in assembling the right mix of experts; and the slow manual design process
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due to their complexity. However, a huge opportunity exists to apply data-driven approaches to CPS
once such a dataset becomes widely available. Electric Vertical Take-Off and Landing (eVTOL)
aircraft represent an emerging class of CPS. The use of electrical propulsion and the growing
energy density of available batteries have fueled rapid growth in eVTOL aircraft designs from food
delivery/logistics [12], to the detection of sharks along highly populated beaches [18], and to air
taxis. We expect this variation to only increase as battery technology continues to improve [10]. The
diversity within the electric aerial vehicle design space is large due to the many choices available
for selecting structural, mechanical, and electrical components. The multiphysics nature of CPS
designs necessitate heterogeneity in representation, such as the use of stereolithographic (STL) files
for computational fluid dynamics (CFD) analysis and the use of symbolic descriptions of motors
and speed controllers for electrical analysis. Data-driven learning methods for CPS must be able to
handle this diversity and multimodality of CPS designs. AircraftVerse provides such a dataset to
enable further research into data-driven methods for characterizing or designing CPS.

(a) CAD Datasets

Inset showing details of
connectors with multiple
mechanical components

Inset showing details of
an aircraft design’s arm
with propeller and motor.

(b) Example of 3D CAD models of aircraft designs in AircraftVerse

Figure 1: Existing CAD datasets (SketchGraphs [28], DeepCAD [35], ABC [19]) are focused on
CAD for mechanical parts. Aircraft designs in AircraftVerse include CAD models as one of the
modalities. A CAD model (STEP or STL) is an assembly of several components such as propellers,
wings, connectors, beams, motors, batteries, and hubs. The CAD designs in AircraftVerse are
more complex compared to the existing datasets. The inset magnifications of a couple of parts of one
of the designs in the figure above demonstrates this complexity. In addition to CAD models, each
design also includes a symbolic design tree with additional details such as propulsion and battery
subsystems that are needed for performance analysis (e.g. electrical and flight dynamics analysis).
AircraftVerse also contains the result from the evaluation of each design using high-fidelity
scientific and engineering tools. Thus, AircraftVerse is a CPS dataset and not just a CAD dataset.

AircraftVerse (Figure 1) contains 27,714 diverse aircraft designs where each design is repre-
sented in multiple modalities, including a computer aided design (CAD) model and symbolic de-
scription. Each design is also accompanied with detailed evaluation results. Thus, AircraftVerse
is naturally amenable to emerging neurosymbolic and other deep learning methods for generative
modeling, surrogate learning and sequence-to-sequence models. Overall, our paper is structured as
follows. In Section 2 we provide a summary of the few existing related datasets. We then introduce
AircraftVerse in Section 3 and describe the constituent parts that make up a design. We highlight
the potential of AircraftVerse in Section 4 by providing an overview of the diversity of designs
and by displaying experiments on surrogate modeling, while noting that this covers just a small part
of what kind of experimentation is possible with this new dataset. We then conclude in Section 7.

2 Related work

The use of machine learning in CAD has gained significant attention, and a few datasets have
been proposed in recent literature to enable development and benchmarking of machine learning
approaches. SketchGraphs dataset [28] is a collection of sketches extracted from parametric CAD
models which begin as two-dimensional (2D) sketches consisting of geometric primitives (e.g., line
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segments, arcs) and explicit constraints between them (e.g., coincidence, perpendicularity) that form
the basis for three-dimensional (3D) construction operations. This dataset has been used for generative
model of CAD sketches [34], and other applications of learning in physical design [29, 23]. Another
example of a CAD dataset that is focused on physical structure is SimJEB [33], which is a dataset
of crowdsourced mechanical brackets and accompanying structural simulations. DeepCAD [35] is
a dataset of 3D shapes corresponding to objects such as flanges, pipes and screws, represented as
a sequence of operations used in a CAD framework to generate these shapes. Another dataset for
3D engineering shapes is the ABC dataset [19], which comprises geometric models, each defined by
parametric surfaces and associated with ground truth information on the decomposition into patches.
These datasets are excellent resources for their target application domains such as extrapolating 2D
sketch to CAD designs, and generating mechanical parts.

In contrast, AircraftVerse is a dataset that covers the more complex design space of electric
aircraft focused on system-level CPS design and thus, complements existing CAD datasets. In
Figure 1, we illustrate the complexity of the aircraft designs in AircraftVerse compared to
mechanical components from the existing CAD datasets. The CAD models of an aircraft design
in AircraftVerse are an assembly of several mechanical components, such as propellers, motors,
wings, hub and connectors. Further, the AircraftVerse dataset includes additional description
of a design beyond its CAD model, such as its propulsion subsystem and its electrical subsystem.
This is crucial for creating a description that can predict the performance (flight dynamics, electrical
analysis) of a design as designs with similar CAD structure can have very different performances
depending on the used components. We also provide the performance of each design using detailed
high-fidelity physics and engineering simulation tools to enable the use of this dataset not just for
generative modeling, but also for learning surrogates and design characterization and optimization.

3 AircraftVerse dataset

The key characteristics of AircraftVerse are as follows:

• The number of designs in AircraftVerse is 27,714 making it a uniquely large-scale CPS dataset
with high design complexity. Design curation required finding valid aircraft configurations followed
by detailed simulations to evaluate its performance objectives. We have attempted to create a
balanced dataset that includes a sufficient number of aircraft designs across a range of different
flight performance metrics, such as hover times and maximum flight distances. Our search for
designs included over a hundred thousand candidates from which we selected these 27,714 designs
to ensure diversity in design and performance. Our design process itself is diversity-preserving and
ensures optimization does not lead to very similar designs [5, 6].

• AircraftVerse represents design using multiple modalities that include: a symbolic design tree
describing the design topology, propulsion subsystem, battery subsystem, and other design details;
a STandard for the Exchange of Product (STEP) model that is a decomposable CAD model showing
each part separately; and a stereolithographic (STL) CAD model that is ideal for computational
fluid dynamics analysis, and the corresponding 3D point cloud for the shape of the design.

• AircraftVerse uses results from high-fidelity physics models and an evaluation pipeline
developed as a part of DARPA’s Symbiotic Design of CyberPhysical System’s program1 to evaluate
different aircraft designs. These physics models characterize performance metrics such as maximum
flight distance and hover-time. The evaluation pipeline uses a mixture of custom flight dynamics
simulators [31] and commercial tools such as Creo [24]. The evaluation of a design to determine
performances such as its drag, lift, maximum flight time and hover time requires a significant
compute infrastructure and requires subject-matter expertise. We include these evaluation results as
part of the dataset.

• The designs in AircraftVerse exhibit a very high degree of diversity in their topology, the
choice of energy subsystem and the choice of propulsion. The designs are a mixture of rotorcrafts,
winged aircrafts and hybrids with 28% capable of vertical takeoff and landing.2 To the best of
our knowledge, there is no other available corpus of such diverse aircraft designs with the design
details and the results from detailed scientific and engineering evaluation.
1https://www.darpa.mil/program/symbiotic-design-for-cyber-physical-systems
2We note that some aerial vehicles, such as many fixed wing aircraft, are launched (or catapulted) and

therefore are not required to hover.

