
1

Interacting Objects: A dataset of object-object interactions for richer
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Abstract—Dynamic environments in factories, surgical
robotics, and warehouses increasingly involve humans,
machines, robots, and various other objects such as tools,
fixtures, conveyors, and assemblies. In these environments,
numerous interactions occur not just between humans and
objects but also between objects themselves. However, current
scene-graph datasets predominantly focus on human-object
interactions (HOI) and overlook object-object interactions
(OOIs) despite the necessity of OOIs in effectively representing
dynamic environments. This oversight creates a significant gap
in the coverage of interactive elements in dynamic scenes. We
address this gap by proposing, to the best of our knowledge, the
first dataset* annotating for OOI categories in dynamic scenes.
To model OOIs, we establish a classification taxonomy for
spatio-temporal interactions. We use our taxonomy to annotate
OOIs in video clips of dynamic scenes. Then, we introduce a
spatio-temporal OOI classification task which aims to identify
interaction categories between two given objects in a video clip.
Further, we benchmark our dataset for the spatio-temporal
OOI classification task by adopting state-of-the-art approaches
from related areas of Human-Object Interaction Classification,
Visual Relationship Classification, and Scene-Graph Generation.
Additionally, we utilize our dataset to examine the effectiveness
of OOI and HOI-based features in the context of Action
Recognition. Notably, our experimental results show that
OOI-based features outperform HOI-based features for the task
of Action Recognition.

I. INTRODUCTION

Scene graphs have been proposed to capture semantic
representation of dynamic physical environments, for example,
in factories, surgery rooms, and warehouses, using RGB
videos/images. They have been used for various robotics and
computer vision applications such as imitation learning [1],
task planning [2], [3], human-robot collaboration [4], [5], hu-
man activity understanding [6], [7], [8], and embodied AI [9].
However, while existing scene graph datasets predominantly
focus on spatio-temporal human-object interactions (HOI) they
overlook the crucial compositional element of spatio-temporal
object-object interactions (OOI). This is striking, as dynamic
scenes not only comprise of HOIs, but also OOIs. Leaving out
OOIs creates a significant gap in the coverage of interactive
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Fig. 1: Only using HOI in scene graphs (middle) restricts their
scope. However by including OOI (right) we can make them
rich and representative of dynamic environments (left).

elements of the scene (see Fig. 1). Since OOIs are critical
compositional elements of any dynamic scene, it is important
to address this gap. Also, OOIs have tremendous potential to
be used for robotics and computer vision tasks. OOIs often
define the start and end of actions (e.g. the action of ‘prying
a nail from a wooden board’ begins with the OOI of the
hammer coming in contact with the nail and ends with the
OOI of the nail coming out of the wooden board). During
collaborative tasks (such as in Fig. 1), humans actively monitor
both HOI and OOI occurring in the scene. This real-time
monitoring enables humans to make informed decisions and
adjust their actions accordingly. Thus, OOIs can be potentially
used for coordinating actions in real-time, ensuring smooth
human-robot and robot-robot collaborations. OOIs also have
the potential to be utilized for learning tasks from human
demonstrations, as human demonstrations not only involve
HOIs but also encompass OOIs.

Despite the importance of OOIs as a compositional element
of dynamic scenes, and its numerous potential applications,
existing datasets in the field of scene graphs and related
areas (see Section II) have largely overlooked OOIs, leaving a
major gap in the coverage of interactive elements of dynamic
scenes. Motivated by this gap, and potential of OOIs for
robotics and computer vision tasks, we introduce, to the best
of our knowledge, the first dataset annotating semantic OOI
categories in dynamic scenes. OOIs are defined as the category
labels to spatio-temporal interactions between two objects
present in the scene. When referring to objects, we denote
objects such as tools (e.g., hammers, screwdrivers), furniture
and their components (e.g., chairs, tables, legs), vehicles and
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their components (e.g., cars, engines, wheels), and numerous
other objects that encompass our surroundings.

To model OOIs, we establish a taxonomy of categories of
OOIs. It comprises three super-categories: contact relations
(cr), location relations (lr), and motion relations (mr). We
provide a comprehensive description of our taxonomy in Sec-
tion III-A. Subsequently, we employ this taxonomy to annotate
interaction categories within micro video-clips (short duration
video-clips) featuring objects. These clips are generated from
the COIN dataset [10], which consists of instructional videos
of various activities and tasks. Detailed information about the
dataset and its construction is given in Section III-B.

