
LearnIoTVR: An End-to-End Virtual Reality Environment
Providing Authentic Learning Experiences for Internet of Things

Zhengzhe Zhu∗ Ziyi Liu∗ Youyou Zhang
zhu714@purdue.edu liu1362@purdue.edu zhan3264@purdue.edu
Purdue University Purdue University Purdue University

Lijun Zhu Joey Huang Ana Villanueva
zhu944@purdue.edu chujenh@uci.edu villana@purdue.edu
Purdue University University of California Irvine Purdue University

Xun Qian Kylie Peppler Karthik Ramani
qian85@purdue.edu kpeppler@uci.edu ramani@purdue.edu
Purdue University University of California Irvine Purdue University

a

b

c-1

b-1

b-2

c-2

Figure 1: An overview of the end-to-end learning process in LearnIoTVR. (a) A student starts the learning process by installing
the motion sensor above the door frame and the servo motor inside the door shaft. (b) The student then programs an automatic
door that opens by itself when it detects a person approaching. The programming is performed by assembling the block-based
language which is custom designed for the immersive environment. (b-1) Coding blocks are initially situated beside their
relevant objects. (b-2) The "container" feature creates a proxy for objects from afar. It allows users to program the interaction to
open a door and the light in another room in one place. (c) Two exploration mechanisms supported by LearnIoTVR: (c-1) The
student approaches the door in person and checks if the door would open within the distance set in the program. (c-2) The
student arbitrarily changes the darkness of a room through a control panel and then observes if the light can be automatically
turned on.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3581396

ABSTRACT
The rapid growth of Internet-of-Things (IoT) applications has gen-
erated interest from many industries and a need for graduates with
relevant knowledge. An IoT system is comprised of spatially dis-
tributed interactions between humans and various interconnected
IoT components. These interactions are contextualized within their
ambient environment, thus impeding educators from recreating
authentic tasks for hands-on IoT learning. We propose LearnIoTVR,
an end-to-end virtual reality (VR) learning environment which

https://orcid.org/0000-0001-9935-0518
https://orcid.org/0000-0002-1270-2734
https://orcid.org/0000-0003-1976-7992
https://orcid.org/0000-0002-5472-4974
https://doi.org/10.1145/3544548.3581396
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581396&domain=pdf&date_stamp=2023-04-19

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhengzhe Zhu, Ziyi Liu, et al.

helps students to acquire IoT knowledge through immersive de-
sign, programming, and exploration of real-world environments
empowered by IoT (e.g., a smart house). The students start the
learning process by installing virtual IoT components we created in
diferent locations inside the VR environment so that the learning
will be situated in the same context where the IoT is applied. With
our custom-designed 3D block-based language, students can pro-
gram IoT behaviors directly within VR and get immediate feedback
on their programming outcome. In the user study, we evaluated
the learning outcomes among students using LearnIoTVR with
a pre- and post-test to understand to what extent does engage-
ment in LearnIoTVR lead to gains in learning programming skills
and IoT competencies. Additionally, we examined what aspects of
LearnIoTVR support usability and learning of programming skills
compared to a traditional desktop-based learning environment. The
results from these studies were promising. We also acquired insight-
ful user feedback which provides inspiration for further expansions
of this system.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).

KEYWORDS
Virtual Reality, IoT, Block-based Programming, Project-based Learn-
ing, Immersive Programming, Embodied Interaction

ACM Reference Format:
Zhengzhe Zhu, Ziyi Liu, Youyou Zhang, Lijun Zhu, Joey Huang, Ana Vil-
lanueva, Xun Qian, Kylie Peppler, and Karthik Ramani. 2023. LearnIoTVR:
An End-to-End Virtual Reality Environment Providing Authentic Learn-
ing Experiences for Internet of Things. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (CHI ’23), April 23–
28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3544548.3581396

1 INTRODUCTION
The Internet of Things (IoT) refers to the interconnected system
of physical objects — "things" — that are embedded with sensors,
actuators, and software [73, 103]. IoT technologies enable everyday
objects to sense the environment and automatically perform tasks
without human intervention [48, 91]. IoT has a massive potential
to automate conventional workfows and has received ubiquitous
adoption in numerous industries such as healthcare [1], transporta-
tion [10], manufacturing [8], and agriculture [10] with an estimated
economic impact of up to $11 trillion by 2025 [9]. This emerging
market creates a signifcant demand for graduates with IoT knowl-
edge, which highlights the need to broaden the reach of IoT educa-
tion [68, 69]. As a step in this direction, we explore an entry-level
IoT learning environment for novice learners. Specifcally, we tar-
get middle school through college-age learners who either 1) have
no prior IoT knowledge, or 2) only know the basics of IoT while
having no experience of programming IoT applications. The desired
learning outcome for IoT may vary under diferent circumstances
[80, 123]. In this work, we aim for the learning goals defned by
Lechelt [68] which encompasses: 1) understanding the basics of
IoT components (e.g., sensors and actuators), 2) understanding how

these components interact with each other in an overall system, and
3) employing basic programming skills to create IoT applications.

With its components scattered around and embedded within the
environment, a real-world IoT system is difcult to be recreated as a
whole for hands-on and authentic learning experiences [21, 59, 75].
To bypass this challenge, some educators have chosen to decouple
IoT components from their environment. For instance, the servo,
the motor, and the microcontroller can be taken out and placed
on the student’s table, as opposed to being installed on the door
(Figure 1 a). However, this approach risks decontextualized learning
since the IoT components are presented in isolation from their
real-world application environment [111]. For this reason, some
educators have gone to great lengths to set up dedicated laboratories
where realistic IoT applications are recreated [35, 50]. However,
this approach has limited scalability due to signifcant cost and
maintenance efort. On the other hand, virtual reality (VR) can
simulate IoT components and their surrounding environment in
a low-cost and fexible manner [33, 88, 117]. Furthermore, VR can
be utilized to reenact events that would otherwise be difcult or
dangerous to access in real life (e.g., an IoT system putting out a
fre). Thus, we envision that simulating an integrated IoT system in
VR presents a preferable alternative to provide real-world learning
in educational settings.

Although virtual reality has been applied to provide authentic
learning experiences for diferent subjects (e.g., chemistry [39, 83],
art & cultural learning [55, 56], language learning [34, 84]), a full-
fedged VR environment for IoT learning has yet to be developed.
The main efort is to design a programming interface as program-
ming IoT applications is an integral part of the learning process
[68, 123]. The traditional 2D programming interface is inherently
incompatible with the 3D environment. To address this issue, we
adopt the immersive programming paradigm which directly inte-
grates the programming interface within VR. In this way, students
can constantly refer to spatial information surrounding them while
programming while getting immediate feedback on the programs’
executions. Previously, immersive programming interfaces have
been primarily targeted at end-users who want to quickly prototype
interactions and have rarely been adopted for educational purposes.
To close this gap, we adapt the block-based programming language
for use in VR. This language, which was initially designed for pro-
gramming education and has since received widespread adoption,
has proven to provide sufcient scafolds for novice learners, who
are our target users [126, 128]. By designing a 3D block-based pro-
gramming interface, we try to open up space for the application of
immersive programming in an educational context.

We propose LearnIoTVR, an innovative learning environment
where instructors can bring project-based IoT education to students.
To provide students with a deeper knowledge of the hardware, the
learning process starts with installing IoT components to respective
objects in the environment. Then, the students enter the program-
ming stage where they defne interactive behaviors of IoT with
immersive block-based programming. Creating the outcome of a
program requires assembling relevant blocks together and entering
intended parameters. Meanwhile, the student can simultaneously
program several devices from afar thanks to the "container" feature.
During the exploration stage, students can freely alter the environ-
mental context while visualizing the corresponding efects on the

https://doi.org/10.1145/3544548.3581396
https://doi.org/10.1145/3544548.3581396

LearnIoTVR: An End-to-End Virtual Reality Environment Providing Authentic Learning Experiences for Internet of Things CHI ’23, April 23–28, 2023, Hamburg, Germany

IoT system in-situ and in real-time. Our system supports students
to alter environmental context through frst-person actions or by
directly adjusting parameters on a control panel.

We propose the following contributions:

• An end-to-end IoT learning framework that supports in-
stalling, programming, and exploring authentic IoT systems
in virtual reality.

• An immersive programming interface along with a custom-
designed 3D block-based programming language.

• A fexible exploration mechanism that allows students to
alter environmental context through frst-person actions or
direct parameter adjustments.

• One user study to evaluate the educational efcacy and us-
ability of the system, and another one to compare our system
with a traditional desktop-based virtual learning environ-
ment.

2 RELATED WORK
2.1 Pedagogical Practices of IoT
IoT represents the interconnection of physical objects that are em-
bedded with sensors, actuators, microcontrollers, and other tech-
nologies [67, 71, 75]. It is used for making an environment intel-
ligent and supportive of any human activity [27]. As one of the
most important technologies in the 21st century, it is revolutioniz-
ing many industries [1, 7, 8, 10]. This trend has generated a high,
unmet demand for IoT-knowledgeable graduates [30]. Therefore,
it is crucial for the HCI community to provide context-aware and
immersive applications that can entice students from diferent back-
grounds to IoT engineering. In this direction, recent works have
proposed learning tools with low entry barriers catering to those
with little or no IoT background [69, 123]. The desired learning
outcome for IoT may vary under diferent circumstances [80, 123].
In this paper, we aim for a comprehensive learning goal defned
by Lechelt [68] which encompasses: 1) understanding the basics of
IoT components (e.g., sensors and actuators), 2) understanding how
these components interact with each other in an overall system, and
3) employing basic programming skills to program IoT applications.

Based on past fndings from IoT education research [27, 29],
efective learning of IoT generally takes place during students’
interactions with real-world issues and applications. Real-world
projects naturally demand real resources but real IoT devices are
typically too complex, expensive, and often privacy-sensitive to be
easily brought into the classroom [107]. Luckily, thanks to aford-
able microcontrollers like Arduino [43] with a wealth of compatible
sensors and actuators [4], it is possible to develop various systems
with less investment. Meanwhile, some modularized IoT toolkits
have been developed in an efort to further lower the entry bar-
rier [69, 102, 118, 123]. Nevertheless, these hardware components
introduced for educational purposes are too simplifed and have
too many constraints [27], which could restrict the creativity of
students. For instance, the servo motor used for education does not
have enough torque to open a door, whereas a virtual servo can be
freely confgured to take up this task. In light of this limitation, we
propose to virtualize IoT components to make learning experiences
more unconstrained.

Furthermore, electronic components in an IoT system need to
be embedded with spatially distributed objects, which is often time-
consuming and may require special expertise [20, 50]. To simplify
this process for classroom settings, some educators choose to in-
troduce a mini version of an IoT system that is less constrained by
physical environment. For example, Zhong et al. [140] presented
three educational projects: Stock Ticker, Water Leak Detector, and
Lock Checker, with each involving only one small physical object
embedded with a handful of electronic devices. These projects are
usually designed in an ad-hoc manner with limited room to expand,
thus missing the opportunity to promote a holistic and system-
level understanding of the IoT [107]. To address this issue, some
researchers have tried to build an entire laboratory dedicated to
hands-on IoT learning [35, 50]. These laboratories are designed
using real-world smart environments (e.g., smart public building
[50] and smart home [35]) as templates so that they are sophisti-
cated enough to support various learning objectives. However, the
substantial construction and maintenance costs involved would
inevitably impede wider adoption.

To support a fexible and accessible project-based learning ex-
perience, we propose an end-to-end learning framework where
students acquire comprehensive IoT knowledge through installing,
programming, and exploring various IoT systems while being sit-
uated within a virtual smart environment. Taking advantage of
VR technology, we simulate a wide range of real-world IoT appli-
cations to accommodate diverse learning experiences. Same with
the aforementioned project-based learning approaches, students
explore these applications with the guidance of instructors.