3



• We include multiple baseline surrogate models to predict some of the key design performance
metrics. Our surrogate models include a transformer encoder model and an LSTM model that take
the symbolic design configuration, as its input, as well as a graph convolution neural network and a
PointNet model that use the point cloud modality. These baseline models are used to predict the
mass, the maximum flight distance, the maximum hover-time and the presence of any structural
interferences that needs to be avoided for fabrication and manufacturing.

Dataset Availability. The dataset is publicly available for free under Creative Commons Attribution-
ShareAlike (CC BY-SA) license, which will enable future extension and adaptation of the dataset by
others. With respect to its maintainability and long-term availability, the dataset is hosted at https://
zenodo.org/record/6525446 and will be maintained by SRI International3, a non-profit research
institute with over 75 years of history of contributing to society and research community, with a
proven track record of building, maintaining and distributing several datasets such as BioCyc [16],
Voices [27], and open-source tools4 - some of which have been maintained for multiple decades.

Dataset Curation. The designs in AircraftVerse are battery-powered, where the propulsion
comes from the electric motors that power the propellers. Our design corpus includes a range of
propellers, motors, batteries, and fixed wings. The list of components is provided in Appendix F. We
use the propulsion subsystem design as an example to describe the curation of the dataset. We use a
combination of wings and propellers (in the right topology) provides the thrust and lift needed for
efficient horizontal flight and vertical take-off and landing. Our components are diverse, such as the
propellers have a different number of rotor blades with different diameters and pitches, the component
motors have different Kv, Km, Kt ratings, and the batteries have different peak and continuous
current ratings and different voltage ratings. Consequently, the design choices allow significant
diversity in structure and composition for similar performance. For example, the thrust produced
by a propeller-motor pair can be related approximately to the parameters by the following formula:
Thrust / (Kv⇥V oltage)/(Pitch⇥Diameter), whereKv is the motor’s "Kilovolt" rating, which
represents the number of revolutions per minute (RPM) that the motor will produce per volt, V oltage
is the voltage being applied to the motor, Pitch is the distance that the propeller would move forward
in one rotation, and Diameter is the distance across the propeller. Our design used more detailed
models [31, 24], but this dependency illustrates how the same thrust can be produced by different
combinations of propellers and motors. HighKv rating motors that rotate much faster can produce
the same thrust with smaller propellers when compared to lower Kv (slower) motors with larger
diameter propellers. These combinations can have different continuous and peak current requirements
that would influence the battery choice. In addition to these propulsion choices, connectors such
as parametric joints, hubs, and arms can be put together in flexible ways to build interesting design
geometry and topologies. These can have an impact on the experienced drag, which would then
influence the requirements for propulsion. Thus, the design of aircraft requires making a number of
tightly coupled design choices. The performance of each design can be assessed using a pipeline
comprising commercial tools such as Creo [24] and custom flight dynamics model (FDM) [31, 2].
Each aircraft is also assessed on controllability (existence of trim states - where the aircraft remains
stable in the absence of environment perturbations) at different speeds using the FDM. In particular,
the FDM evaluates whether the aerial vehicle can fly at a specific velocity through optimization
schemes that check if the translational and rotational accelerations can be driven to zero for a given
design during vertical take-off and horizontal flight (more details in Appendix C). Manually finding
a large number of feasible designs is very challenging and prohibitively time-consuming. Instead,
we use a learning-based design approach [6]. We create a number of designs using a procedural
aircraft generator that uses heuristics provided by domain experts, such as limiting the complexity
of produced designs to have at most 16 propellers and at most 12 wings, using design motifs and
symmetries that help with controllability of the aircraft. A transformer-based model is trained on
designs with good flight characteristics to act as a filter in the future generation process (Appendix E,
[6]). Each of the final 27,714 designs included in the dataset is run through the detailed scientific
and engineering models [31, 2, 24] to generate the metadata describing the design performance and
characteristics.

Design Structure and Representation. Each design in the dataset consists of the following:5

3https://en.wikipedia.org/wiki/SRI_International
4https://github.com/SRI-CSL
5For a complete printout see Appendix G.
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• design_tree.json: The design tree describes the design topology, choice of propulsion and
energy subsystems. The tree also contains continuous parameters such as wing span, wing chord,
and the lengths of propeller arms and connectors. In our dataset, we also include a preorder
traversal of the design tree and store this as design_seq.json to facilitate the use of sequence-
friendly model architectures. In addition, we include design_low_level.json, which is a more
fine-grained engineering representation of the design. This fine-grained representation includes
significant repetition that is avoided in the abstract tree representation through the use of symmetry
(such as specifying that the same arm structure is repeated six times around a hub). See the pictorial
representation of the design tree in Figure 2 that demonstrates a simple example of such a symmetry.

• Geom.stp, cadfile.stl, and pointCloud.npy: CAD design for the aerial vehicle in com-
positional STEP format (ISO 10303 standard), its stereolithographic STL file, and a generated
pointcloud of 10,000 points from the CAD representation.

• output.json and trims.npy: Summary files containing the vehicle’s performance metrics such
as maximum flight distance, maximum hover time, flight distance at maximum speed, maximum
current draw, and mass. The trims.npy contains the [Distance, Flight Time, Pitch, Control Input,
Thrust, Lift, Drag, Current, Power] at each evaluated trim state (velocity) of the aircraft. Designs
that have more trim states and with contiguous trim states are preferable as these designs would be
relatively easier to control even when the environment is noisy. Thus, both the output.json and
trims.npy contain the evaluation of the performance of each design. See Figure 2 for an example
of these evaluation indicators.

design_tree.json:

Motor Propeller Flange

Propeller Arm

Battery

Connected 4-way Sym. HubFull Design

Fuselage

trims.npy:

cadfile.stl:

Geom.stp:

pointCloud.npy:

output.json:

{

"Interferences":2,

"Mass": 3.51,

"Batt_amps_ratio_MFD":1.67,

"Batt_amps_ratio_MxSpd":2.47,

"Distance_MxSpd":482.37,

"Max_Distance":505.21,

"Hover_Time":31.22,

"Max_Speed":31.0,

"Max_uc_at_MFD":0.47,

"Mot_amps_ratio_MFD":0.55,

"Mot_amps_ratio_MxSpd":0.72,

"Mot_power_ratio_MFD":0.34,

"Mot_power_ratio_MxSpd":0.45,

"Power_MFD":764.63,

"Power_MxSpd":1517.65,

"Speed_MFD":22.0

}

Figure 2: An illustration of all the key file components that make up an aircraft design.
The design_tree.json captures all aspects of the design (e.g. 4-way hub) that appears
in both the cadfile.stl and the Geom.stp. Additional files of design_seq.json and
design_low_level.json are directly derived from the design tree. The performance of the aerial
vehicle is displayed in both the performance file labeled output.json and in the trims.npy.

