

ScienceDirect

Recurring and emerging themes in prokaryotic innate immunity

Tori A Boyle and Asma Hatoum-Aslan

A resurgence of interest in the pathways that bacteria use to protect against their viruses (i.e. phages) has led to the discovery of dozens of new antiphage defenses. Given the sheer abundance and diversity of phages — the ever-evolving targets of immunity — it is not surprising that these newly described defenses are also remarkably diverse. However, as their mechanisms slowly come into focus, some common strategies and themes are also beginning to emerge. This review highlights recurring and emerging themes in the mechanisms of innate immunity in bacteria and archaea, with an emphasis on recently described systems that have undergone more thorough mechanistic characterization.

Address

University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL 61801, USA

Corresponding author: Hatoum-Aslan, Asma (ahatoum@illinois.edu)

Current Opinion in Microbiology 2023, 73:102324

This review comes from a themed issue on **Evolution of anti-viral** defense

Edited by Philip Kranzusch

Available online xxxx

https://doi.org/10.1016/j.mib.2023.102324

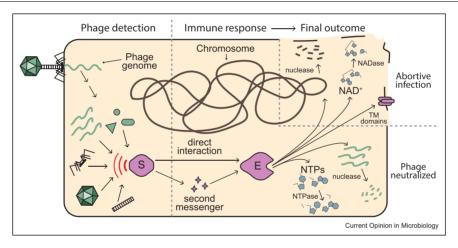
1369–5274/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The perpetual arms race between bacteria/archaea and their viruses has been raging for billions of years and has given rise to a multilayered network of immunity mechanisms that protect against infection. For decades, a handful of innate immune systems, including restriction—modification (RM), were thought to be the primary modes of antiviral defense until the more recent discovery that bacteria and archaea also possess an adaptive immune response mediated by clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins. RM and CRISPR—Cas systems not only have profound impacts on microbial survival and evolution, but also, in the wake

of their respective discoveries, have inspired advanced genetic technologies that continue to revolutionize basic and applied research. In accordance, a surge of interest in identifying other defense mechanisms, particularly in bacteria, has recently come to the fore.

Over the last several years, dozens of new antiphage immune systems have been identified, owing in large part to exploratory bioinformatic analyses which showed that defenses often cluster into discrete regions called 'defense islands' (Box 1). For the majority of these new systems, the genetic basis is known, and their precise mechanisms await further characterization. However, indepth investigations of a select few are beginning to reveal a remarkable degree of mechanistic diversity. These newly described systems vary with regard to i) the mechanisms by which they sense phage invaders, ii) the signaling pathway that ensues thereafter (i.e. the immune response), and iii) the overall disposition of the cell following the encounter with the phage (Figure 1). However, despite these differences, some common strategies and themes are also beginning to emerge. In order to give form to these emergent commonalities, the strategies can be classified into a two-dimensional conceptual framework as constituting preventions or interventions and providing individual or population-level protection (Figure 2). For instance, population-level preventions include the formation of biofilms or the release of extracellular vesicle decoys, both of which have the capacity to protect the population from phage infection [1,2]. On the other hand, individual preventions include surface masking via secretion of capsules or other barriers to phage adsorption [3] or superinfection exclusion (SIE) mechanisms that prevent the entry of phage DNA [4]. In contrast to these preventive strategies, the more recently described defenses constitute interventions that come into play following phage infection (Table 1). Of these, many result in programmed cell death (i.e. abortive infection, abi), in which infected cells are sacrificed in order to protect the population [5]. The sections below highlight a subset of recently described defenses under a framework of eight mechanistic themes (Figure 2), with an emphasis on systems that have undergone more thorough characterization.


Employing epigenetic modifications

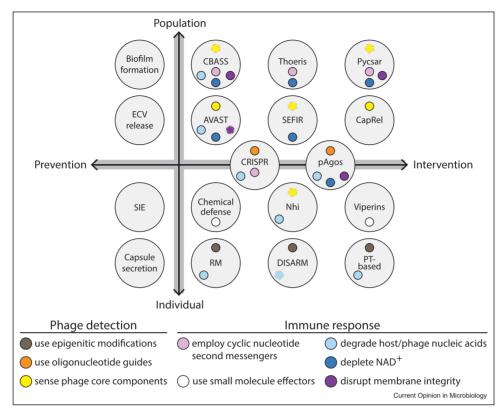
A critical feature of all immune systems is the ability to distinguish foreign elements from those characteristic of the cell. To accomplish this, RM systems have long been

Box 1 Discovering new defenses - it is all about location!

