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ABSTRACT: In this work, we report a simple, e�cient, and scalable machine-
learning (ML) approach for mapping non-self-consistent Kohn−Sham Hamil-
tonians constructed with one kind of density functional to the nearly self-
consistent Hamiltonians constructed with another kind of density functional. This
approach is designed as a fast surrogate Hamiltonian calculator for use in long
nonadiabatic dynamics simulations of large atomistic systems. In this approach, the
input and output features are Hamiltonian matrices computed from di#erent levels
of theory. We demonstrate that the developed ML-based Hamiltonian mapping
method (1) speeds up the calculations by several orders of magnitude, (2) is
conceptually simpler than alternative ML approaches, (3) is applicable to di#erent
systems and sizes and can be used for mapping Hamiltonians constructed with arbitrary density functionals, (4) requires a modest
training data, learns fast, and generates molecular orbitals and their energies with the accuracy nearly matching that of conventional
calculations, and (5) when applied to nonadiabatic dynamics simulation of excitation energy relaxation in large systems yields the
corresponding time scales within the margin of error of the conventional calculations. Using this approach, we explore the excitation
energy relaxation in C60 fullerene and Si75H64 quantum dot structures and derive qualitative and quantitative insights into dynamics
in these systems.

1. INTRODUCTION

The rise of solar energy harvesting materials such as
semiconductor quantum dots (QD),1,2 metal-halide perov-
skites,3−7 or carbon nanotubes8,9 o#ers sustainable and
environmentally friendly alternatives to conventional energy
production sources, such as fossil fuels or nuclear energy.
However, the e�ciency of photovoltaic materials is highly
a#ected by the nonradiative energy loss processes, deteriorat-
ing the currently achievable e�ciencies to ∼19% in the
optimized multicomponent solar energy materials,10,11 still far
below the theoretical Schockley−Queisser limit.12 Obtaining
mechanistic insights into the underlying quantum processes in
materials can help optimize their properties and e�ciency.
Nonadiabatic molecular dynamics (NA-MD) has proven itself
as a powerful tool for modeling the evolution of excited states
in various molecular and nanoscale systems and provided
insights into charge transfer kinetics and mechanisms,13−16

electron−hole recombination17−21 and hot-carrier relaxation
dynamics,22−25 carbon dioxide reduction on metal oxide
surfaces,26,27 and water splitting.28,29

Simulation of excited state dynamics in nanoscale systems
using NA-MD is a challenging problem and usually comes at a
hefty computational price even when relying on various
approximations.30,31 The computational complexity of most

NA-MD methods stems from the expense of the underlying
electronic structure calculations. Density functional theory
(DFT) is a widely used method for conducting the electronic
structure calculations of large-scale molecular and periodic
systems within NA-MD simulations. However, the relatively
inexpensive pure density functionals, such as Perdew−Burke−
Ernzerhof (PBE),32 often used in this context can result in a
significant underestimation of excited state energies, unphysical
delocalization of excited state charge densities, especially
within time-dependent-DFT (TD-DFT) calculations, and as a
consequence can lead to a notable overestimation of excited
state relaxation rates.23,24,33 Adopting hybrid functionals can
alleviate such problems but at a significantly increased cost of
such calculations, making this strategy extremely demanding
for modeling excited state dynamics in extended and nanoscale
systems.
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Recently, machine-learning (ML) techniques have gained a
lot of popularity in di#erent fields of computational chemistry
as a way to speed up various types of calculations and
surmount the problems that are too hard to treat with
conventional methods. The ML approaches have helped
accelerate rational drug and material discovery,34,35 model
photochemical or photocatalytic reactions,36 predict reaction
pathways, and investigate reaction mechanisms,37−43 to name a
few. There is a notable e#ort in using ML models to speed up
molecular calculations, from using ML in the ML-based
interatomic potentials44−50 to their applications in the realm of
electronic structure calculations.51 In these applications, ML
models are often designed to predict specific properties of a
system such as its potential energy,44−50 band gap,52,53

molecular spectra,54−57 and so on using the information
about the system’s geometry. The ML-based methods help
substitute expensive quantum-chemical calculations by the
computationally cheaper ML-based “surrogate” models that
predict fundamental properties of molecular systems, such as
their machine-learned interatomic potentials51,58,59 or one-
electron reduced density matrices.60 This core information can
then be used to compute the derived properties by standard
formulas or methods.

Many works reported using ML in the context of quantum
and nonadiabatic dynamics of excited states. For instance,
Wang and co-workers61 utilized ML to construct the
Hamiltonian matrix elements for subsystems in graphene
nanoribbons (GNR) on the basis of maximally localized
Wannier functions. Combining this approach with the divide-
and-conquer strategy, they have been able to conduct the
direct NA-MD simulation of charge transport in GNRs with
more than 10,000 atoms, although for up to a modest 10 fs in
time. Rodriǵuez and Kananenka demonstrated the use of
convolutional neural networks (CNN) to correctly predict the
long-time dynamics in dissipative spin-boson systems.62,63

Ullah and Dral used kernel ridge regression (KRR) to address
a similar kind of problem.55,64−66 Akimov utilized a multilayer
perceptron with the periodically transformed time inputs
(modes) to forecast the time series of TD-DFT-derived energy
gaps and nonadiabatic couplings of monolayer black
phosphorus to extend the time scales accessible to NA-MD
simulations to dozens of picoseconds.67 Prezhdo and co-
workers utilized ML-based force fields to enable several-
hundred-picoseconds-long simulations of classical dynamics of
perovskites.68 Such simulations have helped sample rare e#ects

of appearance of deep trap states, which lead to a notable
di#erence of the computed recombination time scales as
compared to idealized small-supercell models. They also
utilized ML approaches to analyze the NA-MD simulations
to learn e#ective reaction coordinates for nonradiative
relaxation/carrier recombination in such systems.69 In another
work, the Prezhdo group utilized the ML-based force field to
sample long MD trajectories of perovskite systems. Such
trajectories were used to construct the vibronic Hamiltonians
by using the inverse fast Fourier transform approach.70

Cignoni et al.71 developed an ML model to predict the full
exciton Hamiltonian in photosynthetic complexes using a
Gaussian process regressor. Using a rotationally invariant ML
approach, Chandrasekaran et al.72 showed how one can bypass
solving the Kohn−Sham (KS) equations by directly predicting
the electronic structure of materials. Tretiak and co-workers
used NNs to model exciton-polaritons in azomethane73 and
plasmon dynamics in Ag nanoparticles.74 Westermayr et al.75

combined SchNet model76,77 with SHARC78 to perform
trajectory surface hopping79,80 for excited states dynamics in
CH2NH2

+, CSH2, and SO2 molecules. Others adopted deep
NNs and KRR method to predict potential energy surfaces of
polyatomic molecules for NA-MD simulations.81,82 In separate
works of Yaron,83 Tretiak,84 and Miller groups,85 an ML
approach was utilized to improve the accuracy of various
semiempirical methods for bioorganic and organic materials.