Design Example. The design tree used for aircraft designs reflect the hierarchical nature of CPS
designs. Figure 2 shows an example design. It has a 4-way central hub component. Each of the four
arms of the hub can have a propulsion subsystem attached to it. We identify this subsystem as a
MainSegment which can be implemented via different choices (subtrees expandingMainSegment)
such as BendSegment, PropArm, ExtendedPropArm, WingArm, and so on. Each of these choices
describe the nature of the propulsion subsystem, such as whether we are using propeller or wing, and
whether the arm making connection is a simple connector or a composition of connectors. Further,
some of these subsystems can be recursive, allowing fractal growth of the design. For example,
an arm itself might contain another segment with a hub having a number of arms. Our symbolic
representation of design also enables exploitation of symmetry to compress the design description,
and inclusion of expert knowledge in the design. For example, if we want all four arms of a hub to
contain the same subsystem, then we only need to specify it once (as a single child in the design
tree) and use a symmetry tag over the hub, for example, ConnectedHub4_Sym denotes a hub with
four connections - each having the same subsystem. In the case of Figure 2, a propulsion subsystem
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Hover Time: 52.5
Flight Dist.: 255.2

Hover Time: 648.2
Flight Dist.: 13105.2

Hover Time: 144.3
Flight Dist.: 2456.2

Hover Time: 72.2
Flight Dist.: 1036.2

Hover Time: 0.0
Flight Dist.: 1924.0

Hover Time: 0.0
Flight Dist.: 4088.0

Hover Time: 0.0
Flight Dist.: 713.4

Hover Time: 60.8
Flight Dist.: 1341.8

Hover Time: 85.7
Flight Dist.: 1162.9

Hover Time: 30.0
Flight Dist.: 87.9

Hover Time: 337.0
Flight Dist.: 8273.8

Hover Time: 573.4
Flight Dist.: 10943.6

Hover Time: 99.9
Flight Dist.: 1944.9

Hover Time: 92.6
Flight Dist.: 1818.8

Hover Time: 75.8
Flight Dist.: 1581.9

Hover Time: 36.9
Flight Dist.: 437.0

Figure 3: Diverse vehicle designs in AircraftVerse with different structures and with different
performances. Some designs can hover in place. Hover time is in seconds and flight distance is in
meters.

comprises a propeller, motor, and a flange. Further, the hub also connects to a fuselage that contains
a battery subsystem that can consist of a single or dual battery subsystem along with additional
electronics and their position within the fuselage. An explicit example of this is provided in Appendix
G. Additionally, the full corpus of options as included in Appendix F is also provided as a Python
dictionary as part of AircraftVerse.

Design evaluation. For each design, we use state-of-the-art tools [24, 2] to compute the physical
characteristics, such as the mass and the component interferences, as well as to render the 3D CAD
models (STEP and STL files that are included in AircraftVerse). These details are then passed
to the FDM [31] for evaluating flight dynamics (more details in Appendix C). The dynamics model
considers the aircraft velocity and its roll, pitch and yaw rotations, along with the electrical state
such as the power drawn from the battery and motor current, which in turn determine the torque
on the propeller and its generated thrust. The dynamics model summarizes the impact of different
forces such as gravity, drag, propeller lift and wing lift, and includes scientific models for conversion
of electrical energy into mechanical energy in the propulsion subsystem. From these evaluations,
we include Batt_amps_ratio_MFD, Batt_amps_ratio_MxSpd that correspond to the ratio of
maximum current drawn by the design compared to the maximum current rating of the battery at
maximum flight distance and maximum speed, respectively. These indicate the robustness of the bat-
tery subsystem of the design. We also include Mot_amps_ratio_MFD, Mot_amps_ratio_MxSpd,
Mot_power_ratio_MFD, Mot_power_ratio_MxSpd that represent the ratio of the current/power
in the motor divided by the maximum allowed current/power corresponding to the maximum flight
distance or maximum speed of the vehicle. These indicate the robustness of the propulsion subsystem
of the design, its endurance, and its agility. Finally, we include design metrics such as the flight
distance at maximum speed (Distance_MxSpd), maximum flight distance (Max_Distance), and
the maximum hover (Hover_Time).

4 Experiments: diversity, multimodality and baseline models

Diversity. AircraftVerse includes a diverse set of aircraft designs (samples shown in Figure 3),
and the multimodal representation makes this dataset relevant to a variety of challenge problems
in machine learning. The components of a design in AircraftVerse are selected from a large
component corpus with hundreds of choices of propellers and motors (Appendix F). In addition, each
discrete choice of component comes with its own set of attributes that fall in their own ranges (e.g.
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Figure 4: The designs in AircraftVerse exhibit diverse performance with respect to characteristics
such as maximum flight distance and hover-time. They also have very different physical characteristics
such as mass, number of propellers, and number of wings.

motors have a large set of parameters such as motor armature-winding resistance and inductance,
mass, counter-electromotive force constant, and motor torque constant). Adding to the overall
complexity, there are also the continuous parameters. For example, structural components such as
connectors have their radius and length as continuous parameters. In Appendix F, we identify the
attributes of the key components in an aerial vehicle design and whether their values are fixed or
variable within a range. Some characteristics of the design diversity are captured in Figure 4. The
figure highlights some of our curation choices. First, the majority of designs have an even number of
propellers due to the symmetry built into our tree structure definition. Second, our dataset precludes
designs without propellers and favors designs with fewer wings. Finally, while a significant number
of designs can take off and achieve horizontal flight (with a large variation in ability), one of the
challenges in building a diverse dataset comes at the expense of many designs failing to have the
hovering capability or other eVTOL flight performance metrics. However, these designs are useful
for learning potential rules as to why these designs have poor characteristics compared to others, so
we also include these in the dataset.

While structural differences lead to visually striking diversity, we also highlight that design diversity
has other aspects, such as the use of different components within the same design topology. Vehicle
designs with the same topology can perform very differently. Figure 5 contains four symmetric
quadcopters with the same topology (same design tree structure). However, their performance metrics
differ significantly, with the maximum flight distance differing by a factor of over 2x. Additionally,
the electronics of the rightmost quadcopter varies from the other three in that it has two batteries
rather than one. Thus, the performance of designs with similar topologies cannot be predicted from
just from the CAD design, but requires the symbolic design description in design_tree.json.

Hover Time (s): 31.2
Flight Dist. (m): 505.2

Hover Time (s): 67.5
Flight Dist. (m): 1329.8

Hover Time (s): 83.9
Flight Dist. (m): 1268.4

Hover Time (s): 56.2
Flight Dist. (m): 880.2

Propeller: 19x6
Motor: AT4125KV540
Battery: 1000mAh 4S 75C

Propeller: 9x6
Motor: KDE600XF-1100-G3
Battery: 2200mAh 4S 75C

Propeller: 18x8
Motor: AT3530KV580
Battery: 2200mAh 3S 75C

Propeller: 16x4
Motor: AT4120KV500
Battery: 2x 1000mAh 4S 75C

10391
Prop 19 x 11
Motor AT4125KV540
Battery TurnigyGraphene1000mAh4S75C

/project/nscore/swri_generated/uav2/generated_14/generation_1/filtered_designs_split_0

11086

Prop 9 x 6
Motor KDE600XF_1100_G3
Battery TurnigyGraphene2200mAh4S75C

12028

Prop 18 x 8
Motor AT3530KV580
Battery TurnigyGraphene2200mAh3S75C

121
16 x4
AT4120KV500
TurnigyGraphene1000mAh4S75C

Figure 5: Diverse aerial vehicle designs in AircraftVersewith same topology structure but different
motor/propeller/battery choices leading to diverse design performance.

