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Figure 1: An overview of Ubi Edge system. (a)-(c) The user wants to author a TUI to control the color of the AR light bulb using
the rim of the cup. (a) Detected edge feature points are overlaid on the real edges. (b) A user slides along the top rim of the cup
to segment an edge as the input. (c) The user then connects the ’hue’ behavior of the virtual light bulb with the selected edge to
author an edge-based TUI. (d) Back in the real world, the user uses the finger to slide on the cup rim to gradually change the
virtual bulb’s color. (e) Three more TUIs authored by Ubi Edge: (e-1) An AR medication reminder appears after the user clicks
the edge of a pill bottle’s cap. (e-2) The digital photo frame displays a new photo after the user slides down on the right side of
the photo frame. (e-3) An AR weapon shooting animation starts to play next to a toy aircraft after the user clicks an edge on
the wing.

ABSTRACT
Edges are one of the most ubiquitous geometric features of phys-
ical objects. They provide accurate haptic feedback and easy-to-
track features for camera systems, making them an ideal basis for
Tangible User Interfaces (TUI) in Augmented Reality (AR). We in-
troduce Ubi Edge, an AR authoring tool that allows end-users to
customize edges on daily objects as TUI inputs to control varied
digital functions. We develop an integrated AR-device and an inte-
grated vision-based detection pipeline that can track 3D edges and
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detect the touch interaction between fingers and edges. Leverag-
ing the spatial-awareness of AR, users can simply select an edge
by sliding fingers along it and then make the edge interactive by
connecting it to various digital functions. We demonstrate four use
cases including multi-function controllers, smart homes, games,
and TUI-based tutorials. We also evaluated and proved our system’s
usability through a two-session user study, where qualitative and
quantitative results are positive.
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1 INTRODUCTION
Tangible User Interface (TUI) [40] has become one of the essen-
tial ways of rendering haptic feedback in Augmented Reality (AR).
End-users can pervasively execute digital services by physically
interacting with surrounding objects [25]. Further, opportunistic
TUI [28], which tightly maps the affordance of the physical objects
(e.g., corner, cylinder, and surface) with the functions of the virtual
widgets (e.g., buttons, knobs, and touch pads), provides a more
intuitive connection between the user inputs and digital services.
However, such strict mappings [30, 106] limit the generalizability
of opportunistic TUI. It is hard for end users to find an every-
day object that perfectly matches the target digital functions both
geometrically and semantically.

Such a challenge inspires us of leveraging local geometric fea-
tures, instead of the entire objects, in the context of customizing
opportunistic TUI. Specifically, we focus on edges and sides, espe-
cially the linear and circular ones, that exist ubiquitously on every
object such as tables, books, mugs, and monitors. Edges provide
sharp tactile feedback [24, 68, 80] that even allows users to provide
accurate inputs without careful attention [41, 88]. Meanwhile, the
affordances involved in assorted types of edges, i.e., short edges and
corners (intersections of edges) as buttons, linear edges as sliders,
and circular edges as knobs, can fulfill the diversified user needs to
control different virtual widgets [70]. Additionally, edges provide
strong geometric features for computer vision algorithms, which al-
lows for instant, marker-free and non-intrusive tracking compared
with marker-based systems like [13, 25, 102].

Traditional predefined TUIs require predesignated pairs of tan-
gible interfaces and digital functions. Therefore, the versatility of
TUIs is limited, and it is hard to adapt the predefined TUIs to any
user or task that is beyond the original design [5, 23]. To address this
issue, the concept of end-user authoring [55] was proposed to equip
end-users with customization tools so that users can follow their
preferences and build interactions based on the local context. Multi-
ple prior works [82, 83, 98] have demonstrated such a possibility by
leveraging in-situ AR/VR visualization, embodied interactions and
program by demonstration technique. Yet, the interacting system
for building pervasive and customized tangible AR interfaces still
remains to be explored.

Following this thread, we propose Ubi Edge, an authoring system
that empowers end-users to author edge-based opportunistic TUIs
in AR. We build an integrated head-mounted device (HMD) by
mounting a lidar camera [39] onto an advanced AR headset [35] to
enable pervasive and accurate detection of all available edges on
physical objects via a point-cloud-based edge detection algorithm
(Figure 1a). While wearing the AR-HMD, an end-user can simply
use the finger to slide along a physical edge to select an interactive
segment as the TUI input (Figure 1b). Using the AR interface, the
user then builds a connection between the selected edge and the
desired digital functions (Figure 1c). After the authoring process,
the user can enjoy the edge-based opportunistic TUI in daily life
(Figure 1d,e), while the back-end system keeps tracking the touch
and slide interactions performed on the authored edge.

We develop an integrated vision-based pipeline for the cus-
tomized AR-HMD so that Ubi Edge can accurately and efficiently
track geometric edges as well as user interactions with edges while

minimizing user intervention. Broadly speaking, our vision-based
pipeline consists of: 1) a robust RGB-D edge detection algorithm
adapted from vanilla Canny Edge detector [10]; our algorithm can
detect salient geometric edges while suppressing image texture-
based edges and redundant edges, 2) a lightweight neural net-
work detector to separate foreground from background, prune
detected edges, quickly eliminate large portions of background
feature points, and thereby save computation, 3) an off-the-shelf
pose estimation sub-system that can accurately track 6 degrees of
freedom (DoF) of an object, and 4) an edge-based iterative closest
point (ICP) to refine and finalize the alignment and correspondence
of object edges.

In summary, we highlight our contributions as follows:
• An end-to-end authoring workflow that allows end-users to
author edge-based opportunistic TUIs that execute digital
functions when the users interact with customized segments
of physical edges on everyday objects.

• An integrated algorithm for reconstructing, detecting, and
tracking 3D edges on everyday objects as well as interactions
between fingers and the 3D edges.

• An immersive AR authoring interface that supports end-
users to segment edges through in-situ interactions while
referring to the physical object, and defining the correspond-
ing digital functions through visual programming.

2 RELATED WORK
2.1 Opportunistic Tangible User Interface
Opportunistic Tangible User Interface (TUI) [28] utilizes geometry
shapes (e.g., cylinder, bulge, and cube) of everyday objects as passive
haptics and spatial references to facilitate end-users to accurately
and pervasively control digital functions in Augmented Reality (AR).
Opportunistic Controls [28] enables users to manipulate AR objects
by touching ambient surfaces. Given a virtual content, Annexing
Reality [30] turns everyday objects into tangible proxies by looking
for the physical object with a similar shape as the virtual content
in the real environment and overlaying the virtual content on top
of the physical object. Similarly, Gripmarks [106] repurposes hand-
held objects into interactive surfaces by rendering corresponding
AR contents above the physical objects based on different grasps
and object shapes. While most prior works target leveraging the
affordance of the entire object as haptics and semantic references,
they hamper the scalability of the opportunistic TUI, i.e., users need
to find a physical object that has high semantic similarity with the
target digital function, and carefully perform the interaction to
achieve the desired control.

An edge of a physical object, on the other hand, is particularly
suitable to be used as opportunistic TUI input owing to its ubiq-
uitous existence and accurate haptic feedback. Prior works prove
that edges can provide crucial geometric information and strong
tactile feedback to users [24, 68, 80]. Users can also directly ascer-
tain the edge location through the sharp tactile of edges without
focusing on the objects [34, 41, 88]. Unifone [34] lets users touch
the sides of one-hand-held devices without causing occlusion on
screens. Haptic Edge Displays [41] attaches pins on the side of
smartphones so that users can receive sharp tactile feelings even
when phones are in pockets. Recent studies also show that users
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have better performance and more preference for edges than 2D
surfaces when finishing haptic-related tasks [44, 69]. Specifically,
Joshi et al.[44] proves that users perform comparable or even better
on table ridges than on top surfaces when performing haptic-related
tasks. Following the metaphor of opportunistic TUIs, we would like
to explore how to leverage edges as general inputs for opportunistic
TUI applications.