The synergy between bioinformatic and experimental methodologies has helped to launch the burgeoning field of prokaryotic immunology and continues to accelerate the pace of discovery. In their groundbreaking study, Makarova et al. used a novel computational pipeline to survey the distribution of antiphage systems in prokaryotic genomes and observed that defenses tend to cluster in discrete genomic loci known as 'defense islands' [50]. This finding enabled a series of studies that employed similar computational approaches combined with genetic analyses to identify and experimentally validate dozens of new immune systems. For example, based on the hypothesized existence of defense islands, Doron et al. and Gao et al. independently analyzed large datasets of sequenced bacteria and archaea and discovered a combined 38 novel antiphage defenses, thereby significantly increasing the diversity of known systems [24,34]. Further, a recent follow-up study reported an additional 21 new defenses [43]. In parallel with these expansive analyses, more focused studies demonstrated that defenses are often carried in mobile genetic elements (MGEs) such as plasmids [51], transposons [52], integrative conjugative elements [53], prophages [54-56], and parasitic phage-like elements (also known as satellites) [56-58]. Finally, to complement these targeted analyses that screened for new defenses in defense islands or specific MGEs, Vassallo et al. devised a novel strategy to select for functional defenses in E. coli genomes without bias toward a particular genomic context [59]. This pioneering work revealed 21 novel immune systems, and remarkably, over half of them were found to be located within prophages, phage satellites, or in/near remnants of MGEs. This study lends credence to the notion that defenses are indeed enriched in MGEs and highlights the need to survey outside core defense islands for additional mechanisms of defense. Further, these collective discoveries challenge the traditional notion of an arms race solely between bacteria/archaea and phages, and support a broader view of defenses as also having arisen through conflicts between different MGEs [60].

Figure 1

Overview of a subset of newly described prokaryotic immunity pathways. Phage-derived elements are shown in shades of green, and immune system components are depicted in violet. S, sensor protein/domain, E, effector component (could be protein/domain or small molecule). NTPs, nucleotide triphosphates.


known to employ methyltransferases that modify the host genome and thus protect it from the nuclease activity of corresponding restriction enzymes. The more recently described RM-like systems, bacteriophage exclusion (BREX) and defense island system associated with RM (DISARM), also rely upon DNA methylation to differentiate self from non-self [6-8]. However, unlike RM systems, BREX and DISARM utilize a variety of non-nuclease effectors (including putative proteases, phosphatases, kinases, helicases, and phospholipases) to mediate the immune response. Both systems prevent phage DNA replication soon after the phage genome penetrates the cell, and there is no evidence of abi; however, the exact mechanisms by which this occurs remain elusive.

As a variation on this theme, a growing class of restriction systems has been found to rely upon a sequence-specific modification known as phosphorothioation (PT), in

which oxygen is replaced with sulfur in the DNA backbone on one or both strands [9-12]. PT-based restriction systems have been identified in bacteria and archaea and provide antiplasmid and antiphage immunity. The unifying feature of these systems is the reliance on PT modifications to mark the host genome as 'self'; however, the restriction mechanisms of unmodified invaders vary. For instance, some PT-based systems degrade invader DNA [13], while an archaeal system was found to block virus replication without causing damage to its DNA [11]. Given that these systems target earlier stages of the phage infection cycle, it is assumed that they eliminate phage without causing abi, however, this remains to be experimentally confirmed.

Finally, one study identified a gene cluster in diverse bacteria that causes insertion of 7-deazaguanine derivatives into

Figure 2

A conceptual framework illustrating the strategies and functional themes in a subset of newly described defenses. The strategies are categorized into four quadrants as population-level preventions, individual preventions, population-level interventions, and individual interventions. The colored labels indicate common functional features/themes in phage detection (denoted on the upper half) or immune response (on the lower half) of each encircled defense. Labels with gray dashed borders indicate sensing mechanisms in which a direct interaction with the phage component remains to be demonstrated or an immune response that is predicted based on the presence of a putative domain. ECV, extracellular vesicle.

DNA [14]. These modifications are thought to play a role in self versus non-self discrimination as unmodified plasmids were found to be restricted from stable entry into cells harboring the gene cluster. The extent to which unmodified phages are targeted and the precise mechanism of restriction remain to be determined.

Nucleic acid-guided invader recognition

The first nucleic acid-guided interference mechanisms described in bacteria and archaea, CRISPR-Cas systems employ small RNAs (crRNAs) bound to Cas nucleases to detect and degrade foreign DNA and/or RNA. On the heels of the discovery of CRISPR-Cas function, prokaryotic homologs of argonaute proteins (pAgos) were hypothesized to constitute another family of nucleic acidguided defenses [15]. This hypothesis has been supported by subsequent studies, in which multiple pAgo systems in bacteria and archaea were shown to provide antiplasmid and antiphage immunity [16-20]. Similar to CRISPR-Cas systems, pAgos use short oligonucleotide guides to bind and/or degrade complementary nucleic acids; however, unlike CRISPR-Cas, pAgos can use both DNA and/or RNA as guides. Further, they do not maintain a memory of past invaders, and are thus considered a component of innate immunity.

Based on phylogenetic analyses, pAgos have been divided into two major groups — the long variants that possess a PAZ (oligonucleotide-binding) domain and short variants in which the PAZ domain is absent [15,21]. Of these, long pAgos have been more extensively characterized, and the majority were found to bind and cleave invading nucleic acids. In contrast, short pAgos lack a nuclease active site but harbor effector domains or are encoded in proximity to separate effectors that carry out the immune response [20,22,23]. Notably, while long pAgos are assumed to directly target invader DNA without damaging the host, all characterized short pAgos and their associated effectors have been found to cause abi.