Further, we propose the task of OOI classification, which
aims to predict the interaction categories between two given
objects in a video-clip. We include state-of-the-art (SoTA)
methods adopted from domains of HOI classification, Scene
Graph Generation, and Visual Relationship Classification in
our benchmark. We present the formal definition of OOI
classification task, details of the adopted SoTA methods from
related areas, and our base features in Section IV-A. The
results of benchmarking along with ablation studies can be
found in Section V-A.

We also explore the application of OOIs, by using it
for the task of Action Recognition. Our Action Recognition
experiments aim at exploring the potential of OOI based
features, and comparing their effectiveness with the HOI based
ones. Mathematical definitions of OOI and HOI based features
with other experimental details are presented in Section IV-B.
The results of action recognition experiments are presented
in Section V-B. Experimental results of action recognition
show that OOI based features outperform HOI based ones
significantly. Also, the ablation study for Action Recognition
validates the structure of our taxonomy, showing that all
3 relation super-categories are important for performance.
We present limitations and future work in Section VI, and
conclude our paper in Section VII. In summary, while current
scene-graph datasets annotate for spatio-temporal HOIs, they
leave out the compositional element of spatio-temporal OOIs.
We address this gap by:

• Proposing a novel dataset (atop COIN [10] dataset)
focusing on spatio-temporal OOIs in dynamic scenes.

• We propose OOI classification task, and adopt and bench-
mark SoTA methods from related areas for this task.

• We explore the application of OOIs for the task of
Action Recognition. Our results show that OOI based
features significantly outperform HOI based features, thus
providing strong evidence for the criticality of OOIs in
effectively representing dynamic environments.

II. RELATED WORKS

A. Scene Graph Datasets

Chao et al. [11] introduced HICO dataset annotating re-
lations between various objects and their interactions with
humans in images. Krishna et al. [12] created an extensive
scene graph dataset based on images. Recently, datasets such
as [6], [13], [14] have focused on constructing scene graphs for
dynamic scenes by annotating spatio-temporal HOIs. However,

these datasets do not concentrate on OOIs. While certain
datasets, such as [12], do annotate spatial relations like ‘be-
hind’, ‘near’, and ‘next to’ between objects, solely annotating
spatial relations falls short in capturing the temporal aspect
of OOIs. To capture interactions, which inherently involve
temporality, it is crucial to annotate spatio-temporal relations
rather than solely focusing on spatial relations. We annotate
motion relations between objects to capture temporality.

B. Visual Relationship Detection

Visual Relationship Detection is aimed at detecting rela-
tionships between entities in the scene. Thus, the OOI clas-
sification task is closely connected to the Visual Relationship
Detection (VRD) task. However, existing VRD datasets like
ImageNet-VidVRD (Shang et al., 2017) and VidOR (Shang
et al., 2019) do not specifically emphasize OOI and instead
include relation classes (e.g., ‘chase’, ‘feed’, ‘kiss’, ‘throw’
and ‘kick’ in VidOR and ‘run-behind’, ‘move-behind’, and
‘jump-behind’ in ImageNet-VidVRD) that are not relevant to
interactions between objects. Thus current VRD datasets do
not emphasize on OOIs.

C. Human Object Interaction classification

HOI classification and OOI classification are closely related
problems, that are crucial for constructing detailed scene
graphs. In order to benchmark our dataset, we surveyed recent
graph neural network (GNN) based approaches for HOI clas-
sification, and then adapted these methods accordingly. Qi et
al. [15] proposed a graph parsing neural network that predicts
a parse graph with edge weights for a fully connected graph.
These edge weights are utilized to modulate message passing
between nodes, ensuring that only relevant neighboring nodes
of the human and object contribute to HOI classification. We
incorporate this approach into our benchmarking process.