2.2 Author Tangible User Interface in AR
TUI authoring, which defines the mapping between input phys-
ical interactions and output digital functions, extends the TUI’s
functionalities and at the same time fulfills specific user/task needs
[5, 23]. Specifically, by introducing end-users into the design pro-
cess, customized TUI authoring systems [5, 23, 32, 47, 89] enable
couplings of arbitrary tangible inputs (e.g., gestures, objects) to var-
ious digital functions and thereby generate different combinations
of interactions.

Authoring TUI input requires the perception of human-object in-
teraction. On the one hand, attaching hardware sensors [81, 99] and
applying electrically conductive material [100] onto ordinary ob-
jects to detect human inputs such as touches and slides have been ex-
plored. Leveraging vision-based tracking algorithms, prior arts also
propose to attach fiducial markers on objects [25, 47, 55, 102, 107]
to detect interactions. Further, Light Widgets [21] uses a multi-
camera system to detect users’ skin color, thereby tracking users’
hand interactions with everyday surfaces. Similarly, WorldKit [89]
adopts an RGBD projector to detect customized touch interactions
on surfaces of everyday objects. However, most of these authoring
works lead to intrusive TUIs. The authoring process may impair the
object’s original functions since additional hardware and fiducial
markers are attached. Some other works require users to deliber-
ately spare a physical space for the interaction detection to work
[13].

In contrast, opportunistic TUI grants a more unobtrusive and
intuitive interaction since it leverages the affordance of physical
objects. Gripmarks [106] enables users to appropriate interactions
with physical objects into customized digital functions, while Annex
Reality [30] and Funk et al. [23] leverage the 6DOF manipulation of
physical objects as the inputs of opportunistic TUI. These authoring
works target interactions that leverage the specific affordance of
the entire physical objects (e.g., pulling the spray bottle handle
and rotating a soda bottle). Yet, when a user attempts to control
a specific digital widget, the user has to find a physical object
with the desired affordance, which limits the generalizability of
the opportunistic TUI. As addressed in the previous subsection,
edges, which serve as a ubiquitous and scalable geometric feature,
show promising potential in addressing this issue. Hence, we aim to
develop a system that enables end-users to customize opportunistic
TUI that leverages the edges of physical objects as inputs.

2.3 Edge Detection Methods
Geometric features like edges, surfaces, and shapes have been long
been studied in the computer vision area [1, 15]. Vision-based edge
detection has also been applied to a variety of applications including
image segmentation [10, 76], pose estimation [14, 37], and object

detection [7, 65]. Nowadays, researchers have a deeper understand-
ing towards 3D edge detection thanks to the advances of depth
cameras (e.g. Kinect [101], Intel®RealsenseTM [48]).

A typical 3D edge detection is composed of two main steps: 1)
Extracting edge feature points where surface normals suddenly
change, and 2) fitting parametric feature curves (e.g. Bezier curves).
Among the works of edge feature point extraction, Choi et al. [15]
proposed a real-time method for detecting occluding edge points,
occluded edge points, RGB edge points, and boundary edge points
from a point cloud of everyday environments. Then, Bazazian et
al. [4] investigates challenges for extracting edge feature points
from the unorganized point cloud and introduces a new method for
understanding geometric information in noisy real environments.
Similarly, Ahmed et al. [1] extracts edge feature points and corners
from the workplace and applied the approach for robotic welding.
Later, learning-based methods that extract or classify edge feature
points and corners from the point cloud are proposed [33, 85, 95, 96].
Meanwhile, prior arts [22, 67, 84, 103] has extensively explored the
parameter estimation step. However, estimating parameters for all
edge feature points is computationally expensive and the estimated
edges may not even correspond to true geometric edges (e.g. an
edge resulted from texture or illumination/shadow) [6, 64].

In this work, rather than first fitting and presenting edges to users
and then letting users choose edges as TUI inputs, we first extract
the edge feature points and then let users define their own tangi-
ble edge inputs by referencing the feature point results. Thereby,
our system skips redundant computation, avoids inaccurate edge
prediction results, and satisfies the customization needs.

2.4 Design Immersive Authoring Interface in
AR

Augmented Reality (AR) enables users to interact with both virtual
and physical environments and shows strong potential to provide
in-situ authoring for TUIs. Specifically, compared with traditional
desktop-based 2D programming, the immersive authoring capabil-
ity [54] provided by AR enables users to view and manipulate 3D
virtual contents directly in the physical environment. Following the
immersive authoring metaphor, previous works [38, 51, 97] lever-
age real objects as spatial references and create 3D virtual elements
whose spatial location coordinates with physical surroundings. Uti-
lizing the characteristic of spatial awareness of AR, researchers
facilitate fast 2D video prototyping by blending 3D manipulations
into 2D videos [56, 58] and creation of 3D animation of virtual
contents [11, 12, 57, 93], through in-situ authoring.

In addition, the visual programming capability provided by AR
has been utilized to work together with the immersive interfaces
[20, 31, 82, 98] so that users are able to map personal interactions
with virtual content behaviors. For example, GesturAR [82] allows
users to customize freehand interactions with virtual objects by con-
necting gestural inputs and corresponding reactions in AR, while
CAPturAR [83] supports users to define smart object functions
that are aware of activity-involved contextual events via spatial
programming.

Following the immersive authoring metaphor and fully utilizing
the visual programming enabled by AR, Ubi Edge endeavors to de-
velop an AR authoring interface that allows end-users to prototype
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edge-based in-situ TUI authoring when spatially referring to the
physical objects and immersively associating the edge inputs with
assorted digital functions.

3 UBI EDGE SYSTEM DESIGN GOAL
Ubi Edge aims to allow end-users to easily create personalized
edge-based AR TUIs in their own environment. This way, users
can interact with them in daily life. To this end, the users should
be provided with sufficient candidate edges in their surroundings.
Meanwhile, they should be able to select any edge intuitively and
effortlessly. After that, the users can choose a digital function (i.e.
smart thing functions, interactive AR widgets, AR applications) and
map it with the selected edge. Specifically, Ubi Edge mainly focus
on the following design goals of the authoring experience:

• Ubiquitous edge detection (DG1). In order for users to use
any nearby geometric edges for TUIs, our system is expected
to detect most edges around users and users’ interaction
with the edges accurately in real time.

• Intuitive edge selection (DG2). To reduce the complexity
of edge selection/manipulation during the authoring process,
we aim to let users set an edge using the programming by
demonstration technique[3, 12, 59, 82]. Users should be able
to select a piece of edge by simply sliding or tapping it with
their fingertips.

• Flexible function design (DG3). To let the users customize
the edge function as they wish, Ubi Edge should include
sufficient choices of digital functions and a straight-forward
AR spatial programming interface. So that users can easily
pair interactive edges with any possible digital functions and
edit the function parameters as mentioned in Section 2.4.

• In-situ visualization and feedback (DG4). To enable end-
users to understand which edges can be authored and to
help users to effectively program their own TUIs, Ubi Edge
needs to provide real-time visual feedback about interactable
edges and corresponding authoring results. The benefits of
adopting such immersive visualization have been discussed
in Section 2.4.

