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Abstract
For every n ≥ 2, the surface Houghton group Bn is defined as the asymptotically
rigid mapping class group of a surface with exactly n ends, all of them non-planar.
The groups Bn are analogous to, and in fact contain, the braided Houghton groups.
These groups also arise naturally in topology: every monodromy homeomorphism
of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into
some Bn . As countable mapping class groups of infinite type surfaces, the groups Bn

lie somewhere between classical mapping class groups and big mapping class groups.
We initiate the study of surface Houghton groups proving, among other things, that
Bn is of type Fn−1, but not of type FPn , analogous to the braided Houghton groups.

1 Introduction and results

For n ≥ 2, denote by �n the connected orientable surface with exactly n ends, all of
them non-planar. We view�n as constructed by first gluing a torus with two boundary
components (called a piece) to every connected component of a spherewithn boundary
components, and then inductively gluing a piece to every boundary component of the
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surface from the previous step. The surface Houghton group, Bn , is the subgroup of
the mapping class group Map(�n) whose elements eventually send pieces to pieces,
in a trivial manner; see Sect. 2 for a precise definition.

Viewed in this light, the groups Bn are natural analogs of the asymptotic mapping
class groups of Cantor surfaces considered in [1, 2, 14–16]. In addition, these groups
are closely related to Houghton groups and their braided relatives [8]. In fact, using
Funar’s description of the braided Houghton group brHn as an asymptotically rigid
mapping class group [13], in Remark 2.2 below we briefly explain how to see that
brHn may be realized as a subgroup of Bn .

Beyond this analogy, the groups Bn arise naturally in the study of depth-1 folia-
tions of closed 3-manifolds.More precisely, the non-product components are mapping
tori of end-periodic homeomorphisms (see [12]), and every such homeomorphism is
conjugate into some Bn (see [11, Corollary 2.9]).

1.1 Finiteness properties

Recall that a group is of type Fd if it has a classifying space with finite d-skeleton, and
that it is of type FPd if the integers, regarded as a trivial module over the group, have a
projective resolution that is of finite type in dimensions up to d. Such a resolution can
be obtained for a group of type Fd by using the cellular chain complex of the universal
cover of a classifying space. Thus, Fd implies FPd .

In [16], Genevois–Lonjou–Urech proved that the braided Houghton group brHn is
of type Fn−1 but not of type FPn . Our first result is the analog of this result in our
setting.

Theorem 1.1 Bn is of type Fn−1 but not of type FPn.

In order to prove Theorem 1.1, as is often the case with this type of result, we will
make use of a classical criterion of Brown [6], expressed through the language of
discrete Morse theory; see Sect. 3 for details. More precisely, for each n ≥ 2 we
will construct a finite-dimensional contractible cube complex on which Bn acts, and
an invariant discrete Morse function on the complex, such that the descending links
are highly connected. In the construction of the complex as well as in the analysis of
descending links, we make heavy use of methods developed in [1].

1.2 Abelianization

A well-known theorem of Powell [26] asserts that the pure mapping class group
PMap(S) of a finite-type surface S of genus at least three has trivial abelianization.
For the surfaces �n , a result of Patel, Vlamis, and the first author [3, Corollary 6]
implies that H1(PMap(�n), Z) ∼= Z

n−1. More generally, the abelianization of (pure)
mapping class groups of infinite type surfaces is more complicated; see [9, 10, 21, 23,
27].

Using [3], we compute the abelianization Bab
n of Bn , as well as that of their pure

counterparts PBn .
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Theorem 1.2 For all n ≥ 2, Bab
n = {0} and PBab

n
∼= Z

n−1.

From the description of the abelianizations, we also describe all finite quotients
of Bn , proving that they are highly constrained; see Proposition 6.2. This has the
following consequence.

Corollary 1.3 For all m, n ∈ N, the groups Bn and brHm are not commensurable.

1.3 Marking graphs

By Theorem 1.1, Bn is finitely generated for all n ≥ 2, and so it has a well-defined
coarse geometry. In the finite type setting, a quasi-isometric model for the mapping
class group which has proven quite useful is Masur and Minsky’s marking graph [22].
For the surfaces �n , the marking graph is no longer a good model for several reasons.
A trivial issue is that it is disconnected, and the orbit of a marking may lie in different
components. There areBn-invariant components, but even these are problematic since
they are no longer locally finite. Worse, the orbit map to any such component fails
to be a quasi-isometric embedding (see Sect. 7). On the other hand, there are (many)
locally finite subgraphs which do serve as quasi-isometric models, by the following
and the Milnor–Švarc Lemma (see e.g. [5]).

Theorem 1.4 For all n ≥ 2, there exist locally finite subgraphs of the marking graph
on which Bn acts cocompactly. For n ≥ 3, any marking μ is contained in such a
subgraph.

The final statement is not quite true for n = 2 since there are markings on �2 with
infinite stabilizer in Bn .

