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On the topology of leaves
of singular Riemannian foliations

Marco Radeschi and Elahe Khalili Samani

Abstract. In this paper, we establish a number of results about the topology of the
leaves of a closed singular Riemannian foliation (M, ). If M is simply connected,
we prove that the leaves are finitely covered by nilpotent spaces, and characterize the
fundamental group of the generic leaves. If M has virtually nilpotent fundamental
group, we prove that the leaves have virtually nilpotent fundamental group as well.

1. Introduction

The study of isometric group actions on Riemannian manifolds has seen a number of
important applications in Riemannian geometry.

Many of them fall under the umbrella of the so-called Grove’s program, whose goal
is to study the properties of Riemannian manifolds with non-negative (or even almost
non-negative) sectional curvature in the presence of symmetry. This program has been
extremely fruitful both in producing new examples of manifolds with non-negative sec-
tional curvature, and in proving important conjectures in the area when some symmetry is
added (cf., for instance, [4,6,9-11,13,17]).

The concept of an isometric group action can be generalized by a singular Riemannian
foliation, which roughly speaking is the partition of a Riemannian manifold into smooth
and equidistant submanifolds of possibly varying dimensions, called leaves (and the leaves
can be thought as a generalization of the orbits of an isometric group action). It turns
out that, while being more flexible than group actions (cf. for example [23]), singular
Riemannian foliations still retain a lot of the same structure of isometric group actions
(cf., for instance, [2,7,8,20,22]).

Given the action of a compact Lie group, the orbits are homogeneous spaces and thus
have a very restricted topology, which can be employed to extrapolate topological proper-
ties of the ambient manifold (e.g., [14] and [12]). In [12], the authors ask to what extent
the leaves of a singular Riemannian foliation on a non-negatively curved space are also
topologically restricted. In [7], Galaz-Garcia and the first author proved that if (M, %)
is a closed singular Riemannian foliation on a compact, simply connected Riemannian
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manifold M, then the fundamental group of a generic leaf is a product A x K, of an
abelian group A and a 2-step nilpotent 2-group K, —in particular, it is nilpotent. In the
present paper, we continue exploring the topology of the leaves of singular Riemannian
foliations (M, ¥).

The first result states that if M is simply connected, then a generic leaf Ly of ¥ is a
nilpotent space, i.e., w1(Lg) acts nilpotently on 7, (L) forall n > 1.

Theorem A. If (M, ¥) is a closed singular Riemannian foliation on a compact, simply
connected Riemannian manifold M, then the principal leaves of ¥ are nilpotent spaces.
Furthermore, all leaves are finitely covered by a nilpotent space.

This answers the first part of Problem 4.8 in [12]:

Question. Let ¥ be a closed singular Riemannian foliation on a closed (simply con-
nected) Riemannian manifold M of almost non-negative curvature. Are the leaves of ¥
finitely covered by a nilpotent space, which moreover is rationally elliptic?

Our result does not in fact use the curvature assumption. On the rationally elliptic part
of the question, we make the following remarks:

(1) The very question of whether the leaves are rationally elliptic, only makes sense the
moment we know that the leaves are (virtually) nilpotent spaces: these are in fact
the spaces on which rational homotopy theory applies, and the rational dichotomy of
rationally elliptic vs. rationally hyperbolic spaces holds.

(2) Assuming the question above to be true, and applying it to the product foliation
(M x S™, M x {pts.}) with M simply connected and almost non-negatively curved,
would imply that every simply connected, almost non-negatively curved Riemannian
manifold is rationally elliptic, which is the statement of the celebrated (and out of
reach) Bott—Halperin—Grove conjecture. In particular, the rationally elliptic part of
the question is so far out of reach.

The second result analyzes more in detail the structure of the fundamental group of a
generic leaf Ly of a singular Riemannian foliation (M, ¥') with M simply connected:

Theorem B. Let (M, ) be a closed singular Riemannian foliation on a compact, simply
connected Riemannian manifold M. If Ly is a principal leaf of ¥, then the non-abelian
part K> of the fundamental group of Ly is of the form

s k
Ko = ([ 22 x 25 <[] Gi) /@5 < 29,

j=1 i=1

where each G; is isomorphic to a central product of copies of Qg, with possibly one copy
of Dg or Zy.

The groups G; in the theorem are called generalized extraspecial. These 2-groups
already occur as fundamental groups of orbits of orthogonal representations and hence
are impossible to avoid (e.g., SO(3) acting on S*), see also a family of examples from
Section 4.2.
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Finally, we extend Theorem A from [7] by showing that when M has virtually nilpo-
tent fundamental group, the leaves of any closed singular Riemannian foliation (M, %)
have virtually nilpotent fundamental group as well:

Theorem C. Suppose (M, F) is a closed singular Riemannian foliation on compact Rie-
mannian manifold M with virtually nilpotent fundamental group. Then the leaves of ¥
have virtually nilpotent fundamental group as well.

In the fundamental paper [18], the authors show that every Riemannian manifold with
almost non-negative sectional curvature is finitely covered by a nilpotent space. With this
in mind, Theorem C gives the following straightforward corollary.

Corollary D. Given a closed singular Riemannian foliation (M, ¥) on an almost non-
negatively curved manifold M, the leaves have virtually nilpotent fundamental group.

