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ABSTRACT
Graph neural network (GNN), the mainstream method to learn on

graph data, is vulnerable to graph evasion attacks, where an attacker

slightly perturbing the graph structure can fool trainedGNNmodels.

Existing work has at least one of the following drawbacks: 1) limited

to directly attack two-layer GNNs; 2) inefficient; and 3) impractical,

as they need to know full or part of GNN model parameters.

We address the above drawbacks and propose an influence-based

efficient, direct, and restricted black-box evasion attack to any-layer
GNNs. Specifically, we first introduce two influence functions, i.e.,

feature-label influence and label influence, that are defined onGNNs

and label propagation (LP), respectively. Then we observe that

GNNs and LP are strongly connected in terms of our defined influ-

ences. Based on this, we can then reformulate the evasion attack

to GNNs as calculating label influence on LP, which is inherently
applicable to any-layer GNNs, while no need to know information

about the internal GNNmodel. Finally, we propose an efficient algo-

rithm to calculate label influence. Experimental results on various

graph datasets show that, compared to state-of-the-art white-box

attacks, our attack can achieve comparable attack performance, but

has a 5-50x speedup when attacking two-layer GNNs. Moreover,

our attack is effective to attack multi-layer GNNs
1
.
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Source code and full version is in the link: https://github.com/ventr1c/InfAttack
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1 INTRODUCTION
Learning with graph data, such as social networks, biological net-

works, financial networks, has drawn continuous attention re-

cently. Graph neural network (GNN) has become the mainstream

methodology for representation learning on graphs. GNN was

first introduced in [28], which extended conventional neural net-

work to process graph data. Then, various GNN methods have

been proposed and achieved state-of-the-art performance in many

graph-related tasks such as node classification [20, 36, 45], graph

classification [15, 16], and link prediction [47]. However, recent

works [8, 12, 25, 26, 31, 37, 39, 40, 42, 44, 54, 55] show that GNNs

are vulnerable to graph evasion attacks—Given a target node and

a trained GNN model, an attacker slightly perturbing the graph

structure
2
(e.g., add new edges to or delete existing edges from

the graph) can make the GNN model misclassify the target node.

Existing attacks to GNNs can be roughly classified as optimization-
based attacks [39, 42, 44, 54] and reinforcement learning (RL)-based
attacks [8, 12, 31].

2
An attacker can also perturb node features to perform the attack. However, structure

perturbation is shown to be much more effective than node feature perturbation [54].
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In this paper, we focus on optimization-based attacks, as they

are shown to be more effective [54]. Optimization-based attacks

first formulate the graph evasion attack as a binary optimization

problem,which is challenging to solve, and then design approximate

algorithms to solve a tractable optimization problem. Although

achieving promising attack performance, existing optimization-

based attacks have one or more of the below key limitations:

• First, most of the existing attacks need to know the full/partial

GNN model parameters, which is unrealistic in many real-world

applications, e.g., when GNN models are confidential due to

their commercial value and are deployed as an API. Thus, the

practicability of the existing attacks are limited. Further, they

are mainly designed to attack two-layer GNNs, while GNNs are
multi-layer in essence. To attack multi-layer GNNs, they often

first indirectly attack a surrogate two-layer GNN model, and then

transfer the attack to the target multi-layer GNN. However, this

strategy is not effective enough (See Figure 4(a) in Section 5).

• Second, they are not efficient, as they involve intensive computa-

tion, i.e., by multiplying GNN model parameters of different lay-

ers and with node feature matrix. If a GNN has many layers, such

computation can be a bottleneck, especially for attackers who

have limited computational resources or/and want to perform

real-time attacks. For example, many fraud detection systems,

such as detecting fake users in social networks and detecting

anomalies from system logs, are updated frequently in order to

reduce the loss caused by the evasion attacks’ malicious activities.

In these scenarios, efficiency is a major concern for the attack and

an attacker performing efficient attacks is necessary, as otherwise

the detection system may have already updated and identified

the attack’s malicious patterns before the attack is implemented.

Ourwork:We aim to address the above limitations in this paper. To

this end, we propose an optimization-based evasion attack against

any-layer GNNs based on influence function [21]—a completely

different perspective from the existing works. Our influence-based

attack is motivated by the strong connection between GNNs and

label propagation (LP) [52]. Specifically, we first introduce two in-

fluence functions, i.e., feature-label influence and label influence,

that are defined on GNNs and LP, respectively. Then, we prove

that our label influence defined on LP is equivalent to feature-label

influence on a particular well-known type of GNN, called Graph

Convolutional Network (GCN) [20] (and its linearized version Sim-

ple Graph Convolutional (SGC) [41]). Based on this connection,

we reformulate the evasion attack against GNNs to be related to

calculating label influence on LP. As our influences are designed

for any-layer GNNs, our attack is inherently applicable to attack

any-layer GNNs. Note that label influence can be computed easily

and we also design an efficient algorithm to compute it. Further,

as our influence-based attack does not need to know any informa-

tion about the GNN model (except the target node’s neighboring

information), it is a more practical (restricted black-box) attack.

Finally, we evaluate our attack against GCN/SGC on three bench-

mark graph datasets. Compared to the state-of-the-art white-box

attacks against two-layer GCN/SGC, our attack can achieve com-

parable attack performance but has a 5-50x speedup. Our attack is

more effective to attack multi-layer GCN/SGC. For instance, our

attack achieves a 93% attack success rate, when perturbing 4 edges

per target node on Cora, while the surrogate model based attack

only has 80% attack success rate. As a by product, our attack also

shows promising transferability to attack other GNNs, and is more

effective than existing black-box attacks.

Our contributions can be summarized as follows:

• We propose graph evasion attacks to GNNs based on influence

function, which is a completely new perspective.

• Our attack is effective, direct, efficient, and practical.

• Our attack has promising transferability.