Multimodality. The AircraftVerse uses multiple modalities to represent an aircraft design, as illus-
trated earlier in Figure 2. We would not expect the performance of electric aerial vehicle designs to be
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accurately predicted on the basis of only one of the modalities (e.g. the 3D CAD model). Recent work
on vision-language models [8, 15, 1, 20, 7] would be especially relevant to large CPS datasets such
as AircraftVerse. However unlike in the vision-language scenario, AircraftVerse has stricter
metadata that enforces physical and electrical constraints. The multi-modality of AircraftVerse
makes it applicable to a wide class of machine learning models. AircraftVerse includes the
following modalities:

• Structured sequential data: The success of transformer-based sequence models used in natural
language [30, 9, 26, 3, 21] has driven their adoption and extension to structured data such as
computer programs. The sequential data from the design trees in AircraftVerse is an interesting
use case for transformer models. Further, the designs in AircraftVerse are more structured than
natural language text as the design components need to satisfy physical and electrical constraints6.

• 3D CAD models: There is a growing interest in using machine learning for CAD design [28, 34,
23, 33, 35, 19]. The 3D CAD models (STL and STEP files) in AircraftVerse provide a large
dataset with complex 3D shapes. The metadata associated with the designs can be used to train and
evaluate methods that predict the physics metrics from the CAD models.

• 3D Pointcloud: The use of machine learning for learning generative models or manipulating or
segmenting 3D point clouds has also received significant attention. AircraftVerse includes 3D
point clouds extracted from the STL and STEP files. Thus, this dataset with the pointclouds can be
used as a benchmark for 3D point cloud classification (e.g., presence or absence of interference)
[36, 4, 13] and regression (e.g., predicting flight characteristics).

Baseline Models. We describe baseline models applied multiple modalities of AircraftVerse.7
We use a transformer encoder (T. Enc.) [30] model and a LSTM [14] model to predict a set of design
performance characteristics of an aircraft from its symbolic design tree description. In our example,
even using these symbolic descriptions of a design contain information from multiple modalities, as
these sequences include electrical, mechanical, and topological information. We also test out the 3D
modality of the design representation by applying both a graph convolutional neural network (GCNN)
[17, 32] and PointNet [25] to the point clouds. For the sequences, we use the design representation in
design_seq.json and use our custom-built tokenizer to convert each token of a design sequence
from the symbolic representation (e.g. {‘node_type’: ‘ConnectedHub3_2_1’}) into a tensor. For
our embedding, we assign one-hot encoding for the keys and an additional one-hot encoding for the
values. For keys that require floats as values (e.g. ‘armLength’) we ensure that there is a class that
corresponds to the float in the value embedding, as well as appending the value of the float to the
tensor. Each token of the sequence is a 749-element vector corresponding to the concatenation of 43
classes of keys, 673 classes of values, 32 possible attributes of electrical/mechanical components, and
a final dimension for float values. We provide our tokenization code as part of the dataset release, as
well as the baseline models. Further architectural details of the models are presented in Appendix D.

Results. The results of predicting the performance statistics from the design sequences are presented
in Table 1. This table shows how the sequential design description, containing specific component
information such as mass and electrical information, is a useful modality for certain metrics such
as the ability of a design to fly. However, both the baseline GCNN model and PointNet are better
at inferring structural interferences between components as it directly incorporates 3D information.
Future approaches that combine the 3D structural information and symbolic design descriptions may
be necessary and we have demonstrated here that the AircraftVerse dataset includes all of these
informative modalities. Figure 6 shows both the receiver operator characteristic (ROC) curve and
precision-recall curve for the three models. Again, highlighting the superior performance of the
sequential information in estimating the high level CPS performance metrics such as ability to hover.

5 Limitations of AircraftVerse

While AircraftVerse presents itself as a unique CPS dataset with a high level of complexity, there
are several limitations to using this dataset. One limitation is that aircraft designs are constrained
to fit within the tree-structured representation. This tree structure currently means all designs start
from a sampled single hub and are then expanded. This process is described in https://github.

6See Appendix F for a definition of the structure of our design trees and sequences.
7Our models were trained using an NVIDIA A100 SXM4 80GB GPU.
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(a) ROC curve (b) Precision-Recall

Figure 6: ROC and precision-recall curves for predicting a design’s ability to hover. These results
suggest that the symbolic design description in AircraftVerse can be used to predict flight charac-
teristics, whereas Table 1 highlights the utility of point clouds for predicting structural information.

Table 1: Specification prediction using baseline models.

APPROACH DATA HOVER HOVER MASS FLIGHT INTERFERENCE
TIME DISTANCE

(ACC. ") (R2 ") (R2 ") (R2 ") (F1 SCORE ")

T. ENC. SEQUENCE 0.9004 0.6778 0.9964 0.6900 0.8270
LSTM SEQUENCE 0.8838 0.6189 0.9974 0.3467 0.8184
GCNN POINT CLOUD 0.8380 0.3936 0.8888 0.4486 0.9758
POINTNET POINT CLOUD 0.8474 0.4571 0.9212 0.5099 0.9848

com/SRI-CSL/AircraftVerse/tree/main/prob_gen, which also includes all incorporated prior
domain knowledge. Designs are also limited by the available components in the database. For
example, hybrid (gas and electric) vehicles are not possible. However, all of the database components
are from real-world catalogues which increases the overall value of the dataset.

As with all scientific simulators, the flight dynamics model is limited in its ability to represent all
aspects of the real-world. As such, there are likely corner cases that would cause unrealistic behaviors.
One weakness of the simulator is in the drag model as described in Equation (4) (Appendix C).
The drag model approximates the total surface area in each axis and therefore would be superseded
by higher fidelity CFD software. However, the simulator uses conservative estimates for such
calculations and has been compared to higher fidelity models to ensure they capture the correct
behavior. The results are therefore still useful for design prototyping purposes. A further extension to
the simulator to increase fidelity would also be to model material properties such as stress and strain
during flight. Further development will continue to address these simulation gaps.

Given these limitations we still highlight the value of this dataset as useful for machine learning
researchers looking to explore a novel CPS dataset as well as domain experts looking to explore
the potential of data-driven approaches for design. This is precisely what we found to be the case
throughout the collaboration that led to this work. As a result, we believe that AircraftVerse is
sufficiently complex and interesting for both sets of researchers, who would see value in the data,
while ensuring that they take into account all the limitations.

6 Ethics Statement

The data included in the AircraftVerse dataset does not include any personal or sensitive informa-
tion. It is a technical dataset of air vehicle designs, and thus it does not raise any direct ethical issues
regarding privacy or data protection. The dataset is intended for academic and research use and is
released under a Creative Commons Attribution-ShareAlike (CC BY-SA) license. This license allows
for sharing, copying, distributing, and transmitting the work, as well as adapting the work and making
commercial use of the work under the condition that appropriate credit is given, a link to the license
is provided, and any changes made are indicated. This licensing framework is intended to promote
open access to information and collaboration in the scientific community, while still recognizing and
respecting the intellectual property rights of the creators.