4 UBI EDGE
We derived three main system features based on the discussion
of design goals above: (1) an edge detection pipeline for users to
scan object and register geometric edges (DG1), (2) an input-output
model for end-users to efficiently prototype TUIs (DG2, 3), and
(3) an authoring interface that provides real-time visual feedback
about what the user has authored (DG3, 4). In this section, we
first walk-through our workflow with a specific example. Then, we
illustrate the core algorithms we adopted for edge detection. Next,
we introduce the input-output model for designing the authoring
system. Finally, we present our authoring interface.

4.1 SystemWalk-through
The overall system workflow is shown in Figure 1 (a-d): a user first
scans the object and registers geometric edges into our system.
Then with the support of our AR authoring interface, the user
can use touch to select his/her desired edge and author the TUI
following a trigger-action programming metaphor. Finally, the user

can experience the authored TUI application. Here, we briefly
illustrate the workflow of Ubi Edge using an example scenario
where an end-user wants to author a TUI that controls the color of
an AR lamp using a cup’s top circular rim. The user first moves to a
position where the cup’s rim is visible, at the same time, our system
captures the RGBD information of the object to extract geometric
edge points on the object. Next, the user initiates the authoring
process by sliding the finger along the desired edge to customize a
segment as a tangible edge (Figure 1b), while Ubi Edge determines
the starting and ending point of the edge by detecting the touch
interaction with the cup’s rim. Then the user sets the edge type
for the selected edge to be continuous, which means our system
will treat the input as a continuous value between 0 to 1. Next,
the user specifies the available range of the AR lamp’s color, and
connects the tangible edges with the color range behavior via spatial
programming (Figure 1c). Back in run-time usage, our system keeps
detecting the touch event and the finger’s relative position on the
authored tangible edge. Now, the user is able to control the AR
lamp’s color by sliding the fingertip along the authored rim (Figure
1d).

4.2 Edge Detection
Guided by DG1, we customize an AR-HMD and develop an inte-
grated vision-based pipeline to detect all geometric edges in the
physical environment as well as users’ interactions with these edges.
In this subsection, we first describe the components of the cus-
tomized AR-HMD and then explain how our system achieves accu-
rate edge detection through the proposed vision-based pipeline.

4.2.1 Customized AR-HMD. We customize HoloLens2 AR-HMD
[35] with a high-precision lidar camera (Intel®RealsenseTM Lidar
Camera L515 [39]) so that Ubi Edge is capable of detecting edges and
touches (Figure 2a). The Hololens headset is responsible for digital
content visualization and tracking users’ finger positions. Also, the
built-in SLAM of HoloLens is utilized to obtain the global position
of the edge so that we can locate objects as well as edges in physical
space. The lidar camera connected to a backpack computer performs
geometric edge detection and tracking as well as object detection
and tracking. We detect the touch interaction by combining finger
tracking results from HoloLens2 and edge detection results from
the lidar camera.

4.2.2 An integrated edge detection pipeline. To enable users to use
any geometric edge in the surroundings, Ubi Edge accurately detect
geometric edges through two steps: edge registration and edge
matching. The edge registration is responsible for ascertaining
geometric edge points of the object before authoring and edge
matching is responsible for locating edges during both authoring
and application use.

During the edge registration, given the RGBD images for the
target physical object, our system utilizes a vision-based algorithm
[15] to extract geometric edge points, i.e., high curvature edge
points, where surface normals suddenly change. However, the edge
detection provided by [15] automatically detects feature points for
all geometric edges in the scene (Figure 2b-1). Since edges on the
object are our major concern, we then trimmed edges on the object
out of the background. Specifically, we obtain the bounding box
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Figure 2: (a)CustomizedAR-HMDSetup: (a-1) The customized
HoloLens2 with a Lidar camera. (a-2) Hololens2 camera view.
(a-3) Lidar camera view with RGB+D information. (b)Edge
Registration: (b-1) Detected edge feature points in the scene.
(b-2) Object detection result for the cup. (b-3) Trimmed edge
feature points of the target object. (c) ICP refinement: (c-1)
Initial 6Dof prediction of edges. (c-2) 6DoF pose estimation
of edges after ICP.

for the target physical object using a lightweight object detection
method [72] (Figure 2b-2), project the bounding box back to 3D
using the depth information, and remove the background feature
points whose distancewith the bounding box is beyond an empirical
threshold of 2.5 cm and out of the bounding box (Figure 2b-3). Then
we reconstruct the geometric outline of the object bymerging all the
extracted edge points captured from different viewpoints together.
A post-processing filter [74] is utilized for outlier removal.

When the edge registration is completed, we have the geometric
edge feature points of a physical object. However, when the object is
moved to a new position, the edge points’ 6DoFs change. Therefore,
our system needs to establish correspondence between original
edge points and current edge points so that our system can detect
whether a user is interacting with an edge and decide which edge
is being touched. To achieve this goal, we perform the edge match-
ing. Specifically, we detect the object as we do in edge registration
and track the object’s 6Dof using an off-the-shelf network-based
keypoint descriptor and spatial-temporal non-local memory [86]
that is robust against hand occlusion. However, the 6Dof prediction
result of the object does not exactly correspond to the pose of edges
as there might be rotation errors or translation offsets (Figure2c-1).
Therefore, we further refine the prediction by matching current
detected edges with the original edges in edge registration through
the edge-based ICP method [15] (Figure2c-2). During the applica-
tion use, for each authored edge, Ubi Edge renders corresponding
TUI when touch interaction takes place.

The edges detected and their descriptors so far are merely a set
of 3D points without higher-order geometric structure (e.g. our
system has not defined which subsets of 3D points constitute a line
segment and has not estimated the parameters for describing the
line segment) and cannot be directly used to map digital functions.
To this end, our system lets users define the line segment by touch.

4.3 Input-output Model for Edge-based
Opportunistic TUI Authoring

To achieve DG3, we provide a programming tool that adopts input-
output model as the programming modality. The input-output
model has beenwidely used in authoring systems to assist end-users

Input
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(a) (b)

(c) (d)
Discrete Continuous

Figure 3: Input-output taxonomy: (a) a discrete touch input
triggers a continuous behavior, (b) a continuous touch con-
trols continuous output (c) a discrete touch input triggers a
discrete output, and (d) a continuous touch triggers a discrete
output.

in efficient customization [2, 27, 46, 53, 82]. Within the input-output
model, an input is initiated by a subject and an output is generated
in response to a trigger of the input. In our work, the input of the
TUI interaction refers to touch interaction with a tangible edge and
the output is the behavior of relevant digital content.

To achieve intuitive edge selection/manipulation (DG2), Ubi al-
lows users to use body actions to demonstrate. Based on our review
of previous tangible interaction works [13, 26, 55, 90], the single
finger interaction causes the least occlusion while providing intu-
itiveness. Therefore, we adopt index finger touch-based interaction
to enable intuitive and precise manipulation on edges. We summa-
rize input along with the output into the following categories:

• Discrete input, which implies if a touch interaction takes
place.

• Continuous input, which represents the status of the fin-
ger consisting of touch positions, touch manipulation path
lengths, and finger moving directions.

• Discrete output, which indicates the state of digital content
(e.g., transitions, rotations, scales) changes temporally after
the touch interaction.

• Continuous output, which represents a series of digital con-
tent’s state transitions after the touch interaction.