2.2 Applying VR in Education
In recent years, VR technology has seen numerous applications in
the education domain [24, 32, 82, 99]. The availability of consumer-
grade head-mounted displays (HMDs) [14, 17] allows for the cre-
ation of immersive learning experiences at a reasonable cost [46],
paving the way for its mainstream adoption. Meanwhile, many
researchers have set out to investigate the unique benefts of edu-
cational VR technology [22, 22, 95, 135]. Besides bringing more en-
gagement, self-efcacy, and motivation among students [36, 52, 89],
VR has two notable advantages compared to traditional learning
mediums. Firstly, VR can simulate situations that would otherwise
be difcult or impossible to access in real life. For instance, prior
works have created VR environments for surgery training [72], avi-
ation training [88], and chemistry experiment [74]. Secondly, VR
can support a better understanding of spatial context by immersing
students in the same environment [60, 87, 115]. It is particularly
helpful in teaching abstract concepts that are rich in spatial infor-
mation (e.g., molecular structures [83, 133], astronomical objects
[25], and sorting algorithms [95]) which would not be efectively
visualized in a traditional 2D interface [87].

We anticipate that these two benefts of VR could also apply
to IoT education. On the one hand, an IoT system takes a lot of
efort to create and maintain [20, 59]. The vast diversity of IoT
applications may further add to this difculty [91]. On the other
hand, obtaining spatial information (i.e., environment layout and
components distribution) is crucial for understanding and program-
ming interactions between IoT [51, 108]. For instance, a motion

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhengzhe Zhu, Ziyi Liu, et al.

sensor’s detection range should be confgured depending on where
it is installed, while an LED’s luminance level should be determined
by the size of the area it lights up. Leveraging these benefts, we
adopt VR technology to simulate the IoT system as our learning
environment. To the best of our knowledge, this is the frst VR
environment specifcally designed for comprehensive IoT learning.

2.3 Programming Interface for VR
2.3.1 2D Programming & Immersive Programming. Currently, IoT
programs are created on 2D interfaces. As a way to lower the barrier,
many works have proposed visual programming interfaces where
users program IoT behaviors by manipulating program elements
graphically instead of writing lines of code [57]. For example, Node-
RED [12] adopted the fow-based programming paradigm where
users program IoT behaviors by wiring together confgured IoT
devices. In comparison, Xi et al. [134] adopted the block-based
programming paradigm where users program IoT behaviors by
assembling language blocks. Similarly, Smart Block [23] focused
on increasing expressiveness when creating large IoT applications
with its custom-designed visual block language.

However, these 2D programming interfaces are inherently in-
compatible with the VR’s 3D environment. To address this issue,
we adopt the immersive programming paradigm, which refers to
programming directly within an immersive environment (e.g., AR,
VR, MR) [76, 100, 113, 141]. Steed et al. [112] were among the earli-
est to introduce this concept by allowing users to defne interaction
with objects and their behaviors while immersed within the system
itself. Following their lead, researchers have proposed authoring
tools from which developers can program VR applications while
situated in the VR world [137, 138]. Similarly, some other immersive
programming interfaces have been developed for robot task plan-
ning [31, 45, 58] and real-time intelligent environment management
[40, 53, 124].

Based on these works, we summarized two benefts of immersive
programming and apply them to the IoT learning context. Firstly,
it ofers students with sufcient spatial information, context, and
functionality of the IoT system while programming. Secondly, it
allows students to get immediate feedback on their programs’ ex-
ecutions since the programming interface is located beside the
targeted IoT. The streamlined code-test cycle encourages students’
active exploration which is essential for discovery learning [38, 86].

2.3.2 Block-Based Programming. In previous works, the develop-
ment of immersive programming interfaces has been primarily
focused on helping end-users (e.g, application developers, and engi-
neers) to achieve higher productivity. Thus, they employed simpli-
fed programming primitives such as icons, arrows, or buttons to
bypass some low-level coding structures. Those programming prim-
itives, although easy to use, generally have a low ceiling of expres-
siveness which limits the room for students’ exploration [78, 138].
They also bypass some low-level coding structures which are essen-
tial for scafolding the learning process [116]. On the other hand,
block-based programming language, which is initially designed for
educational purposes, has proven to provide sufcient scafolds for
novice learners (low threshold) who are our target users [126, 128].
Led by the success of Scratch [101], Blockly [44], and Code.org
[5], block-based programming is now an established part of the

computer science education landscape. It has been shown to re-
duce the cognitive load by chunking code into a smaller number
of meaningful elements [26]. Its elimination of syntax errors also
allows users to focus on understanding the core computer science
concepts and the structure of a program [129]. Users programming
in block-based languages were found to spend less time of task
and complete more of the activity’s goals when compared to those
using text-based languages [127].

There are diferent variations of block-based programming lan-
guages which caters to a diverse audience. Some are designed to be
easily understandable to pre-teens children [98, 130] while others
can support sophisticated programs taught at university classes
[37, 64]. The three major styles of block languages are: (a) icons
blocks, which rely on images instead of text to convey what the
blocks do; (b) natural language blocks, which use standard written
sentences; and (c) computer language blocks, which look just like an
existing text-based language [90]. Several recent works contribute
to the design of block-based programming languages for the VR
environment that fall into the frst two categories [54, 105, 122].
Although intuitive and easier to understand, their block-based lan-
guages can only defne a limited set of logic and thus are not gen-
eralizable for more sophisticated programming tasks.

To close this gap, we ofer a more fexible design in which a block
could dynamically mutate its shape to incorporate diferent input
parameters. These parameters can be freely adjusted throughout
the process without afecting the overall block structure. As a result,
more complex and advanced programming constructs (e.g., function
calls) are supported.

3 THEORETICAL FRAMEWORK
The design of LearnIoTVR is guided by various established learning
theories. In this section, we analyze prior literature and explain how
their fndings inspire us to develop unique features in LearnIoTVR.

3.1 Cognitive Theory of Multimedia Learning
Richard Mayer’s seminal book Multimedia Learning [77] details
his extensive research on how to structure multimedia materials
efectively to maximize learning. In particular, two of the principles
he distilled from his fnding inspire the design of our system.

The Spatial Contiguity Principle states that “Students learn bet-
ter when corresponding words and pictures are presented near
rather than far from each other on the page or screen” (p. 135). In
essence, spatial proximity can help students draw mental connec-
tions between related elements. Following this principle, we place
function blocks (Figure 5 a-3) near their associated components,
display sensor readings on top of the sensor, and implement the
container feature which can teleport remote IoT components to
students’ local space.

The Temporal Contiguity Principle dictates that diferent forms
of learning media (e.g., text, and pictures) should be delivered con-
currently. Based on this principle, LearnIoTVR displays the sensor
readings in real-time as students continuously alter the environ-
mental context.

https://Code.org

LearnIoTVR: An End-to-End Virtual Reality Environment Providing Authentic Learning Experiences for Internet of Things CHI ’23, April 23–28, 2023, Hamburg, Germany

3.2 Cognitive Load Theory
This theory defnes Extraneous Load (EL) as the mental resources
devoted to elements that do not contribute to learning [114]. It
has to be kept as low as possible to leave an adequate amount of
mental resources for learning. To this end, LearnIoTVR selectively
displays content to avoid overwhelming students with irrelevant
information.

For instance, only fnished programs while unused programming
blocks are hidden during the exploration stage. Meanwhile, the con-
trol panel which allows students to adjust environmental context
only displays parameters that are associated with current sensors
in the scene.

3.3 Embodied Learning
Embodied cognition theories emphasize the relationship between
physical activity and cognitive processes and are supported by
a growing body of evidence from psychology and neurobiology
[131, 132]. Thus, educational research incorporating students’ bod-
ily experiences, often referred to as embodied learning, is receiving
considerable attention in the research community. In particular,
some researchers have sought to exploit body interactions in im-
mersive environments (e.g., VR [85, 109], AR [97], immersive white-
board [47, 49]) to promote learning.

Following their lead, LearnIoTVR integrates the concept of em-
bodied learning into the exploration interface, where students can
alter the environmental context through embodied activities. For
example, they can test the automatic door by walking towards it or
change the smoke level by turning on the stove. This exploration
mechanism can be more intuitive as it resembles the activities that
an end-user would conduct in real life.

4 SYSTEM OVERVIEW
4.1 Virtual IoT Components
A generic IoT system in the real world consists of sensors, actuators,
microcontrollers, and communication modules [106]. We compile a
list of the most commonly used IoT components and recreated their
corresponding virtual replicas (Figure 2). This list is derived after
surveying popular online stores which sell electronic components
for education [2, 4]. We do not include dedicated communication
modules which are assumed to be already integrated within the
microcontrollers. To avoid overwhelming students with nuanced
details of the components, we choose to overlook the diference
between diferent models and unify them under one virtual repre-
sentation. In another word, the IoT components we are using are
generic. These virtual IoT components inherit the capabilities as
well as the overall appearance of their real-world counterparts. For
instance, the microcontroller contains the exact same pins as the
real one. Students are required to route the wires to the correct pins
in order for this microcontroller to be functional.

4.2 3D Block-based Programming Language
Recently, some researchers have explored designing 3D block-based
languages for VR environments [54, 105, 122]. Each of their pro-
gramming blocks is represented by a fxed-sized cube which rep-
resents one predefned operation. Due to this lack of fexibility,

a

b

c

e

f

d

g

h

i

j

k

m

l

o

n

p

Figure 2: IoT components library: (a) Button (b) switch (c)
potentiometer (d) ultrasonic distance sensor (e) motion sen-
sor (f) temperature sensor (g) gas sensor (h)light sensor
(i)humidity sensor (j) servo motor (k) DC motor (l) linear
actuator (m) buzzer (n) LED (o) heater (p) microcontroller
board.

the proposed block-based languages have had a low ceiling in the
past. They are constrained to be used for programming primitive
behaviors such as navigating a virtual character around the scene.

To support IoT programming which involves more complex logic,
we borrow the inner block concept from Blockly–a popular block-
based language library available for web platforms. In this paradigm,
blocks can be nested within each other both horizontally (Figure 3
b-1) and vertically (Figure 3 b-2) rather than merely being stacked
together. The shape of the parent block can adjust accordingly when
incorporating diferent sizes and numbers of child blocks. This
mechanism is particularly helpful when users want to dynamically
confgure the input parameters or code structures inside an existing
block. The increased fexibility enables our 3D block-based language
to support more sophisticated programs like IoT applications.

We classify our programming blocks into two categories — uni-
versal blocks (Figure 3 a-1) and IoT-specifc blocks (Figure 3 a-2).
The universal blocks are those representing universal program-
ming constructs (e.g., while, if-else) across diferent components
while the IoT-specifc blocks encapsulate modularized functions
(e.g., SetPin ()) for specifc sensors/actuators. In a traditional pro-
gramming environment, these functions are generally provided in
certain component libraries (e.g., servo.h).

4.3 Installation Interface
The hands-on learning experience starts with installing IoT com-
ponents to their respective physical objects in diferent places. For
example, a distance sensor can be attached to the door frame to
detect if a person is approaching, and a servo motor can be installed
into the door shaft to open the door at a certain angle. After this
process, an ordinary door is transformed into an automatic door.

