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Abstract
A separable covariance model can describe the among-row and among-column correlations of a random matrix 
and permits likelihood-based inference with a very small sample size. However, if the assumption of 
separability is not met, data analysis with a separable model may misrepresent important dependence 
patterns in the data. As a compromise between separable and unstructured covariance estimation, we 
decompose a covariance matrix into a separable component and a complementary ‘core’ covariance matrix. 
This decomposition defines a new covariance matrix decomposition that makes use of the parsimony and 
interpretability of a separable covariance model, yet fully describes covariance matrices that are non- 
separable. This decomposition motivates a new type of shrinkage estimator, obtained by appropriately 
shrinking the core of the sample covariance matrix, that adapts to the degree of separability of the 
population covariance matrix.
Keywords: decorrelation, equivariance, Kronecker product, matrix decomposition, matrix square root, whitening

1 Introduction
Many modern data sets include matrix-variate data, that is, a sample of n matrices Y1, . . . , Yn hav
ing a common dimension p1 × p2. Examples of such data sets include collections of images, net
works, gene by tissue expression arrays, and multivariate time series, among others. One 
approach to the analysis of such data is to first vectorise each data matrix by stacking columns, 
and then proceed with a method that is appropriate for generic multivariate data. For example, 
if Y1, . . . , Yn is a random sample from a population of mean-zero matrices, the population covari
ance could be estimated by the sample covariance S =

􏽐n
i=1 yiy⊤

i /n, where for i = 1, . . . , n, yi is the 
vector of length p = p1 × p2 obtained by vectorising Yi.

However, in many applications the sample size n is insufficient for such unstructured estimates 
to be statistically stable. For example, even though p1 and p2 might be of moderate magnitude in
dividually, a sample size of n ≥ p1p2 is necessary for S to be non-singular, and for the likelihood 
corresponding to a normal model to be bounded. Furthermore, even if the sample size is sufficient 
for estimation, an unstructured estimate such as S may be difficult to interpret, as it is not ex
pressed in terms of conceptually simple row factors or column factors.

For these reasons, covariance models that are based on the matrix structure of the data have 
been developed. Most popular are the separable or Kronecker-structured covariance models 
that assume the p × p population covariance matrix is the Kronecker product of two smaller co
variance matrices of dimension p1 × p1 and p2 × p2, representing across-row and across-column 
covariance, respectively. In particular, the separable covariance model for normally distributed 
data (Dawid 1981) has been used for a wide variety of applications including environmental mon
itoring (Mardia & Goodall 1993), signal processing (Werner et al. 2008), image analysis (Zhang 
& Schneider 2010), gene expression data (Yin & Li 2012), radar detection (Greenewald et al. 
2016), and many others.
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In addition to its interpretability, a separable covariance model is appealing because of its stat
istical stability, which is a result of its parsimony as compared to an unstructured covariance mod
el. Remarkably, the maximum likelihood estimator (MLE) in the separable normal model exists 
uniquely for any sample size n larger than p1/p2 + p2/p1 (Derksen & Makam 2021; Drton 
et al. 2021; Roś et al. 2016; Soloveychik & Trushin 2016). This is in contrast to a sample size re
quirement of n ≥ p1p2 in a normal model with an unstructured covariance. However, the appro
priateness of a separable covariance estimator depends on the extent to which the population 
covariance is truly separable. If the population covariance is not separable, a separable estimate 
would give an incomplete summary of the statistical dependencies in the data, and could lead to 
poor performance of statistical procedures, such as generalised least-squares or quadratic discrim
inant analysis (QDA), that rely on an accurate estimate of the population covariance. These and 
other concerns about the appropriateness of the separability assumption have been raised by 
M. L. Stein (2005) and Rougier (2017), specifically in the context of random spatio-temporal proc
esses. To address these concerns, Masak and Panaretos (2022) and Masak et al. (2023) have pro
posed generalisations of the class of separable covariance operators for functional data analysis 
with two-dimensional domains (e.g. space and time). The first of these is based on an approxima
tion of an arbitrary positive-definite covariance operator by a sum of separable matrices. The se
cond of these assumes the covariance operator is the sum of two positive-definite operators, one of 
which is separable and the other is banded, where the banding is determined by the metrics of each 
of the two domains.

Instead of approximating a covariance matrix, the approach we take in this article is to represent 
a covariance matrix in terms of a single separable component and a complementary non-separable 
component. This representation provides a new parametrisation of the space of covariance matri
ces that makes use of the parsimony and interpretability of a separable covariance model, yet fully 
describes covariance matrices that are non-separable. This parametrisation motivates a type of co
variance shrinkage estimator that can have a risk that is comparable to that of a separable estima
tor when the population covariance is truly separable, and otherwise has a lower risk than both the 
separable and unstructured estimators.

In the next section, we define the Kronecker covariance and core covariance of an arbitrary 
p1p2 × p1p2 covariance matrix. We show that the space of all p1p2 × p1p2 covariance matrices 
can be identifiably parametrised by the product space of Kronecker and core covariance matrices 
using this Kronecker–core decomposition (KCD). The Kronecker covariance provides a precise 
and interpretable definition of the ‘separable part’ of a non-separable covariance matrix, which 
can facilitate interpretation of covariance estimates in data analysis situations where the popula
tion covariance matrix is likely not separable. From a geometric perspective, the core covariance 
indicates where a given covariance matrix is along a sub-space that is orthogonal to a tangent 
space to the set of separable covariance matrices. This motivates a class of core shrinkage estima
tors, developed in Section 3, that are obtained by linearly shrinking the core of the sample 
covariance matrix towards the identity matrix. This is equivalent to shrinking the sample 
covariance matrix S towards its separable part k(S), resulting in a simple estimator Σ̂ of 
the form Σ̂ = (1 − w)S + wk(S) for some w ∈ [0, 1]. This shrinkage estimator can be positive- 
definite even when the sample size is much smaller than the dimension of the covariance matrix. 
We use an empirical Bayes approach to estimate an appropriate amount of shrinkage w from 
the data, and show that the resulting core shrinkage estimator (CSE) is consistent. In a simulation 
study in Section 4.1, we show that the loss of the proposed core shrinkage estimator can be very 
close to that of an oracle Bayes estimator, and lower than that of both the separable and unstruc
tured MLEs across a variety of conditions. In Section 4.2, we use CSEs as inputs into a QDA for a 
speech recognition task. We observe that classifications using CSEs have lower out-of-sample mis
classification rates than those using separable or unstructured MLEs. A discussion of directions for 
further research follows in Section 5. Proofs of mathematical results are provided in Appendix A.

2 Kronecker and core covariances
2.1 The Kronecker covariance of a random matrix
Let Y be a mean-zero random matrix taking values in Rp1×p2 , and let y ∈ Rp be its vectorisation, so 
that p = p1p2. We define the covariance matrix Var[Y] of Y to be the p × p matrix 
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Σ = Var[y] = E[yy⊤], which we assume to be non-singular and therefore a member of the set S+
p of 

positive-definite p × p matrices. Recall that Σ is Kronecker separable, or simply separable, if it can 
be expressed as Σ = Σ2 ⊗ Σ1 for some matrices Σ1 ∈ S+

p1
, Σ2 ∈ S+

p2
, where ‘⊗’ is the Kronecker 

product (Dutilleul 1999; Srivastava et al. 2008) In this case, the matrices Σ1, Σ2 (or matrices 
cΣ1, Σ2/c for any c > 0) are often referred to as the row covariance and column covariance of 
Y, respectively. For example, the covariance of the p2 random variables in a common row of Y 
is proportional to Σ2, and so Σ2 represents the covariances of the elements of Y across its columns.

Let S+
p1,p2

= {Σ2 ⊗ Σ1 : Σ1 ∈ S+
p1

, Σ2 ∈ S+
p2

} ⊂ S+
p be the set of separable covariance matrices for 

given values of p1 and p2. A separable covariance model is a collection of probability distributions 
for Y for which it is assumed that Var[Y] ∈ S+

p1,p2
. The most widely used separable model is the 

separable normal model, or ‘matrix normal’ model (Dawid 1981), which specifies that Y ∼ 
Np1×p2 (0, Σ2 ⊗ Σ1) for unknown Σ2 ⊗ Σ1 ∈ S+

p1,p2
. A separable covariance model can be thought 

of as a bilinear transformation model: Let Z be a p1 × p2 mean-zero random matrix with 
Var[Z] = Ip, and let Y = A1ZA⊤

2 for non-singular matrices A1 ∈ Rp1×p1 , A2 ∈ Rp2×p2 . Then 
Var[Y] = A2A⊤

2 ⊗ A1A⊤
1 , and the range of Var[Y] over all such matrices A1, A2 is exactly equal 

to S+
p1,p2

. More generally, separability is preserved under row and column transformations of 
Y: If Var[Y] = Σ2 ⊗ Σ1, then

Var[A1YA⊤
2 ] ≡ Var[(A2 ⊗ A1)y] = (A2 ⊗ A1)Var[y](A2 ⊗ A1)⊤

= (A2 ⊗ A1)(Σ2 ⊗ Σ1)(A2 ⊗ A1)⊤

= (A2Σ2A⊤
2 ) ⊗ (A1Σ1A⊤

1 ).

