Check for
Updates

Efficient, Direct, and Restricted Black-Box Graph Evasion Attacks
to Any-Layer Graph Neural Networks via Influence Function

Binghui Wang”
bwang70@iit.edu
Ilinois Institute of Technology
Chicago, USA

Minhua Lin*
mfl5681@psu.edu
The Pennsylvania State University
State College, USA

Tianxiang Zhou"
tianxiangzhou@hust.edu.cn
Huazhong University of Science and
Technology
Wuhan, China

Pan Zhou Ang Li Meng Pang
panzhou@hust.edu.cn angliece@umd.edu mengpang@ncu.edu.cn
Huazhong University of Science and University of Maryland Nanchang University

Technology
Wuhan, China

College Park, USA

Nanchang, China

Hai Li Yiran Chen
haili@duke.edu yiran.chen@duke.edu
Duke University Duke University
Durham, USA Durham, USA
ABSTRACT CCS CONCEPTS

Graph neural network (GNN), the mainstream method to learn on
graph data, is vulnerable to graph evasion attacks, where an attacker
slightly perturbing the graph structure can fool trained GNN models.
Existing work has at least one of the following drawbacks: 1) limited
to directly attack two-layer GNNs; 2) inefficient; and 3) impractical,
as they need to know full or part of GNN model parameters.

We address the above drawbacks and propose an influence-based
efficient, direct, and restricted black-box evasion attack to any-layer
GNNss. Specifically, we first introduce two influence functions, i.e.,
feature-label influence and label influence, that are defined on GNNs
and label propagation (LP), respectively. Then we observe that
GNN s and LP are strongly connected in terms of our defined influ-
ences. Based on this, we can then reformulate the evasion attack
to GNNs as calculating label influence on LP, which is inherently
applicable to any-layer GNNs, while no need to know information
about the internal GNN model. Finally, we propose an efficient algo-
rithm to calculate label influence. Experimental results on various
graph datasets show that, compared to state-of-the-art white-box
attacks, our attack can achieve comparable attack performance, but
has a 5-50x speedup when attacking two-layer GNNs. Moreover,
our attack is effective to attack multi-layer GNNs!.

*These authors contribute equally to this paper
ISource code and full version is in the link: https://github.com/ventric/InfAttack

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM °24, March 4-8, 2024, Merida, Mexico

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0371-3/24/03...$15.00
https://doi.org/10.1145/3616855.3635826

693

« Security and privacy; - Computing methodologies — Ma-
chine learning;

KEYWORDS
graph neural network, label propagation, attack, influence function

ACM Reference Format:

Binghui Wang, Minhua Lin, Tianxiang Zhou, Pan Zhou, Ang Li, Meng Pang,
Hai Li, and Yiran Chen. 2024. Efficient, Direct, and Restricted Black-Box
Graph Evasion Attacks to Any-Layer Graph Neural Networks via Influence
Function. In Proceedings of the 17th ACM International Conference on Web
Search and Data Mining (WSDM °24), March 4-8, 2024, Merida, Mexico. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3616855.3635826

1 INTRODUCTION

Learning with graph data, such as social networks, biological net-
works, financial networks, has drawn continuous attention re-
cently. Graph neural network (GNN) has become the mainstream
methodology for representation learning on graphs. GNN was
first introduced in [28], which extended conventional neural net-
work to process graph data. Then, various GNN methods have
been proposed and achieved state-of-the-art performance in many
graph-related tasks such as node classification [20, 36, 45], graph
classification [15, 16], and link prediction [47]. However, recent
works [8, 12, 25, 26, 31, 37, 39, 40, 42, 44, 54, 55] show that GNNs
are vulnerable to graph evasion attacks—Given a target node and
a trained GNN model, an attacker slightly perturbing the graph
structure? (e.g., add new edges to or delete existing edges from
the graph) can make the GNN model misclassify the target node.
Existing attacks to GNNs can be roughly classified as optimization-
based attacks [39, 42, 44, 54] and reinforcement learning (RL)-based
attacks [8, 12, 31].

2An attacker can also perturb node features to perform the attack. However, structure
perturbation is shown to be much more effective than node feature perturbation [54].

https://github.com/ventr1c/InfAttack
https://doi.org/10.1145/3616855.3635826
https://doi.org/10.1145/3616855.3635826
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616855.3635826&domain=pdf&date_stamp=2024-03-04

WSDM °24, March 4-8, 2024, Merida, Mexico

In this paper, we focus on optimization-based attacks, as they
are shown to be more effective [54]. Optimization-based attacks
first formulate the graph evasion attack as a binary optimization
problem, which is challenging to solve, and then design approximate
algorithms to solve a tractable optimization problem. Although
achieving promising attack performance, existing optimization-
based attacks have one or more of the below key limitations:

o First, most of the existing attacks need to know the full/partial
GNN model parameters, which is unrealistic in many real-world
applications, e.g., when GNN models are confidential due to
their commercial value and are deployed as an API. Thus, the
practicability of the existing attacks are limited. Further, they
are mainly designed to attack two-layer GNNs, while GNNs are
multi-layer in essence. To attack multi-layer GNNs, they often
first indirectly attack a surrogate two-layer GNN model, and then
transfer the attack to the target multi-layer GNN. However, this
strategy is not effective enough (See Figure 4(a) in Section 5).

e Second, they are not efficient, as they involve intensive computa-
tion, i.e., by multiplying GNN model parameters of different lay-
ers and with node feature matrix. If a GNN has many layers, such
computation can be a bottleneck, especially for attackers who
have limited computational resources or/and want to perform
real-time attacks. For example, many fraud detection systems,
such as detecting fake users in social networks and detecting
anomalies from system logs, are updated frequently in order to
reduce the loss caused by the evasion attacks’ malicious activities.
In these scenarios, efficiency is a major concern for the attack and
an attacker performing efficient attacks is necessary, as otherwise
the detection system may have already updated and identified
the attack’s malicious patterns before the attack is implemented.