In this interface, we designed a platform to display available com-
ponents. Students can press the arrow button to browse through
all the components in the library (Figure 4 a). Once they fnd the
desired component, they can directly grab it from the platform and

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhengzhe Zhu, Ziyi Liu, et al.

a-1)

a-2)

b-2)

b-1)

Figure 3: (a) The library of custom-designed programming
blocks that includes (a-1) universal blocks and (a-2) IoT spe-
cifc blocks. (b) The mesh of a parent block when rescaled
(b-1) horizontally and (b-2) vertically.

a) b) c)

Figure 4: The installation interface. (a) Choose the compo-
nent from the library. (b) Route the wires from the compo-
nent to the correct pins on the board. (c) Place them onto
appropriate locations

route the wires from sensors/actuators (assuming the microcon-
troller is pre-selected) to the designated pins on the microcontroller
(Figure 4 b). Lastly, they need to put the components to the appro-
priate locations (Figure 4 c). It is worth noting that the installation
location and angle would afect the components’ behaviors. For
instance, if the motion sensor is not facing down, it cannot detect
the students’ presence during exploration even if they programmed
it correctly.

4.4 Programming Interface
Once the installation process is complete, students enter the pro-
gramming interface. In the middle, there is the central workspace
where students put together blocks to construct programs (Figure
5 a-2). If certain function blocks or variable blocks (e.g., Figure 5
a-3) are specifcally applicable to an IoT component (e.g., LED), we
display them directly above that component (Figure 5 a-3). This
positioning enables users to locate and select blocks with minimal
mental efort. The rest of the general-purpose blocks are organized
and listed on a toolbox panel (Figure 5 a-1). For quick access, we
further organize the general-purpose blocks into four categories —
Math, Logic, Variable, and Function (Figure 5 a-3). All the blocks
in the scene are confgured to always directly face the students so
they do not have to constantly adjust their body posture to see the
block clearly (Figure 5 b). Throughout the programming period,

a-1 a-2

a-3

b)

Figure 5: (a) The single-device programming interface. (a-
1) The general-purpose blocks. (a-2) The central workspace.
(a-3) The component-specifc blocks. (b) The top-down per-
spective of the scene during programming.

the associated IoT components always appear in the background
to give students more context information.

4.4.1 Single Device Programming. A unit of an IoT system is a
single device equipped with several components. The automatic
door shown in Figure 5 is an example. The distance sensor on
the door frame activates the servo motor in the door shaft when
it senses a person is approaching. In such cases, programming
IoT behaviors is straightforward as all the components and their
associated blocks are located in the vicinity.

4.4.2 Multi Device Programming. A holistic IoT system has multi-
ple devices that interact with each other from diferent locations.
For instance, the user may also want the light in another room to
be turned on simultaneously when the door is opened. However,
it is hard for users to have an overarching view of all these spa-
tially distributed devices while programming. Inspired by an earlier
work that studied distant interactions in VR [96], we introduce an
interaction feature called container, which allows users to create
a ghost replica of the remote device. Represented as a transparent
sphere, the container stores a proxy of the selected device and can
be brought to wherever students need it. Just like a normal device,
the replicated device inside the container has its components’ rele-
vant blocks displayed above the container. Inspired by the concept
of remote function call [16], we allow students to program interac-
tions between multiple devices by directly embedding the function
block of the remote device (e.g., TurnLEDLight (On))into the main
program.

In the previous case, users can navigate to the room where the
light is located through teleportation or continuous locomotion,
create a container for the light (Figure 6 a), go back and place it
near the door for reference (Figure 6 b-1). As an IoT device, the
light has an LED as its component. Therefore, the function blocks
and variable blocks of the LED are visualized above the container
(Figure 6 b-2), which makes them easier to be selected and added
to the main program.

4.5 Exploration Interface
Once the programming is complete, students enter the exploration
interface where they actively change the environmental context
and observe the corresponding efects on the IoT system. In this
interface, we only display the fnished program in front of each
device while hiding the unused blocks and components to give

LearnIoTVR: An End-to-End Virtual Reality Environment Providing Authentic Learning Experiences for Internet of Things CHI ’23, April 23–28, 2023, Hamburg, Germany

a)

b-1

b-2
a-1) b)

c)

d)

a-2)

Figure 6: (a) The multi-device programming interface. (a)
Create a container for the remote device. (b-1) Light inside
container carried to the local space. (b-2) Component-specifc
blocks are shown above the container.

users a non-obstructive view during exploration. Leveraging VR as
an immersive technology, we design two exploration mechanisms.

Firstly, students can utilize their body movement to alter the
environmental context. For instance, they can manually turn on
the stove to increase the smoke level (Figure 7 a-1) or open the
window to disperse the smoke (Figure 7 a-2). These processes are
intuitive and realistic as they resemble real-life scenarios. However,
it is hard for students to fne-tune the environmental parameters
using the frst method which might be needed in some cases.

To complement the frst mechanism, we also allow students to
arbitrarily set environmental parameters (e.g., temperature, humid-
ity, lightness) to a specifc value through a control panel (Figure 7
b). To test an automatic light, students decrease the illumination pa-
rameters and see if the LED turns on (Figure 7 b-3). To test a smoke
detector, students increase the smoke level (Figure 7 b-4) until the
buzzer rings. The display of parameters on the panel is dynamic,
as it is related to the kinds of sensors included in the scene. For
instance, if there is only a humidity sensor and a lightning sensor
in the scene, the panel will only display humidity (Figure 7 c-1) and
illumination parameters (Figure 7 c-2) for students to adjust. Each
environment change is refected through a unique visualization so
that it can be realistically perceived by the users (Figure 7 d).

Sometimes there are issues in a program that prevent devices
from functioning as expected. To help users quickly identify these
issues, we provide a display readings option (Figure 8 a). Once the
option is enabled, every sensor and actuator in the scene displays
their real-time internal value on top (Figure 8 b-1, b-2). For instance,
a distance sensor displays its current distance from the person, and
a servo motor displays its current opening angle. This extra level
of data visualization enables users to closely monitor the execution
of the program, which leads to more efcient debugging.

Throughout this process, users can spontaneously return to the
programming interface and make changes to the blocks in the code,
run it again, and test whether this debugging process was successful.
By displaying the coding and testing process, we encourage students
to learn through frequent trial-and-error exploration.

Figure 7: (a) Alter the environment through embodied ac-
tions. (a-1) turn on the stove to increase the smoke level. (a-2)
Open the window to disperse the smoke. (b)(c) Adaptive envi-
ronment control panel. (d) The environment change refected
in VR after the smoke level is tuned up.

a) b-1 b-2

Figure 8: (a) The display readings option. (b) The user controls
his avatar to approach the automatic door while checking
the variations of the sensor readings (b-1),(b-2).

4.6 System Summary: A Detailed Use Scenario
We summarize the hands-on learning experience ofered by LearnIoTVR
with the following example. Bob is a student who wants to learn
about IoT systems, he wants to build an automatic door that opens
by itself upon sensing his presence. After correctly installing the
IoT components (Figure 9 a), he creates and organizes the code
blocks for them to function logically (Figure 9 b). However, after he
starts testing the initial code, he discovers that the door does not
open as expected when he approaches it (Figure 9 c). To locate the
problem in the code, he enables the Display Readings option (Figure
9 d). By comparing the internal value of the distance sensor (i.e.,
raw value readings) with the threshold value for the distance he
set in the program, he soon realizes that this threshold is too small.
After resolving this issue by changing the threshold (Figure 9 e f),
he wants to expand this application by adding a light that would
simultaneously turn on by itself when the door opens. To do so, he
navigates to another room where the light is located and uses the
container to teleport it to the vicinity of the door (Figure 9 g). After
adding the light’s function block (i.e., TurnLEDLight (On)) to the
main program (Figure 9 h), he can enter the exploration interface
to experience the fnal IoT system (Figure 9 i).

4.7 Implementation
The BlocklyVR interface is developed in Unity3D (2020.3.0.f1) and
compiled into an Oculus Quest headset [14]. The 3D IoT component

https://2020.3.0.f1

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhengzhe Zhu, Ziyi Liu, et al.

a) b)

f)

d)c)

e) g) h) i)

Figure 9: Step-by-step example of a learning process.

models and 3D programming blocks were made in Blender [3], and
then exported into Unity3D. To dynamically change the shape of
a parent block once it takes in child blocks, we performed mesh
recalculation of the parent block based on the vertices of child
blocks previously stored in arrays. This process is done in Blender
with the help of its built-in mathematical functions.

5 USER STUDY EVALUATION
We conducted a two-session user study to evaluate our system. The
frst session aims to evaluate how efective our system is in helping
students acquire IoT knowledge. We also evaluated the usability of
the system using a System Usability Scale (SUS).

In the second user study, we compared LearnIoTVR with a tradi-
tional 2D screen-based virtual learning environment. In the second
user study, we went in depth on what students like and dislike about
this system compared to its traditional replacement. The second
user study is designed to evaluate user experience. Therefore, we
did not measure the participants’ learning outcomes in the second
session.

5.1 Session One: Educational Efcacy and
Usability

5.1.1 Setup. For this session, we recruited 24 participants (15 male,
9 female) ranging from 18 to 25 years old (M=19.7, SD=2.29). 59%
of our participants were freshmen who just entered university this
year. 71% of our participants did not have programming experience
in general. 92% of our participants did not have any prior knowl-
edge of IoT, and 83% of our participants had no previous experience
with programming electronic devices. 17% of our participants had
previous VR experience, but it was limited to a few gaming expe-
riences. None of the users have programmed an IoT application
before. In general, the participants met our defnition of target users.

The entire study took around 3.5 hours including the 2 hours for
learning in VR and the rest for completing the pre-test and post-test.
Considering that fatigue and motion sickness that are common in
VR experiences, we allocate 5 min of resting time every 20 min.
Each user was paid 40 dollars.

At the start of the user study, each participant received the con-
text of the experiment and was requested to complete a pre-test on
paper. The pre-test assessed previous knowledge of IoT and coding,
as well as presented several exercises on organizing, writing, read-
ing, and understanding block-based code. Then, participants wore
the headset and were asked to explore the VR environment and ad-
just to the controllers. The VR environment is set in a “Smart Home”,
meaning that all IoT components are spatially distributed to where
they correspond inside the house. This process took approximately
30-40 minutes.

After this preparation, participants began to explore the two
tasks we provided. The frst task requires students to program
several single devices while the second task deals with the pro-
gramming of a holistic IoT system involving two devices. The tasks
are designed to increase in complexity so that participants would
not get overwhelmed at the beginning. After reaching the desig-
nated goal of each step, participants were encouraged to further
explore their IoT applications by adjusting some parameters and
observing its outcomes. The descriptions of the tasks are as follow:

Task 1
Step 1: Programming the door (servo motor, ultrasonic distance
sensor, push-button)

• When the push-button is pressed, the door opens at a 90-
degree angle.

LearnIoTVR: An End-to-End Virtual Reality Environment Providing Authentic Learning Experiences for Internet of Things CHI ’23, April 23–28, 2023, Hamburg, Germany

• Replace the push button with an ultrasonic distance sensor.
When the ultrasonic distance sensor detects human is within
a certain range, the door opens at a 90-degree angle.

• Use the while () loop and wait () function in conjunction to
control the speed to open the door. The longer the wait time
in each iteration, the slower the door opens.

Step 2: Programming the window (linear actuator, switch, poten-
tiometer)

• When the switch is raised, the linear actuator opens the
window completely. When the switch is lowered the window
is closed completely.

• Use a potentiometer as a knob to linearly control the linear
actuator to partially open the window.

Step 3: Programming the smoke alarm (smoke sensor, buzzer)
• Set the smoke sensor in digital mode (i.e., return 0 or 1) and
set the volume of the buzzer to a fxed value. If the smoke
sensor detects that the smoke level is above a threshold, then
the buzzer turns on.