In both modes, whether it is to directly predict the
properties needed for quantum dynamics calculations (such
as energies and couplings) or to predict the surrogate
Hamiltonian matrix elements or density matrices, the ML
models must be constructed using appropriate inputs
(coordinates or, more generally, descriptors) and training
data. Often, the ML methods rely on the direct usage of global
descriptors such as traditional real-space atomic coordinates of
the systems,86−89 including internal coordinates90−92 or
normal modes.58,93 Although such approaches are well defined
and can be quite convenient in certain situations, this strategy
is limited by the need to use a large amount of data for the
training, which can range from tens of thousands to millions of
data points. For example, the SchNOrb model94 is one of the
most famous ML models for predicting the Hamiltonian
matrix, but it requires optimizing nearly 93 million parameters
to be able to compute the Hamiltonian matrix with just a little
more than 100 basis functions. The training time takes more
than 80 h on graphics processing unit (GPU)-accelerated

Figure 1. Illustration of the mapping Kohn−Sham Hamiltonian approach: (1) the initial geometry of the system of interest is used to compute a
guess charge density, ρguess, given via the superposition of the atomic densities, ρi

atomic; (2) the guess charge density is used to construct a KS
Hamiltonian matrix with the PBE density functional; (3) the ML is trained to map the non-self-consistent guess KS Hamiltonian with the PBE
functional, Hnon‑SCF,PBE, to the self-consistent KS Hamiltonian with an arbitrary functional, such as the B3LYP functional in this example, HSCF,B3LYP;
(4) once the ML model is trained, the predicted KS Hamiltonian is constructed in one shot and is diagonalized to produce the desired properties
such as molecular orbitals (MOs), ψi, and their energies, ϵi, which can be used in NA-MD calculations. The workflow is demonstrated by
considering a Si75H64 QD as an example.
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supercomputers for small systems such as ethanol or uracil,
which makes the preparation of the testing and training data
set cumbersome and at least as time-consuming as doing the
direct dynamics.

Other strategies employ descriptors such as time,67

Coulomb matrices,95 inverse internuclear distances,96,97

smooth overlaps of atomic positions,98 and more.82,99−101

Unfortunately, using the time variable as the sole independent
input variable to ML model as in ref 67 is based on the idea of
implicit trajectories, where the ML-predicted time-dependent
properties (scalar nonadiabatic coupling (NACs) or state
energies) may be computed without having any information on
the system’s geometry, which may make the analysis of the
obtained results incomplete. Having an ML model that is
explicitly geometry-dependent, enables predicting fundamental
properties of the system (e.g., orbitals and Hamiltonians), does
not require heuristic guess of the best training coordinates, and
is not too expensive to construct and train is the desirable goal.

In this work, we approach the ML-based surrogate
Hamiltonian construction from a di#erent angle: instead of
relying on atomic coordinates as the direct inputs to train the
ML model, we e#ectively use the coordinate-dependent
atomic-guess Kohn−Sham (KS) Hamiltonian matrix as an
input. This input is used to predict the converged KS
Hamiltonian at a desired level of theory, which can be used
to compute the resulting KS orbitals and other derived
properties (energies and time-overlaps) needed for NA-MD
calculations (Figure 1). In this approach, we leverage our
observation that the KS Hamiltonian with the converged
charge density is often a close and rather smooth map of the
initial guess KS Hamiltonian. The latter is a geometry-sensitive
property and is fast to compute, even for large complex
systems. One can further establish a mapping of such a guess
KS Hamiltonian computed at a lower level of theory, e.g., with
a pure density functional, such as PBE, or even tight-binding
(TB) models such as the extended tight-binding (xTB),102,103

to the converged KS Hamiltonians constructed at a higher level
of theory, such as hybrid functionals, perturbation theory, or
configuration interaction methods. One can regard this
approach as a form of preprocessing of the atomic geometry
information before it is used in construction of the ML model.
As opposed to using the atomic geometries directly, this
preprocessing makes it possible to significantly reduce the
number of data points that should be used in the training set,
leading to a more robust and e�cient ML methodology for
NA-MD calculations. As a demonstration, we show how this
method can be applied to study excited state relaxation
dynamics in C60 and Si75H64 QD.

The ML-based NA-MD approach presented in this work is
formulated for systems whose nuclear dynamics is not strongly
perturbed by electronic excitations, the so-called neglect of the
back-reaction approximation (NBRA, vide infra). The standard
NBRA NA-MD computations typically involve precomputed
nuclear trajectories (guiding trajectories)104 that parametrize
the electronic dynamics of a system. While the guiding
trajectories may be obtained relatively inexpensively using
adiabatic molecular dynamics with force fields,105−107 semi-
empirical108 or xTB methods,21,109,110 the propagation of
electronic dynamics requires more expensive DFT calculations.
Obtaining accurate energies and time overlaps may require the
use of expensive hybrid functionals, with the steeply increased
computational expenses.33 This task may be out of reach for
large systems, especially if such calculations are to be done for

hundreds and thousands of time steps along the guiding
trajectory. This is where the ML-based KS Hamiltonian
mapping approach presented in this work would come in
handy.

The computational acceleration o#ered by the present
method comes in three flavors: (1) due to substituting the self-
consistent calculations with the non-self-consistent ones
(about an order of magnitude acceleration); (2) due to
replacing expensive hybrid functional calculations by those
relying on pure functionals (an arbitrary order of magnitude
increases rapidly with the size of the system and the basis set
size); and (3) due to utilizing only a fraction of geometries of
the guiding trajectory at the ML training step (an acceleration
by an order of magnitude or more increases with the length of
the target NA-MD simulations to conduct). As an illustration,
one can think of a hypothetical task of conducting a 10 ps NA-
MD (that is 10,000 geometries, an upper edge of what is used
in typical direct NBRA NA-MD) calculation for a C60 system
with the electronic states described at the B3LYP level. With
the current approach, one may end up needing to do only 100
SCF calculations at the B3LYP level and 100 non-SCF
calculations at the PBE level to construct the ML model that
would map the non-SCF PBE KS Hamiltonian, Hnon‑SCF,PBE to
the SCF B3LYP one, HSCF,B3LYP for arbitrary nuclear
geometries. The “production” calculations would include
10,000 non-SCF calculations at the PBE level (relatively
cheap) to obtain the B3LYP-level electronic structure. This
hypothetical process would result in a 100-fold acceleration of
the NBRA NA-MD workflow. Of course, one can envision the
mappings of even cheaper non-SCF Hamiltonians such as
DFTB or xTB to SCF KS Hamiltonians or mappings to even
more computationally expensive many-electron Hamiltonians
such as those of TD-DFT, CAS, GW, and so on. Such
mappings would deliver even higher accelerations of the
NBRA-based NA-MD calculations, but this kind of mapping is
outside of the scope of the present work.

Having identified the sources of possible acceleration of the
ML-based KS Hamiltonian mapping approach, we do not take
full advantage of such acceleration in this work, as we aim to
not only demonstrate the acceleration but also assess the
reliability of the methodology. For this reason, the NA-MD
calculations with the ML-based mapped Hamiltonians are also
conducted using the directly computed self-consistent DFT
Hamiltonians, including those with the hybrid functionals.
Although such calculations are rather expensive, they provide a
direct assessment of the applicability of the ML-mapped KS
Hamiltonians to the NA-MD simulations as well as estimates
of the training set sizes needed to achieve reasonable
performance of the method. Although such an estimate is
not guaranteed to be transferable to other systems, it may be a
useful guiding number for future applied studies, where the
computational acceleration o#ered by the method could be
fully leveraged.