(1) 

In the language of group theory, let GLp1,p2 = {A2 ⊗ A1 : A1 ∈ GLp1 , A2 ∈ GLp2 } be the separable 
sub-group of the general linear group GLp of non-singular p × p matrices. The transformation in 
equation (1) from Var[Y] to Var[A1YA⊤

2 ] defines a transitive group action of GL p1,p2 on S+
p1,p2

. 
The group structure of the separable normal model and related tensor normal models has been ex
ploited to develop methods for statistical estimation (Gerard & Hoff 2015) and testing (Gerard & 
Hoff 2016; Hoff 2016).

Even if Var[Y] is not separable, it still may be of interest to define some notion of row covariance 
and column covariance for Y. To this end, we identify a separable covariance matrix K ∈ S+

p1,p2 

that summarises the row and column covariance of Y when Var[Y] is an arbitrary covariance ma
trix Σ ∈ S+

p :

Definition 1 Let E[Y] = 0 and Var[Y] = Σ ∈ S+
p . The Kronecker covariance of Σ is 

k(Σ) = Σ2 ⊗ Σ1, where (Σ1, Σ2) are any matrices in S+
p1

× S+
p2 

that satisfy

Σ1 = E[YΣ−1
2 Y⊤]/p2

Σ2 = E[Y⊤Σ−1
1 Y]/p1.

(2) 

Matrices Σ1 and Σ2 that solve equation (2) are weighted averages of across-row and across- 
column covariance matrices of whitened versions of Y. For example, Σ1 is obtained from Y by first 
whitening across its columns by Σ2.

Solutions to equation (2) exist for all Σ ∈ S+
p , and all solutions have the same Kronecker 

product, so the Kronecker covariance function k :S+
p → S

+
p1,p2 

is well defined. The existence 
and uniqueness of a Σ2 ⊗ Σ1 that satisfies equation (2) follow from existing results for the separ
able normal model, and the following alternative definition of k(Σ) as the element of S+

p1,p2 
that is 

closest to Σ in terms of a standard divergence function:

Proposition 1 (Σ1, Σ2) is a solution to equation (2) if and only if Σ2 ⊗ Σ1 minimises 
d(K : Σ) = ln |K| + trace(K−1Σ) over K ∈ S+

p1,p2
.

The divergence function d(K : Σ) is related to Stein’s loss for covariance estimation and to the 
Kullback-Leibler divergence between two normal distributions. Specifically, k(Σ) is the covariance 
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matrix of the separable normal distribution that minimises the Kullback-Leibler divergence to the 
Np1×p2 (0, Σ) distribution. This means that if Y1, . . . , Yn ∼ i.i.d. Np1×p2 (0, Σ) then the MLE of Σ2 ⊗ 
Σ1 under the potentially mis-specified model Y1, . . . , Yn ∼ i.i.d. Np1×p2 (0, Σ2 ⊗ Σ1) converges in 
probability to k(Σ) as n→∞ (Huber 1967). In the language of mis-specified models, k(Σ) is the 
‘pseudo-true’ parameter under the separable normal model in the case that Σ is not necessarily 
separable.

That the minimiser of the divergence function is unique follows from uniqueness results for the 
MLE in the separable normal model. The MLE for this model is obtained by minimising over Σ2 ⊗ 
Σ1 ∈ S+

p1,p2 
the scaled log-likelihood

(−2/n) × ln p(Y1, . . . , Yn|Σ2 ⊗ Σ1) = ln |Σ2 ⊗ Σ1| + trace((Σ2 ⊗ Σ1)−1S) + p ln 2π, 

where S =
􏽐n

i=1 yiy⊤
i /n is the sample covariance matrix. Clearly, the conditions on S for there to 

exist a unique MLE of Σ2 ⊗ Σ1 are the same as those on Σ for there to exist a unique minimiser 
of d(K : Σ) over K ∈ S+

p1,p2
. In particular, k(S) is the MLE of Σ2 ⊗ Σ1 under the separable normal 

model when S is the sample covariance matrix. Srivastava et al. (2008) show that this MLE exists 
uniquely if S is strictly positive-definite, which implies that k(Σ) exists uniquely for any Σ ∈ S+

p . We 
note that solutions may also exist uniquely when S, or analogously Σ, is singular (Derksen & 
Makam 2021; Drton et al. 2021; Soloveychik & Trushin 2016).

Numerical methods for finding the separable normal MLE may be used to compute the 
Kronecker covariance function. As shown in Dutilleul (1999), Σ̂2 ⊗ Σ̂1 is an MLE of Σ2 ⊗ Σ1 if 
(Σ̂1, Σ̂2) satisfy

􏽘n

i=1

YiΣ̂−1
2 Y⊤

i /n

􏼠 􏼡􏼬

p2 = Σ̂1

􏽘n

i=1

Y⊤
i Σ̂−1

1 Yi/n

􏼠 􏼡􏼬

p1 = Σ̂2.

(3) 

Dutilleul also provided a block co-ordinate descent algorithm that converges to the MLE when it 
exists uniquely. Because this system of equations is analogous to the system (2) that define k(Σ), 
Dutilleul’s algorithm may be implemented to numerically compute the Kronecker covariance 
k(Σ) of any Σ ∈ S+

p. In this context, given a starting value Σ2 ∈ S+
p2

, the algorithm is to iterate 
the following steps until a convergence criteria is met: 

1. Set Σ1 = E[YΣ−1
2 Y⊤]/p2;

2. Set Σ2 = E[Y⊤Σ−1
1 Y]/p1.

An algorithm to compute k(Σ) is provided in the replication material for this article.
An important property of the Kronecker covariance function is how it is affected by transforma

tions of Σ, or equivalently, of Y. Recall that if Y has a separable covariance Σ2 ⊗ Σ1, then A1YA⊤
2 

has separable covariance (A2Σ2A⊤
2 ) ⊗ (A1Σ1A⊤

1 ), and so in this sense a linear transformation across 
the rows of Y changes the row covariance and not the column covariance, and analogously for a 
column transformation. The following result shows that the Kronecker covariance function trans
forms in the same way, even if the covariance matrix of Y is not separable:

Proposition 2 For A2 ⊗ A1 ∈ GLp1,p2 and Σ ∈ S+
p with k(Σ) = Σ2 ⊗ Σ1,

k((A2 ⊗ A1)Σ(A2 ⊗ A1)⊤) = (A2 ⊗ A1)k(Σ)(A2 ⊗ A1)⊤.

= (A2Σ2A⊤
2 ) ⊗ (A1Σ1A⊤

1 ).

From the perspective of group theory, the group action of GLp1,p2 on Rp1×p2 defined by Y 7!
A1YA⊤

2 induces a group action of GL p1,p2 on S+
p given by Σ 7! (A2 ⊗ A1)Σ(A2 ⊗ A1)⊤. The result 
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is that the Kronecker covariance function k is equivariant with respect to this group action—the 
Kronecker covariance of the separably transformed Σ is the separably transformed Kronecker co
variance of Σ. This property will be used throughout the remainder of this article. Additional prop
erties of the Kronecker covariance function include the following:

Corollary 1 1. k(Ip) = Ip.
2. If Σ ∈ S+

p1,p2 
then k(Σ) = Σ.

3. For a > 0, k(aΣ) = ak(Σ).
4. If Σ is diagonal then k(Σ) is diagonal.

The third item indicates that k is a scale-equivariant function. As a result, the shrinkage estimator 
we propose in Section 3 will be scale-equivariant.

2.2 The Kronecker–core parametrisation and decomposition
The Kronecker covariance function k defined above is a surjection from S+

p to S+
p1×p2 

that describes 
the row covariance and column covariance of an arbitrary element of S+

p . We now use this function 
to define, for each Σ ∈ S+

p , a ‘core’ covariance matrix c(Σ) that is complementary to k(Σ) in that the 
core lacks across-row and across-column covariance in some sense. We then show that, taken to
gether, the product space of separable and core covariance matrices identifiably parametrises S+

p .
A core covariance of Σ ∈ S+

p is obtained by applying a transformation to Σ that whitens its 
Kronecker covariance. Specifically, let H = H2 ⊗ H1 be any matrix in GL p1,p2 such that 
HH⊤ = k(Σ). By the equivariance of k, we have

k(H−1ΣH−⊤) = H−1k(Σ)H−⊤

= H−1HH⊤H−⊤ = Ip.