This paper is organized as follows. In Section 2, we collect some preliminaries about
topological results for singular Riemannian foliations, and the main notation for bilinear
and quadratic forms we need in the proof of Theorem B. In Section 3, we prove The-
orem A. In Section 4, we prove Theorem B and provide a family of examples showing
that the generalized extraspecial groups can indeed appear in the fundamental group of
principal orbits of orthogonal representations. Finally, in Section 5, we prove Theorem C.

2. Preliminaries

2.1. Singular Riemannian foliations

Let M be a Riemannian manifold. A singular Riemannian foliation on M is a partition
of M into connected, injectively immersed submanifolds called leaves such that every
geodesic that starts perpendicular to a leaf remains perpendicular to all the leaves it meets,
and moreover, M admits a family of smooth vector fields that spans the leaves at all points.

A singular Riemannian foliation is called closed if all of its leaves are closed in M.
Given a singular Riemannian foliation (M, ¥') on a complete manifold M we define the
dimension of ¥ , denoted dim ¥, as the maximal dimension of its leaves. The codimension
of ¥ is defined by dim M — dim .

A leaf L of the foliation ¥ is called regular if its dimension is maximal, or equiva-
lently, dim L = dim & . The union of all regular leaves is an open, dense and connected
submanifold, which is called the principal stratum of M and is denoted by M. The union
of all other leaves is called the singular stratum of (M, ¥) and the connected components
of the singular stratum are called singular strata.

For a closed singular Riemannian foliation (M, ), the canonical projection 7: M —
M /¥ induces a metric space structure on the leaf space M/¥ , where the metric is given
by dyy7 (n(p), m(q)) = dm(Lp, Lg). If in addition all the leaves of ¥ are regular, then
the leaf space is a Riemannian orbifold. In particular, given a closed singular Riemannian
foliation (M, ¥'), the quotient space My/¥ is an orbifold.

We then call a leaf L C My principal if it projects to a manifold point of My/F .
Clearly, the set of principal leaves is open and dense in M.
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2.2. Slice theorem

In this section we describe the structure of a singular Riemannian foliation around a leaf.
For more details, we refer the interested reader to [20].

Let (M, ) be a closed singular Riemannian foliation, let p € M, and let L, denote
the leaf through p. Define the horizontal space to ¥ at p, v, L, € T, M, as the subspace
perpendicular to 7,L,. Then there exists a singular Riemannian foliation (v,L,, 5p),
called the infinitesimal foliation of ¥ at p, with two important properties:

(1) ¥, is invariant under rescalings,
(2) in an e-neighbourhood v; L, of the origin in v, L), the exponential map exp,,: v, Lp
— M takes the leaves of ¥, onto the connected components of the intersections
L Nexp v;Lp, with L € ¥
Furthermore, there is a group of isometries K € O(v, L), sending leaves of L, to (pos-

sibly different) leaves of %}, with the property that for any v € v, Lp, the leaf L, € %)
satisfies the following:

exp,(K - Ly) = Lexp, (v) N €Xp,, v;Lp.

In other words, two leaves of F, are in the same K-orbit if and only if they exponentiate
to different connected components of an intersection L N exp, v, Lp, for some L € ¥

In [20], the following slice theorem establishes a model for a singular Riemannian
foliation around a leaf:

Theorem (Foliated slice theorem). Given a closed singular Riemannian foliation (M, %)
and a point p € M, let (v,L,, ¥,) be the infinitesimal foliation of ¥ at p. Then there
exist a compact Lie group K C O(vpLp) and a principal K-bundle P — L, such that
the foliation ¥ in an e-neighbourhood of L, is foliated diffeomorphic to

(P xg vpL, P xg Fp)

It follows directly from the slice theorem that all principal leaves are diffeomorphic
to each other, and for any leaf L, there is a locally trivial fiber bundle Lo — L, from a
principal leaf L, whose fiber is an orbit K - L, for some principal point v € (v, Lp, p),
and it consists of a finite disjoint union of principal leaves of 7,.

2.3. The Molino bundle

Let (M, ¥) be a closed singular Riemannian foliation of codimension ¢ on a compact
Riemannian manifold M . The principal O(¢)-bundle M — My, where M is the collection
of orthonormal frames of 7'My /T ¥ , is called the Molino bundle. The foliation ¥ lifts to
a foliation ¥ on M whose leaves are diffeomorphic to the leaves of ¥ on an open dense
set. Moreover, the leaves of ¥ are given by fibers of a submersion 6: M — W, where W
is the frame bundle of the orbifold My /% .

Consider the fibration 6: Mo(q) — Wo(g) induced by 6, where Mo(q) =M X0(q)
EO(g) and Wo(q) = W Xo(q) EO(q) denote the Borel constructions of M and W, respec-

tively. Note that o: Mo(q) — Wo(q) and 6: M — W have the same fibers and hence the



On the topology of leaves of singular Riemannian foliations 5

fiber of 6 is diffeomorphic to L, where L is a principal leaf of % . In addition, Mo(q) is
homotopy equivalent to M /O(q) = My and W, coincides with the Haefliger’s classi-
fying space B of My/¥ . Therefore, we get the following fibration (up to homotopy):

Lo My 5 B.

