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Abstract

A separable covariance model can describe the among-row and among-column correlations of a random matrix
and permits likelihood-based inference with a very small sample size. However, if the assumption of
separability is not met, data analysis with a separable model may misrepresent important dependence
patterns in the data. As a compromise between separable and unstructured covariance estimation, we
decompose a covariance matrix into a separable component and a complementary ‘core’ covariance matrix.
This decomposition defines a new covariance matrix decomposition that makes use of the parsimony and
interpretability of a separable covariance model, yet fully describes covariance matrices that are non-
separable. This decomposition motivates a new type of shrinkage estimator, obtained by appropriately
shrinking the core of the sample covariance matrix, that adapts to the degree of separability of the
population covariance matrix.
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1 Introduction

Many modern data sets include matrix-variate data, that is, a sample of 7 matrices Y1, ..., Y, hav-
ing a common dimension p; X p>. Examples of such data sets include collections of images, net-
works, gene by tissue expression arrays, and multivariate time series, among others. One
approach to the analysis of such data is to first vectorise each data matrix by stacking columns,
and then proceed with a method that is appropriate for generic multivariate data. For example,
if Y1, ..., Y, isarandom sample from a population of mean-zero matrices, the population covari-
ance could be estimated by the sample covariance S = Y7, y;y] /n, where fori=1, ..., n,y; is the
vector of length p = p1 X p, obtained by vectorising Y;.

However, in many applications the sample size # is insufficient for such unstructured estimates
to be statistically stable. For example, even though p; and p, might be of moderate magnitude in-
dividually, a sample size of # > p1p, is necessary for S to be non-singular, and for the likelihood
corresponding to a normal model to be bounded. Furthermore, even if the sample size is sufficient
for estimation, an unstructured estimate such as S may be difficult to interpret, as it is not ex-
pressed in terms of conceptually simple row factors or column factors.

For these reasons, covariance models that are based on the matrix structure of the data have
been developed. Most popular are the separable or Kronecker-structured covariance models
that assume the p X p population covariance matrix is the Kronecker product of two smaller co-
variance matrices of dimension p; X p1 and p, X p2, representing across-row and across-column
covariance, respectively. In particular, the separable covariance model for normally distributed
data (Dawid 1981) has been used for a wide variety of applications including environmental mon-
itoring (Mardia & Goodall 1993), signal processing (Werner et al. 2008), image analysis (Zhang
& Schneider 2010), gene expression data (Yin & Li 2012), radar detection (Greenewald et al.
2016), and many others.
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In addition to its interpretability, a separable covariance model is appealing because of its stat-
istical stability, which is a result of its parsimony as compared to an unstructured covariance mod-
el. Remarkably, the maximum likelihood estimator (MLE) in the separable normal model exists
uniquely for any sample size 7 larger than p1/p2 + p2/p1 (Derksen & Makam 2021; Drton
et al. 2021; Ros et al. 2016; Soloveychik & Trushin 2016). This is in contrast to a sample size re-
quirement of # > p1p; in a normal model with an unstructured covariance. However, the appro-
priateness of a separable covariance estimator depends on the extent to which the population
covariance is truly separable. If the population covariance is not separable, a separable estimate
would give an incomplete summary of the statistical dependencies in the data, and could lead to
poor performance of statistical procedures, such as generalised least-squares or quadratic discrim-
inant analysis (QDA), that rely on an accurate estimate of the population covariance. These and
other concerns about the appropriateness of the separability assumption have been raised by
M. L. Stein (2005) and Rougier (2017), specifically in the context of random spatio-temporal proc-
esses. To address these concerns, Masak and Panaretos (2022) and Masak et al. (2023) have pro-
posed generalisations of the class of separable covariance operators for functional data analysis
with two-dimensional domains (e.g. space and time). The first of these is based on an approxima-
tion of an arbitrary positive-definite covariance operator by a sum of separable matrices. The se-
cond of these assumes the covariance operator is the sum of two positive-definite operators, one of
which is separable and the other is banded, where the banding is determined by the metrics of each
of the two domains.

Instead of approximating a covariance matrix, the approach we take in this article is to represent
a covariance matrix in terms of a single separable component and a complementary non-separable
component. This representation provides a new parametrisation of the space of covariance matri-
ces that makes use of the parsimony and interpretability of a separable covariance model, yet fully
describes covariance matrices that are non-separable. This parametrisation motivates a type of co-
variance shrinkage estimator that can have a risk that is comparable to that of a separable estima-
tor when the population covariance is truly separable, and otherwise has a lower risk than both the
separable and unstructured estimators.

In the next section, we define the Kronecker covariance and core covariance of an arbitrary
P12 X p1p2 covariance matrix. We show that the space of all p1p, X p1p> covariance matrices
can be identifiably parametrised by the product space of Kronecker and core covariance matrices
using this Kronecker—core decomposition (KCD). The Kronecker covariance provides a precise
and interpretable definition of the ‘separable part’ of a non-separable covariance matrix, which
can facilitate interpretation of covariance estimates in data analysis situations where the popula-
tion covariance matrix is likely not separable. From a geometric perspective, the core covariance
indicates where a given covariance matrix is along a sub-space that is orthogonal to a tangent
space to the set of separable covariance matrices. This motivates a class of core shrinkage estima-
tors, developed in Section 3, that are obtained by linearly shrinking the core of the sample
covariance matrix towards the identity matrix. This is equivalent to shrinking the sample
covariance matrix S towards its separable part k(S), resulting in a simple estimator £ of
the form £ = (1 — w)S + wk(S) for some w € [0, 1]. This shrinkage estimator can be positive-
definite even when the sample size is much smaller than the dimension of the covariance matrix.
We use an empirical Bayes approach to estimate an appropriate amount of shrinkage w from
the data, and show that the resulting core shrinkage estimator (CSE) is consistent. In a simulation
study in Section 4.1, we show that the loss of the proposed core shrinkage estimator can be very
close to that of an oracle Bayes estimator, and lower than that of both the separable and unstruc-
tured MLEs across a variety of conditions. In Section 4.2, we use CSEs as inputs into a QDA for a
speech recognition task. We observe that classifications using CSEs have lower out-of-sample mis-
classification rates than those using separable or unstructured MLEs. A discussion of directions for
further research follows in Section 5. Proofs of mathematical results are provided in Appendix A.