• Set the smoke sensor in analog mode (i.e., return range of
values) and set the volume of the buzzer adaptively. The
higher the smoke level, the louder the buzzer rings.

Task 2: Integration of step 2 and step 3 of task 1 (linear actuator,
switch, potentiometer, smoke sensor, buzzer)
If the smoke sensor value reaches a certain threshold, it not only
turns on the buzzer but also opens the window.

As mentioned in the related work, LearnIoTVR requires the
involvement of instructors to guide students. During this user study,
two of our researchers who have served as teaching assistants for
IoT-related classes took the role of instructors. This user study was
a one-on-one procedure while each researcher was responsible for
half of the users. Each instructor provided instructions from outside
the VR environment but in the same physical room. In order for the
instructor to be aware of what the student was working on inside
the VR system, we duplicated and projected the participants’ VR
display to an external monitor.

In the beginning, the instructor guided participants through the
Oculus ofcial tutorial [15] to learn how to navigate and manipu-
late objects in the VR environment. Then the instructor proceeded
to guide participants through each task. During this process, the
instructor frst explained the background and requirements of the
task. Then the instructor explained the functionality of the IoT
components and the programming concept associated with the task
using respective virtual components and code blocks in VR as refer-
ence. When programming IoT behaviors, the participant can refer
to a reference picture in VR showing how the code blocks should
be assembled to construct the program. This form of instruction is
similar to those adopted by other educational block-based coding
platforms [11, 13]. The instructor remained by the side, ready to
answer any questions and ofer further explanations if participants
failed to understand the reference or got confused about certain
concepts. After fnishing programming, the participants entered
the exploration stage where participants actively explored their IoT
applications without the instructor’s intervention. Exploration be-
haviors involve 1) altering the environmental context, 2) changing
parameters in the program, and 3) reconstructing some or all of the

code blocks themselves. The inclusion of the exploration process
aims to make students active agents in the learning process instead
of simply doing tasks as instructed.

The second task is designed to be the integration of the last two
steps in the frst task. In this task, the instructor only described
the task objective to the participant at the beginning. No reference
pictures are shown by default and the instructor would not step in
unless the students specifcally requested it.

After the learning session in VR, the participants were asked to
complete a post-test with the same questions that appeared in the
pre-test. They also completed a standard System Usability Scale
(SUS) questionnaire.

5.1.2 Evaluation Metrics & Results. During the second task, we ob-
served that 14 of the 24 users could complete the task independently,
which indicated their ability to reconstruct the IoT applications
they learned in the frst task. 8 users needed the guide from the ref-
erence picture. In comparison, all users in task 1 needed to refer to
these pictures. In addition, only 2 users in task 2 required additional
help from the instructor. As previously mentioned, we adopted
the learning goal defned by Lechelt [68] which encompasses: 1)
understanding the basics of IoT components, 2) employing basic
programming skills to create IoT applications, and 3) understand-
ing how these components interact with each other in an overall
system. Thus, the test given to the students measures their learning
outcome of these three aspects.

For better clarity, we classify the hardware-related knowledge
into three key competencies: component type identifcation and PIN
mode setting: knowing the functionality of a sensor (reads values
from the environment) or an actuator (produces an action based on
those readings) and being able to connect to its corresponding port
on the board. the PIN for a sensor is set to input mode, while the
PIN for an actuator is set to output mode; digital vs. analog: Under-
stand the diference between a digital mode (i.e., binary reading)
and analog mode (i.e., range of multiple values) in a sensor; and
understanding component function: understanding the functionality
of an IoT component and its application scenarios.

Likewise, we measured participants’ basic programming skills
based on fve key competencies. conditionals: the ability to un-
derstand if-else relationships; loops: understanding the concept of
repeating pieces of code until a condition is met; variables: under-
standing that values can be stored and changed; numeric calcula-
tions: knowing how to use mathematical operators to manipulate
numeric values; functions: understanding that modules of code can
accomplish a specifc task and that altering parameters changes the
output of this code.

The pre- and post-test share the same questions(Figure 10). Each
answer in the test was scored with a 0 if incorrect, +0.5 if the answer
had some substance, or a +1 point if the answer was correct. Since
a question in the test covers one or several of these aforementioned
key competencies, we add the score to the overall sum of each
corresponding competency. At last, the total points were normalized
to ft into a 1-point scale for each category. This grading scheme
is inspired by past work [92, 93]. All tests were graded by one
primary grader. Inter-rater reliability on both the pre-test and post-
test was validated by having a second person score over 25% of
the data. From our rubric, two researchers in charge of grading

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhengzhe Zhu, Ziyi Liu, et al.

Figure 10: Pre- and post-test results of key competencies
assessment.

had a Cohen’s Kappa of 0.71. The results of the pre-test, test, and
post-tests are summarized in Figure 10. The learning gains of all
the key competencies are statistically signifcant (p<0.005).

We also gave users a standard System Usability Scale (SUS) ques-
tionnaire, which returns a score of 75.4/100 with an SD of 14.86.
During the semi-structured interview, the overall sentiment was
that the participants enjoyed the learning experience, but would
appreciate a longer period of time to become accustomed to VR
technology more generally. In addition, most participants (20 out of
24) agreed that the exploration stage, where they can freely change
program and environment parameters while directly experiencing
the outcome, enhanced and reinforced their understanding of IoT.
This fnding conforms to the active learning theory which advo-
cates for students to engage in the learning process rather than
simply being the passive recipients of knowledge [28]. Meanwhile,
all participants recognized the presence of the instructor was cru-
cial during their learning process. This fnding is consistent with
the principle of project-based learning theory which emphasizes
the importance of instructor involvement [63, 110].

5.2 Session Two: A Qualitative Study on User
Experience

5.2.1 Setup. In this study, we compared our system to a desktop-
based system featuring a WIMP (windows, icons, menus, pointer)
interface on a website. The rationale behind designing this study
is that participants could have engaged in similar interactive ex-
periences in a 3D environment displayed on a 2D screen. Further,
the typical use of block-based programming takes place on a 2D
screen (e.g., Scratch). The desktop-based learning environment is a
2D equivalent of our VR environment in terms of functionality. The
interface design was partially inspired by existing virtual learning
websites in other felds [6, 13], which contain the virtual 3D envi-
ronment displayed in 2D (Figure 11 a), the programming interface,
and the tutorials. Similarly to the VR environment, the desktop-
based environment facilitates the installation, programming, and

exploration of the IoT system. Meanwhile, programming outcomes
can be simulated in the virtual environment in real time. Students
can zoom in/out and change the viewing angle through mouse
operations including clicking, scrolling, and dragging (Figure 11 b).

For this session, we aimed toward a qualitative study of user
experience, which analyzes users’ preferences between these two
learning environments. We didn’t measure the learning outcome
diferences between them, the reason for which will be explained
in Section 7.4. Therefore, no learning goals were set and users
only need to report their feedback after experiencing tasks with
both LearnIoTVR and the 2D interface. We provided necessary
aid to ensure that users complete all the tasks. These aids included
tutorials at the beginning and answering questions during the study.
Ensuring that all users can complete the tasks is essential for a
comprehensive evaluation as skipping a task could prevent users
from experiencing certain features of LearnIoTVR. We recruited 6
participants (5 male, 1 female) ranging from 19 to 26 years old. To
gather more in-depth feedback, we only recruited participants who
have electronic programming experiences that include hands-on
confguring of electronic devices. Four of them have been teaching
assistants in related classes. The study was counterbalanced which
means if one participant experiences the desktop-based system frst,
the second participant then used the LearnIoTVR system frst. We
prepared two tasks for both learning environments. The frst task is
the same as the one that is described in Section 4.6 (Figure 6). The
second task is the same one as Task 2 from session one of the user
study. The entire study lasted about 2 hours including interview
time and each participant was paid 20 dollars. After completing two
tasks in both environments, we held a semi-structured interview
with participants to hear about their preferences for these learning
environments as well as the reasoning behind them.

5.2.2 Results & Analysis. All of our participants reported fatigue
and dizziness after a long period of use in VR, which is consistent
with the feedback from the frst session. We grouped the rest of their
feedback into three categories which correspond to installation,
programming, and exploration process.

Installation In terms of the installation process, participants
favored the VR environment across the board. They complimented
the realism of the installation process in VR as opposed to the
"detached (P2)" experience in the desktop environment. "When I
was installing the motion sensor to the door, it was just like the other
day [when] I was hanging a picture on the door (P1)". "Me grabbing
and releasing the components onto diferent places feels more natural
than clicking and dragging them through mouse (P3)". The positive
relationship between realism and immersion was also found in prior
research which conducted a comparison between VR and desktops
in other educational contexts. [62, 139].

In addition, the constraints of the desktop interface limit some
nuanced adjustments of the components installed in the virtual
space. The constraints were mainly imposed by the limited display
area on the desktop and the inherent efciency of the mouse when
manipulating 3D content [104]. "In order to see the objects [to which
the components are attached] clearly, I need to zoom in and adjust
the viewing angle properly. In VR, it is much simpler just to walk into
that place and turn my head around (P5)". "(In VR) I can easily adjust

LearnIoTVR: An End-to-End Virtual Reality Environment Providing Authentic Learning Experiences for Internet of Things CHI ’23, April 23–28, 2023, Hamburg, Germany

b-1 b-2

Figure 11: (a) Desktop learning environment. (a-1) Simulation environment. (a-2) Programming interface (a-3) Tutorials. (b)
Navigating the simulation environment through (b-1) zooming in/out (b-2) changing perspective.

the angle of the motion sensor by grabbing two ends of the sensor and
rotating it. (P3)".

Programming
The participants’ opinions on the programming processes were

mixed. On the one hand, most participants thought assembling the
code blocks on the desktop interface is more intuitive. "Dragging
and dropping a 2D block on a surface is much easier than reaching
out to a 3D block in space (P2)". "Sometimes it is troublesome if
the blocks (in VR) are far away from me so that I can not directly
grab it (P5)". This result may be partially attributed to the legacy
bias [81], by which users favor well-known interaction styles for
familiar tasks.

On the other hand, they also mentioned several advantages of
programming in the 3D environment. Firstly, embedding 3D coding
blocks within the 3D virtual allows us to place blocks close to the rel-
evant components, which helps participants "easily locate the blocks
needed (P6)". Meanwhile since the 3D coding blocks are situated
side-by-side with the programming target, participants can "easily
access environment information while programming (P5)". Lastly,
the VR hand controller provides vibration feedback whenever a
virtual block is selected and some of our participants appreciated
this haptic sensation. "The programming blocks in VR seem to be
more tangible and I prefer it that way (P1)." This fnding aligns with
prior works which introduced tangible coding blocks to replace
virtual ones and noticed users’ preference for tangible feedback
while programming [42, 79].

Exploration
All of our participants prefer the exploration inside the 3D world

as opposed to on the 2D screen. The embodied interaction that is
exclusive to immersive environments (e.g., VR) [47, 97] is the key
feature that contributes to their preference for the 3D environment.
"The fact that I can use my own body to afect and interact with the
environment makes me feel more empowered that I have an actual
role to play in the system (P3)".

In addition, participants appreciated the fact that they could
instantly visualize the programming outcome "directly behind the
coding blocks (P1)" in VR. On contrary, in the desktop interface, they

have to "direct their attention to separated areas (P1)" where codes
and simulations are located.