2. THEORY AND METHODS

2.1. Nonadiabatic Molecular Dynamics Methodology.
Here, we briefly overview the theory of nonadiabatic molecular
dynamics (NA-MD) used in the present work. A more detailed
account can be found elsewhere.30 The evolution of the
electronic wave function is described by the time-dependent
Schrodinger equation (TD-SE):
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=i
r R t

t
H r R t r R t

( , ( ))
( , ( )) ( ; ( ))el (1)

where r and R(t) represent the electronic and nuclear
coordinates, respectively. In the quantum-classical trajectory-
surface hopping (TSH) methods, the e#ective Hamiltonian
operator appearing in eq 1 is essentially the electronic
Hamiltonian operator, Ĥel, since the nuclei are treated
classically and the corresponding nuclear kinetic energy
operator disappears. The nuclear trajectory is obtained using
classical adiabatic MD (although with the forces that may be
derived from quantum chemical calculations) and is then used
as the guiding trajectory to compute the electronic
Hamiltonians. In this work, we utilize the NBRA approx-
imation of Prezhdo et al.111−113 according to which the
electronic excitation is assumed not to a#ect the nuclear
dynamics significantly, and which has been demonstrated to
yield reasonable results for many nanoscale13,21,23,24,114−118

and rigid molecular systems.108,119,120 Accordingly, only the
adiabatic ground state forces are needed to precompute
nuclear trajectories, even if electronic transitions occur. In the
NBRA approach, electronic transitions do not lead to nuclear
trajectory branching and, vice versa, are determined by the
precomputed nuclear trajectory.

The adoption of the NBRA is based on the assumption that
no bond breaking or major structural reorganization occurs
during the dynamics, which has been demonstrated to be
reasonable for relatively “rigid” systems such as fullerenes or
nanoparticles,13,23,115,121,122 as well as for periodic and
condensed-matter systems.17,21,22,24,28,123,124 As a result,
nuclear geometries sampled along the guiding trajectory are
relatively close to each other in a configurational space.
Consequently, the ML model based on the linear regression
kernel is likely to yield reasonable results for snapshots of the
guiding trajectory that have not been seen during the training.
In this regard, presenting independent guiding trajectories to
the training pool for constructing the ML model may not lead
to significant changes in ML quality. In fact, even standard
NBRA NA-MD calculations often utilize a single but
su�ciently long guiding trajectory.23,109,123,124

Developing the ML approach for non-NBRA simulations
may be more di�cult since multiple divergent trajectories
could be produced due to stronger branching of the dynamics,
necessitating larger sampling sizes and potentially requiring
more complex kernels for ML models. Furthermore, if one
desires to utilize the ML mapping approach to guide the
nuclear trajectories, then the forces would need to be
computed. Since the present approach maps the non-SCF
Hamiltonians to the SCF ones only to a certain precision,
which is still below the typical thresholds needed for accurate
force calculations, in the present approach we do not aim to
compute forces to generate new guiding trajectories. Such a
possibility should still be achievable but remains outside the
scope of this work.

The total wave function, Ψ, is written as a linear
combination of M dynamical basis functions, {ψi,i = 0,···M −
1}:

=

=

r R t C t r R t( ; ( )) ( ) ( ; ( ))
i

M

i i

0

1

(2)

In the above notation, the semicolon in parentheses represents
the parametrical dependence of the Hamiltonian operator and

dynamical basis function on nuclear coordinates, sampled
along the guiding trajectory, R(t).

In the basis of dynamical basis functions, eq 1 can be
rewritten to yield the equation describing the evolution of the
Ci(t) coe�cients as

=i C t H t C t( ) ( ) ( )i

j

ij j
vib

(3)

where Hij
vib(t) = Ej(R(t))δij − iℏdij(R(t)) are the elements of

the vibronic Hamiltonian matrix, Ej(R(t)) is the energy of the
jth dynamical basis function and dij(R(t)) is the time-derivative
nonadiabatic coupling (NAC) between jth and ith states at
nuclear geometry of R(t):

=d r R t
t

r R t( ; ( )) ( ; ( ))ij i j (4)

In the present work, the dynamical basis functions, {ψi} are
chosen as the excited Slater determinants, Φa

b, constructed
from a subset of the KS orbitals, {ϕa

KS} of the chosen KS
Hamiltonian, ĤKS:

= =
+

a a
i a

b

b a 0 (5)

Here, ab̂
+ and aâ are the Fermionic creation and annihilation

operators, respectively, and Φ0 is the ground state determinant
so that the determinant Φa

b corresponds to electronic excitation
between KS orbitals a and b of the same spin: ϕa

KS → ϕb
KS. The

KS orbitals {ϕa
KS} are the eigenfunctions of the KS

Hamiltonian, ĤKS:

=H r R t r R t R t r R t( ; ( )) ( ; ( )) ( ( )) ( ; ( )))
a a a

KS KS KS
(6)

The energies of the dynamical basis functions, Ei, are
computed from the KS orbital energies, ϵa, as

=E
i b a (7)

To account for possible state crossings and phase
inconsistencies of the dynamical basis functions along the
guiding trajectories, eq 3 is integrated using the local
diabatization approach:125

+ =
+ +

+

C t t T
E t T E t t T

t C t( ) exp
( ) ( )

2
( )

i

k

jjjj

y

{

zzzz

(8)

Here, E is the diagonal matrix of energies of the dynamical
basis functions, C = (C0,C1,···CM−1)

T is the vector of the
dynamical basis amplitudes, ℏ is the reduced Planck’s constant
(ℏ = 1 in atomic units adopted internally), and T is the
orthogonalized basis reprojection matrix, computed as

=T X P( )1 (9a)

=
+

X A A A A( ) ( ) 1/2
(9b)

= | +P P t t t: ( ) ( )ij i j (9c)

Here, P is the time-overlap matrix. It is used not only to evolve
the TD-SE by the local diabatization approach shown above,
but also to numerically compute the scalar NACs, eq 4, using

the Hammes−Schi#er−Tully formula,126 +

+

( )d tij
t P P

t2 2
.

In our computations, the wave functions {ψi} are given by
excited Slater determinants. The time-overlaps between such
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functions are computed using the Lowdin formula127 as
detailed elsewhere.109

The coe�cients C(t) are used to compute the probabilities
of the stochastic hops between states. We use the simplest and
one of the most popular TSH schemes�the fewest switches
surface hopping (FSSH) of Tully.80 According to the FSSH,
the hops between states i and j are proposed with the
probability of:

+ = + +

+ +

P t t t
t

t
t
H t

t

H t
t

t
t

( , ) Im
2 2

2 2

i j

ii
ij ji

ii ji

prop vib

vib

i

k

jjjj
i

k

jjj
y

{

zzz
i

k

jjj
y

{

zzz

i

k

jjj
y

{

zzz
i

k

jjj
y

{

zzz
y

{

zzzz (10)

where ρij(t) = ci(t)cj*(t) are the elements of the reduced
density matrix. The hop i → j is considered proposed
(attempted) if ξ < Pi→j

prop, where ξ is a random number
uniformly distributed on the [0, 1] interval. The proposed
hops may or may not be accepted to reflect the detailed
balance between electronic and nuclear energy partitioning.

In the original FSSH prescription of Tully, hop acceptance is
decided based on the possibility to rescale nuclear velocities
along the derivative coupling vector of a given pair of states.
However, within the NBRA approach, this criterion is
simplified by using the Boltzmann factor:104

+ =P t
t E E

K T2
min 1, expi j

j iacc

B

i

k

jjj
y

{

zzz

i

k

jjjjj

i

k

jjjjj

y

{

zzzzz

y

{

zzzzz
(11)

The proposed hop i → j is considered accepted if ζ < Pi→j
acc ,

where ζ is a random number uniformly distributed on the [0,
1] interval. Otherwise, the hop is considered frustrated.