Our work: We aim to address the above limitations in this paper. To
this end, we propose an optimization-based evasion attack against
any-layer GNNs based on influence function [21]—a completely
different perspective from the existing works. Our influence-based
attack is motivated by the strong connection between GNNs and
label propagation (LP) [52]. Specifically, we first introduce two in-
fluence functions, i.e., feature-label influence and label influence,
that are defined on GNNs and LP, respectively. Then, we prove
that our label influence defined on LP is equivalent to feature-label
influence on a particular well-known type of GNN, called Graph
Convolutional Network (GCN) [20] (and its linearized version Sim-
ple Graph Convolutional (SGC) [41]). Based on this connection,
we reformulate the evasion attack against GNNs to be related to
calculating label influence on LP. As our influences are designed
for any-layer GNNS, our attack is inherently applicable to attack
any-layer GNNs. Note that label influence can be computed easily
and we also design an efficient algorithm to compute it. Further,
as our influence-based attack does not need to know any informa-
tion about the GNN model (except the target node’s neighboring
information), it is a more practical (restricted black-box) attack.
Finally, we evaluate our attack against GCN/SGC on three bench-
mark graph datasets. Compared to the state-of-the-art white-box
attacks against two-layer GCN/SGC, our attack can achieve com-
parable attack performance but has a 5-50x speedup. Our attack is
more effective to attack multi-layer GCN/SGC. For instance, our
attack achieves a 93% attack success rate, when perturbing 4 edges

694

Binghui Wang et al.

per target node on Cora, while the surrogate model based attack
only has 80% attack success rate. As a by product, our attack also
shows promising transferability to attack other GNNs, and is more
effective than existing black-box attacks.

Our contributions can be summarized as follows:

e We propose graph evasion attacks to GNNs based on influence
function, which is a completely new perspective.

e Our attack is effective, direct, efficient, and practical.

o Our attack has promising transferability.

2 RELATED WORK

Attacks to graph neural networks. Existing attacks to GNNs can
be classified as graph poisoning attacks [7, 8, 24, 31, 32, 43, 44, 49, 50,
54, 55] and evasion attacks [8, 25, 42, 54]. In poisoning attacks, an
attacker modifies the graph structure during the training process
such that the trained GNN model has a low prediction accuracy
on testing nodes. For instance, Xu et al. [44] developed a topology
poisoning attack based on gradient-based optimization. Evasion
attacks can be classified as untargeted attacks and targeted attacks,
where the latter is more challenging. Given a target node and a
trained GNN model, targeted attack means an attacker aims to per-
turb the graph structure such that the GNN model misclassifies the
target node to be a target label, while untargeted attack misclassi-
fies the target node to be an arbitrary label different from the target
node’s label. For instance, Dai et al. [8] leveraged reinforcement
learning techniques to design non-targeted evasion attacks to both
graph classification and node classification. Ziigner et al. [54] pro-
posed a targeted evasion attack, called Nettack, against two-layer
GCN and achieved the state-of-the-art attack performance. Specifi-
cally, Nettack learns a surrogate linear model of GCN by removing
the ReLU activation function and by defining a graph structure
preserving perturbation that constrains the difference between the
node degree distributions of the graph before and after attack. Our
label influence-based attack is a targeted evasion attack.

Most of the existing GNN attacks are white/gray-box. Recently,
two black-box attacks to GNNs [26, 39] have been proposed. For
instance, Wang et al. [39] formulate the black-box attack to GNNs as
an online optimization with bandit feedback. The original problem
is NP-hard and they then propose an online attack based on (relaxed)
bandit convex optimization which is proven to be sublinear to the
query number. Our attack is a restricted black-box attack, where
the attacker only needs to know the target node’s neighbors.
Attacks to other graph-based methods. Besides attacking GNNs,
other adversarial attacks against graph data include attacking graph-
based clustering [6], graph-based collective classification [35, 37],
graph embedding [1, 4, 5, 9, 30], community detection [22], etc.
For instance, Chen et al. [6] proposed a practical attack against
spectral clustering, which is a well-known graph-based clustering
method. Wang and Gong [37] designed an optimization-based at-
tack against the collective classification method, called linearized
belief propagation, by modifying the graph structure.

Defending against graph perturbation attacks. Existing de-
fenses against the graph perturbation attacks can be classified as
empirical defenses [11, 33, 34, 42, 44, 51] and provable defenses [2,
3, 18, 23, 38]. The empirical defenses are shown to be easily bro-
ken by stronger/adaptive attacks [14, 27]. Provable defenses study

Efficient, Direct, and Restricted Black-Box Graph Evasion Attacks to Any-Layer Graph Neural Networks via Influence Function

certified robustness of GNNs against the worst-case graph pertur-
bation attacks. For instance, Wang et al. [38] design a randomized
smoothing-based provable defenses that achieves a tight certified
robustness, when there are no assumptions about the GNN model.
[38] achieves the state-of-the-art provable defense performance.

3 BACKGROUND AND PROBLEM DEFINITION

Graph Neural Network. Let G = (V, &,X) be a graph, where
u € V is a node, (u,v) € & is an edge between u and v, and
X = [x1;X;- - ;Xn] € R™%d i5 the node feature matrix. We denote

I, as u’s node degree and the neighborhood set of u (including self-
loop (u, u)). We consider GNNs for node classification in this paper.
In this context, each node u has a label y,, from a label set Y =
{1,2,---,C}. Given a set of V; C V labeled nodes {(xu, yu) }uev;
as the training set, GNN for node classification is to take the graph
G and labeled nodes as input and learn a node classifier that maps
eachnode u € V \ Vj to a class y € Y. In this paper, we focus on
Graph Convolutional Network (GCN) [20], a widely used type of
GNN, and its special case Simple Graph Convolution (SGC) [41].

GCN. GCN is motivated by spectral graph convolution [10]. Suppose
GCN has K layers. We denote node v’s representation in the k-th

layer as hi(,k), where hz(,o) = Xp. Then, GCN has the following form
to update the node representation:

hgk) _ ReLU(W(k)(Zuerv d;l/zdv—l/zhl(lk—l)))‘)
A node v’s final representation hz(,K) e RIYI can capture the struc-
tural information of all nodes within o’s K-hop neighbors. Moreover,
the final node representations of training nodes are used for training
the node classifier. Specifically, let © = {W(l),W<2), S ,W(K)} be
the model parameters and v’s output be fg(A), = softmax(hz(,K)) €
RIY! where fo(A)qy,y indicates the probability of node v being class
y. Then, © are learnt by minimizing the cross-entropy loss on the
training nodes V, i.e., ® = argming — ¥ yey, In fg (A)y,y. With
the learnt ©®*, we can predict the label for each unlabeled nodes
u € V\Vas i, = argmaxy for(A)y,y-

SGC. SGC is a linearized version of GCN. Specifically, its node
representation is updated as follows:

k
T

v

a2y). @
SGC has shown to have comparable node classification performance
with GCN, but is much more efficient than GCN.

Label Propagation (LP). LP is a conventional semi-supervised
node classification method without training. The key idea behind
LP is that two nodes having a high similarity (e.g., connected nodes
in a graph) are likely to have the same label. Thus, LP iteratively
propagates labels among the graph to unlabeled nodes based on
node-pair similarity. Let y, € RIYI be node ’s initial label vector
(For notation reason, one should note that y, is v’s categorical label).
For instance, y, can be v’s one-hot label vector if v is a labeled node,
and y, = 0, otherwise. Then, LP is formulated as follows:

k ~1/2 - k-
P = 3 a7 D, 0 o

Yo =Yo-
With K iterations, an unlabeled node u is predicted to be class c, if

(K)

c=argmax;y,; .