Plan of the paper. Sect. 2 contains the relevant background on surfaces, mapping class
groups, and the definition of Bn , and in Sect. 3 we recall a classical result of Brown
[6] about finiteness properties of groups, and describe the relevant tools in our setting.
Section4 constructs a contractible cube complex on which Bn acts nicely, and which
is similar to that of [1, 16]. In Sect. 5 we will prove Theorem 1.1. We then prove
Theorem 1.2 and Corollary 1.3 in Sect. 6 and Theorem 1.4 in Sect. 7.

2 Surfaces

Throughout this paper, all surfaces will be assumed to be connected, orientable and
second-countable. A surface is said to have finite type if its fundamental group is
finitely generated; otherwise, it has infinite type. In this paper, the primary surfaces of
infinite typewewill consider are those that have a finite number of ends, all non-planar;
see Sect. 2.3 for an explicit construction.

2.1 Curves and arcs

By a curve on a surface S wemean the isotopy class of a simple closed curve on S. All
curves will be essential, meaning they do not bound a disk or once-punctured disk,
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nor do they cobound an annulus with a component of ∂S. An arc is the isotopy class
(relative to ∂S) of an embedded path that connects two boundary components of S. We
say that two curves/arcs are disjoint if they can be isotoped off each other. As usual,
we will not distinguish between curves (resp. arcs) and their representatives.

2.2 Mapping class groups

The mapping class group Map(S) of S is the group of isotopy classes of orientation-
preserving homeomorphisms of S; here all homeomorphisms and isotopies are
assumed to fix the boundary of S pointwise. The pure mapping class group PMap(S)

is the subgroup of Map(S) whose elements fix every end of S. When S has finite type,
then Map(S) is well-known to be of type F∞ [17]. On the other hand, when S has
infinite type, then Map(S) is uncountable.

When S has infinite type, an important subgroup of Map(S) (and of PMap(S), in
fact) is the compactly-supported mapping class group Mapc(S), which consists of
those mapping classes that are the identity outside some compact subset of S. By a
result of Patel–Vlamis [25], Mapc(S) is dense (in the compact-open topology) inside
PMap(S) if and only if S has at most one non-planar end; otherwise, PMap(S) is
topologically generated by Mapc(S) plus the set of handle-shifts.

2.3 Rigid structures and surface Houghton groups

The goal of this subsection is to describe the surfaces �n and the additional structure
alluded to in the introduction necessary to define their asymptotic mapping class
groups. These definitions, alongwith the toolkit needed to present them, closely follow
[1, Sect. 3].

Fix an integer n ≥ 2. Let On be a sphere with n boundary components, labelled
b1, . . . , bn , and T a torus with two boundary components, denoted ∂−T and ∂+T ;
we refer to ∂+T as the top boundary component of T . We fix, once and for all, an
orientation-reversing homeomorphism λ : ∂−T → ∂+T , and orientation-reversing
homeomorphisms μi : ∂−T → bi , for i = 1, . . . , n. We construct a sequence of
compact, connected, orientable surfaces (Mi )i as follows:

• M1 = On ;
• M2 is the result of gluing a copy of T to each boundary component of On , using
the homeomorphisms μi ;

• For each i ≥ 3, Mi is the result of gluing a copy of T along each of the boundary
components of Mi−1, using the homeomorphism λ.

The surface �n is the union of the surfaces Mi above. The closure of each of the
connected components of Mi

�Mi−1, for i ≥ 2, is called a piece. By construction,
each piece B ⊂ Mi

�Mi−1 is one of the glued on copies of T , and so is equipped with
a canonical homeomorphism iB : B → T . We call the unique boundary component
of B that belongs to Mi−1 the top boundary component of B as it maps by iB to ∂+T .
The set
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{ιB : B is a piece}

is called the rigid structure on �n .
A subsurface of �n is suited if it is connected and is the union of On and finitely

many pieces. A boundary component of a suited subsurface is called a suited curve.
Let f : �n → �n be a homeomorphism. We say that f is asymptotically rigid if

there exists a suited subsurface Z ⊂ �n , called a defining surface for f , such that:

• f (Z) is a suited subsurface, and
• f is rigid away from Z , that is, for every piece B ⊂ �n�Z , we have that f (B) is
a piece, and f |B ≡ ι−1

f (B) ◦ ιB .

Definition 2.1 (Surface Houghton group) The surface Houghton group Bn is the sub-
group of the mapping class group Map(�n) whose elements have an asymptotically
rigid representative.

We note that Bn is a subgroup. Indeed, if f and f ′ are asymptotically rigid, with
defining surfaces Z and Z ′, respectively, then f (Z ∪ Z ′) is a suited subsurface, and
serves as a defining surface for f ′ ◦ f −1, exhibiting it as an asymptotically rigid
homeomorphism.

We will denote by PBn the intersection of Bn with the pure mapping class group
PMap(�n).

Remark 2.2 In [13], Funar described the braided Houghton groups brHn as asymp-
totically rigid mapping class groups of certain planar surfaces. Replacing punctures
of this planar surface with boundary components, and then doubling the resulting
surface, determines a homomorphism brHn → Bn analogous to the construction of
Ivanov–McCarthy [20, Sect. 2].