The coe�cients C(t) coherently evolved according to eq
9a−9c can be altered to account for decoherence e#ects. Here,
we consider two simple decoherence correction schemes�the
instantaneous decoherence at the attempted hops (ID-A)128

and the modified simplified decay of mixing (mSDM).129,130

In the ID-A approach, in addition to the FSSH prescription
of state hops and the underlying coherent evolution, the
amplitude vector C is collapsed at every proposed hop:

= ··· ··· ···C C i C(0, 0, exp( arg( )), , 0, )
i (12)

The index i selects the state onto which the coherent
superposition is collapsed: if the hop is not successful
(frustrated), the index i is chosen as the current active state.
If the hop is successful, then the coe�cient i is chosen as the
new state onto which the hop has occurred.

In the second decoherence correction scheme, the mSDM,
the coherent amplitudes, C, are modified gradually at every
time step, before they are used to compute hopping
probabilities in eq 10:

=C C C
t

i fexp ,i i i
if

i

k

jjjjjj

y

{

zzzzzz (13a)

=

| |

| |
C C C

C

C

1

f f f

i f i

f

2

2
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Here, f is the index of the currently active state and τij is
taken to be the pure dephasing rate between states i and j.
According to the mSDM prescription,129 these are computed
according to the formula of Akimov and Prezhdo:131
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where ⟨δEij
2⟩ is the trajectory (ideally, and ensemble) average of

the energy gap fluctuation, δEij = Ei − Ej − ⟨Ei − Ej⟩.
Counting the number of stochastic trajectories in every

electronic state at a given time, Ni(t), we compute TSH-based
populations as
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where N = ∑i=0
M−1Ni is the total number of stochastic

trajectories. The state populations, Pi
SH, are used to compute

time-dependent excitation energy excess as
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where Ei is the energy of the excited state i. The relaxation time
scales are computed by fitting the excess energy decay with a
stretched−compressed exponential function of the form:
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where E0 corresponds to the initial excitation energy excess
level. Fits with R2 > 0.5 are selected for computing the average
and error bars. The use of stretched−compressed exponential
fitting function may be tracked back to the work of Williams
and Watts132 who noted that dielectric dispersions and
absorptions in many systems do not follow a single relaxation
time scale. Such a fitting function has also been used in works
on modeling of excitation energy relaxation dynamics in
complex systems with dense manifolds of excited states.121,133

2.2. Computational Details: Electronic Structure
Calculations. For electronic structure calculations, both C60

and Si75H64 QD structures are first centered in the simulation
box, and a vacuum of 7 Å is added to each side of the box. The
MD calculations sample 3000 steps from the canonical
ensemble via velocity rescaling thermostat134 with a target
temperature of 300 K. In the MD calculations, the forces are
obtained using the PBE functional32 together with the
Grimme’s DFT-D3 dispersion correction.135 The timesteps
for C60 and Si75H64 structures are 1.0 and 0.5 fs, respectively.
The smaller time step is used for the Si75H64 QD system
because it contains light hydrogen atoms. Out of the total 3000
MD snapshots, the last 2000 geometries are selected to
compute the properties needed for NA-MD calculations and
used in training ML models.

In this work, three density functions are used for computing
time overlaps, eq 9c, and state energies: PBE,32 three-
parameter Becke−Lee−Yang−Parr (B3LYP),136−139 and
Heyd−Scuseria−Ernzerhof (HSE06).140,141 In all electronic
structure calculations, valence electrons are described using the
SZV-MOLOPT-GTH142−144 basis set, while the e#ect of core
electrons, if accounted for, with Goedecker−Teter−Hutter
pseudopotentials.142 Self-consistent field (SCF) calculations
are done with a charge density convergence limit of 5.0 × 10−7

Bohr−1 and a charge density cuto# of 300 Ry. In this work, we
adopt nonperiodic calculations for both structures which
correspond to a single K-point at (0, 0, 0), the Γ point. The
electronic structure calculations are conducted using the
CP2K145,146 software package. The KS Hamiltonian matrices
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and the molecular orbitals coe�cients are printed by CP2K in
the atomic orbital basis for each geometry and then parsed by
Libra code105,106 into Python. The same procedure is done for
all geometries to generate the atomic-guess Hamiltonian
matrices using PBE but with only 1 SCF step. The atomic-
guess Hamiltonian is the Hamiltonian that is evaluated at the
electron density given by the superposition of atomic densities.
This Hamiltonian is computed as a one-shot, non-self-
consistent Hamiltonian.
2.3. Computational Details: NA-MD Simulations. For

NA-MD calculations, we first build a mixed electron and hole
excitation basis by exciting electrons from the occupied to the
unoccupied orbitals near the band edge. For C60, the excited
state basis is built from all single excitations from the first 14
occupied orbitals near the valence band edge to the first 6
unoccupied orbitals from the conduction band edge (Figures
S1 and S2). For the Si75H64 QD, the excited state basis
includes all excitations from the first 10 occupied orbitals to
the first 10 unoccupied orbitals (Figures S1 and S2). Ideally,
one would want to go beyond the single-particle (formulated
either through the bare KS orbitals or through Slater
determinants) picture into something like configuration
interaction singles (CIS) or TDDFT. In fact, such a capability
is already present in the Libra code and has been used in a
previous study.23 At the same time, the use of the single-
particle picture is also a common practice in modeling excited
state dynamics in large systems22,28,115,121 the choice dictated
by computational costs of the many-determinantal methods. In
addition, lower excited states are often dominated by a single
determinant.23 Since the present work aims to assess the
quality of the ML-mapped KS Hamiltonians for NA-MD
purposes, we choose a single-particle description of electronic
states, expecting that the obtained relaxation time scales may
not be the definitive characterization of the quantum dynamics
of true excited states.

The initial electronic state is chosen as follows: for the C60

fullerene, any state among the five excited states in the S2 band
(Figure S2a−c), for the Si75H64 QD, any state among three
excited states with energy of ∼0.7 eV above the first excited
state are initially populated (Figure S2d−f).23 As Figure S2
demonstrates, the electronic states in C60 form bands of quasi-
degenerate states, S1 and S2, separated by a notable gap. For Si
QD there are no clearly defined bands, as all states are rather
close to each other in energy. Due to the closeness of the
individual states belonging to the same band, the initial states
are chosen by randomly selecting individual states within the
band of interest. Such a selection aims to be done within a
certain excitation energy window, corresponding to exper-
imental setups when possible.