We define Kronecker-whitened versions of Σ as follows:

Definition 2 Let H = H2 ⊗ H1 ∈ GLp1,p2 satisfy HH⊤ = k(Σ). Then the matrix C given by 
C = H−1ΣH−⊤ is a core of Σ.

We call the matrix C = H−1ΣH−⊤ a core of Σ because the four-way tensor Σ̃ ∈ Rp1×p2×p1×p2 

with entries corresponding to Σ may be expressed in terms of C, H1 and H2 via the multilinear 
operation

Σ̃ = C̃ × {H1, H2, H1, H2}, 

where ‘×’ is the multilinear product and C̃ is the four-way tensor corresponding to C. Equivalently, 
we have vec(Σ) = (H2 ⊗ H1 ⊗ H2 ⊗ H1)vec(C). In the context of Tucker products, the tensor that 
gets multiplied along each mode by a matrix is called the ‘core’.

There are multiple cores for a given Σ, as there are multiple separable matrices H for which 
HH⊤ = k(Σ). Conversely, a core of Σ is also a core of HΣH⊤ for any H ∈ GLp1,p2 . More generally, 
we say that a covariance matrix C ∈ S+

p is a core covariance matrix if it is the core of some Σ ∈ S+
p , 

and so any core covariance matrix satisfies k(C) = Ip. Furthermore, suppose C ∈ S+
p satisfies 

k(C) = Ip. Then C is a core of any covariance matrix HCH⊤ for H ∈ S+
p1,p2

. As such, for a given 
p1 and p2, we define the set of core matrices as follows:

Definition 3 For a given p1 and p2 with p1 × p2 = p, the set of core covariance matrices is 
C+

p1,p2
= {C ∈ S+

p : k(C) = Ip}.

The condition k(C) = Ip defining C+
p1,p2 

can alternatively be expressed as follows:

Proposition 3 Let Y have covariance matrix C ∈ S+
p, and let C̃ be the p1 × p2 × p1 × p2 

tensor where C̃i,j,i′,j′ = Cov[Yi,j, Yi′,j′ ]. Then k(C) = Ip if and only if
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E[YY⊤]/p2 ≡
􏽘p2

j=1

C̃,j,,j/p2 = Ip1

E[Y⊤Y]/p1 ≡
􏽘p1

i=1

C̃i,,i,/p1 = Ip2 .

So for a core covariance matrix, the across-column average of the across-row covariance is the 
identity matrix, and analogously for the across-column covariance. Intuitively, a core covariance 
has no across-row or across-column correlation or heteroscedasticity, on average.

From the proposition we see that C+
p1,p2 

is defined by a system of linear constraints, and 
that trace(C) = p for any core covariance matrix C, so C+

p1,p2 
is a compact convex subset of S+

p. 
Additionally, the core covariances C+

p1,p2 
and the separable covariances S+

p1,p2 
are nearly non- 

overlapping: If C is a core matrix then k(C) = Ip, and if C is separable, then k(C) = C by 
Corollary 1. Therefore, if C is core and separable, then C = Ip. Thus, S+

p1,p2
∩ C+

p1,p2
= Ip.

For every Σ ∈ S+
p there is a core matrix C ∈ C+

p1,p2 
and separable matrix K ∈ S+

p1,p2 
such 

that Σ = HCH⊤ for some separable H ∈ GLp1,p2 such that K = HH⊤. Conversely, to every C ∈ 
C+

p1,p2 
and K ∈ S+

p1,p2 
we can define an element of S+

p as HCH⊤, where H ∈ GLp1,p2 and 
K = HH⊤. This suggests that there is a bijection between S+

p and S+
p1,p2

× C+
p1,p2

. In fact, there 
are many such bijections, including one for each way to define a separable matrix square 
root H of K, or equivalently, one for each way to define a row and column whitening matrix 
from K. To specify a particular bijection, we need to specify a separable square root function.

Definition 4 Let H be a subset of GLp1,p2 such that the function s :H→ S+
p1,p2 

defined by 
s(H) = HH⊤ is a bijection. Then h = s−1 is a separable matrix square root 
function.

Essentially, a separable square root function is defined by a set of separable matrices H with 
unique cross-products, the set of which equals the set of separable covariance matrices. The defin
ing feature of such a function is that h(HH⊤) = H for H ∈ H. Two examples include the following: 

• Symmetric square root: h(Σ2 ⊗ Σ1) = Σ1/2
2 ⊗ Σ1/2

1 , where Σ1/2
j is the symmetric square root of 

Σj, j ∈ {1, 2}.
• Cholesky square root: h(Σ2 ⊗ Σ1) = L2 ⊗ L1, where LjL⊤

j is the lower triangular Cholesky fac
torisation of Σj, j ∈ {1, 2}.

A non-example would be GLp1,p2 : Whilst the set of cross-products of this set is equal to S+
p1,p2

, 
elements of the set do not have unique cross-products.

For a given separable square root function h we define the core covariance function c :S+
p →

C+
p1,p2 

as c(Σ) = H−1ΣH−⊤, where H = h(k(Σ)). Since the core represents ‘non-separable’ covari
ance, we would hope the core function to be invariant to bilinear transformations of the form Σ 7!
(A2 ⊗ A1)Σ(A2 ⊗ A1)⊤ that induce separable covariance. This property partly holds:

Proposition 4 Let Σ ∈ S+
p and A ∈ GLp1,p2 . Then 

1. c(AΣA⊤) = (R2 ⊗ R1)c(Σ)(R2 ⊗ R1)⊤ for orthogonal R1 ∈Op1 , R2 ∈Op2 .
2. c(AΣA⊤) = c(Σ) if A ∈ H and H is a group.

Item 2 of the proposition says that if H is a group then c is a maximal invariant function of Σ ∈ 
S+

p under the group action Σ 7! HΣH⊤ for H ∈ H, whilst the Kronecker covariance function k is an 
equivariant function by Proposition 2. One such group H is the set of Kronecker products of lower 
triangular matrices with positive diagonal entries, with h being the Cholesky square root. 
However, the results on covariance estimation in the remainder of the article are unaffected by 
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the choice of h as long as it is continuous, as is the case for the symmetric and Cholesky square root 
functions mentioned above. For notational simplicity, we use the symmetric square root function 
in the remaining sections of this article.

We now arrive at the main result of this section—an identifiable parametrisation of the set of 
covariance matrices in terms of Kronecker and core covariance matrices:

Proposition 5 The function f :S+
p → S

+
p1,p2

× C+
p1,p2 

defined by f (Σ) = (k(Σ), c(Σ)) is a 
homeomorphism with inverse g :S+

p1,p2
× C+

p1,p2
→ S+

p given by 
g(K, C) = h(K)Ch(K)⊤.

The function g can be viewed as a parametrisation of S+
p in terms of S+

p1,p2
× C+

p1,p2
. Conversely, 

the function f provides a unique representation of each Σ ∈ S+
p as Σ = h(K)Ch(K)⊤ for some 

K ∈ S+
p1,p2 

and C ∈ C+
p1,p2

. We refer to this representation as KCD.

3 Core shrinkage estimation
3.1 Algebraic and geometric aspects of core shrinkage
Let Y1, . . . , Yn be an i.i.d. random sample from a mean-zero population of p1 × p2 matrices with 
unknown covariance matrix Σ ∈ S+

p, where p = p1 × p2. Letting yi = vec(Yi), we propose an esti
mator Σ̂ of Σ obtained by shrinking the sample covariance matrix S =

􏽐n
i=1 yiy⊤

i /n towards the 
lower-dimensional manifold S+

p1,p2 
of separable covariance matrices, so that our estimator Σ̂ 

has the form

Σ̂ = (1 − w)S + wK̂, (4) 

where K̂ = k(S) and w ∈ [0, 1]. This estimator is equivariant with respect to transformations of the 
form S 7! (A2 ⊗ A1)S(A2 ⊗ A1)⊤ for A2 ⊗ A1 ∈ GL+

p1,p2
, since K̂ = k(S) and k is equivariant by 

Proposition 2. Note that if w > 0 then the estimator can be positive-definite even if n is much small
er than p, as long as n is large enough for K̂ to be positive-definite. As mentioned in the 
Introduction, a sufficiently large n can be much smaller than p, even smaller than p1 ∧ p2.