4 Evolution of anti-viral defense

Mechanisms of recently des	scribed prokaryotic innate immur	ne systems.			
System or class	Sensing mechanism	Immune response	Abi? ¹	Protein families (PFs)/ domains	References
AvcID	Phage DNA inhibits a small noncoding RNA from hampering NTPase and deaminase activity	dNTP pool is depleted by NTPases and deaminases, which hinders phage DNA replication	No	PF00383 PF17107	[61]
AVAST	C-terminal tetratricopeptide repeat domains detect phage portal or terminase proteins via	Variable N-terminal effector domains trigger abi. Effector domains include nuclease, protease, nucleosidase,	Yes	PF13191 PF17004 PF14130	[24,25]
BREX	direct interaction Methylation in host cells discriminates host from phage DNA	SIR2, TIR, and others BREX restricts phage DNA accumulation through an unknown mechanism without causing abi	No	PF14338 PF08665 PF10923 PF08849 PF13659 PF10923 PF08747 PF01555 PF01507 PF13182	[6,7]
BstA	Phage infection is sensed by BstA through an unknown mechanism	Putative DNA-binding domain interacts with invading phage DNA and triggers abi	Yes	PF04383	[55]
CapRel (Cyanobacteria-, Actinobacteria-, and Proteobacteria-associated Rel (p)ppGpp synthetase/ hydrolase)	C-terminal pseudo-zinc finger domain interacts with phage capsid proteins to sense infection	Phage infection releases autoinhibition of N-terminal alarmone sythetase (Rel), resulting in pyrophosphorylation of tRNA and abi	Yes	PF04607 PF19242	[26]
CarolAnn prophage system	Phage element(s) recognized through an unknown mechanism	Phage infection activates putative TM domain-containing protein and results in abi	Yes	DUF4747 PF15969 PF15968	[62]
CBASS	Phage capsid protein may trigger CD-NTase activity, although a direct interaction has not been verified	CD-NTase domain produces cyclic oligonucleotides and activates variable effector proteins, resulting in abi. Variable effector domains include phospholipase, endonuclease, peptidase, TM, TIR, phosphorylase, and others	Yes	PF18144 PF18134 PF18145 PF18178 PF18009 PF18153 PF18179 PF18303 PF18181 PF18188 PF18186 PF18160 PF18169 PF18167 PF18159 DUF1043 PF00899 PF14461 PF14464 PF18173 PF18173	[29,32,37–3
Chemical defenses (anthracycline, alkaloid, fluorochrome, acridine, dibenzimidazole, and adequalinium chloride)	Phage DNA may be susceptible to these intercalating agents while in a nonsupercoiled state during replication	DNA intercalators block phage replication and transcription	No	Unknown	[40]
Cytidine and guanosine deaminases	Hinderance of host transcription by phages is sensed through an unknown	Cytidine and guanosine deaminases deplete dNTP pools, which blocks phage DNA replication	No	PF00383 TIGR02967	[63]
DISARM	mechanism		No	PF00271 PF09369	[8]

System or class	Sensing mechanism	Immune response	Abi? ¹	Protein families (PFs)/domains	References
	Methylation in host cells discriminates host from phage DNA	DISARM restricts phage DNA accumulation through an unknown mechanism		PF13091 PF00176 PF13659 PF00145 DUF1998	
Dynamin-like	Phage infection is sensed by prokaryotic dynamins through an unknown mechanism	Dynamins delay phage-mediated lysis by forming protective clusters on the inner membrane of the host cell, which slows down phage proliferation	No	PF00350 PF18709	[43,64]
Fruitloop prophage system	Upon lytic growth, fruitloop protein is expressed	Fruitloop protein interferes with a host protein that is required for heterotypic phage DNA entry, resulting in SIE	No	Unknown	[65]
Gabija	Gabija may sense depletion of nucleotides due to phage DNA replication and transcription	NTP and dNTP depletion triggers DNA nicking activity by GajA, presumably resulting in abi	Yes	PF13175 PF00580 PF13361 PF13245	[34,66]
Gasdermins	Phage infection may trigger proteolytic cleavage of an autoinhibitory C-terminal peptide	Upon cleavage of the inhibitory peptide, gasdermins create pores in the cell membrane and cause abi	Yes	PF04598 PF05729 PF00656 PF12770	[45]
Lamassu	Structural maintenance of chromosome family protein may recognize phage DNA replication intermediates	Phage recognition triggers ATP hydrolysis and activation of variable effector domains, resulting in abi. Variable effector domains include nuclease, hydrolase, protease, monooxygenase, and phosphoesterase	Yes	PF12532 PF00548 PF20280 PF20289 PF04471 PF20282 PF20288 PF02463	[34,43]
Nhi	Phage SSBs may activate Nhi, but direct binding has not been observed	Nhi's nuclease and helicase domains inhibit phage DNA accumulation	No	PF09848 DUF2075	[28]
Nixl	Specific phage DNA motifs are sensed by Nix	Nixl endonuclease inhibits phage DNA replication by nicking phage DNA motifs when it transitions to rolling-circle replication	No	PF13392	[57]
PARIS (phage anti-restriction- induced system)	Phage Ocr (antirestriction protein) is sensed through an unknown mechanism	ATPase and TOPRIM domains trigger abi	Yes	PF01751 DUF4435	[56]
pAgos	pAgos generate small guide oligonucleotides that sense and bind to complementary nucleic acids	Variable effector domains (e.g. nuclease, SIR2, TIR, and TM) either directly target invader DNA (long pAgos) or trigger abi (short pAgos)	Yes/No	PF12212 PF18157 PF13111 PF02171 PF02146 PF13676	[16–23]
(PT)-based systems	PT modification in host cells discriminates host from invader DNA	Various effectors may degrade invader DNA or prevent phage replication without DNA degradation	No	PF08870 TIGR03183 TIGR03185 TIGR03235 PF04386 DUF4007 TIGR04435 DUF262 DUF1524 PF01507	[9–13]
Pycsar	Phage capsid protein may trigger activity of Pycsar cyclases, but direct binding has not been observed	Cyclase domain produces cyclic oligonucleotides, which activate variable effector domains and cause abi. Variable effector domains include TM and TIR domains	Yes	PF00211 PF00027	[29,36]
RADAR			Yes	PF00962 PF13401	[24]