695

WSDM °24, March 4-8, 2024, Merida, Mexico

GNN vs. LP: Viewing Eqn (3) and Eqns (1) and (2), we observe
that LP and GNNs have similar iterative processes: LP propagates
node labels y,, while GNNs propagate node features x,. The key
difference is that LP does not involve model parameters, while GNN
involves multiplying the parameter matrix W) in each k-th layer.
Problem Definition. We consider targeted evasion attacks® to
GNNSs. Suppose we are given a trained GNN model fg+ for node
classification. We assume v is the target node and c is the target label.
We consider an attacker can perturb the graph structure (i.e., add
new edges to or delete existing edges from the graph) in order to
make fo+ misclassify the target node v to be the target label c. We
call the modified edges by the attacker as attack edges. In particular,
we consider a practical direct attack [54], where an attacker can
only modify the edge status between v and other nodes in the graph,
while cannot modify the edge status among other nodes. We denote
the perturbed graph as G (with the perturbed adjacency matrix A)
after the attack and the attack budget as A, i.e., at most A edges can
be perturbed for the target node. Then, the objective function of
targeted evasion attacks to GNNs is formally defined as:

max; (for(Aae — for (A)oy,) © maxz (bS] - [(],,),
s.t, Zs |Avs — Ags| < A, 4)

where fli(,K) is 0’s representation on the perturbed graph G.

A target node is called a success to attack the GNN model if the
value of the attack’s objective function is larger than 0, under the at-
tack budget. Note that Equation (4) is a binary optimization problem
and is challenging to solve in practice. Ziigner et al. [54] proposed
an optimization-based attack method, called Nettack, against two-
layer GCN. Specifically, Nettack attacked a substitute GNN model
(actually SGC) that removed the ReLU activation function in GCN.
Nettack has achieved state-of-the-art attack performance. However,
it is inefficient as it involves dense matrix multiplication (i.e., model
parameters multiply node features); it also needs to know model
parameters ©, and can only attack two-layer GNNs.

4 INFLUENCE-BASED EVASION ATTACK

In this section, we propose our evasion attack against GNNs via in-
fluence function. In contrast to existing optimization-based attacks
that only focus on two-layer GNNs, our attack is applicable to any-
layer GNNss. Specifically, we first define two influence functions
associated with GNNs and LP, respectively, and build an equiva-
lence relation between GNNs and LP with the defined influences.
Next, we reformulate the attack objective function as relating to la-
bel influence defined on LP. Finally, we design an efficient algorithm
to calculate label influence and realize our attack.

4.1 Equivalence between GNNs and LP in terms
of Influence

4.1.1 Motivation. Due to GNN’s complex network structure, exist-
ing optimization-based evasion attacks can only attack two-layer
GNNss directly. However, we note that LP has a similar iterative
process to GNNs, but it has good properties, e.g., LP does not in-
volve model parameters. Motivated by this, we aim to discover an

3As untargeted attacks are less powerful than targeted attacks, we only consider
targeted attacks in this paper for simplicity.

WSDM °24, March 4-8, 2024, Merida, Mexico

equivalence relation between LP and GNNs, such that the challeng-
ing problem of attacking multi-layer GNNs can be converted to
a relatively easier problem by leveraging good properties of LP.
We notice that influence function [21, 46] is an appropriate tool
to bridge the gap, and our purpose is to explore equivalent influ-
ence functions defined on LP and on GNNS, respectively. As the
attacker’s goal is to change the target node’s label, we thus need to
define influences associated with the node label. As LP propagates
node labels, we can naturally design the label influence function
(see Equation (6)). In addition, GNNs involve propagating node fea-
tures. In order to also leverage node labels, we integrate both node
features and labels and design the feature-label influence function
(see Equation (5)). Next, we introduce our influence functions.

4.1.2 Influence function. Given two nodes u and v, an influence of
u on v indicates how the output (e.g., final node representation in
GNNs or estimated node label in LP) of v changes if the input of u
is slightly perturbed. Inspired by [21, 46], we define the following
feature-label influence on GNN and label influence on LP.

Definition 1 (Feature-label influence). We define the feature-label
influence of node u on node v associated with u’s label on a K-layer
GNN as follow:

(K) (K)
If1(o u-K)=H[ahv b | =1 0 ()
, U u » u >
on” yalll ¥ Gp O

where 1y, = [y1,y2," - ,ynl is an indicator vector where y; = 1
ifi = uandy; = 0, otherwise; || - ||1 is the vector {;-norm; T is a

0 .
transpose; and h,,’ = x,, is u’s node features.

Definition 2 (Label influence). We define the label influence of node
u on node v after K iterations of label propagation as follows:

K
ayd

oyl

Ii(o,u;K) = (©)
Then, we have the following theorem showing the equivalence
between GNN and LP in terms of influence.

THEOREM 4.1. If the GNN is a GCN/SGC, then:

Ity (0,u;K) = C - Ij(0,u; K), (7)

where C = plgu [I_H(:1 W x,, is constant related to GNN model

parameters © = {W D} and u’s node features x,,.

Theorem 4.1 reveals that: given arbitrary node v, the feature-
label influence defined on K-layer GCN/SGC of any other node u on
the node v and the label influence defined on K-iteration LP of node
u on the node v are equal (with a constant multiplier difference).

4.2 Reformulate Evasion Attacks to Any-Layer
GNNs s as Calculating Label Influence on LP

Based on our influence functions and Theorem 4.1, we can first
restate the challenging problem of attacking K-layer GNNs in Equa-
tion (4) in the form of feature-label influence, and further convert
it to an equivalent problem related to label influence on LP. Before
going into details, we first introduce the following lemma:

LEMMA 1 (XU ET AL.[46]). Given a K-layer GCN. Assume all paths
in the computation graph of the GCN model are activated (i.e., via

696

Binghui Wang et al.

ReLU) with the same probability of success p. Then,

oh &) Wyu 1
U(m = a -1 w0, ®
ohy, p=1 1=x 7
where Wy, is the total number of paths [vf,(, U}I;_l, cee ,U},,Ug] of

length K + 1 from node v to the node u with v,y =v and 1)10, = u. For

|

11
=d ,*d %, is the normalized
% Y
weight of the edge (vl 0},‘1) in the path p.© = (WD} is the K-layer
GCN model parameters.

Then, according to Equation (8) in Lemma 1, the target node v’s

l:1,-~-,1’(,alé_1 EN(U;,),CIUI -1

»>%

final node representation fll(,K) learnt on the perturbed graph G can

be expressed as flz()K) = ZMEALK) % . h,so), where Af,K) is the
node set containing v’s neighbors within K -hop on the perturbed
graph G, i.e., after modifying the edge status between the target
node v and other nodes in the clean graph G.