D. Object-Object Interaction Affordance

While our focus is on categorization of OOIs that occur
in dynamic scenes, existing research has explored the classi-
fication of Object-Object Interaction Affordances. Sun et al.
[16] propose classifying OOI Affordances through human-
object-object interactions modelling, leveraging hand motion
and object state change based features. [17] propose learning
affordance of tools and objects based on observation from
RGB-D videos. More recently, Mo et al. [18] classify object-
object interaction affordances by modeling 3D shapes and
performing convolution over mesh models. In contrast to these
works, which focus on learning Object-Object Interaction
Affordances, we aim at classification of OOIs at a time instant,
thus enabling richer dynamic scene graphs.

III. DATASET

A. Taxonomy of OOR categories

The relationship between two objects encompasses two
dimensions: spatial and temporal. The spatial aspect pertains to
the relative positioning of the objects in relation to each other.
Spatial aspects include location relations (describing how an
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Fig. 2: Samples of annotated Object-Object Interactions in our dataset with bounding boxes, relation labels and action category
labels. lr (Location Relations), mr (Motion Relations), and cr (Contact Relations). Only one interaction is shown in each frame
for clarity.

Fig. 3: Steps to generate clips (a, b), identify interactive object pairs (c, d), and annotate their interaction categories (e).

object is positioned relative to another) and contact relations
(determining whether the objects are in contact). Temporal
aspects relate to motion relations (depicting how the objects
are moving relative to each other). We base our taxonomy on
this framework to capture the spatial and temporal aspects of
OOIs (see Table I for details).

While identifying sub-categories within contact and location
relations is straightforward, the same task for motion relations
is more complex. Employing principles of common sense
physics, we classified motion relations into translational and
rotatory categories and established common subcategories for
each. Following this, we conducted an analysis of 500 pairs

of objects from YouTube videos to identify any overlooked
categories. Any newly identified relation categories were
seamlessly integrated into the taxonomy.

Our taxonomy provides finely-grained categories, enabling
precise annotation of interaction categories even in short-
duration video clips.

B. Dataset Construction

Our dataset is built on top of COIN [10], a human activity
understanding dataset consisting of YouTube videos. COIN
includes various types of tasks from twelve activity domains,
such as cooking and furniture assembling. We chose action
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TABLE I: Taxonomy of spatio-temporal OOI categories

Contact relation Location Relation Motion Relation
Contact Right/Left Holding Rubbing

No contact Behind/Front Raising Lowering
Above/Below Carrying Rotating

Inside Twisting Adjusting
Sliding Penetrating

Moving Towards Moving Away
Negligible Relative Motion

categories (Fig. 5) from COIN dataset, and generated clips
from videos corresponding to those categories.

1) Clip Generation: To ensure the validity of the OOI
classification task, we needed to select a clip duration in which
the interaction category between two objects does not change.
For COIN dataset, we determined through inspection that a
duration greater than one-third of a second leads to a change of
interaction categories between the objects. Thus, all the video
clips have a duration of one-third of a second. Generation of
micro video-clips was done by uniform sampling within action
segments annotated by COIN dataset (see b in Fig. 3). We
generated two clips for action segments less than two seconds
long and five clips for longer ones. We also removed micro-
clips having static objects.

2) Hand and Object Annotation: After selecting the clips,
we annotate the central frame of each clip for the presence of
human hands and objects. The annotation of objects is done
manually. For annotation of human hands, we use pre-trained
model [19] along with manual inspection and correction.

3) Relation Annotation: From the annotated objects in a
clip, we select interactive pairs of objects for interaction
category annotation. Annotators are shown the central frame
with the object pairs indicated using overlaid bounding boxes
alongside the video clip that displays object motion (see
Fig. 3 (e)). Interactive object pairs were identified using a
distance and mIoU based threshold as in [20]. To obtain high
quality interaction category annotation, we selected and trained
annotators using a four step process. In the first step, potential
annotators received visual examples of interaction categories
along with rationale. In second step, they were shown a tutorial

Fig. 4: Bar chart of number of annotated samples of each
label in the interaction classification taxonomy.

video of the annotation interface. In third step, annotators
did few sample annotations for further familiarisation. Finally,

Fig. 5: Action Categories in our dataset

a quiz was conducted to check their understanding of the
interaction categories and the annotation interface. Selected
annotators initially received real-time feedback and query
resolution. All of the steps were designed to avoid inconsistent
understanding of the OOI categories by the different annota-
tors. Our annotation system ensured that an object pair was
annotated for relations by two different annotators. In case of
conflicting annotations, a third annotator was used, followed
by the majority voting rule to determine final annotations. We
show samples of annotated interactions in Fig. 2.