2.4. Bilinear and quadratic forms over Z,

Let V' be a finite dimensional vector space over a field F'. A quadratic form on V' is a map
0:V — F such that Q(Av) = A2Q(v) forall A € F and v € V, and moreover, the map
Bp:V xV — F defined by Bo(u,v) = Q(u + v) — Q(u) — Q(v) is a bilinear form.
Given a basis {vy, ..., v} of V, it follows that

4
QD Qi+ x) =) Q@)+ Y Bo(vi,v)xix,

i=1 1<i<j<l

Two quadratic forms Q:V — F and Q":V — F are called isometric (or equivalent) if
there exists an invertible linear map f:V — V such that Q(v) = Q'(f(v)) forallv € V.
Finally, given quadratic forms Q:V — F and Q': V' — F, one defines the orthogonal

sum Qd QO VeV — Fby(Q & Q)w,v):= QW)+ Q'(v).

3. The topology of leaves

Let (M, ¥) be a closed singular Riemannian foliation on a compact, simply connected
Riemannian manifold M. The goal is to prove Theorem A, that the principal leaves are
nilpotent manifolds.

We begin by collecting some of the results proved in [7] about the fundamental group
of the principal leaves of ¥ .

3.1. Known results on the topology of leaves

Since the fundamental group of M does not change if we delete the strata of ¥ with
codimension > 2, we can assume that we only have singular strata of codimension < 2.
Furthermore, it is known that there are no strata of codimension one, which reduces ¥ to
only having strata of codimension two.

Let ¥y,..., ¥, denote the singular strata of ¥ of codimension two. Fori =1,...,m,
choose a singular leaf L} in X;, and let L; be a principal leaf at some distance ¢; from L;.
For &; small enough, the foot-point projection m;: L; — L;. is a circle bundle. Fix a
point p; € L;, and let [¢;] € 71 (L;, p;) be the element represented by the fiber ¢; of m;
through p;.

Fixing a principal leaf Ly and py € Lg, we can choose, for eachi =1,...,m, a
diffeomorphism h;: L; — Ly, and define k; = (h;)«([ci]) € m1(Lo, po)- The group K
generated by the elements k; is then a normal subgroup of 71 (L, po). Furthermore, there
exists a homotopy fibration

b
Lo 2 My = B,
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as described in Section 2.3. One has the following (see the proof of Theorem A in [7]):

(1) m1(Lo, po) is generated by the subgroup K and the image of the boundary map
0:2(B, by) — m1(Lo, po).

(2) H :=im(0) is central in 7r1 (Lo, po)

(3) Any two non-commuting generators k; and k; of K satisfy k;k; = kj_lk,-.

(4) Let N C K be the subgroup generated by the non-central k;’s, and let Z(,) denote

the Sylow 2-subgroup of Z(K). Then 71 (Lg, po) is nilpotent, and equal to A x K5,
where A is abelian and K = N - Z(y).

3.2. Proof of Theorem A

As discussed in Section 3.1, the principal leaves of ¥ have nilpotent fundamental groups.
As a first step towards the proof of Theorem A, we prove that the principal leaves are
nilpotent spaces:

Proposition 3.1. Suppose (M, ¥) is a closed singular Riemannian foliation on a com-
pact, simply connected Riemannian manifold M. Let L denote a principal leaf of ¥ and
let pg € Lg. Then 71 (Ly, po) acts trivially on 7, (L, po) forn > 2.

Proof. Let [y] € m1(Lo, po) and [w] € 7, (Lo, po).- The goal is to prove that [y] acts
trivially on [w]. By the discussion in Section 3.1, we may assume that either [y] € H or
[y] = k; for some i.

First consider the case in which [y] = k; for some i. Note that p; :=; o hi_l: Lo— L]
is a circle bundle whose fiber is represented by k;. This means that k; € ker((p;)x),
where (p; )« is the induced map on 7,,. Hence we have

(P« ([Y] - [@]) = )« (ki - [w]) = ((pi)« (ki) - (P« ([@])) = (pi)«([@]).

By the long exact sequence of homotopy groups associated to the fibration S' — L LY L;,
it follows that the homomorphism (p; ) is injective in 7, for n > 2. This, together with
Pi)«([¥] - [@]) = (pi)«([@]), implies that [y] acts trivially on [w].

Suppose now that [y] € H = im(d) and choose [8] € 2 (B, bg) such that [y] = d([B]).
Consider the fibration

Lo M, 5 B.

Note that the action of 71 (Lg, po) on 7, (Lo, po) satisfies [y] - [w] = (t0)«([¥]) - [@] (see
Exercise 4.3.10 in [16]). Therefore,

Y]+ [@] = (o)« ([¥]) - 0] = ()+(3([B]) - [w] = e - [0] = [w].
This completes the proof. |

Moving to the non-principal leaves, we first prove that every leaf has a virtually nilpo-
tent fundamental group.