Furthermore, we would like to adopt a trigger-action programming
metaphor to empower users with effortless authoring. Specifically,
users can connect the trigger, i.e., input, with their target action, i.e,
output and create combinations of different types of inputs with
outputs along with the resulting TUI interactions.

Discrete + Discrete (Figure 3c): This category represents the
digital content status changes from one to another after a touch
interaction with a tangible edge is detected. The most common
scenario is that an on/off function is triggeredwhen the user touches
the edge. An example is shown in Figure 1e-1. After the user touches
the edge segment of the pill bottle cap, a virtual AR medication
reminder indicating pills to take appears.

Discrete + Continuous (Figure 3a): This group means that
a series of changes of digital content status occurs after a touch
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interaction is detected. A typical interaction is that an AR animation
starts when the user touches the edge. We show an example in
Figure 1e-3, where an AR weapon animation starts to play after the
user touches the edge of the airplane model’s wing.

Continuous + Discrete(Figure 3b): This category shows that
the state of digital contents adjusts corresponding to the alteration
of finger status during the touch interaction. Figure 1e-2 shows an
example that the augmented album changes to the next page when
the user moves the finger from top to bottom of the album edge.

Continuous + Continuous: This class demonstrates TUI in-
teractions where the digital content responds concurrently to the
finger status update. An intuitive scenario to come up with is that
the edge serves as a slider. We provide an example in Figure 1d
where the cup’s rim is repurposed into a controller for changing
the light color of the AR bulb and the AR bulb’s color gradually
changes from green to blue when users move their fingers from
left to right.

Furthermore, to support users in defining input and output di-
rectly, Ubi Edge introduces two types of edge types and two types
of behaviors of digital functions for users to choose: (1) Discrete
edge, which is linked with the Discrete input of the input-output
model and serves as a button activation. (2) Continuous edge, where
a continuous touch interaction with touch position, finger moving
direction, and length of current touch path will be monitored. (3)
Discrete behavior, which represents limited or temporal status of
digital contents (e.g. the on/off status, current AR content’s po-
sition, etc.). And (4) Continuous behavior, which corresponds to
the Continuous output such as 3D animations. With the support
of trigger-action metaphor, users are able to connect one input to
multiple outputs so that multiple behaviors can be activated at the
time. Or they can associate multiple inputs to the same output and
either input can activate the output.

4.4 Authoring Interface

(a-2) (b-3) (c)

(b-1)

(b-2)(a-1)

Figure 4: The AR interface of Ubi Edge. (a-1) Left-hand menu
(upper). The left column is the main menu for three modes.
The right column is the sub-menu corresponding to Author
Mode. (a-2)Edge Editor Menu(bottom). (b-1) Discrete edge. (b-
2) Continuous edge. (b-3) An example Continuous behavior
icon with a slider where users can define the start and end of
the behavior. (c) The Action Menu holds all behaviors for a
digital object.

Leveraging the advantages of immersive experiences and affor-
dances of spatial awareness provided by AR, we introduce the au-
thoring interface that enables in-situ digital content manipulation,
visualized embodied demonstration, and effortless trigger-action

programming (Guided by DG4). The authoring interface of Ubi
Edge is composed of three modes: (1) Scan Mode for users to scan
all edges on the physical object, (2) Author Mode to design and
edit TUIs for tangible edges, and (3) Play Mode to test and experi-
ence authored TUI applications. An AR main menu floating next
to users’ left hands is used for switching between different modes
and toggling on/off sub-menus for current mode (Figure 4a-1).

Users start the TUI creation by first entering Scan Mode and reg-
istering edges within their interested region into Ubi Edge. During
the Author Mode, users first select the tangible edge, i.e., the line
segment that the user is going to interact with. After users click the
button for tangible edge selection, an AR replica of detected edge
point results is automatically aligned with the physical object (Fig-
ure 2b-3). Now users can select their desired tangible edge by sliding
their index fingers along the physical edge. Ubi Edge starts/stops
detecting users’ interaction with the physical edge when users send
a speech command which is provided by Microsoft Mixed Reality
Toolkit (MRTK). At the same time, our system selects the points
near users’ index fingers and renders a smooth line segment for
users through a line smoothing algorithm [29]. For each tangible
edge, our system stores the inherent information including length,
contained points, and path for later use.

When a tangible edge is available, users can utilize the ’Edge
Editor’ (Figure 4a-2) to author input mentioned in Section 4.3 and
perform other modifications for the tangible edge. For each tangible
edge, users can customize the edge type mentioned in Section 4.3
which specifies the touch interaction type. The visualization of
edge types changes correspondingly as users modify the edge type
(Figure 4b-1 and 4b-2). Ubi Edge supports users to map a set of
discrete edges to multiple behaviors respectively. To this end, we
provide the ’Split’ function (Figure 4a-2) to users and users can split
the edge into multiple tangible edges which share the same edge
type property as the original tangible edge. Specifically, users can
simply touch the current tangible edge and the tangible edge will be
automatically segmented at the touch point. Users can also utilize
the ’Split’ function for continuous edge to take full advantage of an
edge with moderate length and ease their authoring load. Divided
edges can also be merged into their original status through the
’Combine’ function using a similar manner. Additionally, to avoid
the situation where users might mistakenly touch the nearby edge,
the segmented edges are automatically divided by an empty interval
with an empirical length of 1.1 cm. If the current authored edge
overlaps with previously authored edges, our system automatically
segments the current authored edge at the intersection point.

After users finish the authoring process for the tangible edge,
users can specify the behavior, connects the tangible edge with be-
havior through trigger-action programming metaphor and finishes
the authoring process. In detail, for each digital content, users drag
a virtual behavior from the ’Action’ menu (Figure 4c) which con-
tains all available behaviors for the current digital object. Ubi Edge
provides both universal behaviors for virtual contents (e.g. transla-
tions, rotations, scales, and animations) and pre-defined behaviors
based on the characteristics of virtual contents. Users can decide
whether the universal behavior change happens with respect to the
users’ coordinate or the global coordinate using a toggle button. For
a continuous behavior, users need to specify the start and end values
between where the edge will be mapped to (Figure 4 (b-3)). Then
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users can connect the authored tangible edge with target behavior
through drag-and-drop interaction. Specifically, users pinch the
green sphere above the tangible edge, drag a line out, approach the
target behavior icon and release the pinch on the red sphere to
enable the line connecting the tangible edge and target behavior.
Now users can test the authored TUI application. In the Play Mode,
Ubi Edge keeps tracking users’ fingers and the edges’ 6DoF as men-
tioned in Section 4.2 . Once the touch interaction is detected, both
of the tangible edge and the connected behavior icon will be high-
lighted and the connected behavior will be triggered. Additionally,
Ubi Edge will automatically hide all the lines and behavior icons
and only the tangible edge is visualized.

5 APPLICATION SCENARIOS
With Ubi Edge, end-users are allowed to utilize the edges on nearby
everyday objects to control virtual contents and IoTs. Here we
demonstrate four different TUI applications enabled by Ubi Edge.

5.1 Repurpose Object into Multi-functional
Controller

(a) (b) (c) (d)

Figure 5: An AR fan controller: (a) The ’bottom’ continuous
of the book is connected to a fan speed behavior; the ’upper
right’ discrete edge is connected to an ’on/off’ behavior; the
’lower right’ discrete edge is connected to an ’oscillating’
behavior. (b) The user can touch the ’upper right’ edge to
turn on the fan, (c) touch the ’lower right’ edge to let the fan
oscillate, and (d) slide his finger on the ’bottom’ edge of the
book to adjust the fan’s speed.