3 Finiteness properties

3.1 Brown’s criterion for finiteness properties

In this section we recall a classical criterion, due to Brown [6], for a group to (not) have
certain finiteness properties. We remark that our formulation of the criterion differs
from the original [6], as we use the language of discrete Morse theory as developed
in [4]. We recall here the basic notions and definitions, referring the interested reader
to [4] or [1, Appendix A] for a thorough discussion.

Our setting is a group G acting on a piecewise euclidean CW-complex X by cell-
permuting homeomorphisms that restrict to isometries on cells. A Morse function on
X is a cell-wise affine map h : X → R satisfying the condition that on each closed cell
it attains a unique maximum (at a vertex, the top vertex of the cell). The descending
link lk↓(v) of a vertex v is the part of its link spanned by the links of cells that contain
v as their top vertex. The value h(v) is often referred to as the height of v.

We consider the vertices the critical points in X and the images of vertices under h
are the critical values. A Morse function h : X → R is discrete if the set of its critical
values is a closed discrete subset of R. Now the first theorem can be stated as follows.
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Theorem 3.1 (Brown) Let G be a group acting by cell-wise isometries on a con-
tractible piecewise euclidean CW-complex X. Assume X is equipped with a discrete
G-invariant Morse function h : X → R, and let X≤s denote the largest subcomplex
of X fully contained in the preimage h−1(−∞, s]. Suppose that

• The quotient of X≤s by G is finite for all critical values s.
• Every cell stabilizer is of type F∞.
• There exists d ≥ 1 such that, for sufficiently large critical values s and for every
vertex of v ∈ X with h(v) ≥ s, the descending link of v in X is d-spherical, i.e.,
(d − 1)-connected and of dimension d.

• For each critical value s, there exists a vertex v with non-contractible descending
link at height h(v) ≥ s.

Then G is of type Fd but not of type FPd+1.

Proof This proof mimics Brown’s proof of [6, Corollary 3.3].
As the set of critical values is discrete and closed, we can index them in order.

Now, we consider the filtration of X by sublevel complexes Xi := X≤si where si runs
through the critical values in order. The filtration step Xi+1 is obtained from Xi up to
homotopy by coning off descending links. Thus, the hypothesis that descending links
are (d−1)-connected implies that the inclusion of Xi into Xi+1 induces isomophisms
in homotopy (and homology) groups up to dimension d − 1 and an epimorphism
in homotopy (and homology) in dimension d. As we assume the complex X to be
contractible, the isomophisms in dimensions below d must eventually all be trivial
maps. It follows that for sufficiently large i , the sublevel complex Xi is (d − 1)-
connected. By [6, Propositions 1.1 and 3.1] implies that G is of type Fd .

For the negative direction, we focus on the system {Hd(Xi )}i of homology groups
in dimension d. We already observed that for i large enough, the morphisms in the
system are onto. Hence, the system can only be essentially trivial if the homology
groups Hd(Xi ) vanish for all large enough i . If, however, at the transition from Xi to
Xi+1,we encounter a non-contractible (d−1)-connected descending link of dimension
d, this descending link will have non-trivial homology in dimension d. Hence the
descending link contains a d-cycle. If this cycle was a boundary in Xi , coning off the
descending link would provide another way of bounding it in Xi+1, thus creating a
non-trivial (d + 1)-cycle, which is impossible as that element of Hd+1 could never be
killed in the future as we only ever cone off d-dimensional links. Hence, Hd(Xi ) �= 0
for infinitely many i . ��

It is clear from the criterion that tools for the analysis of connectivity properties of
spaces can be useful. We collect the tools that we will need in this case.

3.2 Propagating connectivity properties

We use the convention that every space is (−2)-connected and that any non-empty
space is (−1)-connected.
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3.2.1 Complete joins

We will deduce connectivity properties of complexes from those of other complexes,
and maps between them. One way to do this is formalized through the notion of a
complete join complex, introduced by Hatcher and Wahl in [19].

Definition 3.2 (Complete join complex) Let Y and X be simplicial complexes, and
π : Y → X a simplicial map. We say that Y is a complete join complex over X (with
respect to the map π ) if the following properties are satisfied

• π is surjective, and is injective on individual simplices.
• For each simplex σ = 〈v0, . . . , vd〉 in X , its preimage can be written as a join of
fibers over vertices:

π−1(σ ) = π−1(v0) ∗ · · · ∗π−1(vd).

Using a slight abuse of notation, we will often just say that the map “π : Y → X
is a complete join” to mean that Y is a complete join complex over X with respect to
the simplicial map π .

Since π is injective on simplices, the π -preimages of vertices are discrete sets
of vertices in Y . They are non-empty since π is surjective. It follows that for each
d-simplex σ in X , the π -preimage π−1(σ ) is a join of d + 1 non-empty discrete sets.

We make use of a complete join in two places, once to transfer known connectivity
properties from X to Y , and once to go the other way. The first direction is the difficult
one, and has been established by Hatcher–Wahl [19].

Before stating the result, recall that a simplicial complex isweaklyCohen–Macaulay
of dimension k+1 if it is k-connected and if the link of every simplexσ is (k−dim(σ )−
1)-connected.