2 Kronecker and core covariances

2.1 The Kronecker covariance of a random matrix

Let Y be a mean-zero random matrix taking values in R?*?2 and let y € RP? be its vectorisation, so
that p=p1p,. We define the covariance matrix Var[Y] of Y to be the pxp matrix
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T = Var[y] = E[yy'], which we assume to be non-singular and therefore a member of the set S; of
positive-definite p X p matrices. Recall that £ is Kronecker separable, or simply separable, if it can
be expressed as £ =%, ® X; for some matrices £, € S+] , X € S}',Z, where ‘®’ is the Kronecker
product (Dutilleul 1999; Srivastava et al. 2008) In this case, the matrices X1, ¥, (or matrices
cZq, Xy /c for any ¢ > 0) are often referred to as the row covariance and column covariance of
Y, respectively. For example, the covariance of the p, random variables in a common row of Y
is proportional to X;, and so ¥, represents the covariances of the elements of Y across its columns.
Let S;],m =L ®:% € 8;1 , 3 € S;Z} c S; be the set of separable covariance matrices for
given values of p; and p,. A separable covariance model is a collection of probability distributions
for Y for which it is assumed that Var[Y] € S}, . The most widely used separable model is the
separable normal model, or ‘matrix normal’ model (Dawid 1981), which specifies that Y ~
Np,xp, (0, Z ® 21) for unknown 3, @ £ € S+pl,pz' A separable covariance model can be thought
of as a bilinear transformation model: Let Z be a p; X p» mean-zero random matrix with
Var[Z]=1,, and let Y=A{ZA] for non-singular matrices A; € R”"*P1 A, € R?>¥. Then
Var[Y] = A;A] ® A1A], and the range of Var[Y] over all such matrices Aj, A; is exactly equal
to S;l »,- More generally, separability is preserved under row and column transformations of

Y: If Var[Y] =, ® X1, then

Var[A1 YA]] = Var[(A; ® A1)yl = (A2 ® A1) Var[y](A; ® Ay)T
=(A® AN ®Z1)(A ® AT (1)
= (A2%A)) ® (A1Z1A7).

In the language of group theory, let GL,, », = {A> ® A1 : A1 € GL,,, A € GL,,} be the separable
sub-group of the general linear group GL,, of non-singular p X p matrices. The transformation in
equation (1) from Var[Y] to Var[A; YA]] defines a transitive group action of GL,, ,, on S;rn,pz'
The group structure of the separable normal model and related tensor normal models has been ex-
ploited to develop methods for statistical estimation (Gerard & Hoff 2015) and testing (Gerard &
Hoff 2016; Hoff 2016).

Even if Var[Y] is not separable, it still may be of interest to define some notion of row covariance
and column covariance for Y. To this end, we identify a separable covariance matrix K € 5;1,172
that summarises the row and column covariance of Y when Var[Y] is an arbitrary covariance ma-

trix X € S;:

Definition 1 Let E[Y]=0 and Var[Y]=X¢€ S;. The Kronecker covariance of ¥ is
k(Z) =%, ® X1, where (21, ;) are any matrices in S;l X S;Z that satisfy

21 =E[YE'YT]/p2 2
%, =E[Y'2['Y]/p1.

Matrices X1 and %, that solve equation (2) are weighted averages of across-row and across-
column covariance matrices of whitened versions of Y. For example, £ is obtained from Y by first
whitening across its columns by %,.

Solutions to equation (2) exist for all £ € S;;, and all solutions have the same Kronecker
product, so the Kronecker covariance function k:Sj, — S}, . is well defined. The existence
and uniqueness of a X, ® I that satisfies equation (2) follow from existing results for the separ-
able normal model, and the following alternative definition of k(Z) as the element of St _ that is

. : , P1sp2
closest to ¥ in terms of a standard divergence function:

Proposition 1 (X1, X;) is a solution to equation (2) if and only if ¥, ® £; minimises

d(K:Z)=1In|K]| + trace(K'Z) over K€ S}, ..

The divergence function d(K:X) is related to Stein’s loss for covariance estimation and to the
Kullback-Leibler divergence between two normal distributions. Specifically, k(Z) is the covariance
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matrix of the separable normal distribution that minimises the Kullback-Leibler divergence to the
N, xp, (0, Z) distribution. This means thatif Y1, ..., Y, ~i.i.d. Np,xp, (0, Z) then the MLE of £, ®
%1 under the potentially mis-specified model Y1, ..., Y, ~ii.d. Npxp, (0, 2 @ Z1) converges in
probability to k(Z) as 7 — oo (Huber 1967). In the language of mis-specified models, k(Z) is the
‘pseudo-true’ parameter under the separable normal model in the case that X is not necessarily
separable.

That the minimiser of the divergence function is unique follows from uniqueness results for the
MLE in the separable normal model. The MLE for this model is obtained by minimising over £, ®

I € S}, ,, the scaled log-likelihood

(=2/n)xInp(Yy, ..., Y2 ® 1) =1In |2, ® 1| + trace((Z, ® £1)71S) + p In 27,

where S=Y"7, y;y] /n is the sample covariance matrix. Clearly, the conditions on § for there to
exist a unique MLE of ¥, ® £ are the same as those on X for there to exist a unique minimiser
of d(K:X) over K € S;l’pz. In particular, k(S) is the MLE of £, ® X; under the separable normal
model when S is the sample covariance matrix. Srivastava et al. (2008) show that this MLE exists
uniquely if S is strictly positive-definite, which implies that k(X) exists uniquely for any £ € S;. We
note that solutions may also exist uniquely when S, or analogously X, is singular (Derksen &
Makam 2021; Drton et al. 2021; Soloveychik & Trushin 2016).

Numerical methods for finding the separable normal MLE may be used to compute the
Kronecker covariance function. As shown in Dutilleul (1999), £, ® 31 is an MLE of =, ® &, if

(21, 22) satisfy
(Z YiE5tY] /n) / p2=3%4
i=1

(Z Y;riI1 Y,/?Z)/p] =22.
=1

Dutilleul also provided a block co-ordinate descent algorithm that converges to the MLE when it
exists uniquely. Because this system of equations is analogous to the system (2) that define k(X),
Dutilleul’s algorithm may be implemented to numerically compute the Kronecker covariance
k(Z) of any £ € S;. In this context, given a starting value ¥, € S;Z, the algorithm is to iterate

the following steps until a convergence criteria is met:

1. Set ¥, =E[YZ5'YT]/p2;
2. Set T, =E[YTZ['Y]/p1.

An algorithm to compute k(X) is provided in the replication material for this article.

An important property of the Kronecker covariance function is how it is affected by transforma-
tions of I, or equivalently, of Y. Recall that if Y has a separable covariance £, ® X1, then A; YA]
has separable covariance (A,Z;A]) ® (A1Z1A7]), and so in this sense a linear transformation across
the rows of Y changes the row covariance and not the column covariance, and analogously for a
column transformation. The following result shows that the Kronecker covariance function trans-
forms in the same way, even if the covariance matrix of Y is not separable:

Proposition 2 For Ay ® A1 € GL,, 5, and X € S;: with k(Z) =2, ® X4,

R((Ay ® A1)Z(Ay ® A1)T) = (A ® A R(Z) (A, ® Ay)T.
= (A23A]) ® (A1Z1A]).

From the perspective of group theory, the group action of GL,, ,, on R?"?2 defined by Y —
A1YA] induces a group action of GL,, ,, on S; given by £+ (A, ® A1)Z(A> ® Aq)". The result
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is that the Kronecker covariance function k is equivariant with respect to this group action—the
Kronecker covariance of the separably transformed ¥ is the separably transformed Kronecker co-
variance of 2. This property will be used throughout the remainder of this article. Additional prop-
erties of the Kronecker covariance function include the following:

Corollary 1 1. k(I,) =1I,.
2. Ifxe S;gl,p2 then k(Z) = 2.