The NA-MD simulations start from 10 initial geometries in
the MD trajectory. 250 stochastic realizations of the TSH
method are utilized. The electronic integration time step for
NA-MD is selected as 1.0 and 0.5 fs for C60 and Si75H64 QD
structures, respectively. Considering that we have only 2000
MD steps in each guiding trajectory, sampling 10 initial
geometry every 200 steps would not allow long NA-MD
simulations. To produce the 1 ps NA-MD trajectories, we use
the Hamiltonian repetition approach that consists of looping
over the initial 1 ps data set of Hamiltonians obtained along
the guiding trajectory. This technique has been widely used in
the NBRA-based NA-MD calculations18,21,109,116,123,124,147

although it is known to under- or overestimate the resulting
time scales by nearly an order of magnitude.148 However, since

the same approach is applied equally to both the ML and
direct simulations, it should not a#ect the validity of the
current study, although the absolute values of the excitation
decay time scales may not be quantitative compared to
experiment. NA-MD calculations are done using Libra
code,105,106 version 5.5.0. All input files and Python codes
pertinent to this study are freely available via Zenodo
repository.149

2.4. Machine Learning. In this section we outline the
main procedure of our current approach, establishing a
mapping of the atomic-guess KS Hamiltonian (inputs to the
ML model) to the KS Hamiltonian that corresponds to a
converged charge density (outputs of the ML model). In
particular, we use the atomic-guess Hamiltonians computed
with the PBE32 functional, while the converged Hamiltonians
are obtained with the PBE,32 B3LYP,136−139 and HSE06140,141

functionals. We employ the linear KRR approach, which is a
least-squares optimization problem with the L2 regularization,
as implemented within the Scikit-learn package.150 Both input
and output matrices are symmetric NAO × NAO matrices, where
NAO is the number of atomic orbital functions. For large
systems, such data may be more di�cult to use directly in the
ML training procedure, in terms of both the e�ciency of the
underlying computations and the capacity of the ML to
correctly learn the multidimensional patterns. To increase the
e�ciency and reliability of the ML training, we leverage the
symmetry of the Hamiltonians on the AO basis and use only
the upper triangular part of the KS Hamiltonian matrix
together with its diagonal elements for training. The upper
triangular matrices are vectorized before they are used in the
ML training. The corresponding input and output vectors are

therefore of +N N( 1)

2

AO AO size each. The vectorized matrices are

further split into multiple data sets (segments) and are used to
construct separate ML mapping functions/models (see Section
S2 in the Supporting Information). The input and output data
are preprocessed separately for each segment according to the
standard scaling procedure of the scikit-learn package.150 This
procedure involves shifting and scaling of the data to bring it to
zero mean and a standard deviation of 1.0.

At first glance, the splitting procedure may introduce some
inconsistency, but the use of unsegmented data for the ML
model training may be not practical for large systems where the
vectorized matrices may have millions of elements (features).
This approach also helps parallelize the calculations for large
KS Hamiltonian matrices. There could be di#erent splitting
approaches for dividing the vectorized upper triangular of a KS
Hamiltonian matrix (see Section S2 in the Supporting
Information for a more detailed discussion). In this work, we
adopt one of such possible strategies: split the vector into
multiple subvectors of similar size (see Figure S3b in the
Supporting Information).

In the present approach, we use the linear KRR model,
which can be briefly exemplified as follows. To predict each
segment of the vectorized upper triangular part of the self-
consistent KS Hamiltonian matrix computed with say a B3LYP
functional at a given trajectory point, R(tα), the corresponding
segments of the vectorized upper triangular part of the non-
self-consistent KS Hamiltonians computed with the PBE
functional at other points are used:
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where Ntrain is the size of the training set and K(vec[X],vec[Y])
= vec[X](vec[Y])T is the kernel function for vectorized forms
of the input matrices X and Y�vec[X] and vec[Y],
respectively. The KRR coe�cients cβ (vectors themselves)
are computed as cβ = (K + λI)−1vec[HB3LYP,SCF(R(tβ))], where
λ is a hyperparameter used to prevent overfitting.151 The
regularization parameter is chosen by trial and error and is
fixed and selected as a value of 1.0. Here, both vec-
[HPBE,non‑SCF] and vec[HB3LYP,SCF] are vectors that represent
the same segments of the split-vectorized upper triangular part
of the corresponding KS Hamiltonian matrices, HPBE,non‑SCF

and H
B3LYP,SCF. Unlike in training of nonlinear NNs, such as

multilayer perceptron model, the parameters in the linear KRR
model are computed analytically and can be regarded as the
optimal for the kind of model chosen. To achieve even higher
accuracy, one can adopt a higher degree of polynomial
functions in KRR or use more complicated ML models such as
convolutional or nonlinear kernels NNs. At the present stage,
the developed ML approach does not guarantee rotational
invariance/equivariance,152 and is yet to be refined to address
this conceptual shortcoming.

To train the ML model, we sampled 2000 geometries using
the ab initio MD calculations. The results obtained for these
2000 time steps are regarded as the reference and are used to
assess the reliability of the current approach. As alluded to in
the Section 1, our goal here is to demonstrate that one can use
a small subset of the snapshots from the guiding trajectory
points together with the corresponding electronic structure

data and produce an ML model that would be able to
inexpensively predict the electronic structure data for the other
trajectory snapshots. One of the questions we ask is what the
minimal size of the data needed is to train a su�ciently
accurate ML model that could be used in the NBRA NA-MD
simulations. Thus, we consider training sets of di#erent sizes,
ranging from 50 (2.5%) to 1000 (50%) geometries from the
MD trajectory. The rest of the trajectory time steps are used to
evaluate the performance of the trained ML model (the test
set). The quality of the ML model is evaluated by computing:
(a) the mean absolute error (MAE) of the total energy; (b) the
MAE of MO energies; (c) the MAE of the quantity ϵ, eq 19a
and 19b, that characterizes shapes of the predicted KS orbital:

= | | |1.0
i i i,overlap ,ML ,ref (19a)
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where ψi,ref is the reference ith MO from the self-consistent
calculations, ψi,ML is the MO obtained by diagonalizing the
ML-predicted Hamiltonian, and NMO is the number of MOs.
The MAE is computed by using only the test data points.

3. RESULTS AND DISCUSSION

We demonstrate the capability of the developed method by
applying it to the model NA-MD in two extended molecular
systems: C60 fullerene and Si75H64 QD (Figure 2a,b).

Having an accurate mapping of the guess PBE input to the
converged B3LYP or HSE06 output is of paramount
significance since the converged (self-consistent) electronic
structure calculations with the hybrid functionals can be orders
of magnitude more expensive than constructing the non-self-
consistent (based on the atomic density superposition)
Hamiltonians with pure density functionals such as PBE.
Within the context of NA-MD calculations, the electronic

Figure 2. Molecular structures of (a) C60 fullerene and (b) the Si75H64 QD. MAE of total energy, MOs’ energies, and ϵ, eq 19b, for (c) C60 and (d)
Si75H64 QD using the HSE06 functional. The unit of each property is shown in the legend box.
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structure calculations must be performed for multiple MD
timesteps. In order to gain a notable acceleration, one must be
able to use a minimal amount of self-consistent electronic
structure calculations with the target functional as the training
data points. At this expense, a reliable ML model is constructed
and enables one to quickly construct the surrogate KS
Hamiltonian at the target level of theory for the rest of the
nuclear geometries.

The ML models are trained until the training set reaches
∼10−5 and ∼10−6 Ha MAE of the Hamiltonian matrix
elements for C60 and Si75H64 QD, respectively (Section S3 in
the Supporting Information, Figure S4). These values are
achieved for all of the target functionals considered. Using only
250 geometries (12.5% of the available data) in the training
set, the MAE for the testing already reaches values below 10−4

and 10−5 Ha in the Hamiltonian matrix elements error for C60

and Si75H64 QD, respectively, and less than 10−3 Ha in total
energy for both structures, which is less than the chemical
accuracy (1 kcal/mol). The only case in which the ML model
shows a higher total energy error is for Si75H64 QD using the
B3LYP functional with an MAE of ∼2.74 kcal/mol. The
testing error reaches the training error as the size of the
training set increases such that the training and the testing sets
coincide. By using 250 geometries in the training set, the MAE
of all MOs’ energies reaches about 10 meV for C60 and 3 meV
for Si75H64 QD (Figures 2 and S3, S4). The average deviation
of the overlaps of all predicted MOs with the converged results
from 1.0, ϵ, is less than 10−2 for both structures showing that
the MOs obtained via ML pathway are very close to the
reference orbitals obtained with the self-consistent KS
Hamiltonian (Figures 2 and S4, S5). These are rather
impressive characteristics of the ML’s ability to reproduce
the electronic structure data for complex systems considering
the modest sizes of the training sets used and the simplicity of
the ML model. Extending the size of the training sets is a
straight, although a rather brute-force route to improving these
characteristics (Figure 2). Using more sophisticated ML
kernels, preprocessing the data, and improving the sampling
criteria for the training set selections may be next-level
strategies, but such investigation goes beyond the present
proof-of-the-principle work.