Proposition 3.3 [19, Proposition 3.5] Suppose π : Y → X is a complete join. If X is
weakly Cohen–Macaulay of dimension k + 1, then so is Y .

Going forward is the easy direction (and is implicit in the argument given byHatcher
and Wahl [19]). See [1, Remark A.15] for an explicit account.

Proposition 3.4 Suppose π : Y → X is a complete join. Then X is a retract of Y and
inherits all properties that can be expressed by the vanishing of group-valued functors
or cofunctors. In particular, if Y is k-connected, then so is X.

Similarly, complete joins are easily prevented from being contractible.

Observation 3.5 Let π : Y → X be a complete join, and suppose that there is a
top-dimensional simplex σ = 〈v0, . . . , vd〉 in X such that each vertex fiber π−1(vi )

contains at least two points. Then, the fiber over σ contains a d-sphere which defines a
cycle in the homology of Y that cannot be a boundary as Y does not contain simplices
of dimension d + 1. In particular, Y is not contractible.
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3.2.2 The bad simplex argument

Amap fromacomplete join is a particularly nice projection.Thebad simplex argument,
introduced by Hatcher and Vogtmann [18], uses the inclusion map of a subcomplex
together with additional local information to transfer connectivity properties from the
ambient complex to the subcomplex. We do not follow the original exposition of the
argument, since we find the language introduced in [1] more convenient.

Let X be a simplicial complex and assume that we are given a map σ �→ σ̄ that
assigns to each simplex σ in X a (possibly empty) face, σ̄ , of σ . We assume that the
following two conditions are satisfied:

• Monotonicity: σ ≤ τ �⇒ σ̄ ≤ τ̄ .

• Idempotence: ¯̄σ = σ̄ .

We call the simplex σ good if σ̄ is empty and bad if σ̄ = σ . Note that bymonotonicity,
the good simplices in X form a subcomplex Xgood, whichwe call the good subcomplex.

The good link of a bad simplex σ is the geometric realization of the poset of those
proper cofaces τ > σ for which τ̄ = σ̄ = σ holds, i.e.,

lkgood(σ ) := { τ > σ | τ̄ = σ̄ }

The following proposition is due to Hatcher–Vogtmann [18, Sect. 2.1], but this
wording is taken from [1, Proposition A.7].

Proposition 3.6 Assume that for some number k ≥ −1 and every bad simplex σ ,
the good link lkgood(σ ) is (k − dim(σ ))-connected. Then the inclusion Xgood ↪→ X
induces isomorphisms in πd for all d ≤ k and an epimorphism in πk+1.

4 A contractible cube complex

The strategy for proving Theorem 1.1 is well-known, and is similar to that used in [1,
7, 16], for instance. Namely, we will construct a contractible complex X on which Bn

acts in such way that we can apply Brown’s [6] criterion described in Sect. 3 above.
We now proceed to do this. The definitions of the main objects are the word-for-

word adaptations of the ones in [1], and the only differences with our situation will
occurwhenwe analyze the connectivity properties of descending links. For this reason,
we will briefly recall the constructions from [1, Sect. 5], referring to that article for a
more thorough presentation.

Consider ordered pairs (Z , f ), where Z ⊂ �n is a suited subsurface and f ∈ Bn .
Two such pairs (Z1, f1) and (Z2, f2) are said to be equivalent if f −1

2 ◦ f1(Z1) = Z2

and f −1
2 ◦ f1 is rigid on the complement of Z1. Intuitively, the equivalence class of

(Z , f ) records the “non-rigid” behavior of f outside Z . For example, if f ∈ Bn is the
identity outside a suited subsurface Z , then (Z , f ) is equivalent to (Z , id). As another
useful example to keep in mind, observe that (Z , f1) and (Z , f2) are equivalent if
f −1
2 ◦ f1 leaves Z invariant and is rigid outside Z .
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We denote the equivalence class of (Z , f ) by [Z , f ], and the set of all equivalence
classes by S. The group Bn acts on S, by setting

g · [Z , f ] = [Z , g ◦ f ].

We define the complexity of a pair (Z , f ) as above to be the genus of Z . Alter-
natively, observe that since Z is a suited subsurface, it is the union of On and some
number of pieces. As each piece contributes 1 to the genus, the complexity is simply
the number of pieces in Z . Clearly, equivalent pairs have equal complexity, and the
action preserves complexity, so we have a Bn-invariant complexity function

h : S → Z ⊂ R.

Given vertices x1, x2 ∈ S, we say that x1 � x2 if there are representatives (Zi , fi )
of xi , for i = 1, 2, so that f1 = f2, Z1 ⊂ Z2, and Z2�Z1 is a (possibly empty)
disjoint union of pieces. The relation � is not transitive, so is not a partial order.

The relation � can be used to construct a cube complex X for which S is the
0-skeleton. Given x1 � x2, the set {x | x1 � x � x2} are the vertices of a d-
cube, with d = h(x2) − h(x1). We call x1 the bottom of the cube, as it uniquely
minimizes complexity over all its vertices. Since �n has exactly n ends, the complex
X is n-dimensional.