Then, the attack’s objective function in Equation (4) is equivalent
to the following objective function:

r (K) r (K)
oh oh
max([Y S0 bl -1 Y = b ly,)
Ao on'® on'®
ueAlX) T uehlF) TMu

s.t., Zs |A~U,s - Au,sl <A, (9)

Finally, based on the following Assumption 1 and Theorem 4.1,
we reach Theorem 4.2 that reformulates the evasion attack’s objec-
tive function via label influence. We also conduct experiments (See
Section 5.2) to verify that Assumption 1 holds in practice.

Assumption 1. Given a target nodev and a target label c. We assume
that any node u, within the K-hop neighbor of v, has a negligible
feature-label influence on v if u is not a label-c node. Formally,

£ (K)

oh -

: h(zO) 'h,(lo)]c ~0, VYue AZ(,K), Yy # C. (10)
ohy

THEOREM 4.2. Let Ij(v,u; K) be the label influence of node u on
the target node v with K iterations of LP after the attack. Then, the
attack’s objective function in Equation (4) equals to the following
objective function on label influence:

2.

J(K
2eA) yz=y,

uEALK),yu:c
s.t., Z |Av,s _Av,sl <A,
s

where I; (0, u; K) is defined as:

rqax(fl(v,u;K) - fl(v,z;K)),

Ay

Wy 1

houwk) =y [|d0d0,

) (12)
p=1 I=Kk P %

where Wy_,y, is the total number of paths [vg, Ug—l’ SRR ZJII,, Ug] of
length K + 1 from v to u on the perturbed graph G, where uf =vand

1
Z)g =u.dyisu’s degree on the perturbed graph G and d:; d,
normalized weight of the edge (0!, U}o_l) in path p in G.
We have the following observations from Theorem 4.2.
e Our attack does not need to operate on model parameters
©*, different from existing attacks that involve dense multi-
plication on ©*. Thus, our attack is more efficient.

1

2 .
PRy the
'

Efficient, Direct, and Restricted Black-Box Graph Evasion Attacks to Any-Layer Graph Neural Networks via Influence Function

e Our attack can be applied to any layer GNN, as the label
influence is defined for general K-iteration LP. However,
most of the existing attacks can only directly attack two-
layer GNNs. Thus, our attack is more practical.

o The only information our attack needs to know is the target
node v’s within K-hop neighbors, whose labels are y, or c.
In practice, if the labels of these node are unknown, we can
estimate them via querying the GNN model, and treat the
estimated labels as the true labels. Thus, our attack can be
seen a restricted black-box attack.

Next, we show how to fast calculate the label influence and
design our influence-based targeted evasion attack.

4.3 Efficient Calculation of Label Influence

According to Theorem 4.2, the attack’s goal is to select the minimum
set of nodes such that when changing the edge status between the
target node v and these selected nodes, the difference between the
two label influence terms will be maximized. Observing Equation
(11), we note that the two label influence terms are defined on two
sets of nodes: a set of nodes having the same label as the target label
¢, and a set of nodes having the same label as the target node’s label
Y. Intuitively, if we add an edge between v and a label-c node, we
can make v be close to label ¢; and if we remove an edge between v
and a label-y, node, we can make v away from label y,. Thus, our
idea to solve Equation (11) is as follows:

o First, we define a candidate set Ny € {y, =c,u € Az(,K) } which
contains label-c nodes that are not connected with o in the clean
graph, as well as a candidate set Ng C {y; = yo,z € AZ(,K)}
which contains label-y, nodes that are connected with v in the
clean graph. We denote S as the final selected nodes from Ny
and Np, and initialize S = {}. For each node u € Nqy UNB \ S,
we change the edge status between v and u and compute the gap
between two label influence terms.

o Next, we record the node u* that obtains the largest positive gap.

Then, we modify the edge status between v and u*, calculate the

value of the attack’s objective function, and update S = SU{u*}.

We repeat above steps at most A times and break if the value of

attack’s objective function is bigger than 0. Finally, we have the

attack edges {(v,u*),u* € S}.

However, note that when modifying the edge status between
v and u”, the normalized weight for all edges containing u* in all
paths ¥,_,, in Equation (12) should be recalculated. When the
candidate set has a large size or/and the number of recalculated
edge weights is large, calculating the exact label influence will
have a large computational complexity. To solve the problem, we
propose an approximate algorithm to efficiently compute the label
influences. More details are in Supplementary Material.

Algorithm 1 in the full report illustrates how we efficiently calcu-
late the label influences via depth first search (DFS), and Algorithm 2
in the report shows the details of implementing our attack.

5 EVALUATION

5.1 Experimental Setup

Datasets. Following [13, 44, 54], we use three benchmark graphs
(i.e., Cora, Citeseer, and Pubmed) [29] to evaluate our attack. In

697

WSDM °24, March 4-8, 2024, Merida, Mexico

these graphs, each node represents a documents and each edge
indicates a citation between two documents. Each document treats
the bag-of-words feature as the node feature vector, and has a label.
Table 5 in the full version shows basic statistics of these graphs.
Training nodes and target nodes. We use the public training
nodes to train GNN models, and target nodes to evaluate attacks
against the trained GNN models. For the target nodes, we employ
a random sampling technique to select 100 nodes that are correctly
classified by each GNN model as the target nodes. Similar to Net-
tack [54], for each target node, we choose the predicted label by the
GNN model with a second largest probability as the target label.
Compared attacks. We compare our influence-based attack with
the state-of-the-art Nettack [54] for attacking two particular GNNs:
GCN and SGC. Note that Nettack is mathematically designed to
only attack two-layer GNNs and cannot directly attack multi-layer
GNNss. To attack multi-layer GNNs, Nettack needs to be performed
via an indirect way: It first attacks a surrogate two-layer GNN to
generate the attack edges, and then transfers these attack edges
to attack the target multi-layer GNNs. When computing the label
influence, our attack needs to know the labels of unlabeled nodes
in the graph. When our attack knows the the true labels, we denote
it as Ours-KL. When the true labels are unknown, our attack first
queries the learnt GNN model to estimate labels for unlabeled nodes
and then uses the estimated labels as the true labels. We denote
this variant as Ours-UL. As a comparison, we also test our attack
that is implemented based on exact label influence calculation, and
denote the corresponding two methods with known and unknowns
labels as Ours (exact)-KL and Ours (exact)-UL, respectively.
Evaluation metric. For graph perturbation attacks, we adopt at-
tack success rate and running time as the metrics. Given a target
GNN model, a set of target nodes, target label, and an attack bud-
get A, attack success rate is the fraction of target nodes that are
misclassified by the target GNN to be the target label when the
number of attack edges per target node is at most A. Running time
is reported on average across all the target nodes.
Implementation. We train all GNNs using the public source
code. We test Nettack using the source code (https://github.com/
danielzuegner/nettack). We implement our attack in PyTorch. All ex-
periments are conducted on an A6000 GPU with 48G memory. Due
to space limitation, we only show comparison results with GCN, and all
results are in the full version: https://github.com/ventric/InfAttack.