Considering the ML approach yields a reasonable accuracy
predicting the total and orbital energies as well as in KS
orbitals themselves, we further assess the computational
e�ciency of this method in contrast to conventional electronic
structure calculations, as detailed in Section S4 in the
Supporting Information. Already for the modestly sized C60

and Si75H64 QD systems, we observe an order of magnitude
acceleration when using pure density functional and 2−3
orders of magnitude acceleration when using hybrid func-
tionals (Table 1). The speed-up factor is greater for hybrid
functionals since such calculations are computationally
demanding if conducted in a conventional way, with their
time scaling as O(Nbas

4 ), where Nbas is the number of the basis

functions. In contrast, the ML approach requires only
quadratically scaling time, O(Nbas

2 ), to construct the KS
Hamiltonian. In principle, since our approach also requires
the KS Hamiltonian diagonalization, for larger systems, one
would require a cubic time, O(Nbas

3 ), unless lower-scaling
techniques are employed. The smaller speed-up factors
obtained for the PBE functional can be attributed to weaker
scaling of the original PBE calculations, O(Nbas

3 ), compared
with that of the hybrid functionals. For the PBE calculations,
we also observe a counterintuitive larger acceleration for the
smaller C60 compared to the Si75H64 QD. This can be
explained by the more tight-binding nature of Si75H64 QD
MOs compared to the more delocalized MOs of C60. As a
result, the conventional PBE calculations of the Si75H64 QD
require fewer SCF iterations to get converged orbitals than
those of C60 (Table S1). Finally, when the speed-up factors are
thought of in absolute numbers, the comparison strongly favors
the ML approach. For instance, the SCF calculations of Si75H64

QD with the B3LYP functional take about 1.6 h on 16
processors, while the ML approach requires about 1 s for KS
Hamiltonian construction and another 1 s for the Hamiltonian
diagonalization. In this example, computing the atomic-guess
Hamiltonian that is used as the input to the ML model takes
even longer time, about 5.7 s on 16 processors (Table S1).

Our acceleration approach lies merely in using the ML
model as a one-shot KS Hamiltonian generation method.
Viewed in this way, it can be regarded as a system-specific
tight-binding or semiempirical method, made to reproduce the
DFT calculation at a selected level of theory. Alternatively, one
can regard the current approach as an improved guess for
conventional electronic structure calculations, to yield the
desired level of convergence on Hamiltonian matrix element
errors (Section S5 in the Supporting Information, Figure S6).
However, used in this way, one gets an acceleration factor of
about 1.5−2, compared to the computational time of the SCF
procedure that starts with the conventional charge density
guess as a superposition of the atomic densities. As shown
above, the current “one-shot” approach delivers a reasonable
quality of the properties needed in NA-MD simulations. Thus,
considering the sizable speed-up factors when it is used in this
mode, we favor using it in this specific way.

To demonstrate the applicability of the ML-based approach
to NA-MD simulations, we first compute the KS energy levels
for every nuclear geometry sampled by the initial MD. The
general agreement of the orbital energies computed for each
system with the ML model to those obtained in conventional
calculations (Figure 3a,b) suggests that the ML model can act
as a successful yet much cheaper method to generate the
surrogate Hamiltonians. As the ultimate test of the applicability
of the ML-based approach to modeling NA-MD dynamics, we
conduct such calculations using orbitals and orbital energies
computed with the ML-based and conventional methods
(details in Section S6 in the Supporting Information).
Specifically, we compute the kinetics of excitation energy
excess decay in both C60 and Si75H64 by using three trajectory
surface hopping (TSH) methods: FSSH, ID-A, and mSDM
(Figure 3c,d). As explained in the methodology section, the
current calculations are conducted using a basis of single-
particle states formulated as excited Slater determinants
(Figures S1 and S2). Out of the TSH methods, the FSSH
method is known to be prone to the overcoherence problem,
while the ID-A and mSDM methods both introduce
decoherence corrections to it. Our focus is primarily on the

Table 1. Average Speed-Up of the Trained ML Models
Compared with Typical SCF Calculations

speed-up

system the atomic basis set size PBE B3LYP HSE06

C60 240 ×37 ×225 ×217

Si75H64 1039 ×16 ×724 ×435
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usability of the ML-based approach for NA-MD simulations, so
the particular choice of the approximations and methods is not
important as long as the ML-based method agrees with the
reference calculations based on the conventional approach.

The rate and degree of convergence of the relaxation time
scales computed with the ML-based dynamics toward the
reference values obtained using the conventional approach
depends on the target density functional, the system, and the
NA-MD methodology in which it is to be used (Figures 4 and
S7−S12). Generally, only a small number of trajectory data
points are needed to achieve such a convergence. For instance,
for the C60 system, only 50 geometries are needed to achieve
the convergence of the computed relaxation time scales for all
of the target functionals. This fast convergence can be
attributed to the high symmetry of the C60 molecule and its
vibrations. Indeed, for the much less symmetric Si75H64 QD
system, 250 geometries are needed to achieve the convergence
of the NA-MD results with the target PBE functional; about
750 geometries are needed for tighter convergence of the
energy relaxation curves with the HSE06 and B3LYP target
functionals. A larger number of training data points is required
with the target hybrid functionals than with the PBE one since
the converged orbitals/KS Hamiltonian of the former ones are

more distant from the orbitals/KS Hamiltonian obtained with
the guess charge density and the PBE functional. For the
Si75H64 QD system, we observe that it is harder to train the ML
model of surrogate Hamiltonians with the B3LYP or HSE06
functionals than those with the target PBE functional. Finally,
we find that it may need a larger number of training data points
to converge the time scales computed by the mSDM method
than for calculations with the ID-A or FSSH methods. This is
because the mSDM requires knowing the pure dephasing rates,
which are computed from the energy gap fluctuation. This
means a higher accuracy of the energy gaps is required to
obtain more accurate energy gap fluctuations. Yet, the ML
models constructed are still capable of achieving such a
challenging goal.