3. Fora> 0, k(aZ) = ak(X).

4. If X is diagonal then k(Z) is diagonal.

The third item indicates that k is a scale-equivariant function. As a result, the shrinkage estimator
we propose in Section 3 will be scale-equivariant.

2.2 The Kronecker-core parametrisation and decomposition

The Kronecker covariance function k defined above is a surjection from S to 7 ...,

the row covariance and column covariance of an arbitrary element of S;. We now use this function

that describes

to define, foreach T € S;, a ‘core’ covariance matrix ¢(X) that is complementary to k(X) in that the
core lacks across-row and across-column covariance in some sense. We then show that, taken to-
gether, the product space of separable and core covariance matrices identifiably parametrises S;.

A core covariance of X € S/ is obtained by applying a transformation to X that whitens its
Kronecker covariance. Specifically, let H=H, ® H; be any matrix in GL,, ,, such that
HHT = k(X). By the equivariance of k, we have

k(H'SH )Y =H "k(Z)HT
=H'HH'H " =1,.
We define Kronecker-whitened versions of X as follows:

Definition2 Let H=H, ® Hi € GL,, ,, satisfy HH" = k(X). Then the matrix C given by
C=H"'XH" is a core of Z.

We call the matrix C=H~'SH™T a core of T because the four-way tensor £ € RP1>P2xP1xp2
with entries corresponding to £ may be expressed in terms of C, H; and H, via the multilinear
operation

i= Cx {H1, HZ, Hl, Hl},

where X’ is the multilinear product and C is the four-way tensor corresponding to C. Equivalently,
we have vec(Z) = (H, ® Hy ® H, ® Hy)vec(C). In the context of Tucker products, the tensor that
gets multiplied along each mode by a matrix is called the ‘core’.

There are multiple cores for a given X, as there are multiple separable matrices H for which
HH" = k(Z). Conversely, a core of L is also a core of HEH for any H € GL,, ,,. More generally,
we say that a covariance matrix C € S;; is a core covariance matrix if it is the core of some X € S;',
and so any core covariance matrix satisfies k(C) =1,. Furthermore, suppose C € S; satisfies
k(C)=1,. Then C is a core of any covariance matrix HCH' for H € S;l,pz. As such, for a given
p1 and p,, we define the set of core matrices as follows:

Definition 3  For a given p; and p, with py X pp = p, the set of core covariance matrices is

ct ,, ={C e Sh:k(C)=1,).

The condition k(C) = I, defining C;;l’pz can alternatively be expressed as follows:

Proposition 3  Let Y have covariance matrix C € S;',, and let C be the py X p2 X p1 X p2
tensor where C;;; i = Cov[Yj;, Yi;]. Then k(C) =1, if and only if
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200
E[YY l/pa=) Cpi/pa=1y,

=1

p1
EY'YI/pr=)  Coi/pr=1p,

=1

So for a core covariance matrix, the across-column average of the across-row covariance is the
identity matrix, and analogously for the across-column covariance. Intuitively, a core covariance
has no across-row or across-column correlation or heteroscedasticity, on average.

From the proposition we see that Cj . is defined by a system of linear constraints, and
that trace(C) = p for any core covarlance matrix C, so C}, , is a compact convex subset of S7.
Additionally, the core covariances C;l ., and the separable covariances St b1 p, are nearly non-
overlapping: If C is a core matrix then k(C)= I,, and if C is separable, then k(C)=C by
Corollary 1. Therefore, if C is core and separable, then C =1,,. Thus, Sp1 N CJZrH,Pz Ip

For every X € S; there is a core matrix C€Cj, , and separable matrix K € S}, such

that = HCH" for some separable H € GL,, ,, such that K= HH". Conversely, to every C €

Ch . and K€ S} . we can define an element of S§ as HCH', where H € GL,,,, and
K= HHT. This suggests that there is a bijection between S; and S} , xC}, . In fact, there

are many such bijections, including one for each way to define a separable matrix square
root H of K, or equivalently, one for each way to define a row and column whitening matrix
from K. To specify a particular bijection, we need to specify a separable square root function.

Definition 4  Let H be a subset of GLy, ,, such that the function s: H — S;;l », defined by
s(H)=HH" is a bijection. Then b =s"! is a separable matrix square root

function.

Essentially, a separable square root function is defined by a set of separable matrices H with
unique cross-products, the set of which equals the set of separable covariance matrices. The defin-
ing feature of such a function is that H(HH") = H for H € H. Two examples include the following:

e Symmetric square root: h(Z; ® 1) = Z;/Z ® 21/2, where 27-1/2 is the symmetric square root of
2,', ] (S {1, 2}

¢ Cholesky square root: h(£; ® 1) = L, ® L1, where L,-LI»T is the lower triangular Cholesky fac-
torisation of ¥, j € {1, 2}.

A non-example would be GL,, ,,: Whilst the set of cross-products of this set is equal to S¥
elements of the set do not have unique cross-products.

For a given separable square root function » we define the core covariance function c: S —
Cp] p Asc(X)=H" 13H-T, where H = h(k(Z)). Since the core represents ‘non-separable’ covarl—
ance, we would hope the core function to be invariant to bilinear transformations of the form X +—
(A ® A1)Z(A;, ® A1)" that induce separable covariance. This property partly holds:

p1sp2°

Proposition 4 Let T € S} and A € GLy, 5,. Then

1. ¢(AZAT)=(R, ® R1)c(Z)(R2 ®Ry)" for orthogonal Ry € O, R, € 0,,.
2. ¢(AZAT)=¢(Z) if A € H and H is a group.

Item 2 of the proposition says that if H is a group then ¢ is a maximal invariant function of £ €
S; under the group action £ +— HEZH" for H € H, whilst the Kronecker covariance function k is an
equivariant function by Proposition 2. One such group H is the set of Kronecker products of lower
triangular matrices with positive diagonal entries, with » being the Cholesky square root.
However, the results on covariance estimation in the remainder of the article are unaffected by
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the choice of b as long as it is continuous, as is the case for the symmetric and Cholesky square root
functions mentioned above. For notational simplicity, we use the symmetric square root function
in the remaining sections of this article.

We now arrive at the main result of this section—an identifiable parametrisation of the set of
covariance matrices in terms of Kronecker and core covariance matrices:

xCt

Proposition 5 The function f:S; — S} P

P defined by f(Z) = (k(Z), ¢(T)) is a

. +
homeomorphism v¥1th inverse g:S* T S given by
g(K, C)=h(K)Ch(K)".
The function g can be viewed as a parametrisation of S;; in terms of S;]’pz X C;;l .- Conversely,
the function f provides a unique representation of each X € S; as £ =h(K)Ch(K)" for some
Ke S;’,l »nand Ce Cp1 .- We refer to this representation as KCD.