More interestingly, we noticed that participants exploring the
VR world are more likely to have active and independent thinking
by referring to their everyday experiences. For instance, in the
second task, two of the participants who frst experienced the VR
environment frst thought of programming a window that can open
by themselves before they were briefed about this task. "After I
programmed the door that can automatically open to disperse the
smoke, I instantly think I can let the window open as well which
is exactly what I do every time I burned my steak (P2)". This result
could be explained by the situated learning theory which claims that
the level of realism and immersion could afect students’ ability
to access their own everyday knowledge related to the context
[66, 136].

However, two of our participants reported that sometimes it feels
more intuitive to explore the environment from an overarching
view as in the desktop-based interface. "Having a top-down view
of entire the environment allows me to quickly switch between
diferent places without traversing through the space (P6)". After
refecting on this feedback, we foresee that the drawbacks of the
VR environment could be mitigated by implementing a bird’s-eye
view feature. Once this feature is enabled, the students can instantly
have a third-person overview of the entire environment. Wang et
al. [125] proposed a similar feature on their system to help users to
navigate through the virtual remote space.

In summary, despite some shortcomings of the VR environment,
the preference for it compared to a traditional desktop-based envi-
ronment was quite clear among our participants.

6 EXAMPLE IOT APPLICATIONS
To demonstrate the diversity of learning experiences supported by
LearnIoTVR, we showcase three more IoT applications that students
can create and explore.

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhengzhe Zhu, Ziyi Liu, et al.

Figure 12: Example IoT Applications (a) Plant watering sys-
tem. (b) Smart bathroom. (c) Automated factory.

6.1 Plant Watering System
In this use case, we present a system that automatically waters a
plant. If the humidity sensor on the ground senses the soil is too
dry, the linear actuator presses the piston and pumps the water out
of the bucket to water the plant (Figure 12 a).

6.2 Smart Bathroom
Adjusting the temperature of an environment is important for com-
fort. In this use case, the temperature of the bathroom is automati-
cally raised to be comfortably warm. Meanwhile, we also do not
want too much water vapor from a hot temperature to obstruct our
view. In a smart bathroom, if the motion sensor detects the person
entering the bathroom, the humidity sensor and temperature sensor
start monitoring the environment. If the temperature is lower than
a certain degree threshold, the heater turns on to warm up the room.
Meanwhile, if the humidity is higher than a certain degree thresh-
old when the person is showering, the motor in the ventilator turns
on to keep out the moisture. When the person leaves the room, the
motor and heater automatically turn of to save electricity (Figure
12 b).

6.3 Automated Factory
In an automated factory, a high volume of industrial materials is
constantly transported without human intervention. The pressure
sensor installed under the conveyor belt detects if an object is placed
on top of it. In that case, it activates the motor in the conveyor belt
and the linear actuator on the sliding rail in sequence, in order to
deliver the object to the designated location (Figure 12 c).

7 DISCUSSION & FUTURE WORK
7.1 Educational Beneft of Immersive

Programming
Although the concept of immersive programming has been pro-
posed for some time, it has been rarely applied in the context of
education. In particular, some systems have been using immer-
sive programming to manage real-life IoT systems. The priority
of these interfaces has been simplifcation for end-users so they
could carry out complex tasks. To this end, they often adopted
simplifed visual programming primitives with a lower ceiling for
dynamic exploration. On the other hand, efective discovery learn-
ing requires enough room for exploration [38]. To this end, we
designed our 3D block-based language for immersive program-
ming. The two benefts of immersive programming (i.e. immediate
feedback and rich contextual information) we hypothesized for
IoT learning context have been corroborated by the feedback from

our users. Furthermore, we envision that such benefts can also
apply to other education areas that are inherently rich in spatial
information. For instance, it could be used for teaching students to
program the geometry of a 3D model. A desktop-based educational
[6] programming environment for 3D models is already publicly
available and it would be interesting to compare it to an immer-
sive environment. Another area where immersive programming
may be benefcial is storytelling, where students can concurrently
develop and experience their storylines inside the virtual environ-
ment. Through facilitating quick and unconstrained idea iteration,
immersive programming can allow students’ imaginations to run
free.

7.2 Symbiosis Between Virtual and Physical
Learning

In the user study, we did not compare LearnIoTVR to traditional
learning approaches where students learn IoT through program-
ming physical components (e.g., Arduinos). The reason is that we
do not view LearnIoTVR, which is a virtual learning tool, as a re-
placement but rather a supplement for traditional physical learning
media.

LearnIoTVR flls in several missing pieces of the traditional phys-
ical learning approach. Firstly, of-the-shelf electronic kits for edu-
cational purposes are too simplifed and have too many constraints
for recreating many real-world systems (e.g., the automatic door),
which limits the scope of applications. Meanwhile, LearnIoTVR
has the potential to make learning IoT accessible for a diversity of
students, rather than those traditionally best positioned to engage
with physical computing. For those from low-income communities,
the cost to procure physical electronic kits for diferent projects
maybe be a burden. Some electronics can be easily damaged which
adds up to the maintenance cost for those students. In contrast, VR
headsets have become more afordable in recent years. For instance,
an Oculus Quest [14] which our system runs on costs below $400.
More importantly, the incremental cost of using VR is lower be-
cause the headset can be reused for multiple project-based learning
sessions, whereas electronics for educational purposes are prone
to malfunction and must be replaced regularly [19]. Inspired by
a previous report showing that VR is a cost-efective solution for
students from low-income families [19], we believe LearnIoTVR can
ofer an afordable alternative for them to acquire IoT knowledge.
Lastly, the VR environment allows for more fexible exploration
where students can freely simulate diferent environmental contexts
(e.g., temperature) to test the system. This exploration mechanism
would be difcult to facilitate in the physical world.

Therefore, we believe that LearnIoTVR can work in conjunc-
tion with the existing physical learning approach to deliver a more
diverse and fexible experience. For example, educators can frst
recreate a digital twin of the physical IoT environment in VR, where
students can freely test out diferent components and programs.
Then based on the IoT applications fnalized by the students, the VR
environment automatically generates text-based codes that can be
directly uploaded to a physical microcontroller (e.g., Arduino). Then,
students can connect the microcontroller to associated components
and deploy them to the physical environment. In this paradigm,

LearnIoTVR: An End-to-End Virtual Reality Environment Providing Authentic Learning Experiences for Internet of Things CHI ’23, April 23–28, 2023, Hamburg, Germany

the VR environment provides fexibility as users can freely simu-
late diferent scenarios. Meanwhile, the physical learning process
provides tangible experiences that have been demonstrated to be
crucial for learning [41, 70].

7.3 Collaborative IoT Learning Experiences
Currently, LearnIoTVR environment can only host one user at a
time and thus is not able to support collaborative learning. The ben-
efts of collaborative learning such as developing higher level think-
ing and increasing retention have been increasingly emphasized
within the education community [65, 120, 123]. In the meantime, VR
has shown the potential to better support interpersonal communi-
cation in terms of social presence, rich non-verbal communication,
and immersive realistic interactions [94]. In the future, we plan to
improve LearnIoTVR by supporting multiple users to co-present as
virtual avatars and collaborate in a shared VR environment. Users
can take diferent roles in the IoT project. For instance, some can
be responsible for programming while others are responsible for
testing. The immersive, realistic interactions enabled by social VR
can provide seamless communication between users throughout
the learning process.

7.4 Continuation of the User Study
In the frst session of the user study, we focused primarily on de-
termining whether learning had occurred by comparing pre- and
post-testing scores. However, we did not delve into how learning
occurs. It remains to be determined which factor(s) contributed to
successful learning outcomes for which knowledge concept. As a
promising future research direction, we plan on running a compar-
ative study where individual features (e.g., embodied exploration)
of the system are examined in isolation. By analyzing the difer-
ence in learning outcomes between groups with enabled/disabled
features, we can investigate in depth how the system can support
IoT learning and beyond.

In the second session of our user study, we did not assess the
learning diferences between students using desktop-based environ-
ments and VR as we consider it outside the scope of this paper. This
decision is made because of the signifcant scale and time frame
required to derive meaningful results on learning diferences. For
instance, Nersesian et al. [83] once conducted a semester-long (18
weeks) study with 103 students to compare the academic difer-
ences in chemistry learning between VR and desktop environments.
The promising results in this study indicate the advantages VR has
over traditional desktop environments in promoting learning. It in-
spires us to further explore the educational efcacy of LearnIoTVR
compared to traditional environments. In the future, we plan to
design and conduct larger-scale user studies with appropriate tests
to assess the learning diferences.

7.5 Scalability of the Programming Interface
Currently, LearnIoTVR only focuses on programming a limited
number of components at a time. When more components are
involved, the number of blocks in the central workspace would
increase accordingly, which inevitably crowds the interface and
makes it difcult for users to program. One possible solution to
this issue would be to display this content adaptively. For instance,

we can decrease the opacity of the coding blocks that are not cur-
rently been selected by the user. Instead of displaying blocks in a
single plane, we can also organize the coding blocks in diferent
layers which are from close to far away from the user. Those blocks
associated with the components currently being programmed are
brought to the front for easier access.

7.6 Making LearnIoTVR Accessible to the
General Public

As a research prototype, LearnIoTVR’s mass rollout to general edu-
cators and learners is impeded by two factors. Firstly, the creation of
learning materials (e.g., virtual IoT component) required expertise
in VR development. Secondly, LearnIoTVR requires the constant
presence of instructors to guide students through the learning pro-
cess. However, we believe these limitations could be addressed in
the future.

To make the learning materials accessible, we intend to build an
online sharing platform where developed artifacts (e.g., IoT compo-
nent) can be downloaded and shared. This is a promising direction
because a similar content-sharing platform, Unity Asset Store [18],
has been shown to signifcantly streamline the game development
process. Meanwhile, novice-friendly tools for authoring virtual
content [61, 119] can be adopted to make the creation of learning
materials more accessible.

To alleviate the instructional burden during each session, we
intend to enable instructors to pre-record a variety of instructional
formats (e.g., verbal instruction, visual cue, embodied demonstra-
tion) and later display them to students. Meanwhile, LearnIoTVR
can utilize AI technologies to support instructors. By adopting natu-
ral language processing technologies, RobotAR [121] demonstrated
the potential of implementing intelligent tutors able to respond to
frequently asked questions. It motivates us to develop intelligent
tutors for LearnIoTVR along a similar path.

8 LIMITATIONS
During the user study, some participants complained that the VR
headset is too heavy and that it caused some strain on their necks
after some time. Some cases of minor dizziness were also reported.
We regard this limitation as arising from the lack of maturity of cur-
rent VR technologies in supporting desired interactions. We believe
this issue will be gradually resolved as VR technology advances at
the current pace.

As mentioned before, the virtual learning environment can only
host one user at a time, which means the instructors have to de-
liver guidance from outside. Despite the fact that instructors can
view students’ virtual environment through display projection and
scafold learning through verbal instruction, they cannot utilize the
diverse forms of non-verbal communication such as gestures, gaze,
and facial expressions. During the user study, we also noticed that
in some cases it is useful if instructors can "point to the location while
explaining associated questions (P3 in session two)." This combined
with the potential beneft of collaborative learning highlight the
signifcance of developing a multi-user VR learning environment
in the future.

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhengzhe Zhu, Ziyi Liu, et al.

9 CONCLUSION
In this paper, we presented LearnIoTVR, an end-to-end VR learning
environment that enables installing, coding, and exploring IoT sys-
tems and promotes IoT learning. We introduce a library of common
IoT components and their compatible 3D block-based programming
language to allow students to freely create and explore various
IoT systems. We performed a quantitative user study with 24 par-
ticipants to evaluate the educational efcacy of the system. Our
result demonstrated an improvement in several key competencies
from our users (learning gains of up to 50%). Also, we compared
LearnIoTVR with a traditional desktop-based learning environment
hosted on a website and gathered/analyzed participants’ in-depth
feedback on user experience. In this work, we advance our un-
derstanding of IoT education in a VR environment, by removing
the constraints of a physical environment and enabling immersive
programming, which is becoming increasingly important in our
current society.