5.2 Results on Attacking Two-layer GNNs

Results on attacking two-layer GCN/SGC. We compare all at-
tacks in terms of effectiveness (i.e., attack success rate) and effi-
ciency (i.e., running time) against two-layer GCN/SGC. Figure 1
and Figure 7 in the full version show the attack success rate against
GCN and SGC on the three graphs, respectively. Moreover, Figure 2
and Figure 8 in the full version show the running time of all attacks
against GCN and SGC on the three graphs, respectively. We have
the following key observations.

o Our attacks based on approximate label influence have similar
performance with those based on exact label influence, but is much
more efficient. Specifically, the difference of the attack success
rate between the two is less than 2% in all cases. This shows that
our proposed efficient algorithm for label influence calculation

https://github.com/danielzuegner/nettack
https://github.com/danielzuegner/nettack
https://github.com/ventr1c/InfAttack

WSDM °24, March 4-8, 2024, Merida, Mexico

Binghui Wang et al.

1.0 1.0 o) 1.0
gos8 go8 o8
)) 0
7] 7] 7]
806 806 806
o o o
]]]
x 04 x 0.4 ~x 04
8 8 8
g = Nettack == Qurs (exact)-UL 5 =0+ Nettack == Qurs (exact)-UL § -0+ Nettack == Qurs (exact)-UL

0.2 Ours (exact)-KL == Ours-UL 0.2 Ours (exact)-KL =t Ours-UL 0.2 Ours (exact)-KL == Ours-UL

== Ours-KL == Ours-KL =—e= Ours-KL
0.0 2 4 6 8 10 0.0 2 4 6 8 10 0.0 2 4 6 8 10
Attack budget Attack budget Attack budget
(a) Cora (b) Citeseer (c) Pubmed

Figure 1: Attack success rate vs. attack budget per target node on a two-layer GCN of all compared attacks on the three graphs.

12 15 200
B <0« Nettack 'u? -«o- Nettack z --o+ Nettack
10 Ours (exact)-KL > Ours (exact)-KL o Ours (exact)-KL
®))
3 —+ Ours-KL 2 21 . Ours-KL = 1601 Ours-KL
S g{ —%— Ours (exact)-UL E —%— Ours (exact)-UL E —%— Ours (exact)-UL
3 —#— Ours-UL 2 91 —4— Ours-UL - 3120 = Ours-UL
o6 07 o o 7 onneees S
£ 50 £s i £ w0 e 9

. prm—

24 025 ;] 2 a 2 30
§ R PYPEEEE ? § 3 AP IEE S § 40 ot 20 Oeeaninse
& | 9 T AT il & of” 10

0 0 0

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Attack budget Attack budget Attack budget
(a) Cora (b) Citeseer (c) Pubmed

Figure 2: Running time vs. attack budget per target node on two-layer GCN of all compared attacks on the three graphs.

is effective enough. Moreover, our attacks based on approximate
label influence are 1-2 orders of magnitude more efficient than
those based on exact label influence.

Our attacks with true labels and with estimated labels have similar
performance. Specifically, the difference of the attack success rate
between Ours-KL and Our-UL is negligible, i.e., less than 2% in
all cases, and the running time of both Ours-KL and Our-UL are
almost the same. One reason is that the trained GNN model has
accurate predictions on the unlabeled nodes, and thus most of
the estimated labels match the true labels. One should note that
Ours-UL knows very limited knowledge about the GNN model
and thus it is a very practical attack.

Our attacks achieve comparable performance with Nettack. Nettack
achieves state-of-the-art attack performance against two-layer
GCN. Our attacks have a slightly lower attack success rate than
Nettack when the attack budget is small, e.g., less than 4. This
is possibly because our attack use some approximations on As-
sumption 1, and when the attack space is small, Assumption 1
negatively affects the attack effectiveness to some extent. How-
ever, when the attack budget is larger than 4, our attacks obtain
almost the same performance with Nettack.

Our attacks are much more efficient than Nettack. Specifically,
our attacks have a 5-50x speedup over Nettack across the three
graphs. As the attack budget increases (from 2 to 10) or the
graph size increases (from Cora to Pubmed), our attacks achieve
better efficiencies. The reasons are two-fold. First, Nettack needs
to multiply GNN model parameters in different layers, while
our attacks do not. Second, Nettack involves multiplying the
node hidden features, while ours is performed by calculating the
label influence. Node hidden features are often high-dimensional,
while label influence only needs scalar edge weights products.

698

1.0
h'_,_m_,_.q_._-—n-—'—“
R 08 T
%]
S
206
(0]
3
S04
©
< 0.2 =0=QOurs-KL(Cora) =%=Ours-UL(Cora)
h Ours-KL(Citeseer) == Ours-UL(Citeseer)
=+ QOurs-KL(Pubmed) =<+ Ours-UL(Pubmed)
00 2 4 6 8 10

Attack budget

Figure 3: Fraction of the added edges among all attack edges
generated by our attacks against a two-layer GCN vs. attack
budget per target node.

Analysis of the attack edges. We further analyze the properties
of the attack edges. Figure 3 and Figure 9 in the full version show
the fraction of the added edges generated by our attacks against
two-layer GCN and two-layer SGC, respectively. First, Ours-KL
and Ours-UL generate almost the same fraction of added edges in
all attack budgets and all graphs. This again verifies the similar
characteristics between Ours-KL and Ours-UL. Second, the fraction
of added edges is larger than 0.5 in all cases. This indicates that
when performing the targeted attack, adding new edges between
the target node and the nodes with the target label could be more
effective than removing existing edges between the target node and
the nodes having the same label as the target node.