This estimator can be motivated and understood from multiple perspectives, including an em
pirical Bayes perspective described in the next sub-section, and from algebraic and geometric per
spectives using the KCD, as we explore here. Letting Ĉ = c(S) so that S = K̂1/2ĈK̂1/2, we have the 
representation

Σ̂ = (1 − w)K̂1/2ĈK̂1/2 + wK̂

= K̂1/2 (1 − w)Ĉ + wIp

􏽨 􏽩
K̂1/2 = K̂1/2ĈwK̂1/2,

(5) 

where Ĉw = (1 − w)Ĉ + wIp. Note that Ĉw ∈ C+
p1,p2 

because C+
p1,p2 

is convex and includes Ip. The 

core covariance of Σ̂ is Ĉw, and the Kronecker covariance is

k(Σ̂) = K̂1/2k(Ĉw)K̂1/2

= K̂1/2IpK̂1/2 = K̂.
(6) 

So, whilst Σ̂ and Ĉw are shrunken versions of S and Ĉ, respectively, k(Σ̂) is equal to k(S). This in
dicates that linear shrinkage of the sample covariance matrix S towards its Kronecker covariance K̂ 
in equation (4) is equivalent to linear shrinkage of the core of S towards the identity, and so we 
refer to Σ̂ as a core shrinkage estimator. Furthermore, the fact that k(Σ̂) = K̂ means that k(Σ̂) is 
an equivariant estimator of k(Σ), which may be a desirable property in applications where k(Σ) 
is a parameter of interest.
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The geometry of core shrinkage is represented abstractly in Figure 1. The sub-manifold S+
p1,p2 

of 
the cone S+

p is represented by the thick grey vertical ray, and the sub-manifold C+
p1,p2 

is represented 
by the thick grey horizontal line segment. For any K ∈ S+

p1,p2
, the set k−1(K) = {S : k(S) = K} is 

known as the auxiliary space of the function k at the point K (Amari 2016, Chapter 7). The aux
iliary space k−1(K̂), where K̂ = k(S) is represented in the figure by the horizontal line that intersects 
K̂, Σ̂, and S. The core function c provides a bijection between each auxiliary space and the set of 
core covariance matrices C+

p1,p2
. From the perspective of information geometry, the CSE shrinks S 

towards K̂ along the mixture-geodesics contained in the mean parameter space of the Wishart 
model (Amari 1982).

3.2 Empirical Bayes estimation
Determining an appropriate amount of shrinkage to apply in equation (4) is facilitated by viewing 
Σ̂ as an empirical Bayes estimator. Consider an inverse-Wishart prior distribution for the unknown 
covariance Σ,

Σ−1 ∼ Wishartp([(ν − p − 1)Σ2 ⊗ Σ1]−1, ν), (7) 

which is parametrised so that E[Σ] = Σ2 ⊗ Σ1. The hyperparameter ν partly controls how concen
trated the prior distribution of Σ is around the separable covariance matrix Σ2 ⊗ Σ1. Under this 
prior distribution and a mean-zero normal sampling model for Y1, . . . , Yn, the posterior distribu
tion of Σ is

Σ−1 ∣ S ∼ Wishartp([nS + (ν − p − 1)Σ2 ⊗ Σ1]−1, n + ν) 

and the Bayes estimator under squared-error loss is the posterior mean,

E[Σ ∣ S] = (1 − w)S + wΣ2 ⊗ Σ1, (8) 

where w = (ν − p − 1)/(n + ν − p − 1). An empirical Bayes estimator that replaces the hyperpara
meter Σ2 ⊗ Σ1 with K̂ = k(S) gives the estimator

􏽤E[Σ ∣ S] = (1 − w)S + wK̂, 

which is the same as in equation (4).
The amount of shrinkage w is determined by the hyperparameter ν. Our proposed empirical 

Bayes estimator of ν is the maximiser in ν of the marginal density p(S ∣ ν, Σ2 ⊗ Σ1) with K̂ 
plugged-in for Σ2 ⊗ Σ1. This density has an essentially closed-form expression due to the conju
gacy of the inverse-Wishart prior distribution (7). Using standard calculations, we obtain the mar
ginal density of S as

p(S ∣ ν, Σ2 ⊗ Σ1) = r ×
k(ν)|(ν − p − 1)Σ2 ⊗ Σ1|

ν/2

k(ν + n)|nS + (ν − p − 1)Σ2 ⊗ Σ1|
(ν+n)/2 , 

Figure 1. Core shrinkage from S ∈ S+
p towards K̂ ∈ S+

p1,p2 
along C+

p1,p2
.
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where r does not depend on ν and k(ν)−1 = 2νp/2Γp(ν/2), with Γp being the multivariate gamma 
function. Now we plug-in K̂ for Σ2 ⊗ Σ1 and utilise the fact that S = K̂1/2ĈK̂1/2 to obtain

p(S ∣ ν, K̂)/b = |K̂|−n/2 ×
k(ν)

k(ν + n)
(ν − p − 1)−np/2

􏼌
􏼌
􏼌Ip +

n
ν − p − 1

Ĉ
􏼌
􏼌
􏼌
−(ν+n)/2

= |K̂|−n/22np/2� 􏼁
×

Γp((ν + n)/2)
Γp(ν/2)

(ν − p − 1)−np/2
􏼌
􏼌
􏼌Ip +

n
ν − p − 1

Ĉ
􏼌
􏼌
􏼌
−(ν+n)/2

.

After some additional manipulation, we have that p(S ∣ ν, K̂) ∝ν L(ν) where

L(ν) =
Γp((n + ν)/2)

Γp(ν/2)
× wνp/2(1 − w)np/2 × |(1 − w)Ĉ + wIp|

−(ν+n)/2, (9) 

with w = (ν − p − 1)/(n + ν − p − 1) as before. Computation of L(ν) is facilitated by noting that the 
determinant term can be expressed as |(1 − w)Ĉ + wIp| =

􏽑p
j=1 (w + (1 − w)ĉj), where ĉ1, . . . , ĉp 

are the eigenvalues of Ĉ. Our proposed empirical Bayes estimator of ν is the maximiser ν̂ of L, 
which gives ŵ = (ν̂ − p − 1)/(n + ν̂ − p − 1) as the amount of shrinkage. The resulting empirical 
Bayes core shrinkage estimator is given by

Σ̂ = K̂1/2[(1 − ŵ)Ĉ + ŵIp]K̂1/2

= (1 − ŵ)S + ŵK̂.
(10) 

To understand how the data influence the value of Σ̂ through ŵ, write L(ν) = a(ν) × b(ν), where 
b(ν) = |(1 − w)Ĉ + wIp|

−(ν+n)/2 is the part of L that depends on the data, and a(ν) = L(ν)/b(ν). 
The function a(ν) is generally increasing, and so this part of L ‘favours’ large values of ν̂ (and 
ŵ). If the sample covariance S is very close to being separable, then Ĉ is very close to the identity 
matrix and so b(ν) is roughly constant in ν. In this case, a(ν) dominates L(ν), resulting in a large ŵ 
and strong shrinkage of S towards the sample Kronecker covariance K̂. However, if Ĉ is far from 
the identity then b can be strongly decreasing in ν, which results in Σ̂ being close to S. In summary, 
the degree of shrinkage towards the space of separable covariance matrices depends on how close S 
is to being separable, as measured by how close Ĉ is to the identity matrix.

Finally, we note that Σ̂ does not depend on the choice of separable square root function: This is 
because if Ĉ and Ĉ′ are core matrices of S obtained from different square root functions, they still 
must satisfy Ĉ′ = RĈR⊤ for some orthogonal matrix R. This difference does not affect the empir
ical Bayes estimator of ν, since

|(1 − w)Ĉ′ + wIp| = |(1 − w)RĈR⊤ + wRR⊤|

= |RR⊤| |(1 − w)Ĉ + wIp| = |(1 − w)Ĉ + wIp|.

3.3 Consistency
We now provide some consistency results for the components of the KCD and the core shrinkage 
estimator. First, we have the very general result that a consistent estimator S of Σ can be used to 
obtain consistent estimators of k(Σ) and c(Σ), and vice versa:

Lemma 1 k(S)→p k(Σ) and c(S)→p c(Σ) if and only if S→p Σ.

This follows directly from the continuity result in Proposition 5 and the continuous mapping 
theorem. The lemma implies that if S is consistent and Σ ∈ S+

p1,p2 
then the CSE Σ̂ = (1 − ŵ)S + 

ŵk(S) is consistent as well because k(S)→p k(Σ) = Σ. Conversely, if Σ ∉ S+
p1,p2

, then consistency 
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of Σ̂ additionally requires that ŵ, the weight on k(S), converges in probability to zero. This holds if 
S is consistent:

Lemma 2 If S→p Σ and Σ ∉ S+
p1,p2 

then ŵ→p 0.