Lemma 3.2. Suppose (M, ¥) is a closed singular Riemannian foliation with principal
leaf Lg. If 71(Lyo) is virtually nilpotent, then so is the fundamental group 71(L) of every
leaf L of ¥.
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Proof. For any leaf L of ¥, the foliated slice theorem (cf. Section 2.2) implies that there
is a fibration Ly — L whose fiber F has finitely many connected components. From the
long exact sequence in homotopy one then has

m1(Lo) = mi(L) — mo(F),
from which it follows that 7r; (L) is a finite extension of a quotient of 771 (L), therefore it

is virtually nilpotent as well. ]

Proof of Theorem A. The statement about principal leaves has been proved in Proposi-
tion 3.1, so we now have to only consider non-principal leaves.

Given a leaf L, choose p € L. Recall that, by the foliated slice theorem (cf. Sec-
tion 2.2), there is a locally trivial fibration ¢: Ly — L whose fiber I has finitely many
connected components, all diffeomorphic to a principal leaf of the infinitesimal folia-
tion (v, L,, ¥,). Furthermore, the action 7 (L) — Diff(F) induces an action m;(L) —

Aut(mr«(F)), which factors as 71 (L) ﬂ wo(K) — Aut(m«(F)). In particular,

(1) the subgroup G1 := ker ¢y C m1(L) has finite index in 71 (L) and it acts trivially
on 7« (F),

(2) the fibration induces a map 71 (L) i*) m1(L) = mo(F). Thus G, := ¢« (1 (Ly)) is
a nilpotent subgroup of 1 (L) with finite index.

Consider G := G1 N G, € m1(L), which is by the points above a nilpotent subgroup
with finite index. We will now show that G acts nilpotently on each 7, (L), i.e., the lower
central series I'f} (wn (L)) C 7, (L) defined iteratively by

Lg(n(L) = ma(L), TG (ma(L)) ={y-a—a|y € G, aelTg(m(L)}

eventually becomes trivial.
Consider the long exact sequence

coo > 1y (F) — w1, (Lo) ﬁ 7, (L) —a> Tp—1(F) — -+

Leta € my (L), and y = ¢ (yo) € G, where yo € m1(Lg). Recall that d(y - o) = y - (),
where the action on the left is 71 (L) acting on 74(L), while on the right we have the
mr1(L)-action on 7. (F). Since G C G, we have

y-0)=0) = Jd(y-a—a)=0,
and therefore
TG (a(L)) C ker(d) = s (mn(Lo)) = ¢ (Ty, (1.0 (Tn(L0)))-
Finally, we notice that if @ = ¢« (ag) with oy € 7,(Lg), then
y-a = (9«(10) - (P«(0)) = px(0) = y-a—a=¢«(yo-0o— o).
By induction on m, one then has
T (1a(L)) S ¢e (T2 1y (T (Lo)).-

Since by Proposition 3.1, Fﬁl(LO)(nn (Lo)) = 0, we have Fé (7, (L)) = 0, which proves
that G acts nilpotently on 7, (L), hence finishing the proof. |
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4. Fundamental groups of the principal leaves

This section consists of two parts. The first part is devoted to the proof of Theorem B. In
the second part, we provide examples of singular Riemannian foliations whose principal
leaves have fundamental groups of the form discussed in Theorem B.

Suppose that (M, ) is a closed singular Riemannian foliation on a compact, simply
connected Riemannian manifold M. Fix a principal leaf Ly of ¥ and pg € Lo. Let N
and K> be the subgroups of 1 (Lg, po) discussed in Section 3.1.

Consider the graph I" with vertices the generators of N and an edge between k; and k;
if and only if k;kjk; 1 — k1. Note that for every generator k; of N, there exists another
generator which does not commute with k;. Therefore, I' does not contain any isolated
vertices. Note moreover that for every connected component I'; of I', all vertices of I';
square to the same element c;. In addition, by the proof of Theorem A in [7], for any
generator k; of N, we have klf‘ =1 and ki2 is central in K. Therefore, ¢; is a central
element of N of order two. Altogether, we get that there is a map C: wo(I') — Z(N)
defined by C(I';) = ¢;.

Notation 4.1. From now on, we fix an element ¢ of Z(N) which is of the form ki2 for
some generator k; of N. Moreover, N, denotes the subgroup of N that is generated by all
the vertices in ', := C~1(c).

Recall that given a group G, the Frattini subgroup ®(G) is the intersection of all the
maximal subgroups of G. Furthermore, we recall the following.

Definition 4.2. A 2-group G is called generalized extraspecial if ®(G) is central, and
®(G) =[G, G] = Z»,.

We prove two important properties of the groups N,.

Lemma 4.3. Let {N¢}cem(c) be the collection of groups defined above. Then
(1) forc # ', the groups N, and N, commute,

(2) each N, is a generalized extraspecial 2-group.

Proof. First, we prove (1). Let ky, ..., k¢ be the generators of N, and let k1, ... k] be
the generators of N,s. As vertices of I, there is no edge between any k; and any k', which
means that each k; commutes with any kJ’- in K. Hence the result follows.