Given the potential wide-ranging impact of this dataset on the use of learning in aircraft design and
other CPS, it is crucial that future research using this dataset is conducted with careful consideration
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of potential ethical implications. This includes not only the avoidance of misuse but also consideration
of environmental impacts, safety, and other societal implications. We welcome community input on
the dataset, its uses, and its potential ethical implications. We want to promote responsible use and
want to address potential ethical concerns proactively.

7 Conclusion

We have introduced a new multi-modal CPS dataset that will enable researchers to explore a new inter-
disciplinary area of application for machine learning. We emphasize the richness of AircraftVerse,
where we provide 27,714 aircraft designs, each with associated metadata summarizing the perfor-
mance of the design. We highlight that our experiments and baseline models have only touched
the surface of the different approaches and problems that can be explored with this dataset due
to the availability of all the metadata associated with each design. In addition to the material pre-
sented here, we also include an extensive supplementary materials section as well as a website:
https://aircraftverse.onrender.com/, a GitHub repo: https://github.com/SRI-CSL/
AircraftVerse/, and the dataset release at https://zenodo.org/record/6525446.
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A Data Card

In this section we include the data card that follows the structure in Pang and Lee [22] as highlighted
in Gebru et al. [11].

A.1 Motivation

For what purpose was the dataset created? The dataset was created to enable research on
designing cyber physical systems. In particular, we wanted to see if it was possible to predict
characteristics of aircraft designs, and be able to filter out poor performing designs before needing to
use expensive scientific models. In order to achieve this, we needed to build a large representative
dataset to train our models.

Who created the dataset? The dataset was created by the authors: Adam D. Cobb, Anirban Roy,
Daniel Elenius, and Susmit Jha, at SRI International; Brian Swenson, Sydney Whittington, and James
Walker at Southwest Research Institute; Theodore Bapty, and Joseph Hite at Vanderbilt University;
Karthik Ramani at Purdue University; Christopher McComb at Carnegie Mellon University; supported
by DARPA under the Symbiotic Design for Cyber-Physical Systems program with contract FA8750-
20-C-0002.

Who funded the creation of the dataset? DARPA under the Symbiotic Design for Cyber-Physical
Systems program with contract FA8750-20-C-0002.

A.2 Composition

What do the instances that comprise the dataset represent? The instances are aerial vehicle
designs as generated by us and evaluated on scientific models [2, 31]. We also provide metadata
in the form of the corpus dictionary such that the attributes of the propellers, motors, batteries, and
wings are available.

How many instances are there in total There are 27,714 instances in total.

Does the dataset contain all possible instances or is it a sample of instances from a larger set?
The dataset is a sample of instances that were generated according to our grammar. As our generator
includes both discrete and continuous parameters, it is not possible to capture all possible instances
of the designs. Furthermore, designs are allowed to contain recursively generated components, such
as arms, such that all possible topologies cannot be sampled. The plots in Figure 4 show the diversity
in designs.

What does each instance consist of? Each instance consists of a design tree, an interpreted design
sequence, a low level design sequence, an STL file (3D model), a npy file containing an array of
trims, a npy file containing a point cloud, and a JSON file reporting flight statistics. Please refer to 2

Is there a label or target associated with each instance? The labels are given via the
output.json and trims.npy files. These files contain labels such as whether a design has in-
terferences and if they are able to fly. It is also possible to use the design tree or design sequence to
label the 3D data. For example the low level design sequence can be used to label how many propellers
are in the aircraft design or to predict which battery has been selected based on the performance file.

Is any information missing from individual instances? Everything is included. No data is
missing.

Are relationships between individual instances made explicit? Individual instances are sampled
independently from our generator and are therefore not explicitly related. The corpus dictionary can
also be used to determine the attributes of the available components where appropriate, where this
corpus is relevant to all designs.
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Are there recommended data splits (e.g., training, development/validation, testing)? In the note-
book code we provide our training, validation, and test splits but they are not explicitly recommended
as the data has multiple use-cases.

Are there any errors, sources of noise, or redundancies in the dataset? The only errors come
from the available fidelity of the scientific models. Please refer to [2, 31] for the limitations of the
models. As a result, some of the outputs from the metadata contain NaNs. These are simple enough
to filter out from the dataset where needed.

Is the dataset self-contained, or does it link to or otherwise rely on external resources? The
dataset is entirely self-contained.

Does the dataset contain data that might be considered confidential? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? Not that the authors are aware of.

Does the dataset identify any subpopulations (e.g., by age, gender)? Not applicable.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? Not applicable.

Does the dataset contain data that might be considered sensitive in any way? No.

A.3 Collection Process

How was the data associated with each instance acquired? The data was generated by sampling
our probabilistic design generator and then compiling each design into a format that was suitable for
the scientific models. The scientific models provided performance metrics which we then curated
into the output.json files and the STL files.

What mechanisms or procedures were used to collect the data? Each design took approximately
3 minutes to evaluate. As a result we estimate that it took almost 60 days of compute power to build
AircraftVerse. As part of the pipeline, we required access to a CREO license [24].

If the dataset is a sample from a larger set, what was the sampling strategy? The dataset was
sampled from our probabilistic design generator and was therefore a stochastic process.

Over what timeframe was the data collected? The data was generated using four compute nodes
and therefore took over 2 weeks to generate. However, this was part of a process that took around
two years of development to get to. Part of that process was building domain knowledge across the
collaboration and building up the right compute architecture.

Were any ethical review processes conducted? Not applicable.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)? Not applicable.

Were the individuals in question notified about the data collection? Not applicable.

Did the individuals in question consent to the collection and use of their data? Not applicable.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? Not applicable.

Has an analysis of the potential impact of the dataset and its use on data subjects been con-
ducted? Not applicable.
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A.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done? For the machine learning models,
we processed the design trees into a unique key-value sequence as described in Section 4. As part of
evaluating the performance of each design, we recorded the performance metrics in the output.json
file and the trims.npy file. We also used a combination of data-driven heuristic approaches and
hard rules to remove certain designs from the final dataset. We limited designs to a maximum of 12
wings and 16 propellers. We further added a data-driven preprocessing step to remove designs that
would definitely not hover. We were careful to select a threshold that did not sacrifice diversity.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data Each design
contains the raw data as well as the processed sequences. We consider the design trees, the STL files
and the performance files to be raw data.

Is the software that was used to preprocess/clean/label the data available? The software required
to label the data requires a CREO license along with proprietary software owned by Southwest
Research Institute. It is possible that the latter software will be released in the future.

A.5 Uses

Has the dataset been used for any tasks already? At the time of publication, the only use-case of
our dataset can be seen in Section 4.

Is there a repository that links to any or all papers or systems that use the dataset? Not
applicable at this time as this is the first instance of the data release.

What (other) tasks could the dataset be used for? The dataset could be used for anything related
to modeling or understanding the behavior of aircraft. For example one could envision learning rules
for good designs, inverting the design by predicting sequences from point clouds etc... . Overall the
AircraftVerse dataset contains multiple modalities and there are many opportunities to test new
models out. We take some time in the paper to highlight this.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? The fidelity of the scientific models are
the main factor for users of this dataset to consider when using this data set for future applications.