Multi-functional controllers have been widely used for AR con-
tent manipulation due to the complexity of virtual contents [49, 94].
With the support of Ubi Edge, users can instantly repurpose a daily
object into a multi-functional controller by choosing multiple edges
on the object and connecting selected edges with different behav-
iors respectively. As shown in Figure 5a, a user connects the ’upper
right’ discrete edge of a book with an AR stand fan’s ’on/off’ be-
havior, the ’lower right’ discrete edge of the book with the fan’s
’oscillating’ behavior, and the ’bottom’ continuous edge with the
’fan speed’ behavior. Thus, if the user touches the ’upper right’ edge,
the AR fan starts/stops working (Figure 5b). If the ’lower right’ edge
is touched, the AR fan starts to oscillate (Figure 5c), and then the
user can change the fan speed by sliding on the ’bottom’ edge of
the book (Figure 5d).

5.2 Ubiquitous Control Over Smart Objects
Recently, nascent and consumer-oriented IoTs (e.g. smart light bulbs,
thermostats, and speakers) which integrate physical objects with
digital sensors, are rapidly increasing in people’s working and living

(a-1)

(b-1)

(a-2)

(b-2)

Figure 6: Audio player controller: (a-1) The ’left’ discrete edge
of the kitchen scale is connected to a ’pause/play’ behavior;
the ’bottom’ continuous edge is connected to ’next/previous’
behavior, and the ’right’ continuous edge is connected to a
’volume’ behavior. (a-2) The user can touch the ’left’ edge to
play music, swipe the bottom edge to jump to the next song
and touch the ’right’ edge to adjust the volume. Smart bulb
controller: (b-1) The ’bottom’ continuous edge of the lamp
station is connected to ’hue’ behavior of the IoT bulb. (b-2)
The user can change the color from yellow, to blue and to
red when moving his finger from the left of the edge to the
middle, and to right.

environments [50, 52]. Currently, the most common way to control
IoTs is to use a smartphone. Yet, our system empowers users to
utilize the nearby edges to manipulate IoT functions. In Figure 6,
we showcase a user trying to control IoTs using his table-around
items. The user maps the three edge segments (i.e., ’left’ discrete
edge, ’bottom’ continuous edge, ’right’ continuous edge) of digital
scale with an audio player’s ’play/pause’, ’previous/next song’, and
’volume dial’ respectively (Figure 6a-1). During the use, he can start
to enjoy music when he touches the scale’s ’left’ edge. Now he
could change to the next rhythm by swiping right on the ’bottom’
edge. If he swipes down along the ’right’ edge, then the audio
player’s sound will be dialed down (Figure 6a-2). Additionally, the
user connects the continuous edge of the lamp’s station with the
light bulb hue (Figure 6b-1) and he can touch the station’s edge to
modify the light bulb’s hue (Figure 6b-2).

5.3 Interactive Tangible AR Game

(a) (b)

Figure 7: Gaming Controller: (a) The ’upper’ continuous
edge is connected to the virtual basket’s ’horizon translation’
behavior. (b) Then the user can slide his finger on the edge
to let the basket catch falling basketballs.

Besides utilizing ambient edges to improve the quality of life,
users are also able to create AR game controllers for entertainment
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with the support of Ubi Edge. Here we demonstrate an AR example
in Figure 7. The user wants to utilize a handheld game console’s
edge to control the AR basket in the horizontal direction so that
the basket can catch falling basketballs. Thus, the user connects the
’upper’ edge with the AR’s basket’s ’horizon translation’ behavior
(Figure 7a). During the play, when the user slides his finger in the
right direction, the AR basket correspondingly moves in the same
direction (Figure 7b).

5.4 Ubiquitous Tangible AR Tutorial

(a) (b)

Figure 8: Virtual video tutorial controller: (a) The continu-
ous electric range edge is connected to a progress bar and
the discrete pan handle edge is connected to a ’play/pause’
behavior. (b) The user can click on the handle of the pan to
start/pause the video and utilize the range edge to jump to
the next part.

Ubi Edge can also facilitate task performance for users. For ex-
ample, users can author a tutorial-based TUI by attaching a video
display behavior to a frying pan’s edge for cooking study. Specif-
ically, the user attaches ’play/pause’ to the discrete edge on the
pan handle, and ’playing progress’ behavior to the continuous
electric range edge (Figure 8a). Then the user can start watching
the cooking video when his finger touches the pan handle edge
and he can jump to his favorite parts by sliding on the range edge
(Figure 8b).

6 SOFTWARE AND HARDWARE SETUP
As mentioned in Section 4.2.1, we build our customized AR-HMD
as shown in Figure 2(a), which consists of a HoloLens2 AR-HMD
with built-in SLAM and an Intel®RealsenseTM lidar camera L515
[39]) for edge tracking. The lidar camera and HoloLens camera
are calibrated ahead and a bidirectional data transfer between AR-
HMD and the lidar camera is enabled by the Transmission Control
Protocol (TCP) [71] connection in the local network. For finger
tracking, instead of tracking certain gestures, the HoloLens 2 pro-
vides hand skeleton detection and can track all joint positions of
both hands. We choose the index tip position mentioned in Section
4.2 and Section 4.3. During the edge detection pipeline, we adopt a
resolution of 1280 × 720 for the RGB color image and a resolution
of 1024 × 768 for the depth image. The color and depth frames are
aligned with the same frame rate of 30 fps. In an indoor setting,
the lidar camera is designed to capture depth from 0.25 m to 9 m,
with reflectivity affecting the depth. Additionally, the lidar camera
is connected to a backpack computer (HP VR Backpack [36], Intel
Core i7-8850H, 2.6GHz, 32GB RAM, NVIDIA 2080 GPU), which
provides computation power for edge detection and tracking.

As mentioned in Section 4.2, we applied object detection [72]
method for background edge point removal and further object

tracking. For object detection, we trained 13 daily objects including
a photo frame, table, cup, book, toy, headphone, frying pan, desk,
bowl, lamp, pill bottle, andmonitor for study and demonstration use.
For each object, we collected 2000 images. The detection model was
pre-trained on ImageNet [17]. For the object detection result, the
overall precision is 96.5% and mAP is 91.7%. For object tracking and
edge tracking, we adopted the default settings in original algorithms
respectively [15, 86]. The AR system is developed with Unity3D
(2020.3.31f1) and the AR user interface was supported by Microsoft
Mixed Reality Toolkit (MRTK)1. While the training and tracking
experiments are conducted on the backpack computer mentioned
above, the AR development is finished on a local PC (Intel Core
i7-9700K, 3.6GHz CPU, 32GB RAM, NVIDIA RTX2080 GPU).

7 PRELIMINARY SYSTEM EVALUATION FOR
EDGE DETECTION

(a-2) (b)

22.5° 45° 67.5° 90° 112.5° 135° 157.5°

(a-1)

Round Radius (mm)

1 3 5 7 9

Diameter/Length (cm)

8 6 4 2

Figure 9: Preliminary evaluation setup: 3D printed half cylin-
ders with different (a-1) diameters and (a-2) round radii. (b)
Wedges with different dihedral angles.

FollowingDG1,we develop a vision-based edge detection pipeline
in Section 4.2 to detect edges in the physical environment. In real-
world scenarios, the edge detection capability is affected by edge
properties including the curvature, the length, and the distance be-
tween edges and the lidar camera. Thus, in this section, we evaluate
the effectiveness of edge detection with varying geometric edge
parameters.