2 RELATED WORK
Attacks to graph neural networks. Existing attacks to GNNs can
be classified as graph poisoning attacks [7, 8, 24, 31, 32, 43, 44, 49, 50,
54, 55] and evasion attacks [8, 25, 42, 54]. In poisoning attacks, an

attacker modifies the graph structure during the training process

such that the trained GNN model has a low prediction accuracy

on testing nodes. For instance, Xu et al. [44] developed a topology

poisoning attack based on gradient-based optimization. Evasion

attacks can be classified as untargeted attacks and targeted attacks,

where the latter is more challenging. Given a target node and a

trained GNN model, targeted attack means an attacker aims to per-

turb the graph structure such that the GNN model misclassifies the

target node to be a target label, while untargeted attack misclassi-

fies the target node to be an arbitrary label different from the target

node’s label. For instance, Dai et al. [8] leveraged reinforcement

learning techniques to design non-targeted evasion attacks to both

graph classification and node classification. Zügner et al. [54] pro-

posed a targeted evasion attack, called Nettack, against two-layer

GCN and achieved the state-of-the-art attack performance. Specifi-

cally, Nettack learns a surrogate linear model of GCN by removing

the ReLU activation function and by defining a graph structure

preserving perturbation that constrains the difference between the

node degree distributions of the graph before and after attack. Our

label influence-based attack is a targeted evasion attack.

Most of the existing GNN attacks are white/gray-box. Recently,

two black-box attacks to GNNs [26, 39] have been proposed. For

instance,Wang et al. [39] formulate the black-box attack to GNNs as

an online optimization with bandit feedback. The original problem

is NP-hard and they then propose an online attack based on (relaxed)

bandit convex optimization which is proven to be sublinear to the

query number. Our attack is a restricted black-box attack, where

the attacker only needs to know the target node’s neighbors.

Attacks to other graph-basedmethods. Besides attacking GNNs,
other adversarial attacks against graph data include attacking graph-

based clustering [6], graph-based collective classification [35, 37],

graph embedding [1, 4, 5, 9, 30], community detection [22], etc.

For instance, Chen et al. [6] proposed a practical attack against

spectral clustering, which is a well-known graph-based clustering

method. Wang and Gong [37] designed an optimization-based at-

tack against the collective classification method, called linearized

belief propagation, by modifying the graph structure.

Defending against graph perturbation attacks. Existing de-

fenses against the graph perturbation attacks can be classified as

empirical defenses [11, 33, 34, 42, 44, 51] and provable defenses [2,

3, 18, 23, 38]. The empirical defenses are shown to be easily bro-

ken by stronger/adaptive attacks [14, 27]. Provable defenses study
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certified robustness of GNNs against the worst-case graph pertur-

bation attacks. For instance, Wang et al. [38] design a randomized

smoothing-based provable defenses that achieves a tight certified

robustness, when there are no assumptions about the GNN model.

[38] achieves the state-of-the-art provable defense performance.

3 BACKGROUND AND PROBLEM DEFINITION
Graph Neural Network. Let 𝐺 = (V, E,X) be a graph, where

𝑢 ∈ V is a node, (𝑢, 𝑣) ∈ E is an edge between 𝑢 and 𝑣 , and

X = [x1; x2; · · · ; x𝑛] ∈ R𝑛×𝑑 is the node feature matrix. We denote

A = [a1; a2; · · · ; a𝑛] ∈ {0, 1}𝑛×𝑛 as the adjacency matrix, 𝑑𝑢 and

Γ𝑢 as 𝑢’s node degree and the neighborhood set of 𝑢 (including self-

loop (𝑢,𝑢)). We consider GNNs for node classification in this paper.

In this context, each node 𝑢 has a label 𝑦𝑢 from a label set Y =

{1, 2, · · · ,𝐶}. Given a set ofV𝐿 ⊂ V labeled nodes {(x𝑢 , 𝑦𝑢 )}𝑢∈V𝐿
as the training set, GNN for node classification is to take the graph

𝐺 and labeled nodes as input and learn a node classifier that maps

each node 𝑢 ∈ V \ V𝐿 to a class 𝑦 ∈ Y. In this paper, we focus on

Graph Convolutional Network (GCN) [20], a widely used type of

GNN, and its special case Simple Graph Convolution (SGC) [41].

GCN.GCN ismotivated by spectral graph convolution [10]. Suppose

GCN has 𝐾 layers. We denote node 𝑣 ’s representation in the 𝑘-th

layer as h(𝑘 )𝑣 , where h(0)𝑣 = x𝑣 . Then, GCN has the following form

to update the node representation:

h(𝑘 )𝑣 = ReLU

(
W(𝑘 ) (∑︁

𝑢∈Γ𝑣
𝑑
−1/2
𝑢 𝑑

−1/2
𝑣 h(𝑘−1)𝑢

) )
. (1)

A node 𝑣 ’s final representation h(𝐾 )
𝑣 ∈ R |Y |

can capture the struc-

tural information of all nodes within 𝑣 ’s𝐾-hop neighbors. Moreover,

the final node representations of training nodes are used for training

the node classifier. Specifically, letΘ = {W(1) ,W(2) , · · · ,W(𝐾 ) } be
the model parameters and 𝑣 ’s output be 𝑓Θ (A)𝑣 = softmax(h(𝐾 )

𝑣 ) ∈
R |Y |

, where 𝑓Θ (A)𝑣,𝑦 indicates the probability of node 𝑣 being class
𝑦. Then, Θ are learnt by minimizing the cross-entropy loss on the

training nodes V𝐿 , i.e., Θ∗ = argminΘ −∑
𝑣∈V𝐿 ln 𝑓Θ (A)𝑣,𝑦 .With

the learnt Θ∗
, we can predict the label for each unlabeled nodes

𝑢 ∈ V \ V𝐿 as 𝑦𝑢 = argmax𝑦 𝑓Θ∗ (A)𝑢,𝑦 .
SGC. SGC is a linearized version of GCN. Specifically, its node

representation is updated as follows:

h(𝑘 )𝑣 = W(𝑘 ) (∑︁
𝑢∈Γ𝑣

𝑑
−1/2
𝑢 𝑑

−1/2
𝑣 h(𝑘−1)𝑢

)
. (2)

SGC has shown to have comparable node classification performance

with GCN, but is much more efficient than GCN.