4) Statistics: We annotate 9,155 object pairs across 2,200
scenes, resulting in 29,939 different OOI labels. We present
the distribution of labels through a bar chart in Fig. 4.

IV. METHOD

We define the OOI classification task and describe the SoTA
methods adopted from related areas for this task. Further, we
introduce HOI and OOI based features and provide details for
the Action Recognition task.

A. Object-Object Interaction Classification

1) Problem Definition: Given a clip M with frames
I1, ...., IK and objects with bounding box annotations B1, ...,BN
for the central frame I⌈K/2⌉, OOI classification task is to
predict the relation labels Rcr, Rlr, and Rmr, for two given
objects i and j. Rcr is addressed as a single-label multi-class
and Rlr and Rmr is addressed as a multi-label multi-class
classification problem. Our pipeline for OOI classification
involves extracting various base features from the clip M
followed by training and inference using SoTA methods. Base
features and adopted methods are detailed below:

2) Base Features: Features are divided as: Object-Centric
and Interaction-Centric features. While former captures infor-
mation about the objects only, the latter captures information
about the interaction between two given objects.

I3D based Object-Centric Feature:

Oi3d
i = RoIAlign( fres(xi,yi,wi,hi)) (1)

xi,yi,wi,hi are the x and y co-ordinate, width and height of
bounding box of ith object. fres is the feature map of the central



5

frame generated by I3D backbone.
Vision-Transformer (ViT) based Object-Centric Feature:

Ovit
i = MOA(gres(xi,yi,wi,hi)) (2)

Masked object attention (MOA) [21] is used to extract region
of interest (RoI) features from ViT. Existing RoI operators
such as RoIAlign are not suited for extracting RoI features
from ViT backbone due to its coarse output. gres is feature
map of central frame generated by ViT.
Vision-Transformer (ViT) based Interaction-Centric Feature:

Ivit
i j = MOA(gres(xi j,yi j,wi j,hi j)) (3)

xi j,yi j,wi j,hi j are the x co-ordinate, y co-ordinate, width and
height of smallest bounding box containing bounding boxes
of objects i and j.
Bounding-Box based Object-Centric Feature:

Obox
i =

[
xi

w
,

yi

h
wi

w
,

hi

h
,

Ai

A

]
, (4)

Ai is the bounding box (in central frame) area, and w, h, A
are the width, height, and the area of the entire image. This
features informs about the geometry of the object.[22]
Bounding-Box based Interaction-Centric Feature:

Ibox
(i, j) =

{
Ibox
t,(i, j)

}T

t=1
(5)

where

Ibox
t,(i, j) =

[
∆(bi,t ,b j,t),∆(bi,t ,bi j,t),∆(b j,t ,bi j,t),

IoU(bi,t ,b j,t),dis(bi,t ,b j,t)

]
(6)

T represents total number of frames. bi,t represents ith

bounding box at time t. bi j,t represents the union box of bi,t
and b j,t . IoU(bi,t ,b j,t) and dis(bi,t ,b j,t) denote the IoU and
normalized-distance between the ith and jth bounding boxes
in t-th frame. ∆(bi,t ,b j,t) are the box deltas [23].
Word2Vec based Semantic features:

Ow2v
i =

n

∑
i=1

pk · ek (7)

where ∑
n
i=1 pk = 1 and pk is the probability score of the kth

class from the object detector. ek represents the Word2Vec
embedding of the kth object class name. Inspired by [24], Ow2v

i
provides semantic prior of the object category without explicit
ground truth category annotations.
Segmentation Mask based Object-Centric shape features:

While we haven’t provided ground-truth segmentation
mask, we use the Segment-Anything model [25] to extract
segmentation masks using ground truth bounding boxes. The
predicted masks are used to extract object shape features.

Oshape
i =

[
As

i ,C
x
i ,C

y
i ,Ei,Si,Hi,Pi,L

ma jor
i ,Lminor

i

]
, (8)

Where:
• As

i : Normalized area of the object i. Computed as the ratio
of the mask area to the total image area, Amask, i

H×W .

• Cx
i and Cy

i : Normalized x and y coordinates of the centroid
of object i. Computed as Cx,mask, i

H and Cy,mask, i
W respectively.