Setup. In the evaluation, we mainly consider four edge param-
eters: the rounded edge’s radius [73], dihedral angles (Figure 9b),
the length of edges, and the distance between edge and the camera
which may infuence the performance of the edge detection algo-
rithm. Specifically, the round radius and dihedral angle represent
the curvature/sharpness of edges. In our life, the edge of actual
objects is usually not a straightly sharp edge but a high-curvature
surface, like a thin cylinder [75]. The round radius refers to the
cylinder radius and the edge looks blunter as the round radius
increases (Figure 9a-2). Previous works [1, 4] show that the sharp-
ness also depends on the dihedral angle and we adopt the same
parameter settings in these works. For the edge length which is rep-
resented by the diameter length of the half cylinder in Figure 9a-1,
the minimum length of 2 cm is chosen to ensure the edge is long
enough for fingers to interact. Moreover, the distance parameter is
decided based on the specification of the lidar camera [39].

Procedure. We 3D print half cylinders with a diameter ranging
from 2 cm to 8 cm (Figure 9a-1). For each size, we choose 5 round

1https://github.com/microsoft/MixedRealityToolkit-Unity
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radii (Figure 9a-2). In total, we use 4 (length) × 5 (round radii)
= 20 half cylinders to evaluate the impact of edge curvature and
length. When measuring the effect of curvature and edge length,
the distance is set at the same of 0.25m. To test the edge detection
accuracy, we compare the results of detected edge feature points
with the manually labeled ground truth. We adopted the same
ground truth setting and threshold setting as the previous work [4].
For evaluation, we calculated three metrics: Precision, Recall, and
𝐹1 score [79]: 𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 , as shown in Figure 10.
Result and Discussion. The result (Figure 10c) shows that edge

detection is accurate when round radius ≤ 7mm. Our system can
detect the short edge (diameter = 2 cm) for the small round radius.
For the dihedral angle, the results are more accurate between 22.5◦
and 112.5◦ (Figure 10b). The optimal distance between the camera
and the edges would be equal to or less than 0.5 m (Figure 10a). We
will discuss the limited detection range later in Section 9. Overall,
our results show state-of-the-art performance compared with the
result of [1, 4].

(a)

Dihedral Angle Precision Recall F1-Score

22.5° 0.841 0.657 0.738

45° 0.939 0.829 0.880

67.5° 0.916 0.922 0.919

90° 0.890 0.876 0.883

112.5° 0.931 0.697 0.797

135° 0.798 0.283 0.418

157.5° 0.574 0.195 0.292

22.5° 45° 67.5° 90° 112.5° 135° 157.5°

(b)

Distance (m) Precision Recall F1-Score

0.25 0.926 0.871 0.897

0.50 0.848 0.755 0.799

0.75 0.706 0.657 0.680

1.00 0.590 0.492 0.536

Round Radius (mm) 1 3 5 7 9

Length (cm) Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

8 0.926 0.871 0.897 0.876 0.873 0.875 0.886 0.743 0.808 0.818 0.767 0.791 0.703 0.734 0.718

6 0.936 0.746 0.830 0.848 0.753 0.798 0.813 0.689 0.746 0.781 0.634 0.700 0.776 0.573 0.659

4 0.862 0.775 0.816 0.876 0.740 0.802 0.792 0.737 0.764 0.729 0.664 0.695 0.730 0.636 0.680

2 0.845 0.629 0.721 0.789 0.616 0.692 0.753 0.562 0.644 0.648 0.524 0.580 0.458 0.491 0.474

(c)

Figure 10: Preliminary evaluation of edge detection results
for different (a) camera distances (diameter = 8 cm, round
radius = 1mm), (b) dihedral angles (camera distance = 0.25
m), (c) edge lengths and round radius (camera distance = 0.25
m).

8 USER STUDY
We conducted a two-session user study to evaluate the accuracy
of the touch interaction with edges, TUI authoring feasibility, and
overall system usability. We recruited 14 users (11 males and 3
females, ages ranging from 21 to 30). 12 out of 14 had used AR or
VR applications on smartphones, tablets, or head-mounted devices
while the rest two had heard about AR and VR. 3 out of 14 had
used TUI before and the others had a basic understanding of TUI
concepts. Since Ubi Edge is designed to provide prototyping expe-
riences for non-expert end-users, all the recruited users have no
AR application programming experiences. None of them had used
our system before the user study. The entire study took around 1.5
hours and each user and each user was paid a $20 e-gift card. The
study was taken in a 5m by 5 m indoor area and screen-recorded
for post-analysis. After a user arrived, we first introduced the back-
ground of our system and let users understand the entire system
workflow and system UIs. Before the user study officially started,
users first experienced the HoloLens2 built-in tutorial to learn basic

usage of the HMD. After two sessions, each user completed a 5-scale
Likert-type questionnaire and a standard System Usability Scale
(SUS) questionnaire. Finally, we conducted a conversation-style
interview with the users to obtain their subjective feedback about
the system.

8.1 Quantitative Evaluation of the Touch
Interaction

(a) (b)

Figure 11: User study setup: (a) The six objects used in Session
1 and Session 2: a box, a bowl, a frying pan, a cup, a toy, and
a coffee table. (b) The six virtual objects used in Session 2: a
tennis ball, a kettle, a timer, an AR lamp, a video player, and
a car.

8.1.1 Procedure. In this session, we evaluated the performance of
the edge detection result, checked whether touch interaction with
the edge can be correctly detected, and measured whether users can
accurately manipulate both types of tangible edges. We provide 6
daily objects which vary in size, edge numbers, and edge curvatures
for users: a box, a bowl, a frying pan, a cup, a toy, and a coffee table
(Figure 11a). For each object, users first completed the scanning
process as mentioned in Section 4.2. Then during authoring, users
could choose any two tangible edges they want. One authored edge
was set to discrete and connected with a ’counter’ behavior, which
visualized the number of detected touches. The other authored
edge was set to continuous and connected with a ’slider’ behavior,
which showed the ratio of current touch position to start with
respect to the edge length. During the test, users were asked to
1) perform 5 touches for each discrete edge, and 2) slide along
the continuous edge and tries to position their fingers on 0%, 25%,
50%, 75% and 100% of the edge length. When touching the discrete
edges, users were encouraged to touch different places on the edge.
Following previous works [16, 43, 44], We recorded whether the
system detected touch interaction for discrete edges and the target
acquisition time of trials for continuous edge. We collected a total of
14 (Participants) × (6 objects) × 5 = 420 trials for both discrete edge
and continuous edge respectively. Specifically, the target acquisition
time refers to the total completion time for users to slide along the
continuous edge and traverse the specific points, i.e, 0%, 25%, 50%,
75% and 100% of the edge length.

8.1.2 Result and Discussion. The evaluation result is shown in
Figure 12. For the discrete edges, our system could accurately detect
the touches performed by users with an average accuracy of 93.57%
(SD=3.66) across six objects. Typically, the performance of the toy
was not as good as the other objects. This was partially caused
by that there are many concave edges detected on the object and
it would cause the fingertip occlusion problem which we discuss
later in Section 9. The frying pan was also challenging and many
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Figure 12: Results of User Study Session 1

short edges were detected due to the abrasive material on the pan’s
bottom area, which cluttered the visualization and the users could
not accurately select their desired edges.