Analysis of the factors that affect the attack performance.
We consider the following three factors, i.e., node degree, node cen-
trality, and graph size, that could affect the target node’s attack
performance. Here, we adopt the normalized closeness centrality

Efficient, Direct, and Restricted Black-Box Graph Evasion Attacks to Any-Layer Graph Neural Networks via Influence Function

100
10 — =0= Ours-UL(Cora) =4 Surrogate(Cora)
- © Ours-UL(Citeseer) Surrogate(Citeseer)
Iy o 80 =O=_Ours-UL(Pubmed) =4~ Surrogate(Pubmed)
= ° o
%09 <] .~
3 g 60 -
808 o -
3 A
@ € .
~ = 40 /‘/
o
807 2 A
< o= Ours-UL(Cora) % Surogate(Cora) g 20 f:/?/‘)'/#/o
0.6} 4 ©0-0 Ours-UL(Citeseer) & 4 Surrogate(Citeseer) n::’
. ©-0 Ours-UL(Pubmed) &4 Surrogate(Pubmed) —_d
2 4 6 8 10 0 4 6 8 10
Attack budget Attack budget

(a) Attack success rate (b) Running time

Figure 4: (a) Attack success rate and (b) Running time of our
attacks against four-layer GCN on the three graphs.

(NCC) as the metric to measure node centrality. Specifically, the
NCC of a node is the average length of the shortest path between
the node and all other nodes in the graph. We have the following
conclusions: 1) Nodes with smaller degrees are easier to attack. Given
a fixed attack budget (e.g., 4 in our experiment), we observe that in
all the three datasets, 100% of the target nodes with degree <= 4
attack successfully, while at most 83% and 85% of the target nodes
with degree > 4 attack successfully against 2-layer GCN and 2-layer
SGC, respectively. 2) Nodes with larger centrality are easier to attack.
We assume the attack budget is 4 per node. Specifically, 100% and
98% of the 50 target nodes with the largest NCC successfully attack
2-layer GCN and 2-layer SGC in the three datasets, while < 90% and
< 80% of the 50 target nodes with the smallest NCC can successfully
perform the attack. 3) No obvious relationship between graph size
and attack success rate. Specifically, graph size: Pubmed > Citeseer
> Cora. When attacking 2-layer GCN and the attack budget is 6, we
have the attack success rate: Cora (0.98) > Citeseer (0.96) > Pubmed
(0.87). However, when the attack budget is 10, we have the attack
success rate: Pubmed (1.00) > Citeseer (0.99) > Cora (0.98).

5.3 Results on Attacking Multi-layer GNNs

Attack performance on four-layer GCN/SGC. In this experi-
ment, we evaluate our attacks against multi-layer GCN/SGC. We
denote Nettack that attacks a surrogate two-layer GNN model first
and then transfers to attacking the target model as Surrogate. Fig-
ure 4(a) and Figure 10(a) in the full version show the attack success
rate of our attack vs. attack budget against four-layer GCN and
four-layer SGC on the three graphs, respectively. First, similarly,
our attacks with both known label and unknown label are effective
and achieve close attack performance, and we thus show results
with unknown label for simplicity. When the attack budget is 6,
our attacks achieve an attack success rate of > 90% in all cases.
Second, our attacks are more effective than the indirect surrogate
model based attacks. Specifically, our attacks have more than 10%
higher attack success rate than the surrogate model based attacks
in almost all cases.

Moreover, Figure 4(b) and Figure 10(b) in the full version shows
the running time of our attacks vs. attack budget against four-layer
GCN and four-layer SGC on the three graphs, respectively. Our
attack is efficient. For instance, it takes our attacks less than 25s on
average to attack a target node on the largest Pubmed in all cases.
However, the surrogate model costs about 85s, validating that our
attack is much more efficient.

699

WSDM °24, March 4-8, 2024, Merida, Mexico

Table 1: Transferability of our attacks against two-layer GCN
to other GNNs. Attack budget per target node is 6.

Dataset Source Target
GCN GCN | SGC | GAT | JK-Net
No attack 0 0.01 | 0.03 0.02
Cora
Ours-KL 0.98 0.82 0.66 0.67
Ours-UL 0.98 0.84 | 0.65 0.70
GCN GCN | SGC | GAT | JK-Net
. No attack 0 0.01 0.01 0.03
Citeseer
Ours-KL 0.96 0.78 | 0.70 0.63
Ours-UL 0.96 0.78 | 0.72 0.63
GCN GCN | SGC | GAT | JK-Net
No attack 0 0.03 | 0.04 0.05
Pubmed o attac
Ours-KL 0.89 0.80 | 0.80 0.79
Ours-UL 0.88 0.80 0.80 0.77

Table 2: Attack results of Ours-KL on OGB-arxiv.

Attack budget 2 4 6 8 10 Time
Nettack OOM | OOM | OOM | OOM | OOM -

Ours-GCN 0.65 0.72 0.73 0.73 0.82 40.1s

Ours-SGC 0.90 0.93 0.95 0.95 0.96 40.7s

Transferring our attack to other GNNs. In this experiment, we
study the transferability of our attacks, i.e., whether the attack edges
generated by our attacks against GCN/SGC can be also effective
for other GNNSs. Specifically, we use our attacks to generate the
attack edges for each target node by attacking the source GNN
(GCN or SGC), change the graph structure based on the attack
edges, and adopt a target GNN to classify each target node on the
perturbed graph. We select two additional representative GNNs,
i.e, GAT [36] and JK-Net [46], as the target GNN. If a target node is
also misclassified by the target GNN to be the target label, we say
the attack edges generated by the source GNN are transferable.

Table 1 and Table 7 in the full version show the attack success
rate of transferring of our attacks against two-layer GCN and two-
layer SGC to attack other GNNs on the three graphs, where the
attack budget per target node is 6. Note that we also show the attack
performance for target GNNs without attack, i.e., the prediction
error of target GNNs on the target nodes in the clean graph. We have
the observations: First, our attacks against GCN (or SGC) have the
best transferability to SGC (or GCN). This is because SGC is a special
case of GCN and they share similar model architectures. Second, our
attacks are also effective against GAT and JK-Net. Specifically, on all
the three graphs, our attacks can increase the classification errors
by at least 60% when attacking GAT and JK-Net. This indicates that
all the attack edges generated by our attack on the source GNN can
be transferred to attack the target GNNs. Such good transferability
further demonstrates the advantages of using (label) influence to
perform the target evasion attacks.

6 DISCUSSIONS

Attack performance on a large-scale dataset. We conduct ex-
periments on the large-scale dataset OGB-arxiv [17] to demonstrate
the superior efficiency of our proposed attack method compared to

WSDM °24, March 4-8, 2024, Merida, Mexico

Table 3: Comparing our attack vs. IG-FGSM [42] on Cora.

Model | budget 2 4 6 8 10 | Time
IG-FGSM | 0.29 | 0.75 | 0.89 | 0.92 | 0.94 62s
GCN Nettack | 0.85 | 0.96 | 0.97 | 0.97 | 0.97 1.5s
Ours 0.90 | 093 | 0.95 | 0.95 | 0.96 0.1s

Table 4: Comparing our attack vs. black-box attack [39].