Observe that the action Bn on S preserves the cubical structure, and that the com-
plexity function h extends affinely over cubes to a Bn-invariant complexity function
(of the same name)

h : X → R+.

For k ≥ 1, write X≤k for the subcomplex of X spanned by those vertices with
complexity ≤ k. A direct translation of the arguments of Proposition 5.7 and Lemmas
6.2 and 6.3 of [1] yields the following:

Theorem 4.1 The cube complex X is contractible, and the action of Bn on X satisfies:

• Let C be a cube with bottom vertex x = [Z , f ]. Then the Bn-stabilizer of C is
isomorphic to a finite extension of Map(Z). In particular, every cube stabilizer is
of type F∞.

• For every k ≥ 1, the quotient of X≤k by Bn is compact.

In light of the theorem above, in order to apply Brown’s Theorem 3.1, we need to
prove that descending links have the correct connectivity properties. As was the case
in [1], the connectivity properties of descending links are determined by those of piece
complexes, whose definition we now recall:

Definition 4.2 (Piece complex) Let Z be a compact surface with boundary, and let
Q be a collection of boundary circles. We define the piece complex P(Z , Q) to be
the simplicial subcomplex of the curve complex of Z whose vertices are separating
curves which, together with a boundary circle from Q, bound a genus 1 subsurface.
If Q = ∂Z , we will write P(Z , Q) = P(Z).
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The relation between the two complexes is encapsulated by the following result,
whose proof is exactly the same as that of [1, Proposition 6.6].

Proposition 4.3 Let x = [Z , id] be a vertex of X. Then, the descending link lk↓(x) is
a complete join over the piece complex P(Z).

An immediate consequence of Propositions 4.3 and 3.3 is the following.

Corollary 4.4 If P(Z) is weakly Cohen–Macaulay of dimension k, then so is the
descending link lk↓(Z).

Before we end this section, we will need a little more information about this com-
plete join for the proof of the negative part of Theorem 1.1. To explain, we first recall
that for x = [Z , id], the complete join map η : lk↓(x) → P(Z) is defined as follows.
Given [W , g] ∈ lk↓(x), there is a piece Y ⊂ �n so that W ∪ Y is a suited subsurface
and [W ∪Y , g] = x = [Z , id]. It follows that g(W ∪Y ) = Z and g(Y ) is thus a vertex
of P(Z). We then define η([W , g]) = g(Y ). With this, we now state the lemma we
will need.

Lemma 4.5 For every vertex X ∈ P(Z), the fiber in lk↓(x) is infinite.

Proof Given X = η([W , g]) = g(Y ) as above,we need to show thatη−1(X) is infinite.
For this,we let h : Y → Y be anyhomeomorphism representing an element ofMap(Y ).
We extend h by the identity outside Y to a homeomorphism of the same name, which
thus represents an element of Bn . Observe that g ◦ h(W ∪ Y ) = g(W ∪ Y ) = Z and
g◦h(Y ) = g(Y ) ⊂ Z , while g◦h is rigid outside Z = W ∪Y , so [W , g◦h] = [Z , id],
and thus [W , g ◦ h] ∈ lk↓(x) with η([W , g ◦ h]) = g ◦ h(Y ) = g(Y ) = X . That is,
[W , g ◦ h] ∈ η−1(X) is another vertex. Moreover, [W , g ◦ h] = [W , g] if and only if
g−1 ◦ g ◦ h = h is rigid outside W (up to isotopy). Since Y is a piece outside W , this
can only happen if h is isotopic (in �n) to a homeomorphism which restricts to the
identity in Y . This is only possible if the original homeomorphism h of Y represents
the identity in Map(Y ), modulo Dehn twisting in the essential component of ∂Y in
Z (which can be “absorbed” into W ). Since Map(Y ) modulo the (central) subgroup
generated by Dehn twisting in this component of ∂Y is infinite, it follows that η−1(X)

is infinite, as required. ��

5 Connectivity properties of piece complexes

In this section,we shall establish connectivity properties of piece complexes andfinally
deduce the finiteness properties of Bn . Given a compact surface Z , we let g(Z) denote
the genus of Z .

Theorem 5.1 The piece complex P(Z , Q) of a compact surface is k-connected,
provided that g(Z) ≥ 2k + 3 and |Q| ≥ k + 2.

Let us first observe that this implies that piece complexes are weakly Cohen–
Macaulay, as defined above.
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Corollary 5.2 The piece complex P(Z , Q) is weakly Cohen–Macaulay of dimension
k + 1, provided that g(Z) ≥ 2k + 3 and |Q| ≥ k + 2.