For the continuous edge, all users were able to successfully slide
to the target positions. The results show that users could accurately
manipulate the authored tangible edges. The average completion
time to slide to all target positions for each edge was 17.59 seconds
(SD = 4.32). This result is comparable with other state-of-art tangible
sliders [16, 43]. It takes more time for users to complete tasks on
the bowl (AVG = 20.82s, SD = 3.59) because users preferred to draw
longer edges on the bowl. We also observed that users took more
time on the toy (AVG = 22.07s, SD = 6.19) and this may be attributed
to the toy’s ceramic material and the edges do not provide as sharp
a tactile feel as other objects.

8.2 Authoring Feasibility Evaluation

TUI Edge (type) Behavior (type)

1 Box’s length, height, width (continuous) A tennis ball’s movement in x, y, z axis respectively 
(continuous)

2 Bowl’s rim (continuous) Virtual kettle’s rotation in y axis (continuous)

3 Handle of frying pan (continuous) Virtual timer’s ‘Add/Delete 30s’ (discrete)

4 (a) Rim of cup (continuous) 
(b) Handle of cup (continuous) 

(a) Virtual lamp’s color (continuous)
(b) Virtual lamp’s illuminance (continuous)

5 (a) Toy’s edge on cookie (discrete)
(b)Toy’s edge on mouth (continuous)

(a) Video Player’s ‘play/pause’ (discrete)
(b)Video Player’s progress bar (continuous)

6 Coffee table’s two edges (discrete) Animations of (a) virtual car and (b) virtual tennis 
(continuous)

The object scanning process is straightforward and easy 
to follow.(Q1)

The edge visualization is accurate and easy to 
understand.(Q2)

I would like to use edges on objects to control digital 
objects.(Q3)

It's easy and intuitive to use touch interaction to define 
edges.(Q4)

It's easy to use authored edges for precise 
manipulation.(Q5)

The system covers most digital content behaviors that I 
can come up with.(Q6)

The trigger-action metaphor is intuitive for TUI 
operations.(Q7)

The UI is clear and using lines to build mapping 
relationships is intuitive.(Q8)

0 2 4 12 146 8 10

Strongly Disagree NeutralSlightly Disagree Slightly Agree Strongly Agree (b)

(a)

Figure 13: User study 2. (a) Six authoring tasks with different
combinations of input and output. (b) Likert-type question-
naire results.

8.2.1 Procedure. In this session, we evaluated the performance
of Ubi Edge authoring interface and let the users experience four
combinations of inputs and outputs mentioned in Section 4.3. Users
were asked to finish 6 edge-based opportunistic TUI authoring
tasks (Figure 13a) by utilizing same physical objects as the first
session (Figrue 11a) and 6 virtual objects (Figure 11b): 1) Box’s
length, height, width (continuous) of the box to control tennis ball’s
translation (continuous) in x, y, z directions respectively, 2) rim of

bowl (continuous) to control virtual kettle’s rotation (continuous)
around y axis, 3) a continuous edge on frying pan to control a
timer’s ’Add/Delete 30 seconds’ behavior (discrete), 4) rim of cup
(continuous) to control virtual lamp’s color (continuous) and the
handle of cup (continuous) to control virtual lamp’s brightness
(continuous), 5) a discrete edge on toy’s cookie to control video
player’s ’play/pause’ (discrete) and a continuous edge on toy’s
mouth to control the video player’s progress bar (continuous), and
6) coffee table’s edges (discrete) to control animations of a virtual
car and a tennis ball (continuous). We recorded whether users
successfully interacted with the TUI during Play Mode.

8.2.2 Result and Discussion. All 14 users completed the six author-
ing tasks and tested the authored TUI applications. The average
completion time to finish authoring tasks for each user was 38.65
minutes (SD=4.35). The Likert-type results collected from this ses-
sion are shown in Figure 13b.

In general, users showed a high preference for utilizing geomet-
ric edges on everyday objects for tangible inputs and agreed with
the intuitiveness of re-purposing tangible edges into controllers
(Q3: AVG=4.57, SD=0.51). "I think it would bring high convenience to
my life. With the edge controller, I can turn everything nearby into a
controller such as the arm of a chair without looking for the controller
all around the house. (P1)" As a design foundation of our system, the
trigger-action programming metaphor received compliments from
users (Q7:AVG=4.43,SD=0.51). "The procedure of combining differ-
ent inputs with outputs is straightforward. And I can create different
controllers with the combinations. (P13)" The embodied demonstra-
tion through touch was also welcomed by users (Q4: AVG=4,28,
SD=0.72). "Using touch is pretty simple. The system immediately
shows an edge as I draw it and exactly renders the edge I want. (P7)"
Regarding the object scanning process, most users were satisfied
with the scanning pipeline (Q1, AVG=4.36, SD=0.93). "It’s necessary
and convenient to scan the objects which I want to turn into controllers
because I only need to scan once. And I do not need to place a QR
code on objects all the time. (P3)" Yet, one user raised that "Although
the system provides everything I need from scratch, I prefer that the
scanning process can be directly skipped. (P11)" We will discuss this
concern in Section 9. Meanwhile, the majority of the users are sat-
isfied with the edges’ in-situ visualization results in quality and
quantity(Q2: AVG=4.43, SD=0.65). "I am surprised that all the edges I
drew are precisely aligned with the physical objects. It’s cool that I use
both curves and straight lines as controllers. (P4)" Meanwhile, most
participants felt confident in utilizing authored edges for precise
manipulations (Q5: AVG=4.5,SD=0.65). "I am pretty satisfied with
the edge controller that I created. The simple touch trigger makes it
perform just like a real button. When it functions as a slider, it’s much
like using a touchpad in the physical environment and the virtual
objects behave as I expected. (P15)" Users also acknowledged the
coverage of digital contents (Q6:AVG=4.21, SD=0.70). "The system
comes up with almost all interactions for virtual contents. Initially, I
can only imagine using it as a simple button. After using your system,
I’m surprised that I can utilize it to create and control a 3D animation.
(P8)" Additionally, users complimented the UIs and the intuitive op-
erations provided by immersive authoring (Q8:AVG=4.36, SD=0.63).
"Using a line to represent the logic connection is really simple and
easy to follow. (P11)" The standard SUS survey result is 87.86 out of
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100 with a standard deviation of 9.08, showing the high usability of
the whole system.