System or class	Sensing mechanism	Immune response	Abi? ¹	Protein families (PFs)/ domains	References
	Phage infection is sensed by RADAR through an unknown mechanism	Adenosine deaminase converts adenosine to inosine in RNA, which results in abi	V	DEGLOAL	[0.4.00.40]
Retrons	May sense various phage- encoded elements	Variable effectors work together with retrons to trigger abi. Variable effector domains include DNA binding, TIR, nuclease, ATPase, protease, and others	Yes	PF01844 PF00078	[24,29,46]
SEFIR	Phage capsid protein may trigger SEFIR activity	SEFIR NADase activity depletes NAD+ and causes abi	Yes	PF08357	[29,43]
Thoeris	Phage infection is sensed by an unknown mechanism	TIR domain produces cADPR using NAD+ as a substrate. cADPR triggers SIR2 NADase activity, resulting in depletion of NAD+ and abi	Yes	PF13289 PF14519 PF08937 PF13676	[34,35]
Viperins	Ankyrin repeat domain may recognize viral RNA polymerase	Radical S-adenosyl-methionine family enzyme inhibits phage transcription by producing modified ribonucleotides	No	PF04055 PF02224	[42]

¹ Abbreviations: Abi, abortive infection; dNTP, deoxyribonucleotide triphosphate; ATP, adenosine triphosphate; (p)ppGpp, guanosine pentaphosphate; TOPRIM, topoisomerase primase.

Sensing phage core machinery and structural components

Beyond recognizing nucleic acid sequences, an emerging theme in recently described systems is the ability to sense common folds in phage structural proteins and core machinery. As one example, antiviral ATPases/ NTPases of the STAND superfamily (AVAST) systems were recently identified in a large screen for antiphage defenses [24]. These systems are typically composed of single multidomain proteins called Avs (antiviral STAND), which, upon binding phage terminase or portal proteins, activate various effector domains (such as nucleases and proteases) and ultimately cause abi [25]. In another example, the CapRel system was found to recognize the major capsid protein in a diverse group of phages [26]. CapRel is a fused toxin-antitoxin system that exists in an autoinhibited state. However, phage infection and subsequent binding to the phage major capsid protein triggers activation of the toxin (effector) domain, which pyrophosphorylates tRNAs and thus causes cell death. In a third example, sirtuin (SIR2) domain-containing proteins are found in association with a number of immune systems, including pAgo, AVAST, and Thoeris (described in the next section) [27]. These defense-associated sirtuins degrade the essential cellular cofactor nicotinamide adenine dinucleotide (NAD+) in response to phage infection, resulting in cell death. Interestingly, one defense-associated sirtuin homolog was found to become active via direct binding with a phage tail tube protein [27].

Further, some systems may target gene products that are expressed earlier during phage replication and thus

provide individual-level protection. For instance, we recently discovered and characterized nuclease-helicase immunity (Nhi), a single-component system with nuclease and helicase activities that provides protection against diverse phages [28]. Although its enzymatic activities are sequence nonspecific, Nhi does not cause abi. To gain insights into the phage-encoded cues that trigger immunity, we generated and examined Nhi-resistant phages and found mutations in their singlestranded DNA-binding proteins (SSBs), thus implying that Nhi may recognize common folds in phage-encoded SSBs and/or phage replication intermediates. Here, it is worthwhile mentioning a new study that used a similar approach to identify putative targets for 19 different defenses [29]. A veritable tour de force, this study revealed that phage escape from many of these systems indeed correlates with mutations in the phage replication machinery and structural components. Whether these phage-derived components interact directly with corresponding sensors in these systems remains unknown and requires follow-up biochemical validation.

Using cyclic nucleotides as second messengers

The recent revelation that Type III CRISPR-Cas systems rely upon cyclic oligoadenylates as second messengers [30,31] opened up a new paradigm in prokaryotic immunology in which small molecules can play a significant role in propagating the immune response. At least three distinct immune systems that employ cyclic nucleotide second messengers have since been identified — Thoeris, pyrimidine cyclase system for antiphage resistance (Pycsar), and cyclic nucleotide-

based antiphage signaling system (CBASS). The paragraphs below provide brief summaries of these systems, and for more detailed information, the reader is referred to two excellent recent reviews [32,33].

Thoeris was first described in a seminal study reporting on the systematic discovery of 12 new antiphage defenses [34]. Thoeris systems contain two core proteins, ThsA and ThsB. Upon phage infection, the Toll/interleukin-1 receptor (TIR) domain of ThsB produces an isomer of cyclic ADP-ribose (cADPR) using NAD⁺ as a substrate [35], cADPR further binds ThsA and triggers NADase activity from its SIR2 domain. The resulting NAD⁺ depletion ultimately causes cell death.