Proof Observe that the link of a d-simplex σ in P(Z , Q) is isomorphic to the piece
complex P(Z ′, Q′) where Z ′ is obtained from Z by cutting off the pieces in σ and Q′
is the set of those boundary circles in Q that still exist in Z ′. Then,

g(Z ′) = g(Z) − (dim(σ ) + 1) ≥ 2k + 3 − dim(σ ) − 1 ≥ 2(k − dim(σ ) − 1) + 3

and |Q′| = |Q| − (dim(σ ) + 1) ≥ (k − dim(σ ) − 1) + 2. This implies the link of σ

is (k − dim(σ ) − 1)-connected, in view of Theorem 5.1, as required. ��
To analyze the connectivity properties of piece complexes, we shall introduce two

more complexes: the injective tethered handle complex T H1(Z , Q), which we will
see is a complete join over P(Z , Q); and the tethered handle complex T H(Z , Q),
which contains the injective tethered handle complex as a subcomplex. As before, if
Q = ∂Z we will simply write T H1(Z , Q) = T H1(Z) and T H(Z , Q) = T H(Z).
A diagram of the maps we use reads as follows:

lk↓([Z , f ]) T H1(Z) T H(Z)

P(Z)

We have used the left arrow to pull back connectivity from the piece complex to the
descending link. We shall use the middle arrow to push forward connectivity from
the injective handle complex to the piece complex, and we will use the inclusion of
T H1(Z) into T H(Z) to apply a bad simplex argument, pulling back connectivity
from the tethered handle complex to the injective handle complex. The connectivity
of the tethered handle complex itself has been analyzed in [1].

5.1 Tethered handle complexes

Let Z denote a compact connected orientable surface with boundary. By a handle in
Z we mean a subsurface of Z that avoids the boundary ∂Z and is homeomorphic to a
one-holed torus.

Given a handle T , consider (the isotopy class of) a simple arc α that joins ∂T to a
component b ⊂ Z . We remark that the isotopy class of α is not taken relative to its
endpoints, as is sometimes the case. Observe that the regular neighborhood of T ∪α∪b
is a piece. We will refer to the union of T and α as a tethered handle tethered to b with
handle T and tether α.

Definition 5.3 (Tethered handle complex) Let Z be a compact orientable connected
surface, and let Q be a collection of boundary circles of Z . The tethered handle complex
T H(Z , Q) is the simplicial complex whose d-simplices are sets of d + 1 pairwise
disjoint tethered handles, each tethered to an element of Q.
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The following is Lemma 10.12 of [1], which builds upon work of Hatcher–
Vogtmann [18]:

Lemma 5.4 The tethered handle complex T H(Z , Q) is k-connected, provided that Q
is not empty and g(Z) ≥ 2k + 3.

We consider the following subcomplex of the tethered handle complex.

Definition 5.5 (Injective tethered handle complex) The injective tethered handle com-
plex T H1(Z , Q) is the subcomplex of T H(Z , Q) consisting of those simplices where
the involved handles are tethered to pairwise distinct boundary components in Q.

The reason why we are interested in this subcomplex is that it is a complete join
over the piece complex, which allows us to push forward its connectivity. Indeed, we
already oberved that a small regular neighborhood of a tethered handle together with
its boundary component is homeomorphic to a piece. In this waywe obtain a simplicial
map

π : T H1(Z , Q) → P(Z , Q).

The following is [1, Lemma 8.8], and the proof applies verbatim to this setting:

Proposition 5.6 The map π : T H1(Z , Q) → P(Z , Q) is a complete join.

In particular, if T H1(Z , Q) is k-connected, then so is P(Z , Q) by Proposition 3.4.
Thus, we have now reduced the problem to analyzing the connectivity properties of
the injective tethered handle complex T H1(Z , Q).

Theorem 5.7 The injective tethered handle complex T H1(Z , Q) is k-connected,
provided that g(Z) ≥ 2k + 3 and |Q| ≥ k + 2.

Proof We induct on k starting at k = −1, which is trivial. For k ≥ 0, we use the bad
simplex argument for the inclusion of T H1(Z , Q) into T H(Z , Q).

Consider a simplex σ inT H(Z , Q) and define σ̄ to consist of those tethered handles
in σ that are tethered to the same boundary component as another handle in σ . Note
that T H1(Z , Q) consists precisely of those simplices σ for which σ̄ is empty, i.e., the
good simplices of T H(Z , Q). See Fig. 1.

Now consider a bad simplex σ = σ̄ . It takes at least two handles tethered to the
same boundary component to make a bad simplex. Hence, dim(σ ) ≥ 1. Consequently,
2 dim(σ ) ≥ 1 + dim(σ ) or, equivalently, dim(σ ) ≥ 1+dim(σ )

2 .

Note that the good link lkgood(σ ) is isomorphic to T H1(Z ′, Q′), where Z ′ is
obtained from Z by cutting off, for each boundary circle used in σ , a neighborhood of
the boundary circle and all tethers and handles of σ that it meets. The set Q′ consists
of those boundary circles in Q that still exist in Z ′. See Fig. 1. Then, we note the
following inequalities which allow us to apply the induction hypothesis.

g(Z ′) = g(Z) − (dim(σ ) + 1)

≥ g(Z) − 2 dim(σ )
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Fig. 1 Thefigure illustrates an example of Z where g = 5andQ = ∂Z has three components. There are three
tethered handles, which define a 2-simplex σ , while σ̄ is a 1-simplex spanned by the two tethered handles
on the left. The surface Z ′ is the shaded subsurface, which has genus 3 and three boundary components,
but Q′ consists of just the two components on the right

≥ 2k + 3 − 2 dim(σ )

= 2(k − dim(σ )) + 3

In a bad simplex each used boundary component tethers to at least two handles, whence
we also obtain the following estimate:

|Q′| ≥ |Q| − dim(σ ) + 1

2
≥ |Q| − dim(σ )

≥ k + 2 − dim(σ )

= (k − dim(σ )) + 2

By the induction hypothesis, lkgood(σ ) is therefore (k−dim(σ ))-connected. By Propo-
sition 3.6, the inclusion T H1(Z , Q) ↪→ T H(Z , Q) induces isomorphisms in πd for
all d ≤ k. As T H(Z , Q) is k-connected by Lemma 5.4, T H1(Z , Q) is k-connected.