GCN [budget| 2 [4 | 6 GCN [budget] 2 [4 [6
Ours |0.81]0.940.98 . Ours |0.86(0.94|0.95
Cora Citeseer
[39] [0.68]0.79]0.80 [39] [o0.84[0.910.92

baselines. We use a 2-layer GCN/SGC as the target GNN, achieving
a clean accuracy of approximately 60% on test nodes. The attack
method is set as Ours-KL. Note that time is denoted as the average
running time of compared attack methods across the five attack
budgets. We assess the attack performance on 100 target nodes
that are accurately classified by GCN/SGC. The comparison results
between Nettack and our attack are presented in Table 2. We ob-
serve that 1) Nettack encounters an out-of-memory (OOM) error on
our platform due to the need for storing dense model weights and
involving intensive matrix-matrix multiplication. 2) Our attacks
achieve highly promising attack success rates while maintaining
efficiency. Specifically, with an attack budget of 6, the attack success
rates of Ours-KL against GCN and SGC are 73% and 95%, respec-
tively. These results demonstrate the significant advantages of our
attack method over baselines on large graphs.

Comparing with more attack baselines. To further demonstrate
the effectiveness of our attack, we compare Ours-KL with a more
recent attack IG-FGSM [42], where we use the same setting as that
in Section 5.2 (i.e., 2-layer GCN/SGC as the target GNN, 100 target
nodes). The comparison results on Cora are reported in Table 3
and Table 8 in the full report. Note that time is denoted as the
average running time of compared attack methods across the five
attack budgets. We observe that: 1) Nettack not only outperforms
IG-FGSM when the attack budget is small, but also is far more
efficient than IG-FGSM. Specifically, when the attack budget is 2,
the attack success rates of IG-FGSM agasint GCN and SGC are
only 0.29 and 0.32, respectively, which are significantly lower than
that of Nettack, 0.85 and 0.65. Moreover, the running times of IG-
FGSM against GCN and SGC are 62s and 55s, respectively, which
are much lower than that of Nettack, 1.5s and 2.5s, respectively. 2)
Our method is even more efficient than Nettack. Specifically, when
attacking GCN and SGC, the running time of our method is only
0.1s, which is lower than other two methods, further validating the
efficiency of our method.

Comparing with black-box attacks. In the paper, we mainly
compare our attack with the white-box attack. Here we also com-
pare with the stringent black-box attacks proposed in [39]. To best
explore the attack capability, we do not restrict the number of
queries in [39], and obtain the optimal attack successful rate for a
given attack budget. Table 4 and Table 9 in the full version show
the comparison results on Cora and Citeseer (Note that [39] cannot
run on Pubmed due to limited GPU memory) on attacking 2-layer
GCN/SGC. We can see that our attack is more effective than [39],
especially when the attack budget is small. One key reason is that
our attack utilizes the strong connection between GNN and LP,

700

Binghui Wang et al.

0.8

b o
= -
N G G e i e

=== Cora

Citeseer
—— Pubmed

00] 23 45 6 7 8 910111213 14 15 16 17 18 19 20

Attack budget

Figure 5: Certified accuracy [38] vs. attack budget of GCN.

while [39] performs the attack based on the query feedback, i.e., the
target node’s confidence score after querying the black-box GNN.
Defending against our attack. As shown in Section 2, existing
empirical defenses [11, 13, 19, 42, 48, 51, 53] are broken [27] when
the adversary knows the defense mechanism. Hence, we propose to
defend our attack via provable defenses and choose the state-of-the-
art randomized smoothing-based provable defense [38]. Specifically,
given a target node, a model is provably robust for the target node
if the model correctly predicts the same label for the target node
when the attacker arbitrarily modifies a bounded number of (e.g.,
at most R) edges in the graph, where R is called certified radius.
Hence, provably robust models can defend against the worst-case
attack (including our attack). Accordingly, certified accuracy under
R means the fraction of target nodes that are predicted accurately by
modifying any R edges. That is, if a model achieves a larger certified
accuracy at a given budget, it shows better provable robustness.
We conduct experiments on defending two-layer GCN against the
worst-cast attack via [38]. Results on the three datasets are shown
in Figure 5. We can see that, when any 4 edges are allowed to be
modified, the certified accuracy achieved by the method [38] on the
three datasets are about 0.50, 0.55, and 0.70, respectively. However,
the method [38] cannot provably defend against the worst-case
attack when the attack budget is larger than 13, which implies the
need to design more powerful provable defenses.

7 CONCLUSION

We propose an influence-based evasion attack against GNNs. Specif-
ically, we first build the connection between GNNs and label prop-
agation (LP) via carefully designed influence functions. Next, we
reformulate the attack against GNNs to be related to label influence
on LP. Then, we design an efficient algorithm to calculate label
influences. Our attack is applicable to any-layer GNNs and does
not need to know the GNN model parameters. Experimental re-
sults demonstrate that our attack achieves comparable performance
against state-of-the-art white-box attacks, and has a 5-50x speedup
when attacking two-layer GCNs. Our attack is also effective to
attack multi-layer GNNs and is transferable to other GNNs.
Acknowledgments. We thank the anonymous reviewers for their
constructive feedback. Wang is supported by the Cisco Research
Award, National Science Foundation under grant Nos. NSF-2216926
and NSF-2241713. Pang is supported in part by the Natural Sci-
ence Foundation of Jiangxi Province of China (20232BAB212025)
and High-level and Urgently Needed Overseas Talent Programs of
Jiangxi Province (20232BCJ25024).

Efficient, Direct, and Restricted Black-Box Graph Evasion Attacks to Any-Layer Graph Neural Networks via Influence Function

Ethical considerations: Our work studies the vulnerability of
graph neural networks, and it could probably have both a negative
and a positive impact. From the negative side, our findings will
inspire attackers to perform malicious activities against real-world
systems. For instance, a malicious user in a social network (e.g,
Twitter) can leverage our attack to make him avoid being detected
by the malicious user detection system. Then, he can perform mali-
cious activities, e.g., spreading fake news and distributing phishing
attacks among the social network. From the positive side, our work
will inspire following works to design more robust graph neural
networks against adversarial attacks. All datasets and codes we
used in the paper are publicly available. Our work is mainly for
research purpose and complies with ethical standards. Therefore, it
does not have any negative ethical impact on society.

REFERENCES

(1]

(5]

[12]

(13

[14

[15

[16]

[17

(18]

[19

[20]

[21

[22]

[23

Aleksandar Bojchevski and Stephan Glinnemann. 2019. Adversarial Attacks on
Node Embeddings via Graph Poisoning. In ICML.

Aleksandar Bojchevski and Stephan Giinnemann. 2019. Certifiable Robustness
to Graph Perturbations. In NeurIPS.