Label Propagation (LP). LP is a conventional semi-supervised

node classification method without training. The key idea behind

LP is that two nodes having a high similarity (e.g., connected nodes

in a graph) are likely to have the same label. Thus, LP iteratively

propagates labels among the graph to unlabeled nodes based on

node-pair similarity. Let y𝑣 ∈ R |Y |
be node 𝑣 ’s initial label vector

(For notation reason, one should note that𝑦𝑣 is 𝑣 ’s categorical label).

For instance, y𝑣 can be 𝑣 ’s one-hot label vector if 𝑣 is a labeled node,

and y𝑣 = 0, otherwise. Then, LP is formulated as follows:

y(𝑘 )𝑣 =
∑︁

𝑢∈Γ𝑣
𝑑
−1/2
𝑢 𝑑

−1/2
𝑣 y(𝑘−1)𝑢 , y(0)𝑣 = y𝑣 . (3)

With 𝐾 iterations, an unlabeled node 𝑢 is predicted to be class 𝑐 , if

𝑐 = argmax𝑖 𝑦
(𝐾 )
𝑢,𝑖

.

GNN vs. LP: Viewing Eqn (3) and Eqns (1) and (2), we observe

that LP and GNNs have similar iterative processes: LP propagates

node labels y𝑣 , while GNNs propagate node features x𝑣 . The key
difference is that LP does not involve model parameters, while GNN

involves multiplying the parameter matrix W(𝑘 )
in each 𝑘-th layer.

Problem Definition. We consider targeted evasion attacks
3
to

GNNs. Suppose we are given a trained GNN model 𝑓Θ∗ for node

classification. We assume 𝑣 is the target node and 𝑐 is the target label.
We consider an attacker can perturb the graph structure (i.e., add

new edges to or delete existing edges from the graph) in order to

make 𝑓Θ∗ misclassify the target node 𝑣 to be the target label 𝑐 . We

call the modified edges by the attacker as attack edges. In particular,

we consider a practical direct attack [54], where an attacker can

only modify the edge status between 𝑣 and other nodes in the graph,

while cannot modify the edge status among other nodes. We denote

the perturbed graph as 𝐺̃ (with the perturbed adjacency matrix Ã)
after the attack and the attack budget as Δ, i.e., at most Δ edges can

be perturbed for the target node. Then, the objective function of

targeted evasion attacks to GNNs is formally defined as:

maxÃ𝑣

(
𝑓Θ∗ (Ã)𝑣,𝑐 − 𝑓Θ∗ (Ã)𝑣,𝑦𝑣

)
⇔ maxÃ𝑣

(
[ ˜h(𝐾 )
𝑣 ]𝑐 − [ ˜h(𝐾 )

𝑣 ]𝑦𝑣
)
,

𝑠 .𝑡 .,
∑︁

𝑠
|𝐴̃𝑣,𝑠 −𝐴𝑣,𝑠 | ≤ Δ, (4)

where
˜h(𝐾 )
𝑣 is 𝑣 ’s representation on the perturbed graph 𝐺̃ .

A target node is called a success to attack the GNN model if the

value of the attack’s objective function is larger than 0, under the at-

tack budget. Note that Equation (4) is a binary optimization problem

and is challenging to solve in practice. Zügner et al. [54] proposed

an optimization-based attack method, called Nettack, against two-

layer GCN. Specifically, Nettack attacked a substitute GNN model

(actually SGC) that removed the ReLU activation function in GCN.

Nettack has achieved state-of-the-art attack performance. However,

it is inefficient as it involves dense matrix multiplication (i.e., model

parameters multiply node features); it also needs to know model

parameters Θ∗
, and can only attack two-layer GNNs.

4 INFLUENCE-BASED EVASION ATTACK
In this section, we propose our evasion attack against GNNs via in-

fluence function. In contrast to existing optimization-based attacks

that only focus on two-layer GNNs, our attack is applicable to any-

layer GNNs. Specifically, we first define two influence functions

associated with GNNs and LP, respectively, and build an equiva-

lence relation between GNNs and LP with the defined influences.

Next, we reformulate the attack objective function as relating to la-

bel influence defined on LP. Finally, we design an efficient algorithm

to calculate label influence and realize our attack.

4.1 Equivalence between GNNs and LP in terms
of Influence

4.1.1 Motivation. Due to GNN’s complex network structure, exist-

ing optimization-based evasion attacks can only attack two-layer

GNNs directly. However, we note that LP has a similar iterative

process to GNNs, but it has good properties, e.g., LP does not in-

volve model parameters. Motivated by this, we aim to discover an

3
As untargeted attacks are less powerful than targeted attacks, we only consider

targeted attacks in this paper for simplicity.
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equivalence relation between LP and GNNs, such that the challeng-

ing problem of attacking multi-layer GNNs can be converted to

a relatively easier problem by leveraging good properties of LP.

We notice that influence function [21, 46] is an appropriate tool

to bridge the gap, and our purpose is to explore equivalent influ-

ence functions defined on LP and on GNNs, respectively. As the

attacker’s goal is to change the target node’s label, we thus need to

define influences associated with the node label. As LP propagates

node labels, we can naturally design the label influence function
(see Equation (6)). In addition, GNNs involve propagating node fea-

tures. In order to also leverage node labels, we integrate both node

features and labels and design the feature-label influence function
(see Equation (5)). Next, we introduce our influence functions.

4.1.2 Influence function. Given two nodes 𝑢 and 𝑣 , an influence of

𝑢 on 𝑣 indicates how the output (e.g., final node representation in

GNNs or estimated node label in LP) of 𝑣 changes if the input of 𝑢

is slightly perturbed. Inspired by [21, 46], we define the following

feature-label influence on GNN and label influence on LP.