��
Proof of Theorem 5.1 The result follows from the combination of Proposition 5.6 and
Theorem 5.7, appealing to Proposition 3.4. ��

5.2 Proof of Theorem 1.1

The group Bn acts on X leaving the discrete Morse function h : X → R invari-
ant. Sublevel complexes are Bn-cocompact, and cell stabilizers are of type F∞ by
Theorem 4.1.

By the above analysis, descending links of vertices are of dimension n − 1, and
for vertices of height h ≥ 2n, they are (n − 2)-connected. By Proposition 4.3 and
Lemma 4.5, the descending links are complete joins with infinite vertex fibers over a
complex of finite dimension, hence they are not contractible by Observation 3.5.

Now the hypotheses of Brown’s criterion 3.1 have been verified and the group Bn

is of type Fn−1 but not of type FPn .
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6 Abelianization

In this section we prove Theorem 1.2. The arguments rely on construction of non-
trivial, integer-valued homomorphisms from pure mapping class groups of [3], which
we briefly recall here for the particular case of the n-pronged surfaces �n .

Let γ be an oriented curve that separates an end E of �n from the rest, where the
orientation is chosen so that the component of�n−γ to the right of γ is a neighborhood
of E . Then, γ defines a nonzero element [γ ] ∈ Hsep

1 (S, Z), the subgroup of H1(S, Z)

spanned by homology classes of separating curves.
To every f ∈ PMap(S) and γ ∈ Hsep

1 (S, Z), the authors of [3] associate an integer
ϕ[γ ]( f ), which can be considered as the “signed genus” between γ and f (γ ) (see
Section 3 in [3] for the details). They then show that the map

ϕ[γ ] : PMap(S) → Z

so obtained is a well-defined, nontrivial homomorphism which depends only on the
homology class [γ ], see [3, Proposition 3.3]. Furthermore, by [3, Proposition 4.4],
this induces a surjective homomorphism

� : PMap(S) → H1
sep(S, Z),

by the rule �( f )([γ ]) = ϕ[γ ]( f ), where H1
sep(S, Z) has been identified with

Hom(Hsep
1 (S, Z), Z) by the Universal Coefficient Theorem. Informally speaking,

�( f ) tells us “how much genus has been shifted” on each end by f . It follows from
(the proof of) [3, Theorem 5] that � is a surjective homomorphism whose kernel is
precisely PMapc(S), namely the closure of the compactly-supported mapping class
group. At this point, in our particular setting, one has:

Theorem 6.1 (Corollary 6 of [3]) PMap(�n) = PMapc(�n) � Z
n−1.

When we restrict � to the pure subgroup PBn , the image of � is generated by n − 1
handle shifts ρ1, . . . , ρn−1, which belong to PBn . Even though we do not have the
semi-direct product structure in Theorem 6.1 when restricting to PBn , the projection
onto Z

n−1 from that theorem still defines a surjective homomorphism fitting into a
short exact sequence:

1 → (Bn)c → PBn → Z
n−1 → 1,

where (Bn)c is the intersection of Bn with PMapc(�n), which is precisely the com-
pactly supported elements of Bn . Since (Bn)c is a direct limit of mapping class groups
of compact surfaces, Powell’s result [26] implies that (Bn)

ab
c = {0}, and therefore

PBab
n

∼= Z
n−1. At this point, the fact that Bab

n = {0} follows from the above and the
natural short exact sequence

1 → PBn → Bn → Sym(n) → 1,
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where Sym(n) is the symmetric group on n elements, and Bn → Sym(n) comes from
the action on the n ends of �n . This is because the action can be used to conjugate
generators of PBab

n to their inverses. This proves Theorem 1.2.
We observe that (Bn)c is a normal subgroup of Bn , since the conjugate of a com-

pactly supported homeomorphism is compactly supported. From the homomorphisms
above, the quotient G = Bn/(Bn)c admits a homomorphism to Sym(n) with kernel
Z
n−1. It is not hard to explicitly construct a splitting of the associated short exact

sequence proving that G ∼= Z
n−1

� Sym(n). We thus have a short exact sequence

1 → (Bn)c → Bn → (Zn−1
� Sym(n)) → 1.

On the other hand, the proof of [25, Theorem 4.6] of Patel and Vlamis (which itself
relies on a result of Paris [24]) can be applied verbatim to show that (Bn)c has no
nontrivial finite quotients, proving the following.