Aleksandar Bojchevski, Johannes Klicpera, and Stephan Giinnemann. 2020. Effi-
cient robustness certificates for discrete data: Sparsity-aware randomized smooth-
ing for graphs, images and more. In ICML.

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng
Cui, Wenwu Zhu, and Junzhou Huang. 2020. A Restricted Black-Box Adversarial
Framework Towards Attacking Graph Embedding Models.. In AAAL

Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and Qi
Xuan. 2018. Fast gradient attack on network embedding. arXiv (2018).

Yizheng Chen, Yacin Nadji, Athanasios Kountouras, Fabian Monrose, Roberto
Perdisci, Manos Antonakakis, and Nikolaos Vasiloglou. 2017. Practical attacks
against graph-based clustering. In CCS.

Enyan Dai, Minhua Lin, Xiang Zhang, and Suhang Wang. 2023. Unnoticeable
backdoor attacks on graph neural networks. In WWW.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.
Adversarial attack on graph structured data. In ICML.

Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. 2018. Adversarial network
embedding. In AAAL

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NIPS.
Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E
Papalexakis. 2020. All you need is low (rank) defending against adversarial
attacks on graphs. In WSDM.

Houxiang Fan, Binghui Wang, Pan Zhou, Ang Li, Zichuan Xu, Cai Fu, Hai Li,
and Yiran Chen. 2021. Reinforcement learning-based black-box evasion attacks
to link prediction in dynamic graphs. In HPCC.

Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Ziigner, Aleksandar Bo-
jchevski, and Stephan Giinnemann. 2021. Robustness of graph neural networks
at scale. NeurIPS.

Simon Geisler, Daniel Zigner, and Stephan Glinnemann. 2020. Reliable graph
neural networks via robust aggregation. In NeurIPS.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In ICML.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. NeurIPS.

Hongwei Jin, Zhan Shi, Venkata Jaya Shankar Ashish Peruri, and Xinhua Zhang.
2020. Certified Robustness of Graph Convolution Networks for Graph Classifica-
tion under Topological Attacks. In NeurIPS.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In KDD.
Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. In ICML.

Jia Li, Honglei Zhang, Zhichao Han, Yu Rong, Hong Cheng, and Junzhou Huang.
2020. Adversarial attack on community detection by hiding individuals. In
WwWw.

Minhua Lin, Teng Xiao, Enyan Dai, Xiang Zhang, and Suhang Wang. 2023. Certi-
fiably Robust Graph Contrastive Learning. In NeurIPS.

WSDM °24, March 4-8, 2024, Merida, Mexico

[24] Xuanging Liu, Si Si, Xiaojin Zhu, Yang Li, and Cho-Jui Hsieh. 2019. A unified

framework for data poisoning attack to graph-based semi-supervised learning.
arXiv preprint arXiv:1910.14147 (2019).

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. 2020. Towards More Practical
Adversarial Attacks on Graph Neural Networks. In NeurIPS.

Jiaming Mu, Binghui Wang, Qi Li, Kun Sun, Mingwei Xu, and Zhuotao Liu. 2021.
A Hard Label Black-box Adversarial Attack Against Graph Neural Networks. In
CCS.

Felix Mujkanovic, Simon Geisler, Stephan Giinnemann, and Aleksandar Bo-
jchevski. 2022. Are Defenses for Graph Neural Networks Robust?. In NeurIPS.
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks (2008).

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Rad. 2008. Collective classification in network data. AI magazine (2008).
Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, and Dawn
Song. 2018. Data poisoning attack against unsupervised node embedding methods.
arXiv (2018).

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.
2020. Adversarial Attacks on Graph Neural Networks via Node Injections: A
Hierarchical Reinforcement Learning Approach. In The Web Conference.
Tsubasa Takahashi. 2019. Indirect Adversarial Attacks via Poisoning Neighbors
for Graph Convolutional Networks. In IEEE BigData.

Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang
Wang. 2020. Transferring Robustness for Graph Neural Network Against Poison-
ing Attacks. In WSDM.

Shuchang Tao, Huawei Shen, Qi Cao, Liang Hou, and Xueqi Cheng. 2021. Adver-
sarial Immunization for Certifiable Robustness on Graphs. In WSDM.
MohamadAli Torkamani and Daniel Lowd. 2013. Convex adversarial collective
classification. In ICML.

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

Binghui Wang and Neil Zhenqiang Gong. 2019. Attacking Graph-based Classifi-
cation via Manipulating the Graph Structure. In CCS.

Binghui Wang, Jinyuan Jia, Xiaoyu Cao, and Neil Gong. 2021. Certified robustness
of graph neural networks against adversarial structural perturbation. In KDD.
Binghui Wang, Yougi Li, and Pan Zhou. 2022. Bandits for Structure Perturbation-
based Black-box Attacks to Graph Neural Networks with Theoretical Guarantees.
In CVPR.

Binghui Wang, Meng Pang, and Yun Dong. 2023. Turning Strengths into Weak-
nesses: A Certified Robustness Inspired Attack Framework against Graph Neural
Networks. In CVPR.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu,
and Kilian Q Weinberger. 2019. Simplifying graph convolutional networks. In
ICML.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. 2019. Adversarial examples on graph data: Deep insights into attack and
defense. In I[JCAL

Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In
({USENIX} Security 21).

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,
and Xue Lin. 2019. Topology attack and defense for graph neural networks: An
optimization perspective. In IJCAL

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful
are graph neural networks?. In ICLR.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In ICML.

Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. In NeurlIPS.

Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural
networks against adversarial attacks. In NeurIPS.

Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhengiang Gong. 2021. Back-
door attacks to graph neural networks. (2021).

Zijie Zhang, Zeru Zhang, Yang Zhou, Yelong Shen, Ruoming Jin, and Dejing Dou.
2020. Adversarial Attacks on Deep Graph Matching. In NeurIPS, Vol. 33.
Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph
convolutional networks against adversarial attacks. In KDD.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In ICML.

Jun Zhuang and Mohammad Al Hasan. 2022. Defending Graph Convolutional
Networks against Dynamic Graph Perturbations via Bayesian Self-supervision.
In AAAL

Daniel Zugner, Amir Akbarnejad, and Stephan Giinnemann. 2018. Adversarial
attacks on neural networks for graph data. In KDD.

Daniel Ziigner and Stephan Giinnemann. 2019. Adversarial attacks on graph
neural networks via meta learning. In ICLR.

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Problem Definition
	4 Influence-based Evasion Attack
	4.1 Equivalence between GNNs and LP in terms of Influence
	4.2 Reformulate Evasion Attacks to Any-Layer GNNs as Calculating Label Influence on LP
	4.3 Efficient Calculation of Label Influence

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results on Attacking Two-layer GNNs
	5.3 Results on Attacking Multi-layer GNNs

	6 Discussions
	7 Conclusion
	References