• Ei: Eccentricity of object i, describing the shape of the
mask. It is the ratio of the distance between the foci of the
ellipse equivalent to the mask, to its major axis length.

• Si: Solidity of object i, which is the ratio of the object’s
area to its convex hull’s area, Amask, i

Aconvex hull, i
.

• Hi: Extent of object i, which is the fraction of the pixels
in the object’s bounding box that are also in the region,

Amask, i
Abounding box, i

.
• Pi: Normalized perimeter of object i, computed as the

ratio of the object’s perimeter to the perimeter of the
image, Pmask, i

2(H+W ) .

• Lma jor
i and Lminor

i : Normalized major and minor axis
lengths of the ellipse equivalent to object i. They are
computed as Lmajor, mask, i

max(H,W ) and Lminor, mask, i
max(H,W ) respectively.

Segmentation Mask based Interaction-Centric shape fea-
tures:

Ishape
(i, j) =

{
Oshape

i,t −Oshape
j,t

}T

t=1
(9)

3) Methods Adopted for OOI classification: In the context
of OOI classification, our features are specifically crafted
to capture both object-centric details and interaction-centric
dynamics. However, it’s crucial to integrate broader context of
the objects as well. To do so, we model the scene as a graph
where individual objects act as nodes, and their interactions
form the edges. For effective feature aggregation within this
graph structure, we leverage SoTA Graph Neural Networks
(GNNs) from related fields. The node features are constructed
by concatenating all object-centric features. Similarly edge
features are formed by concatenating interaction-centric fea-
tures. Afterwards, these features undergo aggregation by the
GNN. Finally, for the object pair whose interaction category
we need to predict, we concatenate the aggregated node and
edge features and pass it to three classification heads to predict
motion, location, and contact relations. From the HOI field, we
adopt GPNN [15]. Graph-RCNN [26], Iterative Message Pass-
ing [27], Quad Attention Transformer [28] are adopted from
Scene Graph generation field. Hierarchical Graph Attention
Network [20] is adopted from Visual Relationship detection
field. We also adopt the message passing frameworks Node-
Edge Neural Net [29] and Graph Transformer [30] for context
aggregation. All the architectures except HGAT assume a fully
connected graph. HGAT only considers edges between two
objects if they satisfy a IoU and distance based measure [20].

4) Implementation Details: We use a multi-object tracker
to track objects across the video. I3D network [31] pre-trained
on kinetics dataset [32] is used to extract Oi3d

i . Pretrained ViT
[33] is used to extract ViT based features. We set the learning
rate of benchmarked models at 1e−3. Adam optimizer is used
for all the networks. We report 5 times repeated 5 fold cross
validation results averaged across different train-val splits. We
implement our models in PyTorch Deep Learning framework.
All experiments were conducted on NVIDIA RTX A6000
GPU.
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B. Action Recognition

Interaction categories occuring during the course of an ac-
tion can represent that action. Consider the action: “Fueling a
car”. This action involves interaction category of ‘penetrating’
and “moving away”, occurring with fuel pump nozzle entering
and leaving the tank. We define FV , which captures normalized
occurrence counts for interaction categories observed during
the course of the action.

FV =
1
M

M

∑
m=1

(
1

Qm

Qm

∑
j=1

qj

)
(10)

Here, qj is 19-dimensional label vector for the j-th inter-
action (HOI or OOI) within the m-th micro-clip of the video
V . Qm is the number of entity pairs (human-object or object-
object) in the micro-clip m. M is the total number of micro-
clips in the video V . Our Action Recognition experiment
encompasses four distinct settings.

• HOI: FV only considers HOI labels in each micro-clip.
• OOI: FV only considers OOI labels in each micro-clip.
• HOI+OOI: FV considers both HOI and OOI labels in each

micro-clip.
• HOI∥OOI: Concatenates the vectors from HOI and OOI

setting above.
We aim to (1.) compare effectiveness of HOI and OOI

based feature vectors for action recognition (2.) investigate
effect of distinguishing OOI with HOI. While ‘HOI+OOI’
setting eliminates any distinctiveness between HOI and OOI,
HOI∥OOI setting preserves their distinctiveness. In total, our
dataset has 11 action categories. We use Decision Trees to
perform classification and report our results. We split our
dataset into a training dataset of 350 and validation set of
88 videos. Results presented are the average of 1000 train-
val runs, with randomized train-val splits for each new run.
Results are reported in Table IV.