Definition 1 (Feature-label influence). We define the feature-label
influence of node 𝑢 on node 𝑣 associated with 𝑢’s label on a 𝐾-layer
GNN as follow:

𝐼𝑓 𝑙 (𝑣,𝑢;𝐾 ) =



[ 𝜕h(𝐾 )

𝑣

𝜕h(0)
𝑢

· h(0)
𝑢

]
𝑦𝑢





1

= 1𝑇𝑦𝑢 · 𝜕h
(𝐾 )
𝑣

𝜕h(0)
𝑢

· h(0)
𝑢 , (5)

where 1𝑦𝑢 = [𝑦1, 𝑦2, · · · , 𝑦𝑛] is an indicator vector where 𝑦𝑖 = 1

if 𝑖 = 𝑢 and 𝑦𝑖 = 0, otherwise; ∥ · ∥1 is the vector ℓ𝑙 -norm; 𝑇 is a
transpose; and h(0)𝑢 = x𝑢 is 𝑢’s node features.

Definition 2 (Label influence). We define the label influence of node
𝑢 on node 𝑣 after 𝐾 iterations of label propagation as follows:

𝐼𝑙 (𝑣,𝑢;𝐾 ) = 𝜕𝑦
(𝐾 )
𝑣

𝜕𝑦
(0)
𝑢

. (6)

Then, we have the following theorem showing the equivalence

between GNN and LP in terms of influence.

Theorem 4.1. If the GNN is a GCN/SGC, then:

𝐼𝑓 𝑙 (𝑣,𝑢;𝐾) = 𝐶 · 𝐼𝑙 (𝑣,𝑢;𝐾), (7)

where 𝐶 = 𝜌1𝑇𝑦𝑢 [
∏𝐾
𝑙=1

W(𝑙 ) ]x𝑢 is constant related to GNN model
parameters Θ = {W(𝑙 ) } and 𝑢’s node features x𝑢 .

Theorem 4.1 reveals that: given arbitrary node 𝑣 , the feature-

label influence defined on𝐾-layer GCN/SGC of any other node𝑢 on

the node 𝑣 and the label influence defined on 𝐾-iteration LP of node

𝑢 on the node 𝑣 are equal (with a constant multiplier difference).

4.2 Reformulate Evasion Attacks to Any-Layer
GNNs as Calculating Label Influence on LP

Based on our influence functions and Theorem 4.1, we can first

restate the challenging problem of attacking 𝐾-layer GNNs in Equa-

tion (4) in the form of feature-label influence, and further convert

it to an equivalent problem related to label influence on LP. Before

going into details, we first introduce the following lemma:

Lemma 1 (Xu et al.[46]). Given a 𝐾-layer GCN. Assume all paths
in the computation graph of the GCN model are activated (i.e., via

ReLU) with the same probability of success 𝜌 . Then,

𝜕h(𝐾 )
𝑣

𝜕h(0)
𝑢

= 𝜌

𝛹𝑣→𝑢∑︁
𝑝=1

1∏
𝑙=𝐾

𝑎
𝑣𝑙𝑝 ,𝑣

𝑙−1
𝑝

· W(𝑙 ) , (8)

where𝛹𝑣→𝑢 is the total number of paths [𝑣𝐾𝑝 , 𝑣𝐾−1
𝑝 , · · · , 𝑣1𝑝 , 𝑣0𝑝 ] of

length 𝐾 + 1 from node 𝑣 to the node 𝑢 with 𝑣𝐾𝑝 = 𝑣 and 𝑣0𝑝 = 𝑢. For

𝑙 = 1, · · · , 𝐾 , 𝑣𝑙−1𝑝 ∈ 𝑁
(
𝑣𝑙𝑝

)
, 𝑎
𝑣𝑙𝑝 ,𝑣

𝑙−1
𝑝

= 𝑑
− 1

2

𝑣𝑙𝑝
𝑑
− 1

2

𝑣𝑙−1𝑝

is the normalized

weight of the edge (𝑣𝑙𝑝 , 𝑣𝑙−1𝑝 ) in the path 𝑝 .Θ = {W(𝑙 ) } is the𝐾-layer
GCN model parameters.

Then, according to Equation (8) in Lemma 1, the target node 𝑣 ’s

final node representation
˜h(𝐾 )
𝑣 learnt on the perturbed graph 𝐺̃ can

be expressed as
˜h(𝐾 )
𝑣 =

∑
𝑢∈Λ̃(𝐾 )

𝑣

𝜕 ˜h(𝐾 )
𝑣

𝜕h(0)
𝑢

· h(0)𝑢 , where Λ̃(𝐾 )
𝑣 is the

node set containing 𝑣 ’s neighbors within 𝐾-hop on the perturbed

graph 𝐺̃ , i.e., after modifying the edge status between the target

node 𝑣 and other nodes in the clean graph 𝐺 .

Then, the attack’s objective function in Equation (4) is equivalent

to the following objective function:

max

Ã𝑣

(
[

∑︁
𝑢∈Λ̃(𝐾 )

𝑣

𝜕 ˜h(𝐾 )
𝑣

𝜕h(0)
𝑢

· h(0)
𝑢 ]𝑐 − [

∑︁
𝑢∈Λ̃(𝐾 )

𝑣

𝜕 ˜h(𝐾 )
𝑣

𝜕h(0)
𝑢

· h(0)
𝑢 ]𝑦𝑣

)
𝑠.𝑡 .,

∑︁
𝑠
|𝐴̃𝑣,𝑠 − 𝐴𝑣,𝑠 | ≤ Δ, (9)

Finally, based on the following Assumption 1 and Theorem 4.1,

we reach Theorem 4.2 that reformulates the evasion attack’s objec-

tive function via label influence. We also conduct experiments (See

Section 5.2) to verify that Assumption 1 holds in practice.