Lemmas 1 and 2 together give the consistency of Σ̂:

Proposition 6 If S→p Σ then Σ̂→p Σ for any Σ ∈ S+
p.

These consistency results only assume that S converges in probability to Σ as some index n, used in 
the definition of ŵ, goes to infinity. Even though a normal model was used to construct ŵ, the data 
need not be normal, and the estimator S need not be Wishart-distributed, for consistency to hold.

4 Numerical examples
4.1 Monte Carlo study
Because of its adaptive nature, we expect that the CSE Σ̂ outperforms the unrestricted MLE S in 
general and performs nearly as well as the separable MLE K̂ when the true covariance is exactly 
separable. We examine this in a finite-sample setting with a small simulation study. We considered 
two dimensions for the sample space, (p1, p2) = (5, 7) and (p1, p2) = (13, 17) which correspond to 
values of p = p1 × p2 being 35 and 221, respectively. For each dimension, eight sample sizes n were 
considered, ranging from p2 to 3p1p2/2. Note that this includes sample sizes n that are much 
smaller than the dimension p. For each dimension and each sample size, population covariance 
matrices were generated under four scenarios, three of which were simulated from the 
inverse-Wishart prior distribution (7) with three values of the degrees of freedom parameter ν ran
ging from p + 2 to 3p + 1. In the fourth scenario, which we refer to as ν = ∞, Σ was set to a sep
arable matrix (the identity matrix). To summarize, our simulation scenarios include 8 × 4 = 32 
combinations of n and ν for each of 2 different values of (p1, p2).

For each of these 64 scenarios, 200 matrices Σ were simulated from equation (7), and from each 
a sample of n random matrices from the corresponding multivariate normal distribution were gen
erated. From each sample, we computed four estimators: the sample covariance or MLE S, the sep
arable MLE K̂, the CSE Σ̂, and the oracle Bayes estimator (8) which uses perfect knowledge of the 
hyperparameters ν and Σ2 ⊗ Σ1 of the prior distribution (7). For each sample and estimator, the 
squared error loss in estimating Σ was computed.

Before comparing the estimators in terms of loss, we first examine the performance of the empir
ical Bayes estimator of ŵ of w, which determines the amount of shrinkage towards K̂. Results for all 
simulation scenarios are shown in Figure 2, where sample means of the 200 values of ŵ are plotted 
as a function of the sample size. On average, ŵ overestimates w with the bias decreasing with in
creasing sample size and dimension p, and also being smaller for the smaller values of w. Our intu
ition regarding the overestimation is that the ideal estimate of w would be obtained by evaluating 
how close S is to Σ2 ⊗ Σ1. In contrast, ŵ is obtained by evaluating how close S is to K̂. Since K̂ is the 
closest element of S+

p1,p2 
to S by construction, ŵ overestimates how close S is to Σ2 ⊗ Σ1.
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Figure 2. Average of 200 values of ŵ as a function of ν and n in thick lines, true values of w in thin lines.
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Loss comparisons for the four estimators are displayed in Figures 3 and 4 for the (p1, p2) = (5, 7) 
and (p1, p2) = (13, 17) scenarios, respectively. The performance comparisons among the four es
timators are similar in each of these two cases. The oracle Bayes estimator has the best perform
ance for each value of ν. For the smallest values of ν, for which Σ is not close to being separable, the 
performance of the unrestricted MLE is nearly identical to that of the oracle Bayes estimator. This 
is because the value of the oracle shrinkage weight is 1/n and so these two estimators are nearly the 
same. The core shrinkage estimator (CSE) has a loss performance nearly identical to these two es
timators, since for small values of ν, the estimate ν̂ is quite good. In contrast, the Kronecker MLE 
(KMLE) has worse performance on average than the other estimators, and its loss does not im
prove with increasing sample size. The explanation for this is that the Kronecker covariance 
k(Σ) does not require a large sample size to be well estimated, and so K̂ is close to k(Σ) for all sample 
sizes, but this is far from Σ since Σ is not close to being separable.

The pattern changes somewhat for the larger values of ν. In general, the loss of the KMLE is 
good for small sample sizes, but does not improve much with increasing sample size since it con
verges to k(Σ), which is not equal to Σ. In contrast, the unrestricted MLE is poor for small sample 
sizes but, since it is a consistent estimator, has a loss that steadily decreases with increasing sample 
size. The CSE is generally as good or better than either of these estimators across the different sam
ple sizes: For small n it is about as good as the KMLE, and for large n, where both k(Σ) and ν can be 
well estimated, it performs nearly as well as the oracle Bayes estimator.

Finally, the far-right panel of each figure gives the performance of the CSE and unrestricted and 
separable MLEs in the case that Σ is truly separable (the oracle Bayes estimator in this case is exact
ly Σ). The performance of the CSE and KMLE are nearly identical, and much better than that of the 
unrestricted MLE. This is not too surprising given the observation from Figure 2 that ν̂ tends to 
overestimate ν when ν is a large (finite) value. Although any finite estimate ν̂ of ν is in some sense 
too small for this case where Σ is exactly separable, ν̂ is generally large enough to make the shrink
age weight on w nearly equal to one, which gives an estimate that is nearly identical to the KMLE.
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Figure 4. Loss comparisons for (p1, p2) = (13, 17). Boxplots of the log-loss from 200 simulated data sets for each 
scenario. Estimators include the sample covariance matrix (MLE), the separable MLE (KMLE), the core shrinkage 
estimator (CSE) and the oracle Bayes estimator (OBayes).
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Figure 3. Loss comparisons for (p1, p2) = (5, 7). Boxplots of the log-loss from 200 simulated data sets for each 
scenario. Estimators include the sample covariance matrix (maximum likelihood estimator—MLE), the separable 
MLE (Kronecker MLE—KMLE), the core shrinkage estimator (CSE) and the oracle Bayes estimator (OBayes).

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 5                                                   1669
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/5/1659/7227061 by IN
AC

TIVE user on 19 April 2024



4.2 Speech recognition
Many data analysis tasks rely on accurate covariance estimates, including tasks that are not spe
cifically about covariance estimation. For example, QDA is a simple and popular method of clas
sification that relies on estimates of the population means and covariances of each potential class 
to which new observations are to be assigned. Specifically, the score of a new observation with fea
ture vector y ∈ Rp with respect to category k ∈ {1, . . . , K} is

sk(y) = (y − μ̂k)⊤Σ̂−1
k (y − μ̂k) + ln |Σ̂k|, 

where (μ̂k, Σ̂k) are estimates of the population mean and covariance of the feature vectors of ob
jects in class k. If the frequencies of the different classes are equal, the classification rule is to assign 
the object with feature vector y to the class with the minimum score. The accuracy of such a clas
sification procedure will depend on, among other things, the accuracy of the mean and covariance 
estimates for each group. In cases where the feature vector y is the vectorisation of a matrix of fea
tures, we may consider using the CSE given by equation (10) to make classifications, as an alter
native to either the unstructured MLE, the separable MLE, or other types of estimators.

As a numerical illustration, we consider classification of spoken-word audio samples for 10 
command words (‘yes’, ‘no’, ‘up’, ‘down’, ‘left’, ‘right’, ‘on’, ‘off’, ‘stop’, ‘go’), using the data 
set provided by Warden (2017) and described in Warden (2018). The data we consider include 
20,600 1-s long audio WAV files, with a per-word sample size ranging from 1,987 to 2,103 across 
the 10 words, representing between 989 and 1079 unique speakers for each word. We retain 100 
audio samples per word for testing, and train our classifier on the remaining 19,600 audio sam
ples. We do not make use of the fact that some speakers are represented multiple times in the 
data set.

A standard set of features for audio classification are mel-frequency cepstral coefficients 
(MFCCs), which describe an audio sample in terms of a matrix whose dimensions represent perio
dicities in the power spectrum of the signal across time increments. Typically, only the first 13 co
efficients are retained for speech recognition tasks [Rao and Manjunath (2017, Appendix A); 
Sueur (2018, Chapter 12)]. For each audio sample in the data set, we computed a p1 × p2 = 99 × 
13 matrix of the first 13 mel cepstral coefficients across 99 time bins using the function melfcc in 
the R-package tuneR (Ligges et al. 2018). Sample correlations for two of the words appear in 
Figure 5 (correlations instead of covariances are easier to visualise because of the large across- 
coefficient heteroscedasticity). The sample covariance matrices for these words are p × p = 
1,287 × 1,287 matrices where, for example, the 99 × 99 block in the upper left corner is the sample 
covariance matrix for the first cepstral coefficient across the 99 time points.