As for statement (2), if k1, ..., k¢ denote the generators of N, then V = N./{c) is
isomorphic to Zg and is generated by [k1], ..., [k¢]. It follows that N, fits into a short
exact sequence

1> {)—>N.—>V—>1

and in particular one has that both N? := (g2 | ¢ € N.) and the commutator subgroup
[N¢, N¢] coincides with (c) >~ Z,. Therefore, the same is true for the Frattini subgroup
®(N,) since for a 2-group G, one has ®(G) = G? - [G, G]. |

Given generalized extraspecial groups G; and G, with Frattini subgroups generated
by ¢; and ¢y, respectively, define the central product G| * G, by

G1 * G2 1= (G1 x G2)/{(c1, €2)).
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This is again a generalized extraspecial group, since
@(Gl * G2) = CD(GI) XZs CD(GQ) = Zs.

The * operation is furthermore associative, and thus it makes sense to define, for a
generalized extraspecial group G, the central product powers

G =GxGx...xG

m times

Generalized extraspecial 2-groups are, as the name suggests, a generalization of extra-
special 2-groups, that is 2-groups such that ®(G) = Z(G) = [G, G] = Z,. These groups
have been thoroughly studied at least since the 60’s, see [15]. They are extremely sim-
ple: an extraspecial group has the form (Qg)*™ or (Qg)*™~V x Dg for some m > 1,
where Qg is the quaternion group and Dy is the dihedral group of order 8 (cf. Theo-
rem 2.2.11 of [19]). It then follows from Lemma 3.2 in [27] that:

Theorem 4.4. A generalized extraspecial 2-group is of the form G x 7%, where G is
one of
o ormD Dy or QY k7,

4.1. The associated quadratic form

Let G be a generalized extraspecial 2-group with ®(G) = G2 = (c), and let V := G/{c).
It is easy to check that V' is a vector space over Z,.

Define the function Qg: V — Z, by Qg ([g]) = k, where g2 = ¢¥. Since ¢ is central
in G and has order two, for any g € G, we have (cg)? = cgcg = c?g? = g? and thus
06 ([cg]) = Oc([g]). Therefore, Q := Q¢ is well-defined and in fact a quadratic form as
defined in Section 2.4. Furthermore, the bilinear form B associated to Q (cf. Section 2.4)
satisfies

ghg 'h™' = Belebl) - for ¢ h € G.

In order to see this, note that both g2 and /2 are central elements of G. Therefore,
cBoellh) _ oUgl+[h]) .—Q(e]) .—Qo(rD) _ (gh)zg_z h2 = ghg—lh—l.

The quadratic form of each generalized extraspecial group can be explicitly computed.
For this, consider the quadratic forms:

Hy 73 — 7, H_:7%— 7, Q1:Zy — Ln,
Hy(x,y)=xy, H-(x,y)=x>+y"+xy,  Qi(x) =x%
We have the following.
Proposition 4.5. Suppose G is a generalized extraspecial 2-group and let V .= G/ ®(G).
(1) If G = (Q8)*™, then V ~ Z3™ and

H f"’ for m even,

= g9 —
Qo B { H_ & Hf(m_l) for m odd.



M. Radeschi and E. Khalili Samani 10

(2) If G = (Q8)*™V x Dg, then V ~ 7Z2™ and

H®™ form odd,
— H@(m—l) @ H. = + ’
Qa B * H_® Hf(m_l) for m even.

(3) If G = (Q8)™ * Za, then V ~ 73" and
O = Hfm@ 01=H""®Q,.
4) If G = G’ x Z% with G’ as in the previous points, then V >~ V' @ 7 and Qg =
Qg & 09"
Proof. This proposition follows easily from the following straightforward facts:
(1) For G = 05, G/®(G) ~ Z3 and Qg = H_.
(2) For G = D3, G/®(G) ~ Z3% and Qg = H.
(3) For G = Z4, G/ ®(G) >~ Zp and Qg = Q1.
(4) Given G; and G, with quotients V; = G;/®(G;), one has
(G1*Gp)/P(G1*xG) =Vi®V2 and 0Q6,x6, = 06, ® Q6,-

(5) Given G with quotient V = G/®(G), one has

(GxZy)/P(G XLy ~V@®Zy and Qgxzn = Q¢ & 0%". "

Remark 4.6. The group N, discussed above is generated by elements of order four, that
is, the k;’s. Moreover, for each k;, there exists k; such that kikjki_lkj_l = ¢. This is
reflected in the corresponding quadratic form Q:V — Z, = {0, 1} as follows. There exists
abasis {vy,...,v}of V = Zg with the property that Q(v;) = 1 for all i, and for each v;,
there exists v; such that Bp (v;,v;) = 1. We call such quadratic forms admissible.

The next step consists of understanding which of the quadratic forms in Proposi-
tion 4.5 are admissible. We start by reducing the problem to quadratic forms without
trivial summands:

Lemmad4.7. Let Q:V — Zj be a quadratic form. If there exists a splitting V =V, & V>
such that Q splits as Q = q & 09", with Q|y, = q and Q|y, = 0%", then Q is admissible
if and only if q is admissible.

Proof. Suppose that Q is admissible and choose a basis

{(U], wl)? e (vm+nv wm+n)}

of V1 & V, with the property that Q(v;, w;) = 1, and for every (v;, w;) there exists
(vj, w;) with Bo((v;, w;), (v;, wj)) = 1. After possibly rearranging basis elements of

V1 @ V5, we may assume that {vq, ..., v, } forms a basis for V;. Since Q (v;, w;) = q(v;)
and Bo ((vi, w;), (vj,w;)) = B, (v;, v;), the basis {vy,. .., vy} of Vj is admissible for gq.
On the other hand, if {vy, ..., v, } is admissible for ¢ and {wy, ..., w,} is any basis of V3,
then

{;,0) i =1,....m}U{(vi,w;) | j=1,...,n},
forms an admissible basis for Q. ]
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We now apply Lemma 4.7 to classify the admissible quadratic forms.