3 Core shrinkage estimation

3.1 Algebraic and geometric aspects of core shrinkage

Let Yy, ..., Y, be ani.i.d. random sample from a mean-zero population of p; X p> matrices with
unknown covariance matrix ¥ € Sp where p = p1 X p,. Letting y; = vec(Y;), we propose an esti-
mator ¥ of T obtained by shrinking the sample covariance matrix S =37, y;y] /n towards the

lower-dimensional manifold S; ., of separable covariance matrices, so that our estimator by
has the form

=(1-w)S +wk, (4)
where K = k(S) and w € [0, 1]. This estimator is equivariant with respect to transformations of the

form S— (A, ® A1)S(A; ®A1) for A, @ A; € GLp )
Proposition 2. Note that if i > 0 then the estimator can be positive-definite even if z is much small-

since K = k(S) and k is equivariant by

er than p, as long as # is large enough for K to be positive-definite. As mentioned in the
Introduction, a sufficiently large # can be much smaller than p, even smaller than p; A p5.

This estimator can be motivated and understood from multiple perspectives, including an em-
pirical Bayes perspective described in the next sub-section, and from algebraic and geometric per-
spectives using the KCD, as we explore here. Letting C = ¢(S) so that § = K!/2CK1/2, we have the
representation

£=(1-w)K"?>CKY? + wk
. . . A A (5)
=R\ [(1 —w)C+ wIP]Kl/Z =K2¢, K2,

where C, = (1 —w)C + wl,. Note that Cuw € Cp1 2 because C*

core covariance of £ is C,,, and the Kronecker covariance is

I is convex and includes I,,. The

k(&) = K'2k(C,,)K'?

. . (6)

=K'*1,K'* =K.
So, whilst £ and C,, are shrunken versions of § and C, respectively, k(2) is equal to k(S). This in-
dicates that linear shrinkage of the sample covariance matrix S towards its Kronecker covariance K
in equation (4) is equivalent to linear shrinkage of the core of S towards the identity, and so we
refer to £ as a core shrinkage estimator. Furthermore, the fact that k(£) = K means that k() is
an equivariant estimator of k(X), which may be a desirable property in applications where k(Z)
is a parameter of interest.
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Figure 1. Core shrinkage from S € S}, towards ke Shp, along €,

The geometry of core shrinkage is represented abstractly in Figure 1. The sub-manifold S;l,pz of
the cone S is represented by the thick grey vertical ray, and the sub-manifold C},  is represented
by the thick grey horizontal line segment. For any K € 8;1,172’ the set k~1(K) ={S:k(S)=K] is
known as the auxiliary space of the function & at the point K (Amari 2016, Chapter 7). The aux-
iliary space k~1(K), where K = k(S) is represented in the figure by the horizontal line that intersects
K, 2, and S. The core function ¢ provides a bijection between each auxiliary space and the set of
core covariance matrices C;l,pz. From the perspective of information geometry, the CSE shrinks S
towards K along the mixture-geodesics contained in the mean parameter space of the Wishart

model (Amari 1982).

3.2 Empirical Bayes estimation

Determining an appropriate amount of shrinkage to apply in equation (4) is facilitated by viewing
¥ as an empirical Bayes estimator. Consider an inverse-Wishart prior distribution for the unknown
covariance X,

=1 ~ Wishart, ([(v— p — 1) @ £1]7%, v), (7)

which is parametrised so that E[Z] =X, ® 1. The hyperparameter v partly controls how concen-
trated the prior distribution of X is around the separable covariance matrix X, ® 1. Under this
prior distribution and a mean-zero normal sampling model for Yy, ..., Y,, the posterior distribu-
tion of X is

271 S ~ Wishart,([nS+ (v—p — )% @ 4], n +v)
and the Bayes estimator under squared-error loss is the posterior mean,
EZ[8]=(1-w)S+wX, ® i, (8)

where w=(v—p—1)/(n+v—p—1). An empirical Bayes estimator that replaces the hyperpara-
meter ¥, ® X with K = k(S) gives the estimator

E[Z[S] = (1 —w)S +wk,

which is the same as in equation (4).

The amount of shrinkage w is determined by the hyperparameter v. Our proposed empirical
Bayes estimator of v is the maximiser in v of the marginal density p(S|v, %, ® £;) with K
plugged-in for £, ® ;. This density has an essentially closed-form expression due to the conju-
gacy of the inverse-Wishart prior distribution (7). Using standard calculations, we obtain the mar-
ginal density of S as

RW)I(v—p —1)Z @ 2]/

S ,Z Y1)=rXx 5
pSIvE @) =7 k(v +m)nS + (v —p — 1)5, @ 1|72
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where 7 does not depend on v and k(v)™! = 2"P/2T,(v/2), with T, being the multivariate gamma
function. Now we plug-in K for ¥, ® ¥; and utilise the fact that S = K/2CK'/2 to obtain

p(S|v, K)/b=|K|7* x k(ﬁ(:)n) (v—p— 1)—np/2’1p +v_p%1© —(v4n)/2
= (IR|2212) % (v—p— 1)-np/z‘1p N V_p% _—(vm)2
After some additional manipulation, we have that p(S | v, K) «, L(v) where
L(v)= Mx WP (1 = w0)P 5 (1 = 1) + w2, o

Lp(v/2)
withw = (v—p—1)/(n+v—p — 1) as before. Computation of L(v) is facilitated by noting that the
determinant term can be expressed as |(1 — w)C + wl,| = 1;=1 (w+ (1 —w)¢j), where &1, ..., ¢

are the eigenvalues of C. Our proposed empirical Bayes estimator of v is the maximiser ¥ of L,
which gives = () —p —1)/(n+ 9 —p — 1) as the amount of shrinkage. The resulting empirical
Bayes core shrinkage estimator is given by

£ =KY2[(1 - )C + wI,]K'?
=(1-w)S+wk.

(10)

To understand how the data influence the value of 3 through @, write L(v) = a(v) x b(v), where
bv)=1(1- w)c+wlpl_(v+”)/2 is the part of L that depends on the data, and a(v) = L(v)/b(v).
The function a(v) is generally increasing, and so this part of L ‘favours’ large values of ¥ (and
i). If the sample covariance § is very close to being separable, then C is very close to the identity
matrix and so b(v) is roughly constant in v. In this case, a(v) dominates L(v), resulting in a large
and strong shrinkage of S towards the sample Kronecker covariance K. However, if C is far from
the identity then b can be strongly decreasing in v, which results in £ being close to S. In summary,
the degree of shrinkage towards the space of separable covariance matrices depends on how close S
is to being separable, as measured by how close C is to the identity matrix.

Finally, we note that £ does not depend on the choice of separable square root function: This is
because if C and C' are core matrices of S obtained from different square root functions, they still
must satisfy C' = RCRT for some orthogonal matrix R. This difference does not affect the empir-
ical Bayes estimator of v, since

(1 —w)C +wly| = |(1 —w)RCRT + wRR"|
= |RRT[|(1 = w)C + wly| = |(1 —w)C + wl,|.