9 LIMITATIONS AND FUTURE WORK
Difficulties in edge detection. The in-situ edge visualization was
proven to be accurate and covered most edges that users needed in
the user study. Some users raised a concern that "For some objects
like the frying pan and the toy, there are much more edges than I
expected. Although it does not affect selecting edges, it seems a little
messy for me. (P10)" For the toy, we noticed that many concave
edges are presented. Since the edge detection algorithm does not
distinguish concave edges from convex edges in 3D, the only way to
differentiate the two types of edges is based on the users’ view angle.
For the frying pan, there are many unexpected edges because the
bottom of the pan ismade of an abrasivematerial somany tiny edges
are detected. Similarly, the quality of edge detection greatly reduces
when meeting transparent materials like glass. This problem has
been addressed in [14] and we envision more robust edge detection
algorithms could improve the performance of Ubi Edge in the future.
Currently, as symmetric objects (in shape and visual appearance)
are rotation-invariant to the Lidar camera, we are not able to track
the rotation of these kinds of objects. This problem is also addressed
in [23]. However, we can record the relative rotation of authored
edge with respect to the user’s location and renders an authored
edge that keeps fixed relative rotation with users. Additionally, as
users can only take RGBD images for their interested area, they
may only take a partial edge segment for a long edge on large
objects such as the table ridge. In this situation, there might be
numerous similar edge segments on the long edge, and our system
currently is not able to distinguish these similar edges. Similar to
the rotation problem, we can also render the edge based on users’
locations so that the edge is always within the user’s reach. The
partial edge segment problem can be expanded to a more general
difficulty when the object falls out of the field of view (FoV) or is
occluded by other objects/hands. As the 6DoF tracking method we
used involves the feature point detection and tracking [86], the edge
localization easily fails when most feature points are not in the FoV.
Or in a clustered environment, the feature points of objects are more
likely to be occluded by other items and cannot be detected. To deal
with this issue, recent works [19, 104, 105] proposed learning-based
methods which are robust to heavy occlusions. On the other hand,
one benefit of the haptic feedback of the edge-based interfaces
is that it enables an eyes-free experience. However, by adopting
a vision-based edge detection and vision-based hand detection
workflow, the current UbiEdge is not yet an eyes-free interface.
Adding sensors on users’ fingers to detect the touches with edges
[63, 77] may be a solution to resolve the problem.

Difficulties in fingertip detection. The edge detection and
tracking supported by Ubi Edge focus on geometric edges with
sharp haptic feedback (e.g. ridges of desks, or rims of books). And
the touch interaction with the sharp edges was proven to be ade-
quate and accurate in the user study. However, some users men-
tioned that some concave edges are not rendered, and sometimes
touch interactions with detected concave edges could not be de-
tected. A user commented "When I want to draw edges at the inside
of the toy’s mouth, the system does not correctly detect my finger

moving. (P12)" The situation also happens to concave corners. We
noticed that when users want to touch the concave corner which
connects the cup’s handle with the cup’s body, the finger detection
capability provided by HoloLens2 is reduced because a significant
part of the fingertip is occluded by the object. Introducing extra
hardware devices onto fingers [9, 18, 66, 91] could be one solution.
However, it usually requires extra setup and is cumbersome for
users. Another possible way to address this problem is to utilize
novel occlusion-based finger tracking algorithms [42, 62]. Or we
can provide an evaluation score for each selected edge and thereby
inform users of suitable edge candidates for TUIs.

Expansion of demonstrated gesture. Currently, Ubi Edge
only supports index finger tracking and detection for two main
reasons: 1) everyday edges are usually slim and more fingers would
cause a severe occlusion problem, and 2) using the index finger
is one of the most intuitive and simplest ways to interact with
objects [26, 55, 90]. The index finger interaction was also highly
accepted in our user study. Although Ubi Edge only focuses on the
index finger’s interaction with edges, HoloLens2 supports multi-
finger tracking for both hands. Therefore, the system can be easily
expanded to multi-finger/multi-hand interaction. Moreover, , some
users suggested that "It would be amazing if I can use more gestures
or patterns like swiping back and forth to trigger a button (P13)."
In order to solve this problem, previous works have proposed to
integrate gesture recognition devices with nearby smart devices
or physical objects and thereby tackle the problem of the complex
configuration of hands [52, 82, 87].

Distinction between object’s original functions and TUI
applications.While we enable always-on detection of touch inter-
action, users can mistakenly trigger the TUI when using an object’s
originally designed function. Thus, when and where to turn on the
TUI becomes a problem. ICon [13] suggests that everyday objects
can function as controllers only when they are on a desktop. An-
other method to adapt to different applications is to observe the
way that users interact with objects through the learning-based
method. For example, users may perform a fixed pattern of gestures
when interacting with the object as a controller.

More complicated edge-based opportunistic TUIs. Ubi Edge
provides TUIs with different combinations of inputs and outputs
based on the trigger-action programmingmetaphor. However, some
complex logic connections are currently not supported. "I hope there
will be a way to author a sequential connection. I mean, it’s like a
digital content behavior can happen only after another behavior is
triggered. For example, I can let the coffee machine work only after my
kitchen light is turned on and when I am entering the kitchen. (P4)"
This condition-based connection requires more spatial information
about users and ambient physical surroundings. One possible so-
lution is to bring a context-aware programming interface like Ivy
[20], CAPturAR [83] and ProGesAR [92]. Additionally, for an inter-
face that contains multiple edges, users currently need to specify
each edge input and corresponding digital function respectively.
For example, for a machine interface containing multiple buttons
and knobs, the repetition of the authoring process might be tedious.
The problem can be solved by reusing the customized elements [98]
onto a new TUI through a copy-paste metaphor.

Bulky hardware setup. We have shown the intuitiveness and
smoothness of the object scan process in the user study. Yet, as
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mentioned before, P11 would like the object scan prepared by devel-
opers before authoring. An alternative solution is to utilize the mesh
model provided by the manufacturer, for example, IKEA dataset[60]
and extract all edge points on the mesh model first [45, 78], and
then compare with edges on physical objects during play. While
the backpack computer provides the capability of real-time edge
and object tracking, the bulky setup still limits users’ mobility. We
envision lightweight HMD’s with compelling computation capa-
bility or a low-latency cloud service would solve the problem in
the future. Moreover, the depth accuracy provided by the chosen
lidar camera (∼ 5 mm to ∼ 14 mm through 9𝑚2 [39]) limits the
edge detection accuracy. The preliminary system evaluation results
(Section 7) show that the edge detection is more inaccurate when
the distance between edges and the camera gets larger (>0.75 m). It
is mainly due to the increased depth inaccuracy of the lidar camera
at a further distance. The depth inaccuracy also leads to edge de-
tection imprecision for a narrow interface such as keyboards and
calculators with closely arranged buttons. Previous work that maps
a virtual keyboard onto a physical keyboard requires additional
trackers and is limited to specific keyboard models [8, 61]. We also
envision that lightweight lidar cameras with high precision would
solve the depth accuracy problem and ease the hardware setup in
the future.

10 CONCLUSION
In this work, we present Ubi Edge, an AR authoring system for
end-users to create customized opportunistic TUI applications on
geometric edges. Ubi Edge enables users to interact with geometric
edges on physical objects, which provides sharp haptic feedback,
and repurposes edges as personalized tangible controllers through
simple touches. We first discuss the benefits of opportunistic TUIs
and the necessity of re-purposing geometric edges for TUIs. Then
we present the overall system workflow and briefly walk-through
of our system which contains three main steps: scanning edges
of physical objects, authoring a personalized opportunistic TUI
using scanned edges, and playing with the authored opportunistic
TUI application. We also illustrate our integrated edge detection
pipeline. Next, we explain the interaction taxonomy with edges and
introduce an authoring model that maps different types of touch
inputs to target behaviors of digital content. Guided by the author-
ing model, we design our authoring interface which enables users
to prototype various interactions in situ by using the trigger-action
programming metaphor. Further, to explore our system’s scalability,
we demonstrate four application scenarios supported by Ubi Edge:
multi-function controller, smart home, interactive game, and TUI-
based tutorial. In the user study, we first quantitatively evaluated
the touch interaction results and demonstrated that Ubi Edge is able
to accurately detect the touch interaction input that users authored.
Then, we tested the usability of Ubi Edge and obtained positive
feedback from users. To sum up, we believe that Ubi Edge oppor-
tunistically presents a novel perspective of exploiting geometric
edges as a tangible input to create personalized TUI applications.
We also envision our edge-based opportunistic TUI inspiring local
feature-based TUI development in the future.
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