Assumption 1. Given a target node 𝑣 and a target label 𝑐 . We assume
that any node 𝑢, within the 𝐾-hop neighbor of 𝑣 , has a negligible
feature-label influence on 𝑣 if 𝑢 is not a label-𝑐 node. Formally,

[ 𝜕
˜h(𝐾 )
𝑣

𝜕h(0)𝑢

· h(0)𝑢 ]𝑐 ≈ 0, ∀𝑢 ∈ Λ̃(𝐾 )
𝑣 , 𝑦𝑢 ≠ 𝑐. (10)

Theorem 4.2. Let 𝐼𝑙 (𝑣,𝑢;𝐾) be the label influence of node 𝑢 on
the target node 𝑣 with 𝐾 iterations of LP after the attack. Then, the
attack’s objective function in Equation (4) equals to the following
objective function on label influence:

max

Ã𝑣

( ∑︁
𝑢∈Λ̃(𝐾 )

𝑣 ,𝑦𝑢=𝑐

𝐼𝑙 (𝑣,𝑢;𝐾 ) −
∑︁

𝑧∈Λ̃(𝐾 )
𝑣 ,𝑦𝑧=𝑦𝑣

𝐼𝑙 (𝑣, 𝑧;𝐾 )
)
,

𝑠 .𝑡 .,
∑︁

𝑠
|𝐴̃𝑣,𝑠 − 𝐴𝑣,𝑠 | ≤ Δ, (11)

where 𝐼𝑙 (𝑣,𝑢;𝐾) is defined as:

𝐼𝑙 (𝑣,𝑢;𝐾 ) =
𝛹̃𝑣→𝑢∑︁
𝑝=1

1∏
𝑙=𝐾

˜𝑑
− 1

2

𝑣𝑙𝑝

˜𝑑
− 1

2

𝑣𝑙−1𝑝

, (12)

where 𝛹̃𝑣→𝑢 is the total number of paths [𝑣𝐾𝑝 , 𝑣𝐾−1
𝑝 , · · · , 𝑣1𝑝 , 𝑣0𝑝 ] of

length 𝐾 + 1 from 𝑣 to 𝑢 on the perturbed graph 𝐺̃ , where 𝑣𝐾𝑝 = 𝑣 and

𝑣0𝑝 = 𝑢. ˜𝑑𝑢 is 𝑢’s degree on the perturbed graph 𝐺̃ and ˜𝑑
− 1

2

𝑣𝑙𝑝

˜𝑑
− 1

2

𝑣𝑙−1𝑝

is the

normalized weight of the edge (𝑣𝑙𝑝 , 𝑣𝑙−1𝑝 ) in path 𝑝 in 𝐺̃ .
We have the following observations from Theorem 4.2.

• Our attack does not need to operate on model parameters

Θ∗
, different from existing attacks that involve dense multi-

plication on Θ∗
. Thus, our attack is more efficient.
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• Our attack can be applied to any layer GNN, as the label

influence is defined for general 𝐾-iteration LP. However,

most of the existing attacks can only directly attack two-

layer GNNs. Thus, our attack is more practical.

• The only information our attack needs to know is the target

node 𝑣 ’s within 𝐾-hop neighbors, whose labels are 𝑦𝑣 or 𝑐 .

In practice, if the labels of these node are unknown, we can

estimate them via querying the GNN model, and treat the

estimated labels as the true labels. Thus, our attack can be

seen a restricted black-box attack.

Next, we show how to fast calculate the label influence and

design our influence-based targeted evasion attack.

4.3 Efficient Calculation of Label Influence
According to Theorem 4.2, the attack’s goal is to select the minimum

set of nodes such that when changing the edge status between the

target node 𝑣 and these selected nodes, the difference between the

two label influence terms will be maximized. Observing Equation

(11), we note that the two label influence terms are defined on two

sets of nodes: a set of nodes having the same label as the target label

𝑐 , and a set of nodes having the same label as the target node’s label

𝑦𝑣 . Intuitively, if we add an edge between 𝑣 and a label-𝑐 node, we

can make 𝑣 be close to label 𝑐 ; and if we remove an edge between 𝑣

and a label-𝑦𝑣 node, we can make 𝑣 away from label 𝑦𝑣 . Thus, our

idea to solve Equation (11) is as follows:

• First, we define a candidate set N𝐴 ⊂ {𝑦𝑢 = 𝑐,𝑢 ∈ Λ(𝐾 )
𝑣 } which

contains label-𝑐 nodes that are not connected with 𝑣 in the clean

graph, as well as a candidate set N𝐵 ⊂ {𝑦𝑧 = 𝑦𝑣, 𝑧 ∈ Λ(𝐾 )
𝑣 }

which contains label-𝑦𝑣 nodes that are connected with 𝑣 in the

clean graph. We denote S as the final selected nodes from N𝐴
and N𝐵 , and initialize S = {}. For each node 𝑢 ∈ N𝐴 ∪ N𝐵 \ S,
we change the edge status between 𝑣 and 𝑢 and compute the gap

between two label influence terms.

• Next, we record the node 𝑢∗ that obtains the largest positive gap.
Then, we modify the edge status between 𝑣 and 𝑢∗, calculate the
value of the attack’s objective function, and update S = S∪{𝑢∗}.

• We repeat above steps at most Δ times and break if the value of

attack’s objective function is bigger than 0. Finally, we have the

attack edges {(𝑣,𝑢∗), 𝑢∗ ∈ S}.
However, note that when modifying the edge status between

𝑣 and 𝑢∗, the normalized weight for all edges containing 𝑢∗ in all

paths 𝛹̃𝑣→𝑢 in Equation (12) should be recalculated. When the

candidate set has a large size or/and the number of recalculated

edge weights is large, calculating the exact label influence will

have a large computational complexity. To solve the problem, we

propose an approximate algorithm to efficiently compute the label

influences. More details are in Supplementary Material.

Algorithm 1 in the full report illustrates how we efficiently calcu-

late the label influences via depth first search (DFS), and Algorithm 2

in the report shows the details of implementing our attack.

5 EVALUATION
5.1 Experimental Setup
Datasets. Following [13, 44, 54], we use three benchmark graphs

(i.e., Cora, Citeseer, and Pubmed) [29] to evaluate our attack. In

these graphs, each node represents a documents and each edge

indicates a citation between two documents. Each document treats

the bag-of-words feature as the node feature vector, and has a label.