3.3 Consistency

We now provide some consistency results for the components of the KCD and the core shrinkage
estimator. First, we have the very general result that a consistent estimator S of X can be used to
obtain consistent estimators of k(X) and ¢(X), and vice versa:

Lemma 1 k(S) —>?k(Z) and ¢(S) —? ¢(T) if and only if S>? X,

This follows directly from the continuity result in Proposition 5 and the continuous mapping

theorem. The lemma implies that if S is consistent and £ € S;I,pz then the CSE £ = (1 —)S +

wk(S) is consistent as well because k(S) —? k(Z) = Z. Conversely, if = ¢ S+pl,pz’ then consistency
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of £ additionally requires that &, the weight on k(S), converges in probability to zero. This holds if
S is consistent:

Lemma2 IfS—?X andEﬁSp then w —? 0.

b2

Lemmas 1 and 2 together give the consistency of £
Proposition 6 If S —? X then £ —? X for any X € S}

These consistency results only assume that S converges in probability to £ as some index 7, used in
the definition of &, goes to infinity. Even though a normal model was used to construct i, the data
need not be normal, and the estimator S need not be Wishart-distributed, for consistency to hold.

4 Numerical examples

4.1 Monte Carlo study

Because of its adaptive nature, we expect that the CSE £ outperforms the unrestricted MLE § in
general and performs nearly as well as the separable MLE K when the true covariance is exactly
separable. We examine this in a finite-sample setting with a small simulation study. We considered
two dimensions for the sample space, (p1, p2) = (5, 7) and (p1, p2) = (13, 17) which correspond to
values of p = p1 X p, being 35 and 221, respectively. For each dimension, eight sample sizes 7 were
considered, ranging from p, to 3p1p2/2. Note that this includes sample sizes 7 that are much
smaller than the dimension p. For each dimension and each sample size, population covariance
matrices were generated under four scenarios, three of which were simulated from the
inverse-Wishart prior distribution (7) with three values of the degrees of freedom parameter v ran-
ging from p + 2 to 3p + 1. In the fourth scenario, which we refer to as v = co, T was set to a sep-
arable matrix (the identity matrix). To summarize, our simulation scenarios include 8 x 4 = 32
combinations of # and v for each of 2 different values of (p1, p2).

For each of these 64 scenarios, 200 matrices ¥ were simulated from equation (7), and from each
a sample of # random matrices from the corresponding multivariate normal distribution were gen-
erated. From each sample, we computed four estimators: the sample covariance or MLE S, the sep-
arable MLE K, the CSE £, and the oracle Bayes estimator (8) which uses perfect knowledge of the
hyperparameters v and X, ® £ of the prior distribution (7). For each sample and estimator, the
squared error loss in estimating £ was computed.

Before comparing the estimators in terms of loss, we first examine the performance of the empir-
ical Bayes estimator of 1 of w, which determines the amount of shrinkage towards K. Results for all
simulation scenarios are shown in Figure 2, where sample means of the 200 values of & are plotted
as a function of the sample size. On average, & overestimates w with the bias decreasing with in-
creasing sample size and dimension p, and also being smaller for the smaller values of w. Our intu-
ition regarding the overestimation is that the ideal estimate of 2 would be obtained by evaluating
how close Sis to £; ® X;. In contrast, & is obtained by evaluating how close S is to K. Since K is the
closest element of ST | to S by construction, & overestimates how close S is to 2, ® 1.

p1,02
(p,-p,)=(5.7),p=35 (p,.p,)=(13,17),p=221
< | < ]
0 0
I~ S 7
< _| < |
g < g <
< < — v=2
S 7 S — v=443
v =664
= sl
s | S | Tem——
< \ T T T T < \ T T T T T
10 20 30 40 50 50 100 150 200 250 300
n n

Figure 2. Average of 200 values of W as a function of v and n in thick lines, true values of win thin lines.

20z Iudy 61 U0 Josn JAILOVNI A 190.222./6591/G/S8/0101B/gsss[/wod dnoolwepese//:sdpy woly papeojumo(



J R Stat Soc Series B: Statistical Methodology, 2023, Vol. 85, No. 5 1669

v=71 v=106 v=o
T 1 T
' ' = CSE ¥
. ik = MLE T
NE e = KMLE ar
i
| T
nli | RN = OBayes F
v ' T -
el Tl T L,
I ' oo "B ' vle
EHLL B S R B B [ ?
oo l: N R ' I 1 . I T
0 ' v |
I::IY" [ U N A I llv\"' i HR O P
.\I " AL Ak o N1 i‘.l ol e
it "I" .w (N .ru""lw‘ [l ‘l 1 [ A
[ L bt AIAA ool fort B !‘Al‘l" ”"l I IRRIE]
i T ' II | ' 11 v
I I PO P I‘I.A o . 1 .‘ll
PRl e TR N N e
Rl PV PO I Y PO FOrS PO

— T T T T T 1 — T T T T T 1 — T T T T T T 1 — 1 T T 1 T T 1
7 14 20 26 33 40 46 52 7 14 20 26 33 40 46 52 7 14 20 26 33 40 46 52 7 14 20 26 33 40 46 52
n n n n

Figure 3. Loss comparisons for (pq, p2) = (5, 7). Boxplots of the log-loss from 200 simulated data sets for each
scenario. Estimators include the sample covariance matrix (maximum likelihood estimator—MLE), the separable
MLE (Kronecker MLE—KMLE), the core shrinkage estimator (CSE) and the oracle Bayes estimator (OBayes).
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Figure 4. Loss comparisons for (p1, p2) = (13, 17). Boxplots of the log-loss from 200 simulated data sets for each
scenario. Estimators include the sample covariance matrix (MLE), the separable MLE (KMLE), the core shrinkage
estimator (CSE) and the oracle Bayes estimator (OBayes).

Loss comparisons for the four estimators are displayed in Figures 3 and 4 for the (p1, p2) = (5, 7)
and (p1, p2) = (13, 17) scenarios, respectively. The performance comparisons among the four es-
timators are similar in each of these two cases. The oracle Bayes estimator has the best perform-
ance for each value of v. For the smallest values of v, for which X is not close to being separable, the
performance of the unrestricted MLE is nearly identical to that of the oracle Bayes estimator. This
is because the value of the oracle shrinkage weight is 1/# and so these two estimators are nearly the
same. The core shrinkage estimator (CSE) has a loss performance nearly identical to these two es-
timators, since for small values of v, the estimate ¥ is quite good. In contrast, the Kronecker MLE
(KMLE) has worse performance on average than the other estimators, and its loss does not im-
prove with increasing sample size. The explanation for this is that the Kronecker covariance
k(=) does not require a large sample size to be well estimated, and so K is close to k(Z) for all sample
sizes, but this is far from X since X is not close to being separable.

The pattern changes somewhat for the larger values of v. In general, the loss of the KMLE is
good for small sample sizes, but does not improve much with increasing sample size since it con-
verges to k(X), which is not equal to X. In contrast, the unrestricted MLE is poor for small sample
sizes but, since it is a consistent estimator, has a loss that steadily decreases with increasing sample
size. The CSE is generally as good or better than either of these estimators across the different sam-
ple sizes: For small z it is about as good as the KMLE, and for large 2, where both k(X) and v can be
well estimated, it performs nearly as well as the oracle Bayes estimator.