Theorem 4.8. Any admissible quadratic form Q: Zg — 7 is isometric to one of the
following, up to orthogonal sum with 0% :

4.1 H® (m=>2), H_-@H ' or HY"® Qi (m=>2).

Proof. Since the quadratic forms over Z, are classified (see Proposition A.1), we only
need to check the admissibility condition. By Lemma 4.7, we may assume that Q does
not split as g @ 0%, We break the proof into cases.

Casel.Q = H_- & Hfm_l, where 2m = £.
The quadratic form Q is given by

2 2
O(x,y,21,22, ..., Zam—2) =X~ +xy +y" + 2122 + -+ + Zam—3 Zam—2.
Leteq,...,eq denote the standard basis elements of Zg and consider the following basis:
vp =e1+e, Vy=e3+es, ..., Uy =E€yn—1+em,
Um+1 = €1,
Unm+2 = €1 + €3, Umt3z =e€1+es5, ..., Uy =e€1+eym1.

Then Q(v;) = 1 for all i, and for every v;, there exists v; such that Bg(v;, v;) = 1.
Hence Q is admissible.
Case2.Q = Hfm, where 2m = £.

Note that the only element of Z3 that is mapped to 1 by Hy is (1, 1). Therefore, H
is not admissible. However, if m > 2, then the following basis of Zg is admissible for Q:

v =e1+e, Vy=e3+es, ..., Uy =E€yn—1+em,
Um+1 = €1 + €2m—1 + €2m,
Unt+2 = €1 +e2+e4, Upyy3z=e3+es+es, ..., VUzm = €m—3+€2m—2+e2m.

Case3.Q = Hf’" @® Q1,wherem >2and2m + 1 = £.

Let {v1,..., V2, } denote the basis constructed for Hf"’ in Case 2, and let vo,, 41 =
e1 + ezm+1. Then {vy,..., Va1 ) forms an admissible basis for Q.

For Q = Hy & Q1, the elements with non-zero quadratic form are (1, 1,0), (1,0, 1),
(0,1, 1), (0,0, 1). Among these, the only vectors with non-zero bilinear form are the first
three, which are linearly dependent and thus do not form a basis. Hence Hy @ Q; is not
admissible. [

Recall that the group N, (cf. Notation 4.1) is a generalized extraspecial group with an
admissible basis. From the previous theorem, we then get:

Corollary 4.9. If N, is a generalized extraspecial group whose corresponding quadratic
form is admissible, then, up to a direct product with copies of Z», the group N, is isomor-
phic to one of the following:

42 (Qe)*™, (Q8)*™ ™V« Dg (m1 >2) or (Qg)*™ *Zys (my > 2).
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Proof. This follows trivially by comparing the quadratic forms in Proposition 4.5 with the
classification of admissible quadratic forms in Theorem 4.8. ]

Finally, we prove Theorem B.

Proof of Theorem B. Fix pg € L. As discussed in Section 3.1, the non-abelian part K,
of m1(Lo, po) is a 2-group of the form K> = N - Z(3), where N is generated by the non-
central generators of K and Z,y denotes the Sylow 2-subgroup of Z(K). Furthermore, by
the discussion in Section 4, N = N, --- N, , where the elements ¢; € Z(K) have order
two. By Corollary 4.9, each N, is of the form G; x Z5', where G; is one of the groups
listed in equation (4.2). Let a = )_; a;. Finally, since all the groups N, commute with
one another by Lemma 4.3, one has

Ne; NN C Z(Ng) N Z(N.;) and Z(N¢,) € Z(K>).
Therefore

K> = (z(z) x ﬁ Nc,,)/z’ - (z(z) x 78 x HG,-)/Z’,
i=1

where Z' € Z 3y x [[; Z(N;) is the subgroup of K, generated by the intersections H;; =
N N ch and Hoj = Zp) N ch. Since the groups H;;, Hy; are all abelian and central,
commute with one another, and have elements of order 2 or 4 (because Z(N,;) = Z‘z” X 7o

or Z;" X Z4), it follows that Z' = Z§ x Zf for some « and . ]

4.2. Examples of fundamental groups of principal leaves

The family of examples below shows that the non-abelian groups G; discussed in Theo-
rem B actually arise as fundamental groups of principal leaves of homogeneous singular
Riemannian foliations.

Let {eq, ..., ey} be the standard basis of R”. The Clifford algebra C1(0,7n) on R” is
defined as the associative algebra generated by ey, ..., e,, where multiplication of the
elements e; is given by

2
e; =—1, eje; =—eje;.

Consider the subset E(n) = {*e;, ...e;, } € Cl(0,n) containing products of even num-
bers of the ¢;’s. This is easily seen to be a group under the product of CI1(0, n). In [3],
Czarnecki, Howe, and McTavish prove that for the action of G = SO(n) x SO(n) on
My, (R) defined by (g, h) - A = gT Ah, the fundamental group of a principal orbit is of
the form E(n) x Z,. In this section, we investigate the structure of E(n).