Table 5 in the full version shows basic statistics of these graphs.

Training nodes and target nodes. We use the public training

nodes to train GNN models, and target nodes to evaluate attacks

against the trained GNN models. For the target nodes, we employ

a random sampling technique to select 100 nodes that are correctly

classified by each GNN model as the target nodes. Similar to Net-

tack [54], for each target node, we choose the predicted label by the

GNN model with a second largest probability as the target label.

Compared attacks. We compare our influence-based attack with

the state-of-the-art Nettack [54] for attacking two particular GNNs:

GCN and SGC. Note that Nettack is mathematically designed to

only attack two-layer GNNs and cannot directly attack multi-layer

GNNs. To attack multi-layer GNNs, Nettack needs to be performed

via an indirect way: It first attacks a surrogate two-layer GNN to

generate the attack edges, and then transfers these attack edges

to attack the target multi-layer GNNs. When computing the label

influence, our attack needs to know the labels of unlabeled nodes

in the graph. When our attack knows the the true labels, we denote

it as Ours-KL. When the true labels are unknown, our attack first

queries the learnt GNNmodel to estimate labels for unlabeled nodes

and then uses the estimated labels as the true labels. We denote

this variant as Ours-UL. As a comparison, we also test our attack

that is implemented based on exact label influence calculation, and

denote the corresponding two methods with known and unknowns

labels as Ours (exact)-KL and Ours (exact)-UL, respectively.
Evaluation metric. For graph perturbation attacks, we adopt at-

tack success rate and running time as the metrics. Given a target

GNN model, a set of target nodes, target label, and an attack bud-

get Δ, attack success rate is the fraction of target nodes that are

misclassified by the target GNN to be the target label when the

number of attack edges per target node is at most Δ. Running time

is reported on average across all the target nodes.

Implementation. We train all GNNs using the public source

code. We test Nettack using the source code (https://github.com/

danielzuegner/nettack).We implement our attack in PyTorch. All ex-

periments are conducted on an A6000 GPU with 48G memory. Due
to space limitation, we only show comparison results with GCN, and all
results are in the full version: https://github.com/ventr1c/ InfAttack.

5.2 Results on Attacking Two-layer GNNs
Results on attacking two-layer GCN/SGC.We compare all at-

tacks in terms of effectiveness (i.e., attack success rate) and effi-

ciency (i.e., running time) against two-layer GCN/SGC. Figure 1

and Figure 7 in the full version show the attack success rate against

GCN and SGC on the three graphs, respectively. Moreover, Figure 2

and Figure 8 in the full version show the running time of all attacks

against GCN and SGC on the three graphs, respectively. We have

the following key observations.

• Our attacks based on approximate label influence have similar
performance with those based on exact label influence, but is much
more efficient. Specifically, the difference of the attack success

rate between the two is less than 2% in all cases. This shows that

our proposed efficient algorithm for label influence calculation
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Figure 1: Attack success rate vs. attack budget per target node on a two-layer GCN of all compared attacks on the three graphs.

2 4 6 8 10
Attack budget

0

2

4

6

8

10

12

R
un

ni
ng

tim
e

pe
r

no
de

(s
)

0.25

0.50

0.75

Nettack
Ours (exact)-KL
Ours-KL
Ours (exact)-UL
Ours-UL

(a) Cora

2 4 6 8 10
Attack budget

0

3

6

9

12

15
R

un
ni

ng
tim

e
pe

r
no

de
(s

)

0.5

1.0

1.5

Nettack
Ours (exact)-KL
Ours-KL
Ours (exact)-UL
Ours-UL

(b) Citeseer

2 4 6 8 10
Attack budget

0

40

80

120

160

200

R
un

ni
ng

tim
e

pe
r

no
de

(s
)

10
20
30

Nettack
Ours (exact)-KL
Ours-KL
Ours (exact)-UL
Ours-UL

(c) Pubmed

Figure 2: Running time vs. attack budget per target node on two-layer GCN of all compared attacks on the three graphs.

is effective enough. Moreover, our attacks based on approximate

label influence are 1-2 orders of magnitude more efficient than

those based on exact label influence.

• Our attacks with true labels and with estimated labels have similar
performance. Specifically, the difference of the attack success rate
between Ours-KL and Our-UL is negligible, i.e., less than 2% in

all cases, and the running time of both Ours-KL and Our-UL are

almost the same. One reason is that the trained GNN model has

accurate predictions on the unlabeled nodes, and thus most of

the estimated labels match the true labels. One should note that

Ours-UL knows very limited knowledge about the GNN model

and thus it is a very practical attack.

• Our attacks achieve comparable performance with Nettack. Nettack
achieves state-of-the-art attack performance against two-layer

GCN. Our attacks have a slightly lower attack success rate than

Nettack when the attack budget is small, e.g., less than 4. This

is possibly because our attack use some approximations on As-

sumption 1, and when the attack space is small, Assumption 1

negatively affects the attack effectiveness to some extent. How-

ever, when the attack budget is larger than 4, our attacks obtain

almost the same performance with Nettack.

• Our attacks are much more efficient than Nettack. Specifically,
our attacks have a 5-50x speedup over Nettack across the three

graphs. As the attack budget increases (from 2 to 10) or the

graph size increases (from Cora to Pubmed), our attacks achieve

better efficiencies. The reasons are two-fold. First, Nettack needs

to multiply GNN model parameters in different layers, while

our attacks do not. Second, Nettack involves multiplying the

node hidden features, while ours is performed by calculating the

label influence. Node hidden features are often high-dimensional,

while label influence only needs scalar edge weights products.
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Figure 3: Fraction of the added edges among all attack edges
generated by our attacks against a two-layer GCN vs. attack
budget per target node.