Figure 5. Correlation of mel-frequency cepstral coefficients for the word ‘up’ (left) and ‘down’ (right).
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From the training data, we computed sample means and several different covariance estimates 
for each of the 10 words. Our main interest is in comparing prediction accuracy of the core shrink
age estimator to that of the unstructured and separable MLEs, but we also compute predictions 
using estimates that are partially pooled across groups. Quadratic discriminant analysis with par
tially pooled covariance estimates often have better performance than with class-specific sample 
covariance matrices, particularly when the sample size n is not large compared to the dimension 
p. To obtain the pooling weights we use an approach outlined in Greene and Rayens (1989), which 
is based on an inverse-Wishart hierarchical model for Σ1, . . . , Σ10. The resulting partially pooled 
covariance estimates (PPEs) are each roughly equal to a 32%–68% weighted average of the word- 
specific sample covariance and the pooled sample covariance respectively. For comparison, the 
estimated weights for the core shrinkage estimates (CSEs) ranged between 0.70 and 0.78 with 
an average of 0.75, and so these estimates were roughly 25%–75% weighted averages of the word- 
specific sample covariances and the word-specific Kronecker MLEs.

Classifications for the 100 training observations were made using each of the covariance esti
mates. Confusion matrices are displayed in Figure 6, with the true word classes along the rows, 
and the predicted classes along the columns. For example, the word ‘go’ is most frequently misclas
sified as ‘no’. From the figure, QDA with the CSE appears to be substantially more accurate than 
using either the unstructured or separable MLEs, and is similar to using the partially pooled esti
mates. Rates of correct classification across all words for all four QDA classifiers are given in 
Table 1. The CSE performs better than the KMLE for all words, and better than the MLE for 
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Figure 6. Confusion matrices resulting from the four covariance estimates. Rows correspond to target words and 
columns correspond to predictions.
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all words except ‘left’ and ‘stop’. However, this apparent good performance on these two words is 
misleading, as it is a result of this classifier assigning most words to being either in one of these two 
categories, as can be seen from Figure 6. Additionally, the CSE is as good or better than the PPE for 
seven of the ten words. We note that the PPE is, like the CSE, a type of shrinkage estimator, al
though one that does not make use of the matrix structure of the data.

5 Discussion
Many classic estimators of covariance matrices are obtained by first computing the eigendecom
position of the sample covariance matrix and then regularising the resulting eigenvalues 
(C. Stein 1975; Takemura 1983). The CSE proposed in this article can be viewed analogously: 
the KCD of the sample covariance matrix is computed, and then the resulting core is regularised. 
However, whilst existing distributional results for the sample eigenvalues permit theoretical risk 
calculations for unstructured covariance estimators, we lack such detailed knowledge of the dis
tribution of sample core matrices. Further research on the distribution of sample cores could per
mit theoretical comparisons of different core shrinkage estimators.

The primary computational cost of obtaining the CSE is computing the eigenvalues of the p × p 
sample core covariance matrix Ĉ, which are needed to define the objective function (9) that deter
mines the shrinkage weight ŵ. For very large p, the cost of this calculation may be prohibitive. For 
such situations, it may be possible to develop an alternative shrinkage estimator based on a partial 
isotropy model for the population core covariance C, that is, C = AA⊤ + Ip for some A ∈ Rp×r 

with r ≪ p. Since the space of core matrices is a convex cone that includes Ip, such a C will be a 
core matrix if AA⊤ is a core matrix. Development of such an estimator will require a characterisa
tion of the low-rank core covariance matrices.

The results in this article extend naturally to separable covariance models for tensor-valued 
data, that is, data arrays having three or more index sets. For example, an empirical Bayes covari
ance estimator that shrinks a sample covariance matrix towards a Kronecker product of several 
smaller covariance matrices, one for each index set, can be derived as in Section 3.2, using the 
same objective function (9) to determine the amount of shrinkage. A less straightforward exten
sion would be an estimator that adaptively shrinks towards an appropriate separable submodel, 
that is, a submodel that is separable after some groups of indices of the data array have been 
collapsed.

Data availability
Replication code for the numerical results in this article are available from the R-package covKCD
and the corresponding repository github.com/pdhoff/covKCD.

Conflict of interest: None declared.

Table 1. Word-specific and average rates of correct classification on the test data set for the classifiers based on the 
Kronecker maximum likelihood estimator (KMLE), core shrinkage estimator (CSE), unrestricted MLE (MLE), and 
partially pooled estimator (PPE)

yes no up down left right on off stop go Average

KMLE 0.69 0.74 0.38 0.30 0.44 0.40 0.41 0.41 0.61 0.30 0.47

CSE 0.79 0.82 0.51 0.53 0.60 0.60 0.59 0.65 0.70 0.50 0.63

MLE 0.37 0.09 0.04 0.24 0.77 0.45 0.16 0.22 0.75 0.14 0.32

PPE 0.82 0.66 0.46 0.57 0.51 0.67 0.58 0.57 0.66 0.48 0.60
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Appendix A. Proofs

Proof of Proposition 1. We first obtain an identity that relates the expectations in equa
tion (2) to the trace term in the divergence function d(K : Σ). 
Letting y be the vectorisation of Y, for (K1, K2) ∈ S+

p1
× S+

p2 
we 

have

trace((K−1
2 ⊗ K−1

1 )Σ) = E[trace((K−1
2 ⊗ K−1

1 )yy⊤)]

= E[y⊤(K−1
2 ⊗ K−1

1 )y]

= E[trace(Y⊤K−1
1 YK−1

2 )]

= trace(K−1
1 E[YK−1

2 Y⊤]) = trace(K−1
2 E[Y⊤K−1

1 Y]).

Therefore, for K = K2 ⊗ K1 the divergence function may be written

d(K : Σ) = p2 ln |K1| + p1 ln |K2| + trace(K−1
1 E[YK−1

2 Y⊤])

= p2 ln |K1| + p1 ln |K2| + trace(K−1
2 E[Y⊤K−1

1 Y]).

Now suppose that Σ2 ⊗ Σ1 ∈ S+
p1,p2 

minimises the divergence. 
Then Σ1 must also be the minimiser of the divergence in K1 when 
K2 is fixed at Σ2, that is, Σ1 minimises p2 ln |K1| + 
trace(K−1

1 E[YΣ−1
2 Y⊤]) over K1 ∈ S+

p1
. It is well known (Anderson 

2003, Section 4.1) that this function of K1 is uniquely minimised 
by E[YΣ−1

2 Y⊤]/p2, and so Σ1 = E[YΣ−1
2 Y⊤]/p2. Similarly, Σ2 must 

equal E[Y⊤Σ−1
1 Y]/p1, and so (Σ1, Σ2) is a solution to equation (2).

Conversely, let f (K1, K2 : Σ) = ln |K2 ⊗ K1| + trace(K2 ⊗ 
K1)−1Σ)) be the divergence written as a real-valued function on 
S p1 × S p2 . Differentiating f with respect to (K1, K2) shows that 
the stationary points of f are the solutions to (2). Although f is 
not convex, it is geodesically convex (Wiesel 2012), and so by 
Corollary 3.1 of Rapcsák (1991), every stationary point of f is 
a global minimiser of f. Thus, if (K1, K2) is a solution to (2) 
then K2 ⊗ K1 is a minimiser of d.                                          □

Proof of Proposition 2. Let A = A2 ⊗ A1. For each K, we have

d(K : AΣA⊤) = ln |K| + trace(K−1AΣA⊤)

= ln |A−1KA−⊤| + trace((A−1KA−⊤)−1Σ) + ln |AA⊤|

≡ d(K̃ : Σ) + ln |AA⊤|, 

where K̃ = A−1KA−⊤. Note that for A ∈ GL p1,p2 , 
{A−1KA−⊤ : K ∈ S+

p1,p2
} = S+

p1,p2
. By Proposition 1, d(K̃ : Σ) is 

minimised by K̃ = Σ2 ⊗ Σ1, and so d(K : AΣA⊤) is minimised by 
K = AK̃A⊤ = (A2Σ2A⊤

2 ) ⊗ (A1Σ1A⊤
1 ).                                                □

Proof of Corollary 1. Items 1 and 2 can be shown by noting that the unconstrained min
imiser of ln |K| + trace(K−1Σ) over K ∈ S+

p is Σ, and so if Σ ∈ S+
p1,p2 

then the minimiser over K ∈ S+
p1,p2 

is Σ as well. Alternatively, Item 1 
can be shown by noting that Ip = I p2 ⊗ I p1 , and confirming that 
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(I p1 , I p2 ) provide a solution to equation (2) when Var[Y] = Ip. Item 
2 can also be shown this way, or with Proposition 2: If Σ = Σ2 ⊗ Σ1 

then

k(Σ) = k((Σ1/2
2 ⊗ Σ1/2

1 )Ip(Σ1/2
2 ⊗ Σ1/2

1 ))

= (Σ1/2
2 ⊗ Σ1/2

1 )k(Ip)(Σ1/2
2 ⊗ Σ1/2

1 )

= (Σ1/2
2 ⊗ Σ1/2

1 )(Σ1/2
2 ⊗ Σ1/2

1 ) = Σ.