In another variation on this theme, Pycsar systems are two-component systems composed of a pyrimidine cyclase paired with various effector proteins [36]. Upon phage infection, the cyclase produces cyclic mononucleotides (cCMP and cUMP) that bind and activate the effector. In addition to a cyclic nucleotide-binding domain, Pycsar effectors typically possess either transmembrane (TM) domain(s) or a TIR domain, which, upon activation, causes membrane destabilization or NAD+ depletion (respectively), both of which cause cell death. Interestingly, phage mutants capable of escaping Pycsar defense were found to harbor mutations in the capsid protein; however, a direct binding with the cyclase could not be demonstrated, suggesting other factors may be involved in phage detection.

In yet a third variation, CBASS systems generate diverse cyclic di- and tri- nucleotides as second messengers in response to phage infection [37–39]. These systems consist of two to four components, one of which is a cGAS/DncV-like nucleotidyltransferase (CD-NTase) that generates the cyclic oligonucleotides. These second messengers bind and activate various effector proteins that cause cell death through a number of mechanisms, including nucleic acid cleavage, cellular metabolite depletion, or membrane destabilization.

Employing small molecule effectors

All of the systems described thus far rely upon proteinbased effectors. However, in addition to acting as second messengers, small-molecule effectors have also recently been described. For instance, Kronheim and coworkers identified a panel of DNA intercalating agents naturally produced in Streptomyces, which protect against phage infection by blocking genome replication [40]. How these compounds specifically target the phage DNA remains unclear, although it is thought that phage DNA may become more susceptible to the intercalating agents during replication while in a nonsupercoiled state. In a second example, aminoglycoside antibiotics were found to confer protection against a broad range of phages, including those that infect Streptomyces, a natural producer of aminoglycosides [41]. These antibiotics were shown to protect individual cells by blocking an early step in the phage replication cycle (soon after DNA injection), and are hypothesized to provide communitylevel protection against competing bacteria and phage when secreted in natural environments. In vet a third example, prokaryotic viperins were discovered as a novel family of proteins that generate a set of modified ribonucleotides that inhibit the phage-encoded RNA polymerase [42].

Common pathways for cell death during abortive infection

Many of the newly described defenses above lead to abortive infection, and some commonalities are readily apparent in the mechanisms that cause cell death. These include the degradation of host DNA, depletion of critical cellular metabolites, and disruption of membrane integrity. As mentioned earlier, CBASS systems can cause death by all three pathways, Pycsar systems can kill cells via NAD+ depletion or membrane destabilization, and Thoeris systems cause NAD+ depletion. Further, some short pAgos can also cause NAD+ depletion via TIR or SIR2 domains [20,23]. A short pAgo has also been found to work with a separate effector to cause membrane destabilization [22]. Many AVAST systems have nuclease domains on the N-terminus, which are not sequence specific and therefore thought to damage both phage and cellular DNA [25]. Also, some AVAST systems possess non-nuclease N-terminal domains, including TIR, SIR2, and TM domains, implying that they too have the capacity to cause cell death via NAD⁺ depletion and membrane destabilization.

Here, three additional systems are worth mentioning. First, a new single-component system containing an SEFIR domain (named after SEF [similar expression to fgf] and IL-17R [interleukin-17 receptor]) was found to cause cell death upon phage infection [43]. This domain harbors homology with the TIR domain of ThsB (a component of Thoeris), and accordingly degrades NAD⁺ upon activation. The second is RADAR (restriction by an adenosine deaminase acting on RNA), a two-component defense system that causes abortive infection via depletion of nucleotide pools in the cell [24,44]. The third is the discovery of bacterial gasdermins that have been shown to cause abi via membrane disruption [45].

Concluding remarks

The last decade has witnessed an explosion in our understanding of prokaryotic immunity, with new insights and discoveries unfolding at an exponential rate. This trend is unlikely to plateau anytime soon considering that prokaryotic immune systems are billions of years in the making, while our journey of discovery has only just begun — almost reminiscent of the oil boom of the early 1900s, tapping into untapped reservoirs with new and

powerful methods and technologies. Although recurring mechanistic themes are starting to become apparent, many groups of systems are decidedly unique. For instance, bacterial retrons are a class of systems composed of a noncoding RNA and a reverse transcriptase that generates a chimeric DNA-RNA hybrid, and these work together with various effector proteins to facilitate abi [24,46]. In addition, toxin–antitoxin systems, a diverse group of two-component systems comprising a toxin and cognate antitoxin, are increasingly being recognized as conferring immunity, again through abi [26,43,47,48]. These and the other recently described systems may provide the seeds of inspiration for new innovations. However, a prerequisite to gauging their technological potential is a thorough mechanistic understanding. The challenge is that the rate of discovering new systems has quickly outpaced our ability to decipher their precise mechanisms of action, thus highlighting the need for more efficient bioinformatic/experimental characterization pipelines.

Intriguingly, a subset of the newly discovered antiphage defenses contains proteins/domains that bear homology to components of the human innate immune system. These include CBASS, viperins, argonautes, gasdermins, TIR and SEFIR domains, and the DUF2075 domain in Nhi [28,43,49]. Thus, known mechanisms of human immunity have helped to propel a greater understanding in prokaryotic counterparts, and moving forward, the converse will also likely prove to be true. Significant insights into immunity mechanisms are also coming from studying the strategies that phages have evolved to escape and/or subvert these defenses. Empowered with the cutting-edge tools and technologies of this day and age, the field will undoubtedly remain a fertile ground for new discoveries and groundbreaking advancements for many years to come.