Are there tasks for which the dataset should not be used? Not that the authors are aware of.

A.6 Distribution

Will the dataset be distributed to third parties outside of the entity on behalf of which the
dataset was created? Yes, the dataset is publicly available.

How will the dataset will be distributed? The dataset is hosted at https://zenodo.
org/record/6525446, baseline models and code are at https://github.com/SRI-CSL/
AircraftVerse, and the dataset description is at https://aircraftverse.onrender.com/.

When will the dataset be distributed? The dataset was first released in 2023.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? See Section B.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

A.7 Maintenance

Who will be supporting/hosting/maintaining the dataset? The Neuro-Symbolic Computing and
Intelligence (NuSCI) Research Group at SRI International will support and maintain the dataset.
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How can the owner/curator/manager of the dataset be contacted? Please see the email addresses
at the start of the paper.

Will the dataset be updated? We intend to continue to add to the dataset as we evaluate further
designs.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? Please contact the authors in regards to ways that the dataset could be extended.
For example running different scientific models may be possible.

B Licensing description

Our dataset uses a Creative Commons Attribution-ShareAlike (CC BY-SA) license. This means that
the data can be shared and/or adapted for any purpose under the condition that appropriate credit is
given, and that a link to the license is provided, and that users indicate if any changes were made. For
more details on the license, please refer to https://creativecommons.org/licenses/by/4.0/.

C Flight dynamics model

In this section, we describe the physics of the flight dynamics model (FDM). The vehicle is equipped
with five major components 1) propellers, 2) motors, 3) batteries as power source, 4) wings and
stabilizers, 5) body structure such as a fuselage or a board where components are connected to. The
FDM considers a six-degrees of freedom where the state of the vehicle at time t is defined as follows

xt = (U, V,W, P,Q,R, q, x, y, z,⌦i, Qj). (1)

• (U, V,W ) is the velocity of the vehicle in the body frame along X , Y , and Z axis respec-
tively.

• (P,Q,R) is the rotation of the body, i.e., representing roll, pitch, and yaw respectively.
• q is a four-dimensional vector connecting the world frame to body frame.
• (x, y, z) is the location in the world frame.
• ⌦i is the rotation for the ith motor expressed as radian/sec.
• Qj is the power drawn from jth battery.

The flight dynamics is governed by the following equation

dx

dt
= f(x,u), (2)

where x is the current state of the vehicle and u is a vector representing control signals. Each
component can be controlled independently by the corresponding control signal and we assume the
control signals are within range of 0 and 1. The function f() represents the computation of forces.
The computation of various forces as described below.

Gravity. Let us consider the velocity at the world frame is v and the body frame is V , respectively.
The translation matrix connective v to V is defined as R(q). Thus, V = R(q)v. The gravitation
force is applied on the the center of mass of the vehicle and computed as

Fg = mgR(q)ẑ, (3)

where ẑ = (0, 0, 1) is the unit vector pointing down in the world frame.

Drag. The drag force on the vehicle’s body is computed based on the vehicle’s flight through the air.
We assume that the velocity is the vehicle’s velocity in the air. Thus, the velocity is updated from the
body frame to account for the motion of the air being in the world frame as U �R(q)vw, where vw
is the wind velocity. Then the body drag is approximated as

Fb = �1

2
⇢

 
Xbody,uu|U + 2vi|(U + 2Uin)
Ybody,vv|V + 2Vin|(V + 2Vin)

Zbody,ww|W + 2Win|(W + 2Win)

!
(4)
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where Xbody,uu, Ybody,vv, Zbody,ww are the constants for each coordinate axis and for the vehicle
we set it equal to a constant times the presented area of the vehicle’s body along the coordinate
axis. Uin, Vin,Win are the wind velocity along X, Y, and Z directions, respectively. As for the
asymmetrical vehicles, center of drag may not align with the center of mass, this generates a moment
force given asM = (Xcbody �Xcm)⇥Fb, whereXcbody is the center of body force andXcm center
of mass.

Propeller and motor modeling. We define the geometric center of a propeller in the body frame is
Xp and the unit normal vector to the propeller shaft is np. The velocity of the air passing through the
stationary propeller is estimtaed as

Vp = (V + ~⌦⇥ (Xp �Xcm)) · np. (5)
For propeller performance, we refer to pre-computed tables for each propeller providing performance
data with respect to spin rate and advance ratio J . The spin rate is defined by the rotations per second
and denoted by n = ⌦/2⇡. The advanced ratio is computed as J = Vp/(nD). where D is the
diameter of the propeller. The thrust and power of the propeller are estimated as

Fp = CT (n, J)⇢n
2D4, P = Cp(n, J)⇢n

3D5, (6)
whereFp andP are thrust and power. CT () andCp() are pre-computed performance values depending
on n and J . The total force from the propeller is computed by summing over all propellers.

The torque from the motor is estimated as ⌧motor = KT (I � I0), where I is the current, I0 is the
idle current, and KT is the torque constant. The relation between the current and voltage is given by

Vmotor = Vbatteryuc =
⌦

KV
+ IRw (7)

where Vmotor is the voltage applied to the motor, Vbattery is the battery voltage, and uc = [0, 1] is
the control signal driving the motor. KV is the RPM constant and Rw is the resistance.

Note that the flight dynamics simulation model is currently under construction, and there are some
assumptions that would affect the flight characteristics and performance of a given design outside of
this particular FDM. For example, the parametric connectors are currently made of 3d ABS plastic
which accurately reflects the mass properties of such a material, but may not hold up to the structural
loads experienced during flight, which are not currently modeled. Further development will continue
to address these simulation gaps.

D Additional experiment details

For the baseline experiments listed in this paper, we randomly shuffle the entire dataset and then split
the data into train, validation, and test splits of 70 %, 10 %, and 20 % respectively. For the regression
tasks, we normalize the data using the mean and standard deviation of the data. Where necessary we
remove anomalous data points. For the mass prediction, we remove designs with a mass greater than
35 Kg from the data set. When we report the results in 1 for MSE, we use the unnormalized values.

D.1 LSTM architecture

The LSTM baseline model consists of a linear input layer followed by an LSTM layer (nn.LSTM in
PyTorch) with an input size of 512, a hidden size of 512. The LSTM layer is then connected to a
final linear layer, via a dropout layer with a value of 0.5, that takes in all the outputs of the LSTM
layer and provides the one-dimensional prediction. During training we use the PyTorch in-built SGD
optimizer with a learning rate of 0.05 and set the number of epochs to 4000, where we save the model
with the best validation loss.

D.2 Transformer encoder architecture

The transformer encoder consists of a linear encoding layer followed by a positional encoding
layer. The output of the positional encoding is then passed through a transformer encoding layer
(nn.TransformerEncoder in PyTorch) with 8 layers and 2 heads. The final token from the trans-
former encoder is then passed through a linear layer that goes from the embedding dimension of 200
to a single output dimension. During training we use the PyTorch in-built SGD optimizer with a
learning rate of 0.1 and set the number of epochs to 4000, where we save the model with the best
validation loss.