Item 3 can also be obtained from Proposition 2 by choosing (for ex
ample) A1 = aIp1 and A2 = I p2 . Finally, if Var[Y] = Σ is diagonal 
then E[y⊤

i A1yi′ ] = 0 for rows yi and yi′ of Y for any matrix A1 ∈ 
R p2×p2 unless i = i′. As a result, E[YA1Y⊤] is diagonal, as is 
E[Y⊤A2Y⊤] for the same reason. This implies that if (Σ1, Σ2) is a so
lution to equation (2) then both matrices are diagonal, as is their 
Kronecker product.                                                                                    □

Proof of Proposition 3. If E[YY⊤]/p2 = I p1 and E[Y⊤Y]/p1 = I p2 then (Ip1 , Ip2 ) is a solu
tion to equation (2) and so k(C) = Ip2 ⊗ Ip1 = Ip. Conversely, if 
k(C) = Ip then any solution to equation (2) is of the form 
(cIp1 , c−1Ip2 ) for some c > 0, which implies E[YY⊤]/p2 = I p1 

and E[Y⊤Y]/p1 = I p2 . Finally, let yj be the jth column vector of 
Y. Then

E[YY⊤] =
􏽘p2

j=1

E[yjy⊤
j ] =

􏽘p2

j=1

C̃,j,,j.

□

Proof of Proposition 4. Let c(Σ) = C, k(Σ) = K and h(K) = H, so Σ = HCH⊤. By Proposition 
2, k(AΣA⊤) = AKA⊤ = AHH⊤A⊤. Let K̃ = AKA⊤ and H̃ = h(K̃). 
Then c(AΣA⊤) = H̃

−1
(AH)C(AH)⊤H̃

−⊤
. But by the definition 

of the square root function, we must have H̃H̃
⊤ = K̃ = AHH⊤A⊤, 

and so H̃ = AHR⊤ for some R ∈ Op. Furthermore this R must be 
separable because both H̃ and AH are separable. Thus H̃

−1 = 
RH−1A−1 and Item 1 of the result follows. If A ∈ H and H is a 
group, then AH ∈ H, and so H̃ ≡ h(AHH⊤A⊤) = AH, giving 
Item 2.                                                                                                                  □

Proof of Proposition 5. First, we show that f is a bijection. For any Σ ∈ S+
p, let H = h(k(Σ)) 

and C = c(Σ). Then

g(f (Σ)) = HCH⊤

= H(H−1ΣH−⊤)H⊤ = Σ.

Conversely, let (C, K) ∈ C+
p1,p2

× S+
p1,p2

. Then with H = h(K), we 
have

f (g(C, K)) = f (HCH⊤)

= (k(HCH⊤), c(HCH⊤)).
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Since H ∈ S+
p1,p2

, by Proposition 2 we have

k(HCH⊤) = Hk(C)H⊤

= HIH⊤

= HH⊤ = K.

Finally,

c(HCH⊤) = h(K)−1(HCH⊤)h(K)−⊤

= H−1(HCH⊤)H−⊤ = C, 

and so f (g(C, K)) = (C, K).
We now show that the Kronecker covariance function k is con

tinuous, from which the continuity results for f and g follow. The 
space S+

p is a complete Riemannian manifold with respect to the 
affine invariant metric dA :S+

p × S+
p → R+ given by

dA(Σ, Σ̃) = ‖ log (Σ−1/2Σ̃Σ−1/2)‖, 

where ‘log’ is the matrix logarithm (Bhatia 2007; Higham 2008). 
Note that by the form of dA and the fact that 
dA(Σ, Σ̃) ≤ dA(Σ, Ip) + dA(Ip, Σ̃), a subset of S+

p is bounded under 
this metric if and only if the eigenvalues of its elements are 
bounded away from zero and infinity.

Let {Sn} be a sequence in S+
p that converges to Σ ∈ S p+ in this 

metric. Convergence of the sequence implies it is bounded, and 
so there exists an interval [a, b] ⊂ (0, ∞) that contains the eigen
values of Sn for all n. We now show that boundedness of {Sn} im
plies that the sequence {Kn} ≡ {k(Sn)} is bounded. Recall that Kn is 
the minimiser of the divergence d over S+

p1,p2
, and so 

d(Kn : Sn) ≤ d(Ip : Sn). Using this fact and the bounds on the eigen
values of {Sn}, we have

􏽘p

j=1

( log ln,j + a/ln,j) = d(Kn : aIp) ≤ d(Kn : Sn) ≤ d(Ip : Sn) ≤ pb, 

where ln,j is the jth largest eigenvalue of Sn. Noting that log x + a/x 
is a convex function with a minimum at x = a, we have for each 
k ∈ {1, . . . , p}

log ln,k + a/ln,k ≤ pb −
􏽘

j≠k

( log ln,j + a/ln,j)

≤ pb − (p − 1) × ( log a + 1).

Since log x + a/x diverges as x goes to zero or infinity, the above 
bound implies that there exists [c, d] ⊂ (0, ∞) that contains ln,k 

for all n and k, that is, {Kn} is bounded.
Now let {Kns } be any convergent subsequence of {Kn} and let 

K = k(Σ). Let Kns → K∗, and so d(Kns : Sns ) ≤ d(K : Sns ). Since d is 
jointly continuous in both of its arguments, taking the limit of 
the previous inequality gives d(K∗ : Σ) ≤ d(K : Σ), which implies 
that K∗ = K. This implies that Kn → K because the closure of 
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the bounded set {Kn} is itself bounded and therefore sequentially 
compact by the completeness of S+

p. Thus k is continuous. 
Furthermore, since the topology of S+

p under the affine invariant 
metric is the same as that under the Euclidean metric (Lee 2018, 
Theorem 2.55), k is continuous for this metric space as well. 
Finally, the functions f and g are continuous because they are 
both compositions of the continuous function k with other con
tinuous functions.                                                                                    □

Proof of Lemma 2. We first find a limiting form for an objective function from which ν̂ 
is obtained. To facilitate our analysis, we use the objective 
function ln(r, Ĉ) = −2 log L(nr)/n + p( log n

2 − 1) with L defined in 
equation (9), so that the estimated value of ν is 
ν̂ = n × arg minr≥(p+1)/nln(r, Ĉ) = arg maxν≥p+1L(ν), where now we 
make explicit the dependence of the objective function on the sam
ple core matrix Ĉ. As a function of (r, C) ∈ R+ × C+

p1,p2
, the objective 

function is then ln(r, C) = an + bn(r) + cn(r, C) where an = p( log n
2 − 

1) and

bn = −
2
n

log
Γp(n(1 + r)/2)

Γp(nr/2)

􏼒 􏼓

+ p(1 + r) log (1 + r + δ) − pr log (r + δ)

cn = (1 + r) log |(1 − w)C + wIp|, 

where w = (r + δ)/(1 + r + δ) with δ = −(p + 1)/n. We will show that 
as n→∞, an + bn(r) converges uniformly to zero for r ∈ [ϵ, ∞) and 
cn(r, C) converges uniformly to l(r, C), where

l(r, C) = (1 + r) log |C/(1 + r) + rIp/(1 + r)|.

We start by showing convergence of cn(r, C) to l(r, C), i.e. that the 
difference between w and r/(1 + r) is asymptotically negligible. To 
see this, recall that the log determinant of a matrix is a continuous 
function, and so is uniformly continuous on the compact set of con
vex combinations of core matrices and the identity. Next, we have 
that (1 − w)C + wIp converges uniformly to C/(1 + r) + rIp/(1 + r), 
because the norm of their difference is 
‖(w − r

1+r )(Ip − C)‖ <
����������
p(p − 1)

􏽰
|w − r

r+1 |, and |w − r
1+r | =

δ
(1+r+δ)(1+r) 

converges to zero uniformly in r for r > 0.
Next we use Stirling’s approximation log (Γ(z)) = z log (z) − z + 

1
2 log (2π/z) + O(z−1) on the multivariate gamma terms of bn(r). 
Letting δj = (1 − j)/n, we have

−
2
n

log Γp(n(1 + r)/2)
� 􏼁

− log Γp(nr/2)
� 􏼁� 􏼁

= −
2
n

􏽘p

j=1

log Γ
n(1 + r) + 1 − j

2

􏼒 􏼓􏼒 􏼓

+ log Γ
nr + 1 − j

2

􏼒 􏼓􏼒 􏼓

=
􏽘p

j=1

−(1 + r + δj) log n(1 + r + δj)/2
� 􏼁

+ (r + δj) log n(r + δj)/2
� 􏼁

+ 1
� 􏼁

−
1
n

􏽘p

j=1

log
r + δj

1 + r + δj

􏼒 􏼓

+ O n−1(1 + r)−1
􏼐 􏼑

+ O (nr)−1
􏼐 􏼑

.
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The last three terms in the above expression converge uniformly to 0 
over r ∈ [ϵ, ∞) for any ϵ > 0. Adding an and the remaining terms of 
bn(r) gives an + bn(r) being approximately equal to

−r
􏽘p

j=1

log
(1 + r + δj)(r + δ)
(1 + r + δ)(r + δj)

􏼒 􏼓

−
􏽘p

j=1

log
1 + r + δj

1 + r + δ

􏼒 􏼓

−
􏽘p

j=1

δj log
1 + r + δj

r + δj

􏼒 􏼓

.