Finally, the far-right panel of each figure gives the performance of the CSE and unrestricted and
separable MLEs in the case that ¥ is truly separable (the oracle Bayes estimator in this case is exact-
ly ). The performance of the CSE and KMLE are nearly identical, and much better than that of the
unrestricted MLE. This is not too surprising given the observation from Figure 2 that ¥ tends to
overestimate v when v is a large (finite) value. Although any finite estimate ¥ of v is in some sense
too small for this case where X is exactly separable, ¥ is generally large enough to make the shrink-
age weight on w nearly equal to one, which gives an estimate that is nearly identical to the KMLE.
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4.2 Speech recognition

Many data analysis tasks rely on accurate covariance estimates, including tasks that are not spe-
cifically about covariance estimation. For example, QDA is a simple and popular method of clas-
sification that relies on estimates of the population means and covariances of each potential class
to which new observations are to be assigned. Specifically, the score of a new observation with fea-
ture vector y € R with respect to category k € {1, ..., K} is

se) =y — i) "Ny — fy) + In [ Eg ],

where (i, ;) are estimates of the population mean and covariance of the feature vectors of ob-
jects in class k. If the frequencies of the different classes are equal, the classification rule is to assign
the object with feature vector y to the class with the minimum score. The accuracy of such a clas-
sification procedure will depend on, among other things, the accuracy of the mean and covariance
estimates for each group. In cases where the feature vector y is the vectorisation of a matrix of fea-
tures, we may consider using the CSE given by equation (10) to make classifications, as an alter-
native to either the unstructured MLE, the separable MLE, or other types of estimators.

As a numerical illustration, we consider classification of spoken-word audio samples for 10
command words (‘yes’, ‘no’, ‘up’, ‘down’, ‘left’; ‘right’, ‘on’, ‘off’, ‘stop’, ‘g0’), using the data
set provided by Warden (2017) and described in Warden (2018). The data we consider include
20,600 1-s long audio WAV files, with a per-word sample size ranging from 1,987 to 2,103 across
the 10 words, representing between 989 and 1079 unique speakers for each word. We retain 100
audio samples per word for testing, and train our classifier on the remaining 19,600 audio sam-
ples. We do not make use of the fact that some speakers are represented multiple times in the
data set.

A standard set of features for audio classification are mel-frequency cepstral coefficients
(MFCCs), which describe an audio sample in terms of a matrix whose dimensions represent perio-
dicities in the power spectrum of the signal across time increments. Typically, only the first 13 co-
efficients are retained for speech recognition tasks [Rao and Manjunath (2017, Appendix A);
Sueur (2018, Chapter 12)]. For each audio sample in the data set, we computed a p1 X pr = 99 X
13 matrix of the first 13 mel cepstral coefficients across 99 time bins using the function melfcc in
the R-package tuneR (Ligges et al. 2018). Sample correlations for two of the words appear in
Figure 5 (correlations instead of covariances are easier to visualise because of the large across-
coefficient heteroscedasticity). The sample covariance matrices for these words are pxp =
1,287 x 1,287 matrices where, for example, the 99 x 99 block in the upper left corner is the sample
covariance matrix for the first cepstral coefficient across the 99 time points.

1 . 1
2 . 2 . .
3 % 3 N\
4 & N 4 |
5 Il . 5 IS
6 6
T 7
8 % 8
9 9
10 10
11 11
12 12
13 13
1 2 3 4 5 6 7 8 9 1011 12 13 1 2 3 4 5 6 7 8 9 1011 12 13
mfcc mfce

Figure 5. Correlation of mel-frequency cepstral coefficients for the word ‘up’ (left) and ‘down’ (right).
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Figure 6. Confusion matrices resulting from the four covariance estimates. Rows correspond to target words and
columns correspond to predictions.

From the training data, we computed sample means and several different covariance estimates
for each of the 10 words. Our main interest is in comparing prediction accuracy of the core shrink-
age estimator to that of the unstructured and separable MLEs, but we also compute predictions
using estimates that are partially pooled across groups. Quadratic discriminant analysis with par-
tially pooled covariance estimates often have better performance than with class-specific sample
covariance matrices, particularly when the sample size # is not large compared to the dimension
p. To obtain the pooling weights we use an approach outlined in Greene and Rayens (1989), which
is based on an inverse-Wishart hierarchical model for £y, ..., Zq¢. The resulting partially pooled
covariance estimates (PPEs) are each roughly equal to a 32%-68% weighted average of the word-
specific sample covariance and the pooled sample covariance respectively. For comparison, the
estimated weights for the core shrinkage estimates (CSEs) ranged between 0.70 and 0.78 with
an average of 0.75, and so these estimates were roughly 25%-75 % weighted averages of the word-
specific sample covariances and the word-specific Kronecker MLEs.

Classifications for the 100 training observations were made using each of the covariance esti-
mates. Confusion matrices are displayed in Figure 6, with the true word classes along the rows,
and the predicted classes along the columns. For example, the word ‘go’ is most frequently misclas-
sified as ‘no’. From the figure, QDA with the CSE appears to be substantially more accurate than
using either the unstructured or separable MLEs, and is similar to using the partially pooled esti-
mates. Rates of correct classification across all words for all four QDA classifiers are given in
Table 1. The CSE performs better than the KMLE for all words, and better than the MLE for
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Table 1. Word-specific and average rates of correct classification on the test data set for the classifiers based on the
Kronecker maximum likelihood estimator (KMLE), core shrinkage estimator (CSE), unrestricted MLE (MLE), and
partially pooled estimator (PPE)

yes no up down left right on off stop go Average

KMLE 0.69 0.74 0.38 0.30 0.44 0.40 0.41 0.41 0.61 0.30 0.47

CSE 0.79 0.82 0.51 0.53 0.60 0.60 0.59 0.65 0.70 0.50 0.63
MLE 0.37 0.09 0.04 0.24 0.77 0.45 0.16 0.22 0.75 0.14 0.32
PPE 0.82 0.66 0.46 0.57 0.51 0.67 0.58 0.57 0.66 0.48 0.60

all words except ‘left’ and ‘stop’. However, this apparent good performance on these two words is
misleading, as it is a result of this classifier assigning most words to being either in one of these two
categories, as can be seen from Figure 6. Additionally, the CSE is as good or better than the PPE for
seven of the ten words. We note that the PPE is, like the CSE, a type of shrinkage estimator, al-
though one that does not make use of the matrix structure of the data.

5 Discussion

Many classic estimators of covariance matrices are obtained by first computing the eigendecom-
position of the sample covariance matrix and then regularising the resulting eigenvalues
(C. Stein 1975; Takemura 1983). The CSE proposed in this article can be viewed analogously:
the KCD of the sample covariance matrix is computed, and then the resulting core is regularised.
However, whilst existing distributional results for the sample eigenvalues permit theoretical risk
calculations for unstructured covariance estimators, we lack such detailed knowledge of the dis-
tribution of sample core matrices. Further research on the distribution of sample cores could per-
mit theoretical comparisons of different core shrinkage estimators.

The primary computational cost of obtaining the CSE is computing the eigenvalues of the p x p
sample core covariance matrix C, which are needed to define the objective function (9) that deter-
mines the shrinkage weight &. For very large p, the cost of this calculation may be prohibitive. For
such situations, it may be possible to develop an alternative shrinkage estimator based on a partial
isotropy model for the population core covariance C, that is, C=AAT + I, for some A € R
with 7 < p. Since the space of core matrices is a convex cone that includes I, such a C will be a
core matrix if AAT is a core matrix. Development of such an estimator will require a characterisa-
tion of the low-rank core covariance matrices.