The deviations of the relaxation time scales for the Si QD
system computed with the ML approach from the correspond-
ing time scales obtained via the direct simulations (Figure 4d−
f) could be attributed to various factors such as the level of
regularization or convergence thresholds in training the
corresponding ML models. However, the fact that such
deviations are observed primarily for the FSSH method and
not for the ID-A or mSDM methods (weaker deviations for the
ID-A and a steady convergence toward the time scales from

Figure 3. Applicability of the ML-based Hamiltonian in the NA-MD simulations: (a, b) reproducing single-particle orbital energies as functions of
time for (a) C60 and (b) Si75H64 QD systems using ML models trained with data obtained with the PBE, B3LYP, and HSE06 functionals. The
reference and ML MOs are shown with solid black and colored dotted lines, respectively. The Fermi energy level is shown by red dashed dotted
line and set to zero. For better visualization, only a trajectory interval of 200 fs is shown. (c, d) Average excess energy decay obtained from NA-MD
calculations using the FSSH, ID-A, and mSDM methods for (c) C60 and (d) Si75H64 QD systems with the calculations based on the HSE06
functional (solid lines) and the corresponding ML model (dotted lines).
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direct simulations for mSDM) suggests that the deviations are
not necessarily indicative of the ML model quality.
Furthermore, the deviations are observed mainly for the Si
QD system (Figure 4d−f) and not for the C60 one (Figure 4a−
c). The former has a density of states significantly higher than
that of the latter (Figures 3a,b and S2). As Figure 2 shows, the
accuracy of the orbitals themselves and their energies
monotonically increases with respect to the number of points
used to train the ML model. Thus, the nonmonotonic
deviation of the computed time scales from the reference
values does not originate from the absolute errors of the
orbitals or their energies (quality of the ML model). What is
remarkable about the Si QD system is its high density of states.
In this situation, when dozens of states span a few eV or sub-
eV intervals, small inaccuracies of states (orbitals) energies and
time-overlaps still present in the ML model may cause multiple
alternative scenarios for state crossings and trivial crossings.
The state energies obtained from the ML model may still be
rather close to the target values, but their ordering may be
di#erent from that of the reference state energies. Such small
discrepancies may accumulate over time and eventually cause
the divergence of the ML-based population dynamics from the
reference one (e.g., longer time limit of blue curves in Figure
3d). In addition, due to close energy spacing, thermal
excitations are possible within this manifold, increasing the
e#ect of missed trivial crossing. This is where small energy level
o#sets (as predicted by the ML model) may lead to notable
di#erences in the overall population dynamics. The e#ects are
expected to be more pronounced for faster dynamics.

In the C60 system, the trivial crossings are likely to be better
captured with the ML approach due to the lower density of

states in this system. The time scale deviations are strongly
pronounced in the FSSH dynamics compared to the ID-A
(weak e#ect) or mSDM (almost no irregular deviations) cases.
This trend can be explained by the faster overall dynamics: the
methods that introduce decoherence corrections usually slow
down the dynamics. The stronger they slow it down, the fewer
potential trivial crossing events occur in the dynamics, leading
to smaller deviations of the computed time scales from the
reference values. Indeed, the deviation decays in order FSSH >
ID-A > mSDM. To recapitulate the observations, we expect
that the present ML-NAMD approach shall be more accurate
for systems with lower densities of states, slower intrinsic
dynamics, and when used with methods that introduce
decoherence corrections. If one anticipates its use to larger
systems with high densities of states and faster intrinsic
dynamics, a higher care must be exercised (e.g., higher
convergence thresholds or advanced regularization ap-
proaches) when constructing the corresponding ML models.

Our comprehensive calculations conducted with various
reference density functionals and surface hopping methods and
for each system are also summarized in Table 2 with the
corresponding energy relaxation curves shown in Section S6 in
the Supporting Information. Both Figure 4 and Table 2
demonstrate that for all kinds of calculations, the results of the
ML-based dynamics match those from the conventional
dynamics within the margins of error. Yet, the ML-based
calculations are several orders of magnitude faster, both due to
the one-shot philosophy and the need to use only a subset of
geometries for ML construction, after which the computation-
ally e�cient ML model can replace the expensive direct
electronic structure calculations for an indefinite number of

Figure 4. Relaxation time scales obtained from fitting the excess energy decay to the stretched−compressed exponential function, eq 17 for the (a−
c) C60 and (d−f) Si75H64 QD structures for the (a, d) PBE, (b, e) B3LYP, and (c, f) HSE06 functionals. The time scales obtained from the
dynamics in the ML basis are shown with solid lines. The colored areas show the average time scales and the corresponding confidence interval for
the energy relaxation time scales computed with the conventional approach.
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molecular dynamics steps at a moderate expense of
constructing the initial guess Hamiltonian for each geometry
and the costs of electronic structure calculations needed for the
ML training. The computational acceleration provided by the
ML approach increases with the length of dynamical
simulation and number of independent trajectories provided
that the training set is representative of the configurational
space to be explored by the NBRA NA-MD.

Although the main idea of this work is to validate the ML-
based NA-MD approach, it is also instructive to discuss the
time scales obtained, as well as the trends observed. First, we
find that for both systems, the FSSH yields the fastest
relaxation rate�about 100 fs for the C60 and 180−250 fs for
the Si75H64 QD, while the ID-A yields a factor of 1.5−2 slower
dynamics 240−270 fs for the C60 and 300−370 fs for the
Si75H64 QD. Finally, the mSDM approach yields an order of
magnitude slower dynamics compared to the FSSH�1.9−2.5
ps for the C60 and 1.2−1.4 ps for the Si75H64 QD.

The time scales obtained for C60 with the FSSH and ID-A
methods fall within the known range of energy relaxation time
scales for this system�less than 1 ps (Table 2), although the
experimental result shown in Table 2 corresponds to relaxation
of the bright excited states at about 5 eV. In this present setup,
the calculations are done starting from a lower excited state at
about 1.5 eV level. Thus, one can expect a slower relaxation
time scale. The mSDM approach yields 1.9−2.5 ps, which
appears to be a reasonable estimate of such a time scale since
accounting for limitations of the current approach would make

these numbers smaller, bringing them closer to the
experimental results. Indeed, the NBRA approach presented
here disregards possible nuclear reorganization in the excited
states. Such a reorganization can lead the system to
configurations with smaller energy gaps and hence larger NA
couplings, if not directly to the conical intersection regions,
leading to faster NA dynamics compared to what is possible
within the NBRA treatment. Thus, the time scales reported in
this work should be regarded as the upper limit to the true
values, which are expected to be smaller. In addition to the
better apparent agreement of the time scales, the estimate
given by the current mSDM approach is likely to be more
trustworthy since it accounts for important decoherence
e#ects, which are not included within the FSSH approach.
The 100 fs time scale given by the FSSH within the NBRA
approach is expected to further decrease when the back-
reaction e#ects are included. However, it is not expected to
decrease too dramatically, since the nuclear reorganization
e#ects themselves would occur on the comparable time scales
of a few dozens of femtoseconds.

For the Si75H64 QD, the comparison with the reference data
is more complicated due to a wide variety of such data and the
variability of conditions and systems studied in these reference
works. In the present work, we consider a 1.4 nm Si QD with
an initial excess excitation energy of about 0.7 eV. Out of
reference data shown in Table 2, the closed system studied
experimentally could by the 2−4 nm QDs studied by Cimpean
et al.154 For the initial excess excitation energy of 0.45−0.9 eV,

Table 2. Excitation Energy Excess Relaxation Time Scales Obtained from Fitting the NA-MD Results by a Stretched−

Compressed Exponential Function of = ( )E t E( ) exp
t

0
i

k

jjj
y

{

zzz
a

conventional (reference) ML

system method τ (fs) β τ (fs) β reference data

C60 FSSH PBE: 106 ± 24 PBE: 1.08 ± 0.09 PBE: 107 ± 26 PBE: 1.09 ± 0.10 <1 ps, 5.0 eV (exp.)153