17



D.3 Graph convolutional neural network

Apart from the aforementioned models on sequence data, we also consider a model that directly
operates on the point cloud. We represent the point clouds as a set of 3D points and apply a graph
convolutional network (GCN) [17, 32] to make predictions on them. We build the graphs with the
points as nodes where nodes are represented by their 3D coordinate. Each node is connected toK
nearest neighbors (K=40). Note that the GCN model captures the structural information from the
point clouds and does not have access to the specification of the components. Our GCN has four
convolutional layers followed by a fully connected layer. We train the GCN with Adam optimizer for
200 epochs.

E Automated data generation

As part of automating our data generation pipeline for AircraftVerse, we defined a design grammar.
Building a grammar to define a CPS requires significant domain expertise and AircraftVerse was
no exception. Our focus was to build a procedural generator of designs that produced topologically
valid aircraft designs, i.e. designs that met the requirements needed to be evaluated by the scientific
models. Appendix G shows an example of a valid design tree. Once we built a valid procedural
generator (with expert-guided distributions over all choices), we added the following heuristics: limit
designs to having a maximum of 12 wings; limit designs to having a maximum of 16 propellers; set
the probability of a recursive structure to be 0.25, such that we do not get infinitely long recursive
structures. We then generated half our dataset using our procedural generator. Thereafter, we trained
a transformer-based classifier to identify designs from their sequences that were extremely unlikely
to hover (similar to the benchmark outlined in Section D). The next stage of generation then used this
classifier as a weak filter (calibrated according to a recall of 90%) to increase the number of hovering
vehicles in the dataset. Components of this process are highlighted in our previous technical report
[6]. Overall this process is an accumulation of over two years of work in building the right domain
knowledge and compute infrastructure to ensure that the data remains diverse, interesting, and useful.

F Aircraft grammar and components list

The full JSON schema for the aircraft designs in our design_tree.json files is available at https:
//github.com/SRI-CSL/AircraftVerse/blob/main/schema/uav_schema.json. As men-
tioned previously, the sequentialized designs in design_seq.json files are pre-order traversals
of the design trees (they can be viewed as sequences of key-value pairs).

Below, we also include the list of allowed values for each property (or "key") in the trees/sequences.
Note that the JSON schema does not specify the allowed values for the component selection properties
like propType, motorType, etc, as the specific lists of components are subject to change, and not
considered part of the design language itself. We list all the currently used values for those properties
below.

Table 2: Key-value descriptions.

KEY DESCRIPTION VALUE OPTIONS

node_type Main structural components of air-
craft, like the central hub and con-
nector arms.

‘AngledPropArm’, ‘AngledWingArm’, ‘BendSegment’, ‘BranchSegment_Asym’,

‘BranchWithTopSegment_Asym’, ‘ConnectedHub2_Sym_Wide’,

‘ConnectedHub3_2_1’, ‘ConnectedHub4_2_2’, ‘ConnectedHub4_Sym’,

‘ConnectedHub6_1_2_2_1’, ‘ConnectedHub6_2_2_2’, ‘ConnectedHub6_Sym’,

‘DoubleBendSegment’, ‘PropArm’, ‘SidewaysBendSegment’,

‘SidewaysBendWithTopSegment’, ‘WingArm’.

Continued on next page
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Table 2 – continued from previous page

KEY DESCRIPTION VALUE OPTIONS

propType Propeller type. ‘apc_propellers_10x5’, ‘apc_propellers_10x6’, ‘apc_propellers_10x7’,

‘apc_propellers_11x5_5’, ‘apc_propellers_11x8’, ‘apc_propellers_12x12’,

‘apc_propellers_12x6’, ‘apc_propellers_12x8’, ‘apc_propellers_13x10’,

‘apc_propellers_13x4’, ‘apc_propellers_13x5_5’, ‘apc_propellers_13x6_5’,

‘apc_propellers_13x8’, ‘apc_propellers_14x7’, ‘apc_propellers_14x8_5’,

‘apc_propellers_15x10’, ‘apc_propellers_15x4’, ‘apc_propellers_16x10’,

‘apc_propellers_16x4’, ‘apc_propellers_18x10’, ‘apc_propellers_18x8’,

‘apc_propellers_19x10’, ‘apc_propellers_20x10’, ‘apc_propellers_4_1x4_1’,

‘apc_propellers_4_75x4_75’, ‘apc_propellers_5_5x4_5’,

‘apc_propellers_5x3’, ‘apc_propellers_5x5’, ‘apc_propellers_5x7_5’,

‘apc_propellers_6x4’, ‘apc_propellers_6x6’, ‘apc_propellers_7x4’,

‘apc_propellers_7x5’, ‘apc_propellers_7x6’, ‘apc_propellers_8x6’,

‘apc_propellers_8x8’, ‘apc_propellers_9x4_5’, ‘apc_propellers_9x6’