V. EXPERIMENTS

TABLE II: Benchmarking Results. Cells with the highest
scores in each column are highlighted. motion relations (mr),
location relations (lr) and contact relations (cr).

Method # Param (in M) mAPall mAPmr mAPlr mAPcr

GPNN [15] 1.56 86.72 71.35 93.08 95.73
GraphRCNN[26] 5.12 81.04 60.66 88.76 93.70
NENN[29] 1.64 83.47 65.05 90.70 94.67
HGAT[20] 3.26 84.23 65.50 91.60 95.58
IMP[27] 1.89 84.32 65.40 91.70 95.87
SQUAT[28] 9.89 80.97 61.98 87.43 93.51
GraphTrans[30] 4.30 85.16 67.32 93.22 94.93

A. OOI Classification

1) Benchmarking: We perform a thorough benchmarking
of our dataset in Table II using SoTA methods described
in previous section. We observe lower performances for mr
classification (max 71.35%), as compared to lr and cr classi-
fication, thus indicating the challenge in classifying motion

relations. Among all the tested approaches, GPNN shows
the best performance overall as well as on motion relations.
IMP achieves best performance for contact relations. Both
of these architectures iteratively refine attention over edges
and nodes for the fully connected graph. From their superior
performance, and also looking at the nature of the OOIC
problem, that it has many noisy and irrelevant edges, we posit
that GNN architectures which iteratively perform attention are
well suited for OOI classification task. We also show the
Average Precision (AP) for each label in Fig. 6. We observe
a significant variation in the AP values for labels in motion
relations. Motion relations exhibit a strong long tailed nature
(as show in Fig. 4) and poor performance of the labels in the
far end of the tail can be caused by lesser number of training
samples. However, we also see trends against the long tail
(such as AP for rubbing is greater than AP for carrying). We
suspect that some of the relation-labels (such as carrying or
adjusting) has large intra-class variance, thus hampering their
performance.

Fig. 6: Average Precision (AP) values for each label (using
GPNN model). Predicting motion relations are more

challenging compared to location and contact relations.

2) Base Feature Ablation for OOI classification: We per-
form feature ablation study (see Table III) to determine the
importance of different features for the OOI classification
task. Each ablated feature contributes significantly in final
performance. However, some features like I3D-ResNet50 and
ViT-based object-centric features appear to have a more sig-
nificant impact on performance than others. Our observations
are: (1) Contribution of I3D features - I3D features contribute
exceptionally well to the performance of all the categories.
Our observation indicates the critical nature of deep 3d
convolutional features for the task of OOI classification. (2)
ViT - While ViT contributes significantly, it’s contribution
is lower than expected. We posit that this is due to ViT’s
coarse 16x16 feature map which may cause a loss of object
details, as noted in [21]. While MOA attempts to address
this, the limitations persist because of the initial coarse map.
Using ViT has benefits, but there’s potential for improvement
with a larger resolution feature map. (3) Success of Semantic
Features - Ow2v

i plays a pivotal role in all relation categories.
This is promising since this feature attempts to address the
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open vocabulary nature of OOIs, catering to interactions
with objects from unknown categories. The success of this
feature encourages approaches in zero/few shot learning to
be applied to OOI classification problem. (4) Contribution of
Non-Deep features - Non-deep features contribute significantly
to the performance and even outperform deep features (Ow2v

i ,
Ovit

i and Ivit
i, j in many instances. The non-deep features are

strikingly low-dimensional as compared to deep features, and
are designed to capture the geometrical aspects of OOIs.
Their success is noteworthy and indicates their crucial nature
for achieving higher performance without much increase in
computational cost. (5) Contribution of Interaction Centric
Features - Interaction centric features have quadratic memory
complexity with respect to number of objects, while object
centric features have linear memory complexity with respect
to number of objects. However, the crucial role of interaction-
centric features in pushing performance, demands their inclu-
sion. It’s also noteworthy that for both bounding-box and shape
based features, the interaction centric versions contribute more
than object centric versions for all the relation categories.

TABLE III: Ablation study results. Drops are shown in blue
parentheses, with the largest drop in each category boldfaced.