ACKNOWLEDGMENTS
We wish to give a special thanks to the reviewers for their invalu-
able feedback. This work is partially supported by the NSF under
the Future of Work at the Human Technology Frontier (FW-HTF)
1839971. We also acknowledge the Feddersen Distinguished Profes-
sorship Funds. Any opinions, fndings, and conclusions expressed
in this material are those of the authors and do not necessarily
refect the views of the funding agency. We sincerely thank Yikuan
Liu for drawing the sketches.

REFERENCES
[1] 2021. What can IoT do for healthcare. https://www.wipro.com/business-

process/what-can-iot-do-for-healthcare-/.
[2] 2022. Arduino Educational Kit. https://store-usa.arduino.cc/collections/edu-

family.
[3] 2022. Blender Open source 3D creation. Free to use for any purpose, forever.

https://www.blender.org/.
[4] 2022. Electronics products and services for Makers to Engineers. https:

//www.seeedstudio.com/.
[5] 2022. Every student in every school should have the opportunity to learn

computer science. https://code.org/.
[6] 2022. Every student in every school should have the opportunity to learn

computer science. https://www.blockscad3d.com/educators.
[7] 2022. How Is IoT Improving Transportation? https://www.iotforall.com/how-

is-iot-improving-transportation.
[8] 2022. Industry 4.0 and the Smart Factory: Where Does IoT Fit? https://www.

iotsworldcongress.com/iot-transforming-the-future-of-agriculture/.
[9] 2022. Internet of Things-We help clients unlock value by digitizing the physical

world. https://www.mckinsey.com/featured-insights/internet-of-things/how-
we-help-clients.

[10] 2022. IOT TRANSFORMING THE FUTURE OF AGRICULTURE. https://www.
cassianetworks.com/blog/iotforsmartfarming/.

[11] 2022. Learneroo:Beginning Blockly. https://www.learneroo.com/modules/139/
nodes/727.

[12] 2022. Low-code programming for event-driven applications. https://nodered.
org/.

[13] 2022. Micro:bit. https://makecode.microbit.org/.
[14] 2022. Oculus 2 See it in action. https://www.oculus.com/quest-2/.
[15] 2022. Oculus Quest Introduction Tutorial. https://www.youtube.com/watch?

v=PQVl8Xly4r0.
[16] 2022. Remote Function Call. https://en.wikipedia.org/wiki/Remote_Function_

Call.
[17] 2022. SONY PlayStation VR. https://www.playstation.com/en-us/ps-vr/

bundles/.
[18] 2022. Unity Asset Store: Community-powered creator solutions. https://

assetstore.unity.com/.
[19] 2022. VR Is A Cost-Efective Solution For Title I Schools. http://www.

xennialdigital.com/blog/vr-cost-efective-solution-title-I-schools/.

[20] Mostafa Al-Emran, Sohail Iqbal Malik, and Mohammed N Al-Kabi. 2020. A
survey of internet of things (IoT) in education: opportunities and challenges.
Toward social internet of things (SIoT): Enabling technologies, architectures and
applications (2020), 197–209.

[21] Hanan Aldowah, Shafq Ul Rehman, Samar Ghazal, and Irfan Naufal Umar. 2017.
Internet of Things in higher education: a study on future learning. In Journal of
Physics: Conference Series, Vol. 892. IOP Publishing, 012017.

[22] Sarune Baceviciute, Aske Mottelson, Thomas Terkildsen, and Guido Makransky.
2020. Investigating representation of text and audio in educational VR using
learning outcomes and EEG. In Proceedings of the 2020 CHI conference on human
factors in computing systems. 1–13.

[23] Nayeon Bak, Byeong-Mo Chang, and Kwanghoon Choi. 2020. Smart Block: A
visual block language and its programming environment for IoT. Journal of
Computer Languages 60 (2020), 100999.

[24] Catherine Ball and Kyle Johnsen. 2016. An accessible platform for everyday
educational virtual reality. In 2016 IEEE 2nd Workshop on Everyday Virtual Reality
(WEVR). IEEE, 26–31.

[25] Michael Barnett. 2005. Using virtual reality computer models to support student
understanding of astronomical concepts. Journal of computers in Mathematics
and Science Teaching 24, 4 (2005), 333–356.

[26] David Bau, Jef Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.
Learnable programming: blocks and beyond. Commun. ACM 60, 6 (2017), 72–80.

[27] Zorica Bogdanovic, Konstantin Simic, Miloš Milutinovic, Božidar Radenkovic,
and Marijana Despotovic-Zrakic. 2014. A Platform for Learning Internet of Things.
ERIC.

[28] Charles C Bonwell and James A Eison. 1991. Active learning: Creating excitement
in the classroom. 1991 ASHE-ERIC higher education reports. ERIC.

[29] Barry Burd, Lecia Barker, Monica Divitini, Felix Armando Fermin Perez, Ingrid
Russell, Bill Siever, and Liviana Tudor. 2018. Courses, content, and tools for
internet of things in computer science education. In Proceedings of the 2017
ITiCSE conference on working group reports. 125–139.

[30] Barry Burd, Lecia Barker, Félix Armando Fermín Pérez, Ingrid Russell, Bill Siever,
Liviana Tudor, Michael McCarthy, and Ian Pollock. 2018. The internet of things in
undergraduate computer and information science education: exploring curricula
and pedagogy. In Proceedings Companion of the 23rd Annual ACM Conference on
Innovation and Technology in Computer Science Education. 200–216.

[31] Yuanzhi Cao, Zhuangying Xu, Fan Li, Wentao Zhong, Ke Huo, and Karthik
Ramani. 2019. V. Ra: An in-situ visual authoring system for robot-IoT task plan-
ning with augmented reality. In Proceedings of the 2019 on Designing Interactive
Systems Conference. 1059–1070.

[32] Andrea Casu, Lucio Davide Spano, Fabio Sorrentino, and Riccardo Scateni. 2015.
RiftArt: Bringing Masterpieces in the Classroom through Immersive Virtual
Reality.. In STAG. 77–84.

[33] Terrence L Chambers, Amit Aglawe, Dirk Reiners, Steven White, Christoph W
Borst, Mores Prachyabrued, and Abhishek Bajpayee. 2012. Real-time simulation
for a virtual reality-based MIG welding training system. Virtual Reality 16, 1
(2012), 45–55.

[34] Alan Cheng, Lei Yang, and Erik Andersen. 2017. Teaching language and culture
with a virtual reality game. In Proceedings of the 2017 CHI conference on human
factors in computing systems. 541–549.

[35] Jeannette Chin and Vic Callaghan. 2013. Educational living labs: a novel internet-
of-things based approach to teaching and research. In 2013 9th International
Conference on Intelligent Environments. IEEE, 92–99.

[36] Athanasios Christopoulos, Nikolaos Pellas, and Mikko-Jussi Laakso. 2020. A
learning analytics theoretical framework for STEM education virtual reality
applications. Education Sciences 10, 11 (2020), 317.

[37] Emre Çoban, Özgen Korkmaz, Recep Çakır, and Feray Uğur Erdoğmuş. 2020.
Attitudes of IT teacher candidates towards computer programming and their
self-efcacy and opinions regarding to block-based programming. Education
and Information Technologies 25, 5 (2020), 4097–4114.

[38] Barney Dalgarno, Gregor Kennedy, and Sue Bennett. 2014. The impact of
students’ exploration strategies on discovery learning using computer-based
simulations. Educational Media International 51, 4 (2014), 310–329.

[39] Bosede Iyiade Edwards, Kevin S Bielawski, Rui Prada, and Adrian David Cheok.
2019. Haptic virtual reality and immersive learning for enhanced organic
chemistry instruction. Virtual Reality 23, 4 (2019), 363–373.

[40] Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle Annett, Pourang Irani,
and George Fitzmaurice. 2017. Ivy: Exploring spatially situated visual program-
ming for authoring and understanding intelligent environments. In Proceedings
of the 43rd Graphics Interface Conference. 156–162.

[41] Min Fan, Alissa N Antle, Maureen Hoskyn, Carman Neustaedter, and Emily S
Cramer. 2017. Why tangibility matters: A design case study of at-risk children
learning to read and spell. In Proceedings of the 2017 CHI conference on human
factors in computing systems. 1805–1816.

[42] Min Fan, Uddipana Baishya, Elgin-Skye Mclaren, Alissa N Antle, Shubhra Sarker,
and Amal Vincent. 2018. Block talks: a tangible and augmented reality toolkit
for children to learn sentence construction. In Extended Abstracts of the 2018
CHI Conference on Human Factors in Computing Systems. 1–6.

https://www.wipro.com/business-process/what-can-iot-do-for-healthcare-/
https://www.wipro.com/business-process/what-can-iot-do-for-healthcare-/
https://store-usa.arduino.cc/collections/edu-family
https://store-usa.arduino.cc/collections/edu-family
https://www.blender.org/
https://www.seeedstudio.com/
https://www.seeedstudio.com/
https://code.org/
https://www.blockscad3d.com/educators
https://www.iotforall.com/how-is-iot-improving-transportation
https://www.iotforall.com/how-is-iot-improving-transportation
https://www.iotsworldcongress.com/iot-transforming-the-future-of-agriculture/
https://www.iotsworldcongress.com/iot-transforming-the-future-of-agriculture/
https://www.mckinsey.com/featured-insights/internet-of-things/how-we-help-clients
https://www.mckinsey.com/featured-insights/internet-of-things/how-we-help-clients
https://www.cassianetworks.com/blog/iotforsmartfarming/
https://www.cassianetworks.com/blog/iotforsmartfarming/
https://www.learneroo.com/modules/139/nodes/727
https://www.learneroo.com/modules/139/nodes/727
https://nodered.org/
https://nodered.org/
https://makecode.microbit.org/
https://www.oculus.com/quest-2/
https://www.youtube.com/watch?v=PQVl8Xly4r0
https://www.youtube.com/watch?v=PQVl8Xly4r0
https://en.wikipedia.org/wiki/Remote_Function_Call
https://en.wikipedia.org/wiki/Remote_Function_Call
https://www.playstation.com/en-us/ps-vr/bundles/
https://www.playstation.com/en-us/ps-vr/bundles/
https://assetstore.unity.com/
https://assetstore.unity.com/
http://www.xennialdigital.com/blog/vr-cost-effective-solution-title-I-schools/
http://www.xennialdigital.com/blog/vr-cost-effective-solution-title-I-schools/

LearnIoTVR: An End-to-End Virtual Reality Environment Providing Authentic Learning Experiences for Internet of Things CHI ’23, April 23–28, 2023, Hamburg, Germany

[43] Aamir Fidai, Hyunkyung Kwon, Gabrielle Buettner, Robert M Capraro,
Mary Margaret Capraro, Cynthia Jarvis, Madison Benzor, and Saaransh Verma.
2019. Internet of things (IoT) instructional devices in STEM classrooms: Past,
present and future directions. In 2019 IEEE Frontiers in Education Conference
(FIE). IEEE, 1–9.

[44] Neil Fraser. 2015. Ten things we’ve learned from Blockly. In 2015 IEEE Blocks
and Beyond Workshop (Blocks and Beyond). IEEE, 49–50.

[45] Samir Yitzhak Gadre, Eric Rosen, Gary Chien, Elizabeth Phillips, Stefanie Tellex,
and George Konidaris. 2019. End-user robot programming using mixed reality.
In 2019 International conference on robotics and automation (ICRA). IEEE, 2707–
2713.