B3LYP: 111 ± 28 B3LYP:
1.13 ± 0.15

B3LYP: 104 ± 23 B3LYP:
1.19 ± 0.13

HSE06: 106 ± 27 HSE06:
1.19 ± 0.15

HSE06: 97 ± 22 HSE06:
1.13 ± 0.11

ID-A PBE: 263 ± 30 PBE: 0.78 ± 0.06 PBE: 266 ± 33 PBE: 0.77 ± 0.07

B3LYP: 268 ± 34 B3LYP:
0.76 ± 0.07

B3LYP: 243 ± 30 B3LYP:
0.75 ± 0.07

HSE06: 263 ± 33 HSE06:
0.78 ± 0.07

HSE06: 251 ± 31 HSE06:
0.77 ± 0.06

mSDM PBE: 1942 ± 195 PBE: 0.79 ± 0.14 PBE: 2012 ± 226 PBE: 0.78 ± 0.14

B3LYP:
2327 ± 267

B3LYP:
0.75 ± 0.13

B3LYP:
2518 ± 355

B3LYP:
0.76 ± 0.15

HSE06:
2361 ± 294

HSE06:
0.79 ± 0.16

HSE06:
2311 ± 270

HSE06:
0.76 ± 0.14

Si75H64
(∼1.4 nm)

FSSH PBE: 237 ± 24 PBE: 0.67 ± 0.06 PBE: 241 ± 30 PBE: 0.74 ± 0.07 2−4 nm, 600 fs, 0.45−0.9 eV (exp.)154

B3LYP: 250 ± 26 B3LYP:
0.74 ± 0.06

B3LYP: 182 ± 23 B3LYP:
0.57 ± 0.02

HSE06: 228 ± 20 HSE06:
1.09 ± 0.13

HSE06: 216 ± 19 HSE06:
0.95 ± 0.15

ID-A PBE: 377 ± 26 PBE: 0.57 ± 0.03 PBE: 370 ± 34 PBE: 0.58 ± 0.08 1.2 nm, 102−170 fs, 1.0 eV (xTB
calculations)109B3LYP: 362 ± 34 B3LYP:

0.62 ± 0.04
B3LYP: 302 ± 22 B3LYP:

0.57 ± 0.02

HSE06: 346 ± 24 HSE06:
0.67 ± 0.04

HSE06: 296 ± 23 HSE06:
0.65 ± 0.04

mSDM PBE: 1431 ± 70 PBE: 1.09 ± 0.13 PBE: 1347 ± 71 PBE: 1.07 ± 0.12 1.5 nm, 400 fs, 1.0 eV (Landau−Zener
calculations)121B3LYP:

1309 ± 54
B3LYP:
1.04 ± 0.12

B3LYP:
1241 ± 54

B3LYP:
0.98 ± 0.10

HSE06:
1425 ± 96

HSE06:
1.00 ± 0.13

HSE06:
1313 ± 52

HSE06:
1.09 ± 0.13

aExperimental and previous computational time scales with QD size and initial excitation energy are shown.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c00008
J. Chem. Theory Comput. 2024, 20, 2992−3007

3002

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c00008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


their results suggest about 600 fs relaxation time scales. Our
previous calculations with the xTB single-particle states
suggested the 102 fs (FSSH), 170 fs (ID-A), and 144 fs
(mSDM) time scales for a comparable 1.2 nm Si QD.109 The
present values for the FSSH (220−250 fs) and ID-A (350−380
fs) are larger than the corresponding xTB-based values by a
factor of 2, due to larger energy gaps yielded by DFT
functionals (present work) in comparison to those of the
xTB.109 The present mSDM time scale (1.3−1.4 ps) is much
larger than the one reported with the xTB approach, possibly
due to smaller dephasing times in the current approach (as
correlates with the larger energy gaps than in the xTB). The
prior calculations by Reeves et al. on 1.5 nm QDs with initial
excess excitation energy of 1.0 eV yielded 400 fs,155 while the
Landau−Zener calculations of Smith and Akimov based on
TD-DFTB Hamiltonian suggested 182 fs for a comparably
sized system.121 Overall, the 350−380 fs yielded by the ID-A
appears to be in the best agreement with the previously
reported data. However, we believe the 1.3−1.4 ps predicted
by the mSDM should be regarded as better estimates for the
level of theory used. Compared to the experimental values, this
number is somewhat overestimated; however, bringing in other
e#ects such as back-reaction and many-body nature of excited
states would decrease these numbers, bringing them closer to
the experimental results. Similar to the C60 example discussed
above, the present time scales should be regarded as the upper
limits�going beyond the NBRA may lead to a faster
dynamics.104 Indeed, allowing the nuclei to evolve on excited
state PES within the non-NBRA approach is likely to lead them
to the regions of stronger nonadiabatic couplings or find
conical intersections as opposed to the nuclear dynamics
governed by the ground state PES. In the latter case, the nuclei
may be evolving in the configurational space regions that are
far from the strong NA coupling/conical intersection regions.
Hence, the NBRA dynamics are likely to yield underestimated
relaxation rates.

As just mentioned, the present simulations for both systems
are conducted with the basis of excited Slater determinants and
hence are intrinsically single-particle in nature. Extending the
calculations to the many-body states is likely to accelerate the
corresponding excess excitation energy relaxation process,23

lowering the current predictions (especially for the mSDM)
and bringing them in closer agreement with the experiment.

4. CONCLUSIONS

In this work, we present a new ML-based KS Hamiltonian
mapping approach for nonadiabatic molecular dynamics. The
method allows one to map an easily computed non-self-
consistent KS Hamiltonian with the charge density given by
the superposition of atomic densities and a chosen density
functional to a nearly converged (self-consistent) KS
Hamiltonian constructed using alternative, potentially more
accurate and expensive (e.g., hybrid), functionals. We
demonstrate that a simple linear kernel ridge regression ML
model can be used to realize such a mapping. Only a few
hundred geometries are needed to achieve satisfactory
accuracy of the trained ML model. The resulting model
enables the acceleration of the NBRA-based NA-MD
simulations by several orders of magnitude.

As a demonstration, we compute the excitation energy
excess relaxation dynamics in a C60 molecule and a 1.4 nm Si
QD using the ML-mapped KS Hamiltonians corresponding to
hybrid functionals such as the B3LYP or HSE06. For the C60,

the 1.5 eV excess excitation energy relaxes with the time scales
of 100 fs (FSSH), 240−270 fs (ID-A), and 1.9−2.5 ps
(mSDM). For the Si75H64 QD, the 0.7 eV excess excitation
energy relaxes with the time scales of 180−250 fs (FSSH),
350−380 fs (ID-A), and 1.3−1.4 ps (mSDM). We suggest
these time scales to be regarded as the upper limits of the true
values, since the present numbers do not account for possible
many-body e#ects and nuclear reorganization of systems in
excited states. Considering such limits, the present results are
in good agreement with the reported experimental findings.

We find that the ML-based NA dynamics is in good
agreement with the conventional NA-MD results. For all
systems and functionals, we find that the time scales are related
as τFSSH < τID‑A < τmSDM. The deviations of the time scales
computed with the ML-NA-MD approach from the corre-
sponding reference values decrease for systems with lower
density of states and slower intrinsic dynamics as well as when
using it with the TSH methods that account for decoherence
e#ects and hence produce slower relaxation dynamics. We note
that the method may require more care when applied to larger
systems with high densities of states and fast intrinsic
dynamics. Furthermore, for all systems, we observe only a
weak dependence of the computed time scales on the target
(reproduced by the ML model) functional. Surprisingly, the
computed time scales are similar whether the PBE, B3LYP, or
HSE06 functionals are used.
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