Data Availability

No data were used for the research described in the article.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We apologize for any work that may have been omitted due to space constraints. A. H.-A. holds an Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund. She is also supported by a National Science Foundation CAREER award [2054755], and funding from the National Institutes of Health [R21AI156636-01 and R01AI 173022-01].

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest.
- Manning AJ, Kuehn MJ: Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 2011. 11:1-14.
- Vidakovic L, Singh PK, Hartmann R, Nadell CD, Drescher K: Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat Microbiol 2018, 3:26-31.
- Scholl D, Adhya S, Merril C: Escherichia coli K1's capsule is a barrier to bacteriophage T7. Appl Environ Microbiol 2005, **71**·4872-4874
- Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, Maxwell KL: **Prophages mediate defense against** phage infection through diverse mechanisms. ISME J 2016,
- Lopatina A, Tal N, Sorek R: Abortive infection: bacterial suicide as an antiviral immune strategy. Annu Rev Virol 2020, 7:371-384.
- Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, Afik S, Ofir G, Sorek R: BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 2015, 34:169-183.
- Gordeeva J, Morozova N, Sierro N, Isaev A, Sinkunas T, Tsvetkova K. Matlashov M. Truncait L. Morgan RD. Ivanov V. et al.: BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res 2019. **47**:253-265.
- Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, Doron S, Sorek R: DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 2017,
- Xu T, Yao F, Zhou X, Deng Z, You D: A novel host-specific restriction system associated with DNA backbone Smodification in Salmonella. Nucleic Acids Res 2010, **38**:7133-7141.
- Cao B, Chen C, Demott MS, Cheng Q, Clark TA, Xiong X, Zheng X, Butty V, Levine SS, Yuan G, et al.: Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat Commun 2014, 5:1-13.
- 11. Xiong L, Liu S, Chen S, Xiao Y, Zhu B, Gao Y, Zhang Y, Chen B, Luo J, Deng Z, et al.: A new type of DNA phosphorothioation-based antiviral system in archaea. Nat Commun 2019, 10:1-11.
- 12. Gao H, Gong X, Zhou J, Zhang Y, Duan J, Wei Y, Chen L, Deng Z, Wang J, Chen S, et al.: Nicking mechanism underlying the DNA phosphorothioate-sensing antiphage defense by SspE. Nat Commun 2022. **13**:1-12.
- 13. Xiong X, Wu G, Wei Y, Liu L, Zhang Y, Su R, Jiang X, Li M, Gao H, Tian X, et al.: SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat Microbiol 2020, 5:917-928.
- 14. Thiaville JJ. Kellner SM. Yuan Y. Hutinet G. Thiaville PC. Jumpathong W, Mohapatrab S, Brochier-Armanetd C, Letarove AV, Hillebrandb R, et al.: Novel genomic island modifies DNA with 7deazaguanine derivatives. Proc Natl Acad Sci 2016, **113**:E1452-E1459.
- 15. Makarova KS, Wolf YI, Van Der Oost J, Koonin EV: Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct 2009, 4:1-15.
- 16. Olovnikov I. Chan K. Sachidanandam B. Newman DK. Aravin AA: **Bacterial Argonaute samples the transcriptome to identify** foreign DNA. Mol Cell 2013, 51:594-605.
- 17. Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, et al.: DNA-guided

DNA interference by a prokaryotic Argonaute. Nature 2014,

- 18. Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J: Argonaute of the archaeon Pyrococcus furiosus is a DNAguided nuclease that targets cognate DNA. Nucleic Acids Res 2015, **43**:5120-5129.
- 19. Kuzmenko A, Oguienko A, Esyunina D, Yudin D, Petrova M, Kudinova A, Maslova O, Ninova M, Ryazansky S, Leach D, et al.: DNA targeting and interference by a bacterial Argonaute nuclease. Nature 2020. 587:632-637.
- Zaremba M, Dakineviciene D, Golovinas E, Zagorskaitė E, Stankunas E, Lopatina A, Sorek R, Manakova E, Ruksenaite A, Silanskas A, et al.: Short prokaryotic Argonautes provide NAD+ depletion. Nat Microbiol 2022, 7:1857-1869.

This article characterizes a class of short pAgos that collaborate with SIR2 NADases and defend against phage infection. The authors show that the RNA/DNA-guided system utilizes SIR2 domains to deplete intracellular NAD+ levels and trigger abortive infection.

- Koopal B, Mutte SK, Swarts DC: A long look at short prokaryotic Argonautes. Trends Cell Biol 2022, https://doi.org/10.1016/j.tcb.
- 22. Zeng Z, Chen Y, Pinilla-Redondo R, Shah SA, Zhao F, Wang C, Hu Z, Wu C, Zhang C, Whitaker RJ, et al.: A short prokaryotic Argonaute activates membrane effector to confer antiviral defense. Cell Host Microbe 2022, 30:930-943 e6..

This article describes a clade of short pAgos that interact with a lethal transmembrane effector and cause abortive infection.