Lemma 4.10. Let Go ,—1 be the group defined by the generators —1, ey, ..., e,—1 and
the relations

D*=1 ()’ =-1 [e.e¢l==1G#)). [6-1]=1

Then the groups E (n) and Gy n—1 are isomorphic.
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Proof. We have

Gon—1 = {%ei ...e;, | 1 <ij <n—1,ef =—1,eje; = —eje;}.
Given an ordered set [ = (i1, ...,i,) withindicesi; in{1,...,n —1},lete;f =¢;, ...¢€;,.
Notice thatif I = (i1,...,in) and J = (Ji1,..., jp), thenerey = eyuy, where I U J =

(1, sims j1,- -+, jp). Now, define the map v: Go,—1 — E(n) by

er for |7 even,

vien = {e,u{n} for |7] odd.

First, we claim that ¥ (eyey) = ¥ (er) ¥ (ey) for multi-indices I and J.

Case 1. |I]| and |J| are both even. In this case, we have
Vieres) = y(erur) = eruy = erey = yler)y(es).
Case 2. |I| and |J | are both odd. In this case, we have
Verey) = Ylequr) =ejus =erey =erej(—enen) = erumyesuimy = Vier)y(ey).

Case 3.1f |1 | is even and | J | is odd, then

Veres) = Y(erus) = erusuiny = erejuiny = ¥(er) ¥iey).
Case 4. 1f |1 | is odd and |J | is even, then

Veres) = Ylerus) = erusuiny = eruinyes = ver) ¥iey).

Therefore, v is a homomorphism. It is easy to see that ¥ is injective, and hence an
isomorphism since the groups Gy ,—; and E (1) have the same order. ]

The groups Gy ,—1 have been classified by Salingaros [24-26] (cf. [1]). We use this
classification to write the group E(n) = Gy ,—1 as a central product. This gives rise to the
following list for fundamental groups of the principal orbits of the G-action on M,,x, (R):

((08)*"7" % Dg) x Z2  forn = 0 (mod 8),

(08)*"7 x Z, forn = 1,3 (mod 8),
E()x Zy = { ((Qg)*" % Z4) x Ly forn = 2,6 (mod 8),

(Qe)*"7" x 72 forn = 4 (mod 8),

((Q8)*"Z" % Dg) x Zp forn = 5,7 (mod 8).

We do not know, however, whether all groups in Theorem B do in fact arise as funda-
mental groups of principal leaves in a simply connected manifold.
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5. Virtually nilpotent fundamental group

In this section, we consider singular Riemannian foliations (M, ), where the fundamen-
tal group of M is virtually nilpotent. As the following example shows, the fundamental
group of a principal leaf is not necessarily nilpotent in this case.

Example 5.1. Let M = C2 x S! and consider the homogeneous foliation ¥ on M
induced by the linear action of T3 = T2 x S!. Let M = M /7, where the non-trivial
element g of Z, acts by g - (z1,22,t) = (21,22, + %). Note that M inherits a singular
Riemannian foliation ¥ = ¥ /Z.

The manifold M is orientable, and is homotopy equivalent to S!. In particular, M is
nilpotent. However, the principal leaf of # is T3 /Z,, which has fundamental group

G=7*%x7 = (a,b,c: cac’V=a Y ebe ' =b7ab = ba).

Since Gy = (aze, bze) for any £, G is not nilpotent.

Nevertheless, in what follows, we prove that the fundamental groups of the leaves
contain a nilpotent subgroup of finite index.

Notation 5.2. Throughout the rest of this section, L, denotes a principal leaf of ¥ .
Furthermore, we fix pg € Lo, and K = (kq, ..., k,) denotes the normal subgroup of
w1(Lo, po) discussed at the beginning of Section 4. Recall that there is a homotopy fibra-
tion
Lo é
L() — M() — B,

which induces a long exact sequence

* é*
0— H — m1(Log, po) Ui)) w1 (Mo, po) = m1(B,b) —> 1,

where H = 9(m»(B)), as well as an action of 71 (B, b) on L. Denote by K the group
generated by H and ¢ - K, for ¢ € m1(B, b). Notice that for every y € m1(My, po) with
¢ = 0«(y), and every g € m1(Lo, po),

(t0)«(c-g) = y(t)«(e) y .
Lemma 5.3. Let (M, ¥) be a closed singular Riemannian foliation on a compact Rie-
mannian manifold M. If w1(M) is n-step nilpotent, then (71(Lo, po))n+1 S K, where
(1(Lo, po))n+1 denotes the (n + 1)-th group in the lower central series of w1(Lg, po).

Proof. Since removing strata of codimension > 2 does not change the fundamental group
of M, we can assume that M only contains singular strata of codimension < 2. In partic-
ular, we use the notation and results in Section 3.1.

Letting t: Lo — M denote the inclusion, one then has

(1 (Lo, po))n+1) S (@1 (M, po))n+1 = 1.