Ablated mAPall mAPmr mAPlr mAPcr

None 86.7 71.4 93.1 95.7

Ovit
i 81.7 (-5.0) 63.5 (-7.9) 87.7 (-5.4) 93.5 (-2.2)

Oi3d
i 69.1 (-17.6) 45.5 (-25.9) 80.2 (-12.9) 81.7 (-14.0)

Obox
i 81.3 (-5.4) 62.6 (-8.8) 87.8 (-5.3) 93.5 (-2.2)

Ow2v
i 82.6 (-4.1) 63.6 (-7.8) 90.3 (-2.8) 94.0 (-1.7)

Oshape
i 83.7 (-3.0) 65.7 (-5.7) 91.5 (-1.6) 93.9 (-1.8)

Ivit
i, j 83.4 (-3.3) 64.2 (-7.2) 90.6 (-2.5) 95.5 (-0.2)

Ibox
i, j 80.55 (-6.2) 62.5 (-8.9) 87.3 (-5.8) 91.9 (-3.8)

Ishape
i, j 83.3 (-3.4) 64.2 (-7.2) 91.2 (-1.9) 94.5 (-1.2)

Fig. 7: Increase in AP values (going from 0% to 100%
temporal observation) for motion relations labels.

3) Number of frames ablation for OOI classification: To
validate micro-clip usage, we conducted an ablation study
(Fig. 8), varying the frame count from one (central frame
only) to eleven (five frames before/after the central frame)
in steps of two (adding one frame each side of central
frame). Performance, evaluated using GPNN network—best in
benchmarking—improved with increased frame count across
all relation super-categories (lr, mr, cr), affirming micro-
clips’ efficacy in predicting interactions. For motion relations
prediction using GPNN, Fig. 7 indicates benefit of including

temporal information for each label in motion relations. Cate-
gories having less motion (holding, negligible relative motion)
benefit less from temporal information than categories having
more motion (penetrating, rotating).

Fig. 8: Increasing the video observation ratio from 0% (using
central frame) to 100% (using all 11 frames) positively affect
mAP for lr (location relation), mr (motion relation) and cr
(contact relation) due to the added temporal information.

B. Action Recognition on COIN

TABLE IV: Action Recognition accuracy using OOI and
HOI based features measured across different combinations of
relation categories. OOI consistently outperforms HOI based
features. (Cells with highest score for a column are highlighted
with light blue.)

Features cr lr mr cr+lr cr+mr lr+mr cr+lr+mr

HOI 23.07 14.24 25.30 23.41 26.41 27.24 31.23
OOI 18.77 25.37 34.38 30.61 34.26 36.69 41.20
HOI+OOI 18.85 20.94 30.58 27.16 31.41 37.03 37.98
HOI∥OOI 24.88 25.72 34.07 32.30 36.06 39.33 43.14

OOI features prove to be significantly more performant and
discriminative for Action Recognition, as compared to HOI
features (9.97% increase from HOI to OOI when all 3 relations
are used). Additionally, the performance of the fused feature,
HOI∥OOI shows a significant increase of 5.15% compared to
the naive fusion of HOI+OOI, suggesting that it is beneficial to
consider HOI and OOI as distinct sources of information. The
maximum performance for cr+lr+mr, indicates that the three
relation categories (cr, lr and mr) are important for Action
Recognition. High performance of OOI features, seen together
with the high performance of motion relations, validates the
inclusion of temporal aspects in our taxonomy.

VI. LIMITATIONS AND FUTURE WORK

A larger dataset can enhance the generalizability of trained
algorithms, enabling their application to challenging real world
scenarios. Future OOI research can explore larger datasets and
investigate segmentation settings using longer clips, allowing
OOI categories between object pairs to change with time. Also,
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OOIs may be applied to tasks which require understanding
of compositional elements of dynamic environments such as
human-robot or robot-robot collaboration or learning from
human demonstrations.

VII. CONCLUSION

In this letter, we introduce a novel dataset focusing on
OOI categories in dynamic scenes. Further, we propose the
OOI classification task and benchmark our dataset. We also
compare OOI and HOI-based features for Action Recognition,
where OOI-based features outperform HOI-based ones thus
highlighting potential of OOI for robotics and computer vision
tasks.
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