The second and third sums above converge uniformly to zero over 
r ∈ [ϵ, ∞). Regarding the first sum, consider the ratio

1 + r + δj

1 + r + δ

􏼒 􏼓r

= 1 +
δj − δ

1 + r + δ

􏼒 􏼓r+1+δ

1 +
δj − δ

1 + r + δ

􏼒 􏼓−(1+δ)

.

The log of the second factor on the right converges to zero uniformly 
in r. For the first factor we have

1 ≤ 1 +
δj − δ

1 + r + δ

􏼒 􏼓1+r+δ

≤ e|δj|+|δ| → 1 

as n→∞, where the first inequality follows from δj − δ ≥ 0. Similarly,

1 ≥
r + δ
r + δj

􏼒 􏼓r

= 1 +
δ − δj

r + δj

􏼒 􏼓r

≥ 1 +
δ − δj

ϵ + δj

􏼒 􏼓ϵ+δj

1 +
δ − δj

r + δj

􏼒 􏼓−δj

→ 1 

as n→∞. Thus, an + bn(r) converges uniformly to zero on r ∈ [ϵ, ∞) 
for any ϵ > 0.

The above calculation shows that our objective function ln(r, C) 
converges uniformly to l(r, C) for (r, C) ∈ [ϵ, ∞) × C+

p1,p2
. We want 

to show that this limiting objective function is strictly increasing in 
r if C ≠ Ip, so in this scenario where Σ is not separable the estimated 
weight on the sample Kronecker covariance converges to zero. To see 
that this is the case, let c1, . . . , cp be the eigenvalues of C, so that

l(r, C) =
􏽘p

j=1

(1 + r) log
r + cj

1 + r

􏼒 􏼓

=
􏽘p

j=1

(1 + r) log 1 +
cj − 1
1 + r

􏼒 􏼓

.

The derivative of the jth term of the sum with respect to r is 
log (1 + cj−1

1+r ) − cj−1
r+cj

. Since log (1 + x) ≥ x/(1 + x) for x > −1 (with 

strict inequality for x ≠ 0) this derivative is positive for 
(cj − 1)/(r + 1) > −1, or equivalently, for cj > −r, which holds for 
each j = 1, . . . , p because C is positive-definite. Additionally, because 
C ≠ Ip there is at least one j for which cj ≠ 1, so at least one term in the 
sum has a strictly positive derivative, making our objective function a 
strictly increasing function of r.

Finally, let Ĉ = c(S) and C = c(Σ). We want to show that r̂, the min
imiser of ln(r, Ĉ) over r ≥ (p + 1)/n, converges in probability to zero if 
C ≠ Ip, or equivalently Pr(r̂ > ϵ)→ 0 for any ϵ > 0. By the result in the 
previous paragraph, l(ϵ/2, C) < l(ϵ, C) and by the continuity of l there 
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is a ball B around C that does not contain Ip such that

inf
C̃∈B

l(ϵ, C̃) − sup
C̃∈B

l(ϵ/2, C̃) = δ > 0.

By the uniform convergence of ln to l, there is an N such that |ln(r, C̃) − 
l(r, C̃)| < δ/2 for n > N and all C̃ ∈ B and r ≥ ϵ/2. If Ĉ ∈ B then for 
any r ≥ ϵ

ln(ϵ/2, Ĉ) < l(ϵ/2, Ĉ) + δ/2 ≤ sup
C̃∈B

l(ϵ/2, C̃) + δ/2

= inf
C̃∈B

l(ϵ, C̃) − δ/2

≤ l(ϵ, Ĉ) − δ/2

≤ l(r, Ĉ) − δ/2 < ln(r, Ĉ), 

and so r̂ < ϵ for n > N and Ĉ ∈ B. Thus, Pr(r̂ > ϵ) ≤ Pr(Ĉ ∉ B)→ 0 as 
n→∞, because B is a neighbourhood of C and Ĉ is consistent for C by 
Lemma 1. Thus, r̂ and ŵ converge in probability to zero as n→∞ if 
C ≠ I .                                                                                                                 □
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Roś B., Bijma F., de Munck J. C., & de Gunst M. C. M. (2016). Existence and uniqueness of the maximum like
lihood estimator for models with a Kronecker product covariance structure. Journal of Multivariate Analysis, 
143, 345–361. https://doi.org/10.1016/j.jmva.2015.05.019

Rougier J. (2017). A representation theorem for stochastic processes with separable covariance functions, and its 
implications for emulation. https://arxiv.org/abs/1702.05599

Soloveychik I., & Trushin D. (2016). Gaussian and robust Kronecker product covariance estimation: Existence 
and uniqueness. Journal of Multivariate Analysis, 149, 92–113. https://doi.org/10.1016/j.jmva.2016.04.001

Srivastava M. S., von Rosen T., & von Rosen D. (2008). Models with a Kronecker product covariance structure: 
Estimation and testing. Mathematical Methods of Statistics, 17(4), 357–370. https://doi.org/10.3103/ 
S1066530708040066

Stein C. (1975). Estimation of a covariance matrix. In Rietz Lecture, 39th Annual Meeting of the IMS, Atlanta, GA.
Stein M. L. (2005). Space-time covariance functions. Journal of the American Statistical Association, 100(469), 

310–321. https://doi.org/10.1198/016214504000000854
Sueur J. (2018). Sound analysis and synthesis with R. Springer.
Takemura A. (1983). An orthogonally invariant minimax estimator of the covariance matrix of a multivariate 

normal population (Technical Report). DTIC Document.
Warden P. (2017). Speech commands dataset streaming test version 2. http://download.tensorflow.org/data/ 

speech_commands_streaming_test_v0.02.tar.g.
Warden P. (2018). Speech commands: A dataset for limited-vocabulary speech recognition.
Werner K., Jansson M., & Stoica P. (2008). On estimation of covariance matrices with Kronecker product struc

ture. IEEE Transactions on Signal Processing, 56(2), 478–491. https://doi.org/10.1109/TSP.2007.907834
Wiesel A. (2012). Geodesic convexity and covariance estimation. IEEE Transactions on Signal Processing, 

60(12), 6182–6189. https://doi.org/10.1109/TSP.2012.2218241
Yin J., & Li H. (2012). Model selection and estimation in the matrix normal graphical model. Journal of 

Multivariate Analysis, 107, 119–140. https://doi.org/10.1016/j.jmva.2012.01.005
Zhang Y., & Schneider J. (2010). Learning multiple tasks with a sparse matrix-normal penalty. In J. Lafferty, 

C. Williams, J. Shawe-Taylor, R. Zemel, & A. Culotta (Eds.), Advances in neural information processing sys
tems (Vol. 23). Curran Associates, Inc.

J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 5                                                   1679
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/article/85/5/1659/7227061 by IN
AC

TIVE user on 19 April 2024

https://doi.org/10.1080/01621459.2022.2061982
https://doi.org/10.1093/biomet/asac035
https://doi.org/10.1016/j.jmva.2015.05.019
https://arxiv.org/abs/1702.05599
https://doi.org/10.1016/j.jmva.2016.04.001
https://doi.org/10.3103/S1066530708040066
https://doi.org/10.3103/S1066530708040066
https://doi.org/10.1198/016214504000000854
http://download.tensorflow.org/data/speech_commands_streaming_test_v0.02.tar.g
http://download.tensorflow.org/data/speech_commands_streaming_test_v0.02.tar.g
https://doi.org/10.1109/TSP.2007.907834
https://doi.org/10.1109/TSP.2012.2218241
https://doi.org/10.1016/j.jmva.2012.01.005

	Core shrinkage covariance estimation for matrix-variate data
	Conflict of interest
	Proofs
	References