[46] Hong Gao, Efe Bozkir, Lisa Hasenbein, Jens-Uwe Hahn, Richard Göllner, and
Enkelejda Kasneci. 2021. Digital Transformations of Classrooms in Virtual
Reality. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. 1–10.

[47] Mirko Gelsomini, Giulia Leonardi, and Franca Garzotto. 2020. Embodied learning
in immersive smart spaces. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–14.

[48] Pradyumna Gokhale, Omkar Bhat, and Sagar Bhat. 2018. Introduction to IOT.
International Advanced Research Journal in Science, Engineering and Technology
5, 1 (2018), 41–44.

[49] Jiangtao Gong, Teng Han, Siling Guo, Jiannan Li, Siyu Zha, Liuxin Zhang,
Feng Tian, Qianying Wang, and Yong Rui. 2021. HoloBoard: a Large-format
Immersive Teaching Board based on pseudo HoloGraphics. In The 34th Annual
ACM Symposium on User Interface Software and Technology. 441–456.

[50] Myriam Guedey, Anke Pfeifer, and Dieter Uckelmann. 2020. Transferring
Research on IoT Applications for Smart Buildings into Engineering Education.
In 2020 IEEE Global Engineering Education Conference (EDUCON). IEEE, 250–254.

[51] Gaoping Huang, Pawan S Rao, Meng-Han Wu, Xun Qian, Shimon Y Nof, Karthik
Ramani, and Alexander J Quinn. 2020. Vipo: Spatial-visual programming with
functions for robot-IoT workfows. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–13.

[52] Hsiu-Mei Huang, Ulrich Rauch, and Shu-Sheng Liaw. 2010. Investigating learn-
ers’ attitudes toward virtual reality learning environments: Based on a construc-
tivist approach. Computers & Education 55, 3 (2010), 1171–1182.

[53] Ke Huo, Yuanzhi Cao, Sang Ho Yoon, Zhuangying Xu, Guiming Chen, and
Karthik Ramani. 2018. Scenariot: Spatially mapping smart things within aug-
mented reality scenes. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–13.

[54] Qiao Jin, Yu Liu, Ye Yuan, Lana Yarosh, and Evan Suma Rosenberg. 2020. VWorld:
an immersive VR system for learning programming. In Proceedings of the 2020
ACM Interaction Design and Children Conference: Extended Abstracts. 235–240.

[55] Sheng Jin, Min Fan, and Aynur Kadir. 2022. Immersive Spring Morning in the
Han Palac e: Learning Traditional Chinese Art Via Virtual Reality and Multi-
Touch Tabletop. International Journal of Human–Computer Interaction 38, 3
(2022), 213–226.

[56] Sheng Jin, Min Fan, Yongchao Wang, and Qi Liu. 2020. Reconstructing traditional
Chinese paintings with immersive virtual reality. In Extended Abstracts of the
2020 CHI Conference on Human Factors in Computing Systems. 1–8.

[57] Beate Jost, Markus Ketterl, Reinhard Budde, and Thorsten Leimbach. 2014.
Graphical programming environments for educational robots: Open roberta-
yet another one?. In 2014 IEEE International Symposium on Multimedia. IEEE,
381–386.

[58] Michal Kapinus, Vítězslav Beran, Zdeněk Materna, and Daniel Bambušek. 2019.
Spatially Situated End-User Robot Programming in Augmented Reality. In 2019
28th IEEE International Conference on Robot and Human Interactive Communica-
tion (RO-MAN). IEEE, 1–8.

[59] Mohamad Kassab, Joanna DeFranco, and Phillip Laplante. 2020. A systematic
literature review on Internet of things in education: Benefts and challenges.
Journal of Computer Assisted Learning 36, 2 (2020), 115–127.

[60] Hannes Kaufmann, Dieter Schmalstieg, and Michael Wagner. 2000. Construct3D:
a virtual reality application for mathematics and geometry education. Education
and information technologies 5, 4 (2000), 263–276.

[61] Hanbit Kim, Jaeho Sung, Joon Hyub Lee, and Seok-Hyung Bae. 2022. RCSketch:
Sketch, Build, and Control Your Dream Vehicles. In Adjunct Proceedings of the
35th Annual ACM Symposium on User Interface Software and Technology. 1–2.

[62] Sara Klingenberg, Maria LM Jørgensen, Gert Dandanell, Karen Skriver, Aske
Mottelson, and Guido Makransky. 2020. Investigating the efect of teaching as a
generative learning strategy when learning through desktop and immersive VR:
A media and methods experiment. British Journal of Educational Technology 51,
6 (2020), 2115–2138.

[63] Dimitra Kokotsaki, Victoria Menzies, and Andy Wiggins. 2016. Project-based
learning: A review of the literature. Improving schools 19, 3 (2016), 267–277.

[64] Charalampos Kyfonidis, Nektarios Moumoutzis, and Stavros Christodoulakis.
2017. Block-C: A block-based programming teaching tool to facilitate intro-
ductory C programming courses. In 2017 IEEE Global Engineering Education
Conference (EDUCON). IEEE, 570–579.

[65] Marjan Laal and Seyed Mohammad Ghodsi. 2012. Benefts of collaborative
learning. Procedia-social and behavioral sciences 31 (2012), 486–490.

[66] Jean Lave and Etienne Wenger. 1991. Situated learning: Legitimate peripheral
participation. Cambridge university press.

[67] Susan Lechelt, Katerina Gorkovenko, Luis Lourenço Soares, Chris Speed, James K
Thorp, and Michael Stead. 2020. Designing for the end of life of IoT objects. In
Companion Publication of the 2020 ACM Designing Interactive Systems Conference.
417–420.

[68] Susan Zuzanna Lechelt. 2020. Introducing the Internet of Things in classrooms
through discovery-based learning and physical computing. Ph. D. Dissertation.
UCL (University College London).

[69] Zuzanna Lechelt, Yvonne Rogers, Nicolai Marquardt, and Venus Shum. 2016.
ConnectUs: A new toolkit for teaching about the Internet of Things. In Pro-
ceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems. 3711–3714.

[70] Zuzanna Lechelt, Yvonne Rogers, Nicola Yuill, Lena Nagl, Grazia Ragone, and
Nicolai Marquardt. 2018. Inclusive computing in special needs classrooms:
Designing for all. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 1–12.

[71] In Lee and Kyoochun Lee. 2015. The Internet of Things (IoT): Applications,
investments, and challenges for enterprises. Business Horizons 58, 4 (2015),
431–440.

[72] G Michael Lemole Jr, P Pat Banerjee, Cristian Luciano, Sergey Neckrysh, and
Fady T Charbel. 2007. Virtual reality in neurosurgical education: part-task ven-
triculostomy simulation with dynamic visual and haptic feedback. Neurosurgery
61, 1 (2007), 142–149.

[73] Shancang Li, Li Da Xu, and Shanshan Zhao. 2015. The internet of things: a
survey. Information systems frontiers 17, 2 (2015), 243–259.

[74] Wei-Kai Liou and Chun-Yen Chang. 2018. Virtual reality classroom applied to
science education. In 2018 23rd International Scientifc-Professional Conference
on Information Technology (IT). IEEE, 1–4.

[75] Somayya Madakam, Vihar Lake, Vihar Lake, Vihar Lake, et al. 2015. Internet of
Things (IoT): A literature review. Journal of Computer and Communications 3,
05 (2015), 164.

[76] Steven C Mallam, Salman Nazir, and Sathiya Kumar Renganayagalu. 2019. Re-
thinking maritime education, training, and operations in the digital era: appli-
cations for emerging immersive technologies. Journal of Marine Science and
Engineering 7, 12 (2019), 428.

[77] Richard E Mayer. 2002. Multimedia learning. In Psychology of learning and
motivation. Vol. 41. Elsevier, 85–139.

[78] Michael J McGufn and Christopher P Fuhrman. 2020. Categories and com-
pleteness of visual programming and direct manipulation. In Proceedings of the
International Conference on Advanced Visual Interfaces. 1–8.

[79] Edward F Melcer and Katherine Isbister. 2018. Bots & (Main) frames: exploring
the impact of tangible blocks and collaborative play in an educational program-
ming game. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 1–14.

[80] Filipe T Moreira, Mario Vairinhos, and Fernando Ramos. 2018. Internet of
Things in education: A tool for science learning. In 2018 13th Iberian Conference
on Information Systems and Technologies (CISTI). IEEE, 1–5.

[81] Meredith Ringel Morris, Andreea Danielescu, Steven Drucker, Danyel Fisher,
Bongshin Lee, MC Schraefel, and Jacob O Wobbrock. 2014. Reducing legacy
bias in gesture elicitation studies. interactions 21, 3 (2014), 40–45.

[82] Michael Nebeling, Shwetha Rajaram, Liwei Wu, Yifei Cheng, and Jaylin Her-
skovitz. 2021. XRStudio: A Virtual Production and Live Streaming System for
Immersive Instructional Experiences. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1–12.

[83] Eric Nersesian, Adam Spryszynski, and Michael J Lee. 2019. Integration of
virtual reality in secondary STEM education. In 2019 IEEE Integrated STEM
Education Conference (ISEC). IEEE, 83–90.

[84] Eric Nersesian, Adam Spryszynski, Ulysee Thompson, and Michael Lee. 2018.
Encompassing english language learners in virtual reality. In 2018 IEEE Inter-
national Conference on Artifcial Intelligence and Virtual Reality (AIVR). IEEE,
200–203.

[85] Eric Nersesian, Margarita Vinnikov, and Michael J Lee. 2021. Travel kinematics
in virtual reality increases learning efciency. In 2021 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 1–5.

[86] Melanie Njoo and Ton De Jong. 1993. Exploratory learning with a computer
simulation for control theory: Learning processes and instructional support.
Journal of research in science teaching 30, 8 (1993), 821–844.

[87] Sebastian Oberdörfer, David Heidrich, and Marc Erich Latoschik. 2019. Usability
of gamifed knowledge learning in VR and desktop-3D. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–13.

[88] Matthias Oberhauser and Daniel Dreyer. 2017. A virtual reality fight simulator
for human factors engineering. Cognition, Technology & Work 19, 2 (2017),
263–277.

[89] Jocelyn Parong and Richard E Mayer. 2021. Cognitive and afective processes
for learning science in immersive virtual reality. Journal of Computer Assisted
Learning 37, 1 (2021), 226–241.

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhengzhe Zhu, Ziyi Liu, et al.

[90] Erik Pasternak, Rachel Fenichel, and Andrew N Marshall. 2017. Tips for creating
a block language with blockly. In 2017 IEEE Blocks and Beyond Workshop (B&B).
IEEE, 21–24.

[91] Keyur K Patel, Sunil M Patel, and P Scholar. 2016. Internet of things-IOT:
defnition, characteristics, architecture, enabling technologies, application &
future challenges. International journal of engineering science and computing 6,
5 (2016).

[92] Kylie Peppler and Diane Glosson. 2013. Stitching circuits: Learning about
circuitry through e-textile materials. Journal of Science Education and Technology
22, 5 (2013), 751–763.

[93] Kylie Peppler, Karen Wohlwend, Naomi Thompson, Verily Tan, and AnnMarie
Thomas. 2019. Squishing circuits: Circuitry learning with electronics and play-
dough in Early Childhood. Journal of Science Education and Technology 28, 2
(2019), 118–132.

[94] Catlin Pidel and Philipp Ackermann. 2020. Collaboration in virtual and aug-
mented reality: a systematic overview. In International Conference on Augmented
Reality, Virtual Reality and Computer Graphics. Springer, 141–156.