motorType Motor type. ‘kde_direct_KDE2306XF2550’, ‘kde_direct_KDE2315XF885’,

‘kde_direct_KDE2315XF965’, ‘kde_direct_KDE2814XF_515’,

‘kde_direct_KDE2814XF_775’, ‘kde_direct_KDE3510XF_475’,

‘kde_direct_KDE3510XF_715’, ‘kde_direct_KDE3520XF_400’,

‘kde_direct_KDE4012XF_400’, ‘kde_direct_KDE4014XF_380’,

‘kde_direct_KDE4213XF_360’, ‘t_motor_AS2308KV1450’,

‘t_motor_AS2308KV2600’, ‘t_motor_AS2312KV1150’, ‘t_motor_AS2312KV1400’,

‘t_motor_AS2317KV1250’, ‘t_motor_AS2317KV1400’, ‘t_motor_AS2317KV880’,

‘t_motor_AS2814KV1050’, ‘t_motor_AS2814KV1200’, ‘t_motor_AS2814KV2000’,

‘t_motor_AS2814KV900’, ‘t_motor_AS2820KV1050’, ‘t_motor_AS2820KV1250’,

‘t_motor_AS2820KV880’, ‘t_motor_AT2308KV1450’, ‘t_motor_AT2308KV2600’,

‘t_motor_AT2310KV2200’, ‘t_motor_AT2312KV1150’, ‘t_motor_AT2312KV1400’,

‘t_motor_AT2317KV1250’, ‘t_motor_AT2317KV1400’, ‘t_motor_AT2317KV880’,

‘t_motor_AT2321KV1250’, ‘t_motor_AT2321KV950’, ‘t_motor_AT2814KV1050’,

‘t_motor_AT2814KV1200’, ‘t_motor_AT2814KV900’, ‘t_motor_AT2820KV1050’,

‘t_motor_AT2820KV1250’, ‘t_motor_AT2820KV880’, ‘t_motor_AT2826KV900’,

‘t_motor_AT3520KV550’, ‘t_motor_AT3520KV720’, ‘t_motor_AT3520KV850’,

‘t_motor_AT3530KV580’, ‘t_motor_AT4120KV500’, ‘t_motor_AT4120KV560’,

‘t_motor_AT4125KV540’, ‘t_motor_AT4130KV450’, ‘t_motor_MN2212KV780’,

‘t_motor_MN2212KV920’, ‘t_motor_MN3110KV470’, ‘t_motor_MN3110KV700’,

‘t_motor_MN3110KV780’, ‘t_motor_MN3508KV380’, ‘t_motor_MN3508KV580’,

‘t_motor_MN3508KV700’, ‘t_motor_MN3510KV360’, ‘t_motor_MN3510KV630’,

‘t_motor_MN3510KV700’, ‘t_motor_MN3515KV400’, ‘t_motor_MN3520KV400’,

‘t_motor_MN4010KV370’, ‘t_motor_MN4010KV475’, ‘t_motor_MN4010KV580’,

‘t_motor_MN4012KV340’, ‘t_motor_MN4012KV400’, ‘t_motor_MN4012KV480’,

‘t_motor_MN4014KV330’, ‘t_motor_MN4014KV400’, ‘t_motor_MN5208KV340’,

‘t_motor_MN5212KV340’, ‘t_motor_MN5212KV420’, ‘t_motor_MT22081100KV’,

‘t_motor_MT2216V2800KV’

batteryType Battery type. ‘TurnigyGraphene1000mAh2S75C’, ‘TurnigyGraphene1000mAh3S75C’,

‘TurnigyGraphene1000mAh4S75C’, ‘TurnigyGraphene1000mAh6S75C’,

‘TurnigyGraphene1200mAh6S75C’, ‘TurnigyGraphene1300mAh3S75C’,

‘TurnigyGraphene1300mAh4S75C’, ‘TurnigyGraphene1400mAh3S75C’,

‘TurnigyGraphene1400mAh4S75C’, ‘TurnigyGraphene1500mAh3S75C’,

‘TurnigyGraphene1500mAh4S75C’, ‘TurnigyGraphene1600mAh4S75C’,

‘TurnigyGraphene1600mAh4S75CSquare’, ‘TurnigyGraphene2200mAh3S75C’,

‘TurnigyGraphene2200mAh4S75C’, ‘TurnigyGraphene3000mAh3S75C’,

‘TurnigyGraphene3000mAh4S75C’, ‘TurnigyGraphene3000mAh6S75C’,

‘TurnigyGraphene4000mAh3S75C’, ‘TurnigyGraphene4000mAh4S75C’,

‘TurnigyGraphene4000mAh6S75C’, ‘TurnigyGraphene5000mAh3S75C’,

‘TurnigyGraphene5000mAh4S75C’, ‘TurnigyGraphene5000mAh6S75C’,

‘TurnigyGraphene6000mAh3S75C’, ‘TurnigyGraphene6000mAh4S75C’,

‘TurnigyGraphene6000mAh6S75C’

wingType Wing type. ‘NACA_0012’, ‘NACA_0015’, ‘NACA_0018’, ‘NACA_0021’, ‘NACA_0025’,

‘NACA_2212’, ‘NACA_2306’, ‘NACA_2309’, ‘NACA_2312’, ‘NACA_2315’,

‘NACA_2406’, ‘NACA_2409’, ‘NACA_2412’, ‘NACA_2415’, ‘NACA_2418’,

‘NACA_2421’, ‘NACA_2506’, ‘NACA_2509’, ‘NACA_2512’, ‘NACA_2515’,

‘NACA_2518’, ‘NACA_2521’, ‘NACA_2612’, ‘NACA_2712’, ‘NACA_4212’,

‘NACA_4306’, ‘NACA_4309’, ‘NACA_4312’, ‘NACA_4315’, ‘NACA_4318’,

‘NACA_4321’, ‘NACA_4406’, ‘NACA_4409’, ‘NACA_4412’, ‘NACA_4415’,

‘NACA_4418’, ‘NACA_4421’, ‘NACA_4506’, ‘NACA_4509’, ‘NACA_4512’,

‘NACA_4515’, ‘NACA_4518’, ‘NACA_4521’, ‘NACA_4612’, ‘NACA_4712’,

‘NACA_6212’, ‘NACA_6306’, ‘NACA_6309’, ‘NACA_6312’, ‘NACA_6315’,

‘NACA_6318’, ‘NACA_6321’, ‘NACA_6406’, ‘NACA_6409’, ‘NACA_6412’,

‘NACA_6415’, ‘NACA_6418’, ‘NACA_6421’, ‘NACA_6506’, ‘NACA_6509’,

‘NACA_6512’, ‘NACA_6515’, ‘NACA_6518’, ‘NACA_6521’, ‘NACA_6612’,

‘NACA_6712’

servoType Servo type for control of flaps and
ailerons.

‘Hitec_D485HW’, ‘Hitec_D89MW’, ‘Hitec_D954SW’, ‘Hitec_HS_225BB’,

‘Hitec_HS_225MG’, ‘Hitec_HS_40’, ‘Hitec_HS_45HB’, ‘Hitec_HS_5055MG’,

‘Hitec_HS_5065MG’, ‘Hitec_HS_5070MH’, ‘Hitec_HS_5087MH’,

‘Hitec_HS_5245MG’, ‘Hitec_HS_53’, ‘Hitec_HS_5496MH’, ‘Hitec_HS_55’,

‘Hitec_HS_5565MH’, ‘Hitec_HS_625MG’, ‘Hitec_HS_645MG’, ‘Hitec_HS_65HB’,

‘Hitec_HS_65MG’, ‘Hitec_HS_70MG’, ‘Hitec_HS_7235MH’, ‘Hitec_HS_7245MH’,

‘Hitec_HS_81’, ‘Hitec_HS_82MG’, ‘Hitec_HS_85BB’, ‘Hitec_HS_85MG’

wingRot The wing’s angle. Float: [0, 360]

chord The wing’s chord. Float: [100, 500]

span The wing’s span. Float: [200, 2000]

Continued on next page
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Table 2 – continued from previous page

KEY DESCRIPTION VALUE OPTIONS

armLength A context specific arm length
generally associated with
node_types such as ‘PropArm’

and ‘WingArm’.

Float: [50, 500]

arm1Length A more specific arm length associ-
ated with arms that include a bend.

Float: [50, 500]

arm2Length A more specific arm length associ-
ated with arms that include a bend.

Float: [50, 200]

angle A context specific angle that corre-
sponds to angles in the vehicle con-
struction.

Float: [-135, 360]

offset A context specific offset value that
can correspond to structural compo-
nents such as the wing offset and the
flange offset.

Float: [-200, 90]

x1_offset Offset in the x-direction of Battery
on the central plate.

Float: [0, 120]

z1_offset Offset in the z-direction of Battery
on the central plate.

Float: [0, 120]

tube_offset The wing tube offset. Float: [10, 90]

G Aircraft design summary

In the additional supplementary material, we include the complete representation of an individual
design when accessed from AircraftVerse, where we print the:

• design_tree.json
• design_seq.json
• cadfile.stl
• pointCloud.npy
• output.json
• trims.npy

As part of the notebook, we show how to access the design corpus and provide an example of printing
the specification of a battery. Finally, we also include an enlarged plot of the trim states for readability,
as Figure 2 was an illistration of a full design that by necessity limited the allocated space for it in the
full paper.
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