Analysis of the attack edges. We further analyze the properties

of the attack edges. Figure 3 and Figure 9 in the full version show

the fraction of the added edges generated by our attacks against

two-layer GCN and two-layer SGC, respectively. First, Ours-KL

and Ours-UL generate almost the same fraction of added edges in

all attack budgets and all graphs. This again verifies the similar

characteristics between Ours-KL and Ours-UL. Second, the fraction

of added edges is larger than 0.5 in all cases. This indicates that

when performing the targeted attack, adding new edges between

the target node and the nodes with the target label could be more

effective than removing existing edges between the target node and

the nodes having the same label as the target node.

Analysis of the factors that affect the attack performance.
We consider the following three factors, i.e., node degree, node cen-
trality, and graph size, that could affect the target node’s attack

performance. Here, we adopt the normalized closeness centrality
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Figure 4: (a) Attack success rate and (b) Running time of our
attacks against four-layer GCN on the three graphs.

(NCC) as the metric to measure node centrality. Specifically, the

NCC of a node is the average length of the shortest path between

the node and all other nodes in the graph. We have the following

conclusions: 1) Nodes with smaller degrees are easier to attack. Given
a fixed attack budget (e.g., 4 in our experiment), we observe that in

all the three datasets, 100% of the target nodes with degree <= 4

attack successfully, while at most 83% and 85% of the target nodes

with degree > 4 attack successfully against 2-layer GCN and 2-layer

SGC, respectively. 2) Nodes with larger centrality are easier to attack.
We assume the attack budget is 4 per node. Specifically, 100% and

98% of the 50 target nodes with the largest NCC successfully attack

2-layer GCN and 2-layer SGC in the three datasets, while < 90% and

< 80% of the 50 target nodes with the smallest NCC can successfully

perform the attack. 3) No obvious relationship between graph size
and attack success rate. Specifically, graph size: Pubmed > Citeseer

> Cora. When attacking 2-layer GCN and the attack budget is 6, we

have the attack success rate: Cora (0.98) > Citeseer (0.96) > Pubmed

(0.87). However, when the attack budget is 10, we have the attack

success rate: Pubmed (1.00) > Citeseer (0.99) > Cora (0.98).

5.3 Results on Attacking Multi-layer GNNs
Attack performance on four-layer GCN/SGC. In this experi-

ment, we evaluate our attacks against multi-layer GCN/SGC. We

denote Nettack that attacks a surrogate two-layer GNN model first

and then transfers to attacking the target model as Surrogate. Fig-
ure 4(a) and Figure 10(a) in the full version show the attack success

rate of our attack vs. attack budget against four-layer GCN and

four-layer SGC on the three graphs, respectively. First, similarly,

our attacks with both known label and unknown label are effective

and achieve close attack performance, and we thus show results

with unknown label for simplicity. When the attack budget is 6,

our attacks achieve an attack success rate of ≥ 90% in all cases.

Second, our attacks are more effective than the indirect surrogate
model based attacks. Specifically, our attacks have more than 10%

higher attack success rate than the surrogate model based attacks

in almost all cases.

Moreover, Figure 4(b) and Figure 10(b) in the full version shows

the running time of our attacks vs. attack budget against four-layer

GCN and four-layer SGC on the three graphs, respectively. Our

attack is efficient. For instance, it takes our attacks less than 25𝑠 on

average to attack a target node on the largest Pubmed in all cases.

However, the surrogate model costs about 85𝑠 , validating that our

attack is much more efficient.

Table 1: Transferability of our attacks against two-layer GCN
to other GNNs. Attack budget per target node is 6.

Dataset Source Target

Cora

GCN GCN SGC GAT JK-Net
No attack 0 0.01 0.03 0.02

Ours-KL 0.98 0.82 0.66 0.67

Ours-UL 0.98 0.84 0.65 0.70

Citeseer

GCN GCN SGC GAT JK-Net
No attack 0 0.01 0.01 0.03

Ours-KL 0.96 0.78 0.70 0.63

Ours-UL 0.96 0.78 0.72 0.63

Pubmed

GCN GCN SGC GAT JK-Net
No attack 0 0.03 0.04 0.05

Ours-KL 0.89 0.80 0.80 0.79

Ours-UL 0.88 0.80 0.80 0.77

Table 2: Attack results of Ours-KL on OGB-arxiv.

Attack budget 2 4 6 8 10 Time
Nettack OOM OOM OOM OOM OOM -

Ours-GCN 0.65 0.72 0.73 0.73 0.82 40.1s

Ours-SGC 0.90 0.93 0.95 0.95 0.96 40.7s

Transferring our attack to other GNNs. In this experiment, we

study the transferability of our attacks, i.e., whether the attack edges

generated by our attacks against GCN/SGC can be also effective

for other GNNs. Specifically, we use our attacks to generate the

attack edges for each target node by attacking the source GNN

(GCN or SGC), change the graph structure based on the attack

edges, and adopt a target GNN to classify each target node on the

perturbed graph. We select two additional representative GNNs,

i.e., GAT [36] and JK-Net [46], as the target GNN. If a target node is

also misclassified by the target GNN to be the target label, we say

the attack edges generated by the source GNN are transferable.

Table 1 and Table 7 in the full version show the attack success

rate of transferring of our attacks against two-layer GCN and two-

layer SGC to attack other GNNs on the three graphs, where the

attack budget per target node is 6. Note that we also show the attack

performance for target GNNs without attack, i.e., the prediction

error of target GNNs on the target nodes in the clean graph.We have

the observations: First, our attacks against GCN (or SGC) have the

best transferability to SGC (or GCN). This is because SGC is a special

case of GCN and they share similar model architectures. Second, our

attacks are also effective against GAT and JK-Net. Specifically, on all

the three graphs, our attacks can increase the classification errors

by at least 60% when attacking GAT and JK-Net. This indicates that

all the attack edges generated by our attack on the source GNN can

be transferred to attack the target GNNs. Such good transferability

further demonstrates the advantages of using (label) influence to

perform the target evasion attacks.

6 DISCUSSIONS
Attack performance on a large-scale dataset.We conduct ex-

periments on the large-scale dataset OGB-arxiv [17] to demonstrate

the superior efficiency of our proposed attack method compared to
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Table 3: Comparing our attack vs. IG-FGSM [42] on Cora.