The results in this article extend naturally to separable covariance models for tensor-valued
data, that is, data arrays having three or more index sets. For example, an empirical Bayes covari-
ance estimator that shrinks a sample covariance matrix towards a Kronecker product of several
smaller covariance matrices, one for each index set, can be derived as in Section 3.2, using the
same objective function (9) to determine the amount of shrinkage. A less straightforward exten-
sion would be an estimator that adaptively shrinks towards an appropriate separable submodel,
that is, a submodel that is separable after some groups of indices of the data array have been
collapsed.

Data availability

Replication code for the numerical results in this article are available from the R-package covKCD
and the corresponding repository github.com/pdhoff/covKCD.
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Appendix A. Proofs

Proof of Proposition 1.

Proof of Proposition 2.

Proof of Corollary 1.

We first obtain an identity that relates the expectations in equa-
tion (2) to the trace term in the divergence function d(K:X).
Letting y be the vectorisation of Y, for (Ky, K3) € S;l X S;']Z we
have

trace((KE] ® K[] )X) = E[trace((Kg1 ® Kf )Jyy )]

E[y"(K;' ® Ki')y]

= E[trace(YTK{'YK; )]

= trace(K{'E[YK5'YT]) = trace(K5 'E[YTK{'Y]).

Therefore, for K = K; ® K; the divergence function may be written

d(K:Z)=py In|Kq| +p1In|Ky| + trace(K;'E[YK5'YT])

=p2In|Ky| + py In |Ky| + trace(K3'E[YTK;!Y)).

Now suppose that £, ® 2 € S b1p, minimises the divergence.
Then £ must also be the minimiser of the divergence in K; when
K, is fixed at X, that is, ¥; minimises p;In|K;|+
trace(K7'E[YZ;'YT]) over K; € S}, - It is well known (Anderson
2003, Section 4.1) that this function of K7 is uniquely minimised
by E[YZ;'YT]/p2, and so £y = E[YE;!YT]/p5. Similarly, X, must
equal E[YTZ1Y]/p1, and so (21, X,) is a solution to equation (2).
Conversely, let f(Ki,Ky:Z)=1In|K; ® Ky| + trace(K; ®
K1)7'%)) be the divergence written as a real-valued function on
S, X Sp,. Differentiating f with respect to (K1, K) shows that
the stationary points of f are the solutions to (2). Although f is
not convex, it is geodesically convex (Wiesel 2012), and so by
Corollary 3.1 of Rapcsdk (1991), every stationary point of f is
a global minimiser of f. Thus, if (K, K3) is a solution to (2)
then K, ® K is a minimiser of d. O

Let A=A, ® A;. For each K, we have

d(K:AZAT) =1n|K| + trace(K"1AZAT)
=In|AT'KA™T| + trace((A"'KA™T)"!2) + In |AAT|
=d(K:2)+In|AAT|,

where K=A"'KA™T. Note that for AeGL,,,

(A7'KA-T:K e S;l »l= Sern »,+ By Proposition 1, dK:3) is
minimised by K =3, ® £1, and so d(K: AZAT) is minimised by

K =AKAT = (A;5,A]) ® (A1, A). O

Items 1 and 2 can be shown by noting that the unconstrained min-
imiser of In |[K| + trace(K~'X) over K € ST is £, and soif = € St
then the minimiser over K € S}, is L as well. Alternatlvely, Item 1
can be shown by noting that Ip =1,, ®1,,, and confirming that

20z Iudy 61 U0 Josn JAILOVNI A 190.222./6591/G/S8/0101B/gsss[/wod dnoolwepese//:sdpy woly papeojumo(



1674

Proof of Proposition 3.

Proof of Proposition 4.

Proof of Proposition 5.

Hoff et al.

(Ip,, 1p,) provide a solution to equation (2) when Var[Y] = I,,. Item
2 can also be shown this way, or with Proposition 2: [f 2 =%, ® ¥
then

k(Z) = k(2> @ 1AL (2 @ £17%))
= (2 @ = )k(L,)(=Z)* @ =1/*)

=z e/)E e =z

Item 3 can also be obtained from Proposition 2 by choosing (for ex-
ample) Ay =al,, and A, =1,,. Finally, if Var[Y] =X is diagonal
then E[y] A1y;]=0 for rows y; and y; of Y for any matrix A; €
RP2%P2 unless i=7. As a result, E[YA;Y"] is diagonal, as is
E[YTA,YT] for the same reason. This implies that if (X1, X;) is a so-
lution to equation (2) then both matrices are diagonal, as is their
Kronecker product. O

IfE[YY"]/p2=1,, and E[Y"Y]/p1 =1,, then (I, [,,) is a solu-
tion to equation (2) and so k(C) =1,, @ I,, = I,. Conversely, if
k(C)=1, then any solution to equation (2) is of the form
(cIp,, c'1,,) for some ¢>0, which implies E[YYT]/p, =1,
and E[YTY]/p1 =1,,. Finally, let y; be the jth column vector of
Y. Then

P2 P2
E[YY']=) Elyy 1=)_ C,.
j=1

=1

a

Let¢(Z) = C, k(X) = Kand h(K) = H,so £ = HCH" . By Proposition
2, k(ASAT) = AKAT = AHHTAT. Let K= AKAT and H=h(K).
Then ¢(AXAT)=H (AH)C(AH)TH . But by the definition
of the square root function, we must have HH =K=AHHTAT,
and so H=AHRT for some R € O,. Furthermore this R mgstlbe
separable because both H and AH are separable. Thus H ==
RH'A-" and Item 1 of the result follows. If A € # and # is a
group, then AH € #, and so H=h(AHHTAT)=AH, giving
Item 2. a

First, we show that fis a bijection. For any X € S;, let H="h(k(Z))
and C=¢(X). Then

g(f(£))=HCH"
=HH'SH "H' =%.

xSt

Conversely, let (C, K) € C} pispa

. Then with H = h(K), we

have

f(g(C, K))=f(HCHT)
= (k(HCH"), ¢(HCH")).
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Since H e ST

b1.p,» DY Proposition 2 we have

k(HCH") = Hk(C)HT
=HIHT
=HH" =K.
Finally,
c¢(HCHT) = h(K)" Y (HCH")h(K)~"
=H Y(HCH")H T =C,

and so f(g(C, K)) = (C, K).

We now show that the Kronecker covariance function & is con-
tinuous, from which the continuity results for f and g follow. The
space S; is a complete Riemannian manifold with respect to the
affine invariant metric da : Sy x S; — R* given by

da(Z, £) = || log (X287,

where ‘log’ is the matrix logarithm (Bhatia 2007; Higham 2008).
Note that by the form of dy and the fact that
da(Z, 2) < da(Z, Ip) + da(ly, 2), a subset of S;; is bounded under
this metric if and only if the eigenvalues of its elements are
bounded away from zero and infinity.