Koopal B, Potocnik A, Mutte SK, Aparicio-Maldonado C, Lindhoud S, Vervoort JJM, Brouns SJJ, Swarts DC: Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. *Cell* 2022, **185**:1471-1486.

This article highlights a class of pAgos that utilize a nucleic-based sensing mechanism and work together with TIR domains to initiate abortive infection. Excitingly, the authors repurpose this system for DNA detection, showing the potential for continued technological advances from bacterial immune systems.

- Gao L, Altae-Tran H, Böhning F, Makarova KS, Segel M, Schmid-Burgk JL, Koob J, Wolf YI, Koonin EV, Zhang F: **Diverse enzymatic** activities mediate antiviral immunity in prokaryotes. Science 2020, 369:1077-1084.
- Gao LA, Wilkinson ME, Strecker J, Makarova KS, Macrae RK, Koonin EV, Zhang F: Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 2022,

This article characterizes prokaryotic STAND nucleoside triphosphatases (NTPases), which recognize conserved phage proteins and employ variable effector domains to carry out programmed cell death. This study is an exemplary mechanistic follow-up and highlights that homologous prokaryotic and eukaryotic defense systems can sense similar molecular patterns.

26. Zhang T, Tamman H, Wallant KC, Kurata T, LeRoux M, Srikant S, Brodiazhenko T, Cepauskas A, Talavera A, Martens C, et al.: Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 2022. 612:132-140.

This excellent mechanistic study describes a fused toxin-antitoxin bacterial defense system, CapRel, that causes abortive infection upon phage infection. Phage capsid proteins bind to the antitoxin region and relieve autoinhibition, resulting in the release of the toxic effector

- Garb J, Lopatina A, Bernheim A, Zaremba M, Siksnys V, Melamed S, Leavitt A, Millman A, Amitai G, Sorek R: Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion. Nat Microbiol 2022, 7:1849-1856.
- 28. Bari SMN, Chou-Zheng L, Howell O, Hossain M, Hill CM, Boyle TA Cater K, Dandu VS, Aslan B, Hatoum-Aslan A: A unique mode of nucleic acid immunity performed by a multifunctional bacterial enzyme. Cell Host Microbe 2022, 30:570-582

This article reports on the discovery and characterization of Nhi, a single-component system that provides robust protection against diverse phages, likely by recognizing phage-encoded SSBs. What makes this system unique is that it has nonspecific nuclease activity yet does not cause abortive infection

Stokar-Avihail A, Fedorenko T, Garb J, Leavitt A, Millman A, Shulman G, Wojtania N, Melamed S, Amitai G, Sorek R: **Discovery** of phage determinants that confer sensitivity to bacterial immune systems. Cell 2023, 1863-1876,

In this study, the authors isolate and characterize 192 phage mutants that have evolved resistance to 19 different antiphage defenses, thus revealing possible phage-encoded triggers for immunity. Interestingly, putative triggers could be grouped into at least three categories phage structural components, core replication machinery, and various accessory factors.

- 30. Niewoehner O, Garcia-doval C, Rostøl JT, Berk C, Schwede F, Bigler L, Hall J, Marraffini LA, Jinek M: Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 2017, 548:543-548.
- 31. Kazlauskiene M, Kostiuk G, Venclovas Č, Tamulaitis G, Siksnys V: A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. *Science* 2017, **357**:605-609.
- 32. Duncan-Lowey B, Kranzusch PJ: CBASS phage defense and evolution of antiviral nucleotide signaling. Curr Opin Immunol 2022. 74:156-163.
- 33. Athukoralage JS, White MF: Cyclic nucleotide signaling in phage defense and. Annu Rev Virol 2022, 9:451-468.
- Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R: Systematic discovery of antiphage defense systems in the microbial pangenome. Science 2018, 359:eaar4120.
- 35. Ofir G, Herbst E, Baroz M, Cohen D, Millman A, Doron S, Tal N,
 Malheiro DBA, Malitsky S, Amitai G, et al.: Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature 2021. **600**:116-120.

This is the first mechanistic characterization of Thoeris, a bacterial immune system that depletes intracellular NAD+ levels upon phage infection, resulting in abortive infection. Additionally, Thoeris contains a TIR domain, a key factor in eukaryotic immune systems, which suggests an evolutionary relationship between eukaryotic and prokaryotic immunity.

 Tal N, Morehouse BR, Millman A, Stokar-Avihail A, Avraham C,
 Fedorenko T, Yirmiya E, Herbst E, Brandis A, Mehlman T, et al.: Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell 2021, 184:5728-5739.
This article features Pycsar, a novel bacterial defense system that pro-

duces cyclic pyrimidine signaling molecules and triggers various effector domains, resulting in abortive infection.

- 37. Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, Kacen A, Doron S, Amitai G, Sorek R: Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 2019, 574:691-695.
- Whiteley AT, Eaglesham JB, Mann CCDO, Morehouse BR, Lowey B, Nieminen EA, Danilchanka O, King DS, Lee ASY, Mekalanos JJ, et al.: Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 2019, 567:194-199.
- 39. Millman A, Melamed S, Amitai G, Sorek R: Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat Microbiol 2020, 5:1608-1615.
- Kronheim S, Daniel-Ivad M, Duan Z, Hwang S, Wong Al, Mantel I, Nodwell JR, Maxwell KL: A chemical defence against phage infection. Nature 2018, 564:283-286.
- Kever L, Hardy A, Luthe T, Hünnefeld M, Gätgens C, Milke L, Wiechert J, Wittmann J, Moraru C, Marienhagen J, et al.:

 Aminoglycoside antibiotics inhibit phage infection by blocking an early step of the infection cycle. MBio 2022, 13:1-16.