Therefore, given any curve « representing an element of (771 (Lo, po))n+1, there exists a
disk 7:D? — M extending (). By transversality, this can be deformed to only intersect,
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transversely, the singular strata X1, . . ., 3, of codimension 2, and the intersection consists
of finitely many points {¢1, ...q,} withq; € ¥;,. Foreach j = 1,...,r, let q]/- be a point
in 7(D?) close to g;, let u; be a curve in 1(D?) connecting po to q]’., and let ¥; be a small
loop in 7(ID?) based at q;-, turning once around ¢; . Finally, let y; = u; * y; % uj_l. Then:
(1) Foreachi = 1,...,r, [y;] € m1(Mo, po) is conjugate to (o)« (k;;) with k;; € K C
m1(Lo, po)- By the discussion in Notation 5.2, it follows that [y;] = (t0)«(c; - ki;)
for some ¢; € w1 (B, b).
(2) (o)+lo] = [ya] > - > [yr] = (o) ((c1 - kiy) * -+ * (¢ - ki) in w1 (Mo, po).
Since H = ker((t9)«), it follows that

[] = h((c1 - kiy) > - (cr - ki)
for some h € H. In particular, [¢] € K, and therefore (m1(Lo, po))n+1 K. |

We are finally ready to prove that if (M, ¥) is a closed singular Riemannian folia-
tion with 7r; (M) virtually nilpotent, then the fundamental group of every leaf is virtually
nilpotent as well.

Proof of Theorem C. Notice that if 7: M —> Misa finite cover, and (M ¥ ) is the lifted
singular Riemannian foliation, one has that a leaf L € ¥ has virtually nilpotent fundamen-
tal group if and only the corresponding leaf n(i) € ¥ does. Therefore, up to replacing
M with a finite cover M, we can assume that 7, (M) is nilpotent.

Let L be a principal leaf, and consider the Hurewicz homomorphism /: 71 (Lo, po) —
H{(Lo;7Z) and let G = h™'(2- H{(Ly: Z)). Clearly, G has finite index in 71 (Lo, po),
Since 71 (Lo, po)/G = H1(Lo;Z)/2 - Hi(Lo; Z) is finite. We claim that if 7, (M) is
n-step nilpotent, then G is (n + 1)-step nilpotent.

By Lemma 5.3, G,41 € G N K. The proof is complete once we prove that G com-
mutes with K. Notice that K is generated by H, and by elements of the form c - k; for
¢ € w1 (B, b) and k; one of the generators of K. Recall that H is central in 71 (L, po) (in
particular, G commutes with H), and for each g € m1(Lo, po), gkig™! = kiil. Since
m1(B, b) acts on mwy(Lg, po) by group automorphisms, it also follows that for every
g € m1(Lo, po), glc - ki)g™' = (c-ki)*".

Notice that if g(c - k;)g™! = (¢ - k;)® (for e = %1), then g7 (c - k;)g = (c - k;)® as
well. In particular, for every g1, g2 € m1(Lo, po), and every (c - k;) € K, one has

(g1, 82] - (¢ -ki)lg1. g2]7" = (c - ki).

The main observation is that, by definition, any element g € G can be written as

g = g3lg1.82) - [g2k-1. g2kl

for some g1, ... gk € m1(Lo, po) and therefore, for any generator (c - k;) of K, one has

glc kg™ = g3lg1. 2] - [gak—1. g2kl(c - ki)[gak—1. g2k) " -+ [g1. 82] ' 857>

= g3(c - ki)gy? = gs(c-ki)°g3!
= (c k) = (c-ky).



M. Radeschi and E. Khalili Samani 16

Therefore, G commutes with K and hence G 42 = [G.Gn11] C [G, K] = {1}.
This proves that the principal leaves of ¥ have virtually nilpotent fundamental group.
The corresponding statement for the non-principal leaves then follows from Lemma 3.2.
L]

A. Classification of quadratic forms over Z,

The classification of quadratic forms over Z, is well known. However, what appears usu-
ally in the literature is the classification of nondegenerate quadratic forms, which is not
what interests us here. Therefore, we provide the details of the classification.

Proposition A.1. Every non-trivial quadratic form on Zg is isometric to one of the fol-
lowing:

H® 0™, H_-@oH®"'©0™ o HZ ¢ 0, e0m !,
where 2mq + m, = £.

Proof. Let H:73 x 7.3 — Z5 be the bilinear form given by
H((x,y).(z,w)) = xw + yz.

By the classification of bilinear forms over Z, (cf. for example Proposition 1.8, Corol-
lary 1.9 and the discussion below in [5]), every symmetric bilinear form on a vector
space V over Z, is isometric to H™! & 0™2, where 2m 4+ m, = {. By equation (2.1)
in Section 2.4, it is easy to see that there are two equivalence classes of quadratic forms
associated to H™!, that is, the quadratic forms Q = H_':” and Q = H_& Hfl_l, where
Hy:73 — Z are given by

Hi(x,y)=xy and H_(x,y)=x>+y>+xy.
Similarly, to 0™2 correspond the quadratic forms Qg =0and Qg (x1,.. .. Xm,) = Y 11 X7
for any 1 < o < m,. However, Q4 is isometric to Q1 & 0™2~1_ Moreover, one has well
known isometries
HY @ Qi ~H o H® "9 0, and H® ~ H®?

which conclude the proof. ]
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