Let {S,} be a sequence in S}, that converges to X € S+ in this
metric. Convergence of the sequence implies it is bounded, and
so there exists an interval [a, b] C (0, oo) that contains the eigen-
values of S, for all n. We now show that boundedness of {S,,} im-
plies that the sequence {K,,} = {k(S,))} is bounded. Recall that K,, is
the minimiser of the divergence d over S+1’p2, and so
d(K,:S,) < d(I,: S,). Using this fact and the bounds on the eigen-
values of {S,,}, we have

P

(loglyj+a/l.j)=d(K,:al,) < d(K,:S,) <d(I,:S,) < pb,
j=1
where [, is the jth largest eigenvalue of S,,. Noting that log x + a/x
is a convex function with a minimum at x = a, we have for each

kefl, ...,p}

log ln,le + a/ln,k < pb - Z ( lOg lﬂ,i + a/lﬂ,f)
j#k
<pb—(p—-1)x(loga+1).

Since log x + a/x diverges as x goes to zero or infinity, the above
bound implies that there exists [c, d] C (0, o0) that contains [,
for all 7 and k, that is, {K,,} is bounded.

Now let {K,,} be any convergent subsequence of {K,} and let
K=k(2). Let K,, —> K*, and so d(K,, :S,,) < d(K:S,,). Since d is
jointly continuous in both of its arguments, taking the limit of
the previous inequality gives d(K*:X) < d(K:X), which implies
that K* = K. This implies that K, — K because the closure of
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the bounded set {K,,} is itself bounded and therefore sequentially
compact by the completeness of S7. Thus k is continuous.
Furthermore, since the topology of S} under the affine invariant
metric is the same as that under the Euclidean metric (Lee 2018,
Theorem 2.55), k is continuous for this metric space as well.
Finally, the functions f and g are continuous because they are
both compositions of the continuous function k with other con-
tinuous functions. a

We first find a limiting form for an objective function from which ¥
is obtained. To facilitate our analysis, we use the objective
function [,(r, C) = =2log L(nr)/n + p(logi — 1) with L defined in
equation (9), so that the estimated value of v s
V=mn Xarg min,, 1,k (7 C)=arg max,,,1L(v), where now we
make explicit the dependence of the objective function on the sam-
ple core matrix C. As a function of (r, C) € R* x CJ;;],pZ’ the objective
function is then I,(r, C) = a, + b,() + cu(r, C) where a,, = p(log} —
1) and

2 (r,,(n(l +7)/2)

n

cn=(1+7logl(1 —w)C+wl,

where w = (r +9)/(1 + r+ 6) with d = —(p + 1)/n. We will show that
asn — o0, a, + b,(r) converges uniformly to zero for 7 € [¢, o0) and
¢n(r, C) converges uniformly to [(r, C), where

I(r, C)=(147r)log|C/(1+7)+rl, /(1 +7)].

We start by showing convergence of ¢,(r, C) to [(r, C), i.e. that the
difference between w and r/(1 + r) is asymptotically negligible. To
see this, recall that the log determinant of a matrix is a continuous
function, and so is uniformly continuous on the compact set of con-
vex combinations of core matrices and the identity. Next, we have
that (1 — w)C + wl, converges uniformly to C/(1+7) +rI,/(1 +7),

because the norm of their difference is

Il(w = 15T, = Ol </ plp = Dlw = 751, and |w = 15| = g
converges to zero uniformly in 7 for > 0.

Next we use Stirling’s approximation log (I'(z)) =zlog (z) —z+
%log (2w/z) + O(z™') on the multivariate gamma terms of b,(r).
Letting d; = (1 — j)/n, we have

2
- (log(T'p(n(1+7)/2)) —log(T'y(nr/2)))

_ 2 n(l+r)+1—j nr+1—j
= es(r(" ) w5 ))

14
=Y (=1 +7+0)log(n(1+7+0)/2) + (r+9;) log(n(r+9;)/2) + 1)

—% 3 log(%) + O(n_l(l + r)_l) + O((nr)_l).
=1
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The last three terms in the above expression converge uniformly to 0
over r € [¢, oo) for any € > 0. Adding a,, and the remaining terms of
b,(r) gives a,, + b,(r) being approximately equal to

4 4
(I+7+9,)(r+0) 1+7+0;
"E“’g(u +r+(5)(r+5,-)> _;10 <1+r+5)
14+746;
—Zélog( )

The second and third sums above converge uniformly to zero over
r € [, o). Regarding the first sum, consider the ratio

T+r+6\ 1y 00 rel+o L %0 ~(149)
1+r+0/) 14740 14+7r40 '

The log of the second factor on the right converges to zero uniformly
in 7. For the first factor we have

5i—0 14740
T<(1+—"1—"— < el
- 1+74+9 -

asn — oo, where the first inequality follows from d; — 6 > 0. Similarly,

r r +J; —0;
> (H-a) =(1+6_5/> > (1 +5_5’> /(1 +m> 1
1’+5,' 7’+(57' E+(§,‘ 1’+5I'
as n — oo. Thus, a, + b,(r) converges uniformly to zero on 7 € [¢, o)
for any €> 0.

The above calculation shows that our objective function [,(r, C)
converges uniformly to I(r, C) for (r, C) € [¢, o0) X C;l e We want
to show that this limiting objective function is strictly increasing in
rif C # I, so in this scenario where X is not separable the estimated
weight on the sample Kronecker covariance converges to zero. To see
that this is the case, let ¢y, ..., ¢, be the eigenvalues of C, so that

) Xp:1+rlog( 1+1)

=1

p
Zl+rlg(

=1

The derivative of the jth term of the sum with respect to r is
log (1 + 1+,) v Since log(1+x)>x/(1+x) for x> -1 (with

strict inequality for x #0) this derivative is positive for
(¢j—1)/(r+1) > -1, or equivalently, for ¢; > —r, which holds for
eachj=1, ..., p because Cis positive-definite. Additionally, because
C # I, thereis at least one j for which ¢; # 1, so atleast one term in the
sum has a strictly positive derivative, making our objective function a
strictly increasing function of r.

Finally, let C = ¢(S) and C = ¢(Z). We want to show that 7, the min-
imiser of [,,(r, C) over r > (p + 1)/n, converges in probability to zero if
C # I,,, or equivalently Pr(? > €) — 0 for any ¢ > 0. By the result in the
previous paragraph, I(e/2, C) < (¢, C) and by the continuity of / there
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is a ball B around C that does not contain I, such that

inf I(c, C) —supl(¢/2, C) =6 > 0.
CeB CeB

By the uniform convergence of I, to [, there is an N such that |,(r, C) —

I(r, C)| <5/2 for n>N and all C € B and r > /2. If C € B then for
any r > €

L(e/2, C) < l(e/2, C)+6/2 < supl(e/2, C) + 6/2
CeB

= inf (¢, C) — 6/2
CeB

<le,C)=5/2

<lI(r, C) = 6/2 < L,(r, C),

and so 7 < € for n> N and C € B. Thus, Pr(? > €) < Pr(C & B) — 0 as

n — o0, because B is a neighbourhood of C and C s consistent for C by
Lemma 1. Thus, 7 and @& converge in probability to zero as n — oo if
C#1. O
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