[95] Johanna Pirker, Johannes Kopf, Alexander Kainz, Andreas Dengel, and Ben-
jamin Buchbauer. 2021. The Potential of Virtual Reality for Computer Science
Education-Engaging Students through Immersive Visualizations. In 2021 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops
(VRW). IEEE, 297–302.

[96] Henning Pohl, Klemen Lilija, Jess McIntosh, and Kasper Hornbæk. 2021. Poros:
confgurable proxies for distant interactions in VR. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1–12.

[97] Iulian Radu and Alissa Antle. 2017. Embodied learning mechanics and their
relationship to usability of handheld augmented reality. In 2017 IEEE Virtual
Reality Workshop on K-12 Embodied Learning through Virtual & Augmented
Reality (KELVAR). IEEE, 1–5.

[98] Iulian Radu and Blair MacIntyre. 2009. Augmented-reality scratch: a tangi-
ble programming environment for children. In Proceedings of conference on
interaction design for children, Como, Italy.

[99] Ananda Bibek Ray and Suman Deb. 2016. Smartphone based virtual reality
Systems in Classroom Teaching—a Study on the efects of learning outcome. In
2016 IEEE eighth international conference on technology for education (T4E). IEEE,
68–71.

[100] Abdul Rahman Abdel Razek, Christian van Husen, Marc Pallot, and Simon
Richir. 2018. A comparative study on conventional versus immersive service
prototyping (VR, AR, MR). In Proceedings of the Virtual Reality International
Conference-Laval Virtual. 1–10.

[101] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11
(2009), 60–67.

[102] Yvonne Rogers, Venus Shum, Nic Marquardt, Susan Lechelt, Rose Johnson,
Howard Baker, and Matt Davies. 2017. From the BBC Micro to micro: bit and
Beyond: A British Innovation. interactions 24, 2 (2017), 74–77.

[103] Karen Rose, Scott Eldridge, and Lyman Chapin. 2015. The internet of things:
An overview. The internet society (ISOC) 80 (2015), 1–50.

[104] Udo Schultheis, Jason Jerald, Fernando Toledo, Arun Yoganandan, and Paul
Mlyniec. 2012. Comparison of a two-handed interface to a wand interface and a
mouse interface for fundamental 3D tasks. In 2012 IEEE Symposium on 3D User
Interfaces (3DUI). IEEE, 117–124.

[105] Rafael J Segura, Francisco J del Pino, Carlos J Ogáyar, and Antonio J Rueda.
2020. VR-OCKS: A virtual reality game for learning the basic concepts of
programming. Computer Applications in Engineering Education 28, 1 (2020),
31–41.

[106] Natalia Silvis-Cividjian. 2017. Pervasive Computing. Undergraduate Topics in
Computer Science (2017).

[107] Natalia Silvis-Cividjian. 2019. Teaching internet of things (IoT) literacy: A
systems engineering approach. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering Education and Training (ICSE-
SEET). IEEE, 50–61.

[108] Hyo Jun Sim and Yun Gil Lee. 2018. Developing an Internet of Things (IoT)
service system based on spatial context. In International Conference on Human-
Computer Interaction. Springer, 510–514.

[109] Mel Slater. 2017. Implicit learning through embodiment in immersive virtual
reality. In Virtual, augmented, and mixed realities in education. Springer, 19–33.

[110] Gwen Solomon. 2003. Project-based learning: A primer. Technology and learning-
dayton- 23, 6 (2003), 20–20.

[111] Marcus Specht. 2008. Designing contextualized learning. In Handbook on
information technologies for education and training. Springer, 101–111.

[112] Anthony Steed and Mel Slater. 1996. A datafow representation for defning
behaviours within virtual environments. In Proceedings of the IEEE 1996 Virtual
Reality Annual International Symposium. IEEE, 163–167.

[113] Livia Ştefan. 2012. Immersive collaborative environments for teaching and
learning traditional design. Procedia-Social and Behavioral Sciences 51 (2012),
1056–1060.

[114] John Sweller. 1988. Cognitive load during problem solving: Efects on learning.
Cognitive science 12, 2 (1988), 257–285.

[115] Balasaravanan Thoravi Kumaravel, Fraser Anderson, George Fitzmaurice, Bjo-
ern Hartmann, and Tovi Grossman. 2019. Loki: Facilitating remote instruction
of physical tasks using bi-directional mixed-reality telepresence. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology.
161–174.

[116] David S Touretzky, Daniela Marghitu, Stephanie Ludi, Debra Bernstein, and
Lijun Ni. 2013. Accelerating K-12 computational thinking using scafolding,
staging, and abstraction. In Proceeding of the 44th ACM technical symposium on
Computer science education. 609–614.

[117] Emiel GG Verdaasdonk, Jenny Dankelman, Johan F Lange, and Laurents PS
Stassen. 2008. Transfer validity of laparoscopic knot-tying training on a VR
simulator to a realistic environment: a randomized controlled trial. Surgical
endoscopy 22, 7 (2008), 1636–1642.

[118] Ana Villanueva, Hritik Kotak, Ziyi Liu, Rutvik Mehta, Kaiwen Li, Zhengzhe
Zhu, Yeliana Torres, and Karthik Ramani. 2020. ARbits: Towards a DIY, AR-
compatible electrical circuitry toolkit for children. In Proceedings of the 2020
ACM Interaction Design and Children Conference: Extended Abstracts. 205–210.

[119] Ana Villanueva, Zhengzhe Zhu, Ziyi Liu, Kylie Peppler, Thomas Redick, and
Karthik Ramani. 2020. Meta-AR-app: an authoring platform for collaborative
augmented reality in STEM classrooms. In Proceedings of the 2020 CHI conference
on human factors in computing systems. 1–14.

[120] Ana Villanueva, Zhengzhe Zhu, Ziyi Liu, Feiyang Wang, Subramanian Chi-
dambaram, and Karthik Ramani. 2022. Colabar: A toolkit for remote collabo-
ration in tangible augmented reality laboratories. Proceedings of the ACM on
Human-Computer Interaction 6, CSCW1 (2022), 1–22.

[121] Ana M Villanueva, Ziyi Liu, Zhengzhe Zhu, Xin Du, Joey Huang, Kylie A Peppler,
and Karthik Ramani. 2021. Robotar: An augmented reality compatible telecon-
sulting robotics toolkit for augmented makerspace experiences. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–13.

[122] Juraj Vincur, Martin Konopka, Jozef Tvarozek, Martin Hoang, and Pavol Navrat.
2017. Cubely: Virtual reality block-based programming environment. In Pro-
ceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology.
1–2.

[123] Torben Wallbaum, Swamy Ananthanarayan, Andrii Matviienko, and Susanne
Boll. 2020. A Real-Time Distributed Toolkit to Ease Children’s Exploration of
IoT. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction:
Shaping Experiences, Shaping Society. 1–9.

[124] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Ke Huo, Yuanzhi Cao, and
Karthik Ramani. 2020. CAPturAR: An Augmented Reality Tool for Authoring
Human-Involved Context-Aware Applications. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 328–341.

[125] Zeyu Wang, Cuong Nguyen, Paul Asente, and Julie Dorsey. 2021. Distanciar:
Authoring site-specifc augmented reality experiences for remote environments.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–12.

[126] David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22–25.

[127] David Weintrop and Uri Wilensky. 2015. Using commutative assessments to
compare conceptual understanding in blocks-based and text-based programs..
In ICER, Vol. 15. 101–110.

[128] David Weintrop and Uri Wilensky. 2017. Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions
on Computing Education (TOCE) 18, 1 (2017), 1–25.

[129] David Weintrop and Uri Wilensky. 2019. Transitioning from introductory block-
based and text-based environments to professional programming languages in
high school computer science classrooms. Computers & Education 142 (2019),
103646.

[130] Amanda Wilson and David C Mofat. 2010. Evaluating Scratch to Introduce
Younger Schoolchildren to Programming.. In PPIG, Vol. 1. 1–12.

[131] Margaret Wilson. 2002. Six views of embodied cognition. Psychonomic bulletin
& review 9, 4 (2002), 625–636.

[132] Robert A Wilson and Lucia Foglia. 2011. Embodied cognition. (2011).
[133] Mihye Won, Mauro Mocerino, Kok-Sing Tang, David F Treagust, and Roy Tasker.

2019. Interactive immersive virtual reality to enhance students’ visualisation of
complex molecules. In Research and Practice in Chemistry Education. Springer,
51–64.

[134] Wen Xi and Evan W Patton. 2018. Block-based approaches to internet of things
in mit app inventor. ser. BLOCKS+ (2018).

[135] Kexin Yang, Xiaofei Zhou, and Iulian Radu. 2020. XR-Ed Framework: Designing
Instruction-driven andLearner-centered Extended Reality Systems for Education.
arXiv preprint arXiv:2010.13779 (2020).

[136] Michael F Young. 1993. Instructional design for situated learning. Educational
technology research and development 41, 1 (1993), 43–58.

[137] Lei Zhang and Steve Oney. 2019. Studying the Benefts and Challenges of
Immersive Datafow Programming. In 2019 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 223–227.

LearnIoTVR: An End-to-End Virtual Reality Environment Providing Authentic Learning Experiences for Internet of Things CHI ’23, April 23–28, 2023, Hamburg, Germany

[138] Lei Zhang and Steve Oney. 2020. FlowMatic: An Immersive Authoring Tool for [140] Xiaoyang Zhong and Yao Liang. 2016. Raspberry Pi: An efective vehicle in
Creating Interactive Scenes in Virtual Reality. In Proceedings of the 33rd Annual teaching the internet of things in computer science and engineering. Electronics
ACM Symposium on User Interface Software and Technology. 342–353. 5, 3 (2016), 56.

[139] Jiayan Zhao, Peter LaFemina, Julia Carr, Pejman Sajjadi, Jan Oliver Wallgrün, [141] Zhengzhe Zhu, Ziyi Liu, Tianyi Wang, Youyou Zhang, Xun Qian, Pashin Farsak
and Alexander Klippel. 2020. Learning in the feld: Comparison of desktop, Raja, Ana Villanueva, and Karthik Ramani. 2022. MechARspace: An Authoring
immersive virtual reality, and actual feld trips for place-based STEM education. System Enabling Bidirectional Binding of Augmented Reality with Toys in
In 2020 IEEE conference on virtual reality and 3D user interfaces (VR). IEEE, Real-time. In Proceedings of the 35th Annual ACM Symposium on User Interface
893–902. Software and Technology. 1–16.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pedagogical Practices of IoT
	2.2 Applying VR in Education
	2.3 Programming Interface for VR

	3 Theoretical Framework
	3.1 Cognitive Theory of Multimedia Learning
	3.2 Cognitive Load Theory
	3.3 Embodied Learning

	4 System Overview
	4.1 Virtual IoT Components
	4.2 3D Block-based Programming Language
	4.3 Installation Interface
	4.4 Programming Interface
	4.5 Exploration Interface
	4.6 System Summary: A Detailed Use Scenario
	4.7 Implementation

	5 User Study Evaluation
	5.1 Session One: Educational Efficacy and Usability
	5.2 Session Two: A Qualitative Study on User Experience

	6 Example IoT Applications
	6.1 Plant Watering System
	6.2 Smart Bathroom
	6.3 Automated Factory

	7 Discussion & Future Work
	7.1 Educational Benefit of Immersive Programming
	7.2 Symbiosis Between Virtual and Physical Learning
	7.3 Collaborative IoT Learning Experiences
	7.4 Continuation of the User Study
	7.5 Scalability of the Programming Interface
	7.6 Making LearnIoTVR Accessible to the General Public

	8 Limitations
	9 Conclusion
	Acknowledgments
	References