Proposition 6.2 Every finite quotient of Bn factors through the homomorphism to
Z
n−1

� Sym(n). ��
An application of this and Theorem 1.1 proves Corollary 1.3.

Proof of Corollary 1.3 First observe that if n �= m, then Theorem 1.1 and [16, Theo-
rem 5.24] imply that the finiteness properties of the groups are different, and so they
cannot be commensurable.

If n = m, andBn and brHn are commensurable, then after passing to the intersection
with the finite index pure subgroups, we find finite index subgroups K < PBn and
J < PbrHn so that K ∼= J .We note here that PbrHn is the kernel of the corresponding
action on the n (non-isolated) ends of the underlying surface, and is not the subgroup
consisting of pure braids.

Applying Proposition 6.2, we see that Kab ∼= Z
n−1, and hence Jab ∼= Z

n−1 as
well. That is, both abelianizations must simply be the restrictions of the abelianization
of PBn , and thus also PbrHn , respectively. The kernels of the abelianizations must
therefore be finite index subgroups of (Bn)c and (brHn)c, respectively. The former
has no finite index subgroups, whereas (brHn)c admits a homomorphism to Z (being
the direct limit of compactly supported braid groups), which therefore has infinitely
many nontrivial finite index subgroups. This contradiction proves that Bn and brHn

are not commensurable. ��

7 Marking graphs

A marking μ on a surface is a pants decomposition called the base of the marking,
base(μ) = ⋃

i αi, together with a choice of transverse curves βi for each αi ; that is, a
curve βi so that i(αi , β j ) = 0 if i �= j and i(αi , βi ) = 1 or 2, depending onwhether αi

and βi fill a one-holed torus or four-holed sphere, respectively. Masur andMinsky [22]
define a graph whose vertices are markings and so that two markings are connected
by an edge if they differ by an elementary move, which essentially swaps the roles of
αi and βi (together with a certain “clean up” operation to ensure the result is again a
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marking). Let Mn denote the marking graph of �n . The image of a marking under a
mapping class is again a marking, and the definition of elementary move implies that
the mapping class group acts on the marking graph.

For a surface S of finite type, its marking graph M(S) is locally finite and the
orbit map is a quasi-isometry, since the action is cocompact. However, the action of
Bn on an invariant component of Mn is not cocompact since one can find arbitrarily
many distinct homeomorphism types of markings. Moreover, the orbit map is not
even a quasi-isometric embedding. Indeed, if μ is a marking, and ti is the Dehn twist
in αi ∈ base(μ), then the distance from μ to ti (μ) is uniformly bounded, while the
distance from the identity to ti tends to infinity as i → ∞ (since these are all distinct
elements in a finitely generated group).

To prove Theorem 1.4, we need the following.

Lemma 7.1 For all n ≥ 2 and any marking μ, the stabilizer of μ in Bn is either finite,
or contains a finite index subgroup that acts on �n by covering transformations. In
particular, the stabilizer is finite if n ≥ 3.

Proof There is a hyperbolic metric on �n so that all αi ∈ base(μ) have length 1 and
all βi meet αi orthogonally. Then any element of the stabilizer of μ acts on �n by
isometries. The lemma now follows since the isometry group of �n is necessarily
discrete, and hence finite for n ≥ 3, and either finite or virtually cyclic acting by
covering transformations for n = 2. ��
It is straightforward to construct Bn-invariant components of Mn , for all n ≥ 2 to
which the following theorem applies, and which immediately implies Theorem 1.4.

Theorem 7.2 For anyμ in aBn-invariant componentM0
n ⊂ Mn with finite stabilizer,

there is a locally finite subgraph X ⊂ M0
n containing μ so that Bn acts properly and

cocompactly on G.

Proof We let G be a finite subgraph which is the union of paths connecting μ to its
image under each generator from some fixed finite generating set for Bn . Further, we
assume that each vertex in G has finite stabilizer as well. This is automatic for n ≥ 3,
and is easy to arrange for n = 2. Now set X = Bn · G.

The fact that Bn acts cocompactly on X is immediate, since the G-translates cover
X by construction. The only thing we must prove is that X is locally finite. For this,
it suffices to show that

K = {g ∈ Bn | g · G ∩ G �= ∅}

is finite. Suppose there exists an infinite sequence of distinct elements {gn} ⊂ K . Let
xn ∈ G be a vertex so that yn = gn · xn ∈ G. There are only finitely many vertices
of G, and so after passing to a subsequence (and reindexing), xn = x and yn = y for
some x, y ∈ G. Thus, g−1

1 gn · x = x for all n, and hence the stabilizer of x is infinite,
a contradiction. ��
Remark 7.3 The utility in proving thatMap(S) is quasi-isometric to the marking graph
for a finite type surface S is that it allows one to provide a coarse estimate for distances
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in terms of local information via Masur andMinsky’s subsurface projections and their
distance formula [22]. TheDehn twisting examples above imply that one cannot expect
a similar distance formula forBn . However, one maywonder if there is some restricted
set of subsurfaces for which one can prove a distance formula. Or perhaps there is still
a distance formula for all of Mn (which simply does not transfer to Bn because it is
not quasi-isometric to Mn).
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