Model budget 2 4 6 8 10 Time

GCN
IG-FGSM 0.29 0.75 0.89 0.92 0.94 62s

Nettack 0.85 0.96 0.97 0.97 0.97 1.5s

Ours 0.90 0.93 0.95 0.95 0.96 0.1s

Table 4: Comparing our attack vs. black-box attack [39].

GCN budget 2 4 6 GCN budget 2 4 6

Cora Ours 0.81 0.94 0.98 Citeseer Ours 0.86 0.94 0.95

[39] 0.68 0.79 0.80 [39] 0.84 0.91 0.92

baselines. We use a 2-layer GCN/SGC as the target GNN, achieving

a clean accuracy of approximately 60% on test nodes. The attack

method is set as Ours-KL. Note that time is denoted as the average

running time of compared attack methods across the five attack

budgets. We assess the attack performance on 100 target nodes

that are accurately classified by GCN/SGC. The comparison results

between Nettack and our attack are presented in Table 2. We ob-

serve that 1)Nettack encounters an out-of-memory (OOM) error on

our platform due to the need for storing dense model weights and

involving intensive matrix-matrix multiplication. 2) Our attacks
achieve highly promising attack success rates while maintaining

efficiency. Specifically, with an attack budget of 6, the attack success

rates of Ours-KL against GCN and SGC are 73% and 95%, respec-

tively. These results demonstrate the significant advantages of our

attack method over baselines on large graphs.

Comparing with more attack baselines. To further demonstrate

the effectiveness of our attack, we compare Ours-KL with a more

recent attack IG-FGSM [42], where we use the same setting as that

in Section 5.2 (i.e., 2-layer GCN/SGC as the target GNN, 100 target

nodes). The comparison results on Cora are reported in Table 3

and Table 8 in the full report. Note that time is denoted as the

average running time of compared attack methods across the five

attack budgets. We observe that: 1) Nettack not only outperforms

IG-FGSM when the attack budget is small, but also is far more

efficient than IG-FGSM. Specifically, when the attack budget is 2,

the attack success rates of IG-FGSM agasint GCN and SGC are

only 0.29 and 0.32, respectively, which are significantly lower than

that of Nettack, 0.85 and 0.65. Moreover, the running times of IG-

FGSM against GCN and SGC are 62s and 55s, respectively, which

are much lower than that of Nettack, 1.5s and 2.5s, respectively. 2)
Our method is even more efficient than Nettack. Specifically, when

attacking GCN and SGC, the running time of our method is only

0.1s, which is lower than other two methods, further validating the

efficiency of our method.

Comparing with black-box attacks. In the paper, we mainly

compare our attack with the white-box attack. Here we also com-

pare with the stringent black-box attacks proposed in [39]. To best

explore the attack capability, we do not restrict the number of

queries in [39], and obtain the optimal attack successful rate for a

given attack budget. Table 4 and Table 9 in the full version show

the comparison results on Cora and Citeseer (Note that [39] cannot

run on Pubmed due to limited GPU memory) on attacking 2-layer

GCN/SGC. We can see that our attack is more effective than [39],

especially when the attack budget is small. One key reason is that

our attack utilizes the strong connection between GNN and LP,
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Figure 5: Certified accuracy [38] vs. attack budget of GCN.

while [39] performs the attack based on the query feedback, i.e., the

target node’s confidence score after querying the black-box GNN.

Defending against our attack. As shown in Section 2, existing

empirical defenses [11, 13, 19, 42, 48, 51, 53] are broken [27] when

the adversary knows the defense mechanism. Hence, we propose to

defend our attack via provable defenses and choose the state-of-the-

art randomized smoothing-based provable defense [38]. Specifically,

given a target node, a model is provably robust for the target node

if the model correctly predicts the same label for the target node

when the attacker arbitrarily modifies a bounded number of (e.g.,

at most 𝑅) edges in the graph, where 𝑅 is called certified radius.
Hence, provably robust models can defend against the worst-case

attack (including our attack). Accordingly, certified accuracy under

𝑅means the fraction of target nodes that are predicted accurately by

modifying any 𝑅 edges. That is, if a model achieves a larger certified

accuracy at a given budget, it shows better provable robustness.

We conduct experiments on defending two-layer GCN against the

worst-cast attack via [38]. Results on the three datasets are shown

in Figure 5. We can see that, when any 4 edges are allowed to be

modified, the certified accuracy achieved by the method [38] on the

three datasets are about 0.50, 0.55, and 0.70, respectively. However,

the method [38] cannot provably defend against the worst-case

attack when the attack budget is larger than 13, which implies the

need to design more powerful provable defenses.

7 CONCLUSION
We propose an influence-based evasion attack against GNNs. Specif-

ically, we first build the connection between GNNs and label prop-

agation (LP) via carefully designed influence functions. Next, we

reformulate the attack against GNNs to be related to label influence

on LP. Then, we design an efficient algorithm to calculate label

influences. Our attack is applicable to any-layer GNNs and does

not need to know the GNN model parameters. Experimental re-

sults demonstrate that our attack achieves comparable performance

against state-of-the-art white-box attacks, and has a 5-50x speedup

when attacking two-layer GCNs. Our attack is also effective to

attack multi-layer GNNs and is transferable to other GNNs.
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Ethical considerations: Our work studies the vulnerability of

graph neural networks, and it could probably have both a negative

and a positive impact. From the negative side, our findings will

inspire attackers to perform malicious activities against real-world

systems. For instance, a malicious user in a social network (e.g,

Twitter) can leverage our attack to make him avoid being detected

by the malicious user detection system. Then, he can perform mali-

cious activities, e.g., spreading fake news and distributing phishing

attacks among the social network. From the positive side, our work

will inspire following works to design more robust graph neural

networks against adversarial attacks. All datasets and codes we

used in the paper are publicly available. Our work is mainly for

research purpose and complies with ethical standards. Therefore, it

does not have any negative ethical impact on society.
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