This article demonstrates that aminoglycoside antibiotics can afford protection against a broad range of phages.

Bernheim A, Millman A, Ofir G, Meitav G, Avraham C, Shomar H, Rosenberg MM, Tal N, Melamed S, Amitai G, et al.: **Prokaryotic viperins produce diverse antiviral molecules**. *Nature* 2021,

This article presents a unique antiphage defense system that inhibits viral RNA transcription by producing chain-terminating ribonucleotides without causing abortive infection.

 43. Millman A, Melamed S, Leavitt A, Doron S, Bernheim A, Hör J, Garb
 J, Bechon N, Brandis A, Lopatina A, et al.: An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 2022. **30**:1556-1569.

This study employed a bioinformatic pipeline and genetics approaches to identify and validate 21 new antiphage immune systems. Remarkably, three of these systems bear homology to components of the human innate immune systems - ISG15 (interferon-stimulated gene 15)-like, dynamin-like, and SEFIR. The authors also survey the prevalence and distribution of known defenses in a subset of fully sequenced prokaryotic genomes

44. Duncan-Lowey B, Tal N, Johnson AG, Rawson S, Mayer ML, Doron S, Millman A, Melamed S, Fedorenko T, Kacen A, et al.: Cryo-EM structure of the RADAR supramolecular anti-phage defense complex. Cell 2023, 186:987-998

This study uncovers the structural and biochemical basis for antiphage defense by the RADAR system.

- 45. Johnson AG, Wein T, Mayer ML, Duncan-Lowey B, Yirmiya E,
- Oppenheimer-Shaanan Y, Amitai G, Sorek R, Kranzusch PJ: Bacterial gasdermins reveal an ancient mechanism of cell death. Science 2022, 375:221-225

This study reports on the discovery and thorough mechanistic characterization of bacterial gasdermins, which trigger cell death upon phage infection by disrupting membrane integrity. These enzymes remain in an autoinhibited state in the absence of phage and become active following proteolytic cleavage by a caspase-like enzyme. Remarkably, gasdermin homologs are also found in eukaryotes and function as regulators of cell death.

- 46. Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M, Leavitt A, Oppenheimer-Shaanan Y, Sorek R: Bacterial retrons function in anti-phage defense. Cell 2020, 183:1-11.
- 47. Song S, Wood TK: A primary physiological role of toxin/antitoxin systems is phage inhibition. Front Microbiol 2020, 11:1-7.
- 48. LeRoux M, Laub MT: Toxin-antitoxin systems as phage defense elements. Annu Rev Microbiol 2022. 76:21-43
- 49. Wein T, Sorek R: Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Microbiol 2022, 22:629-638
- 50. Makarova KS, Wolf YI, Snir S, Koonin EV: Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 2011, 193:6039-6056.
- 51. Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ: CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2022, 50:4315-4328.
- 52. Benler S, Faure G, Altae-Tran H, Shmakov S, Zhang F, Koonin E: Cargo genes of Tn 7-like transposons comprise an enormous diversity of defense systems, mobile genetic elements, and antibiotic resistance genes. MBio 2021, 12:e02938-21.
- 53. LeGault KN, Hays SG, Angermeyer A, McKitterick AC, Johura F,
 Sultana M, Ahmed T, Alam M, Kimberley D: Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science 2021, 373:1-29.

This article identifies antiphage systems in integrative conjugative elements that protect against both temperate and lytic phages, as well as phage-inducible chromosomal island-like elements (PLEs). This study also highlights the importance of studying phage-host interactions from clinically relevant populations.

- 54. Dedrick RM, Jacobs-Sera D, Bustamante CAG, Garlena RA, Mavrich TN, Pope WH, Reyes JCC, Russell DA, Adair T, Alvey R, et al.: Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2017, 2:1-13.
- 55. Owen SV, Wenner N, Dulberger CL, Rodwell EV, Rigden DJ, Bowers-Barnard A, Quinones-Olvera N, Rigden DJ, Ruben EJ, Garner EC, et al.: Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 2021, 29:1-14.

This article highlights BstA, a prophage-encoded defense system that triggers abortive infection. To avoid prophage self-targeting, BstA⁺ prophages encode an anti-BstA sequence and avoid premature cell death.

56. Rousset F, Depardieu F, Miele S, Dowding J, Laval A-L, Lieberman
E, Garry D, Rocha EPC, Bernheim A, Bikard D: Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 2022, 30:740-753.

The authors use bioinformatic analyses to demonstrate that *E. coli* P2-like phages and their parasitic P4-like satellites constitute a reservoir for novel defenses and validate the activity of several new systems. Further, the authors characterize one of these systems named PARIS, which is triggered by the antirestriction protein Ocr and causes cell death.

- 57. LeGault KN, Barth ZK, DePaola P, Seed KD: A phage parasite deploys a nicking nuclease effector to inhibit viral host replication. Nucleic Acids Res 2022, 50:8401-8417
- In this article, the Nix nuclease was identified as a weapon in the arms race between a Vibrio cholerae phage (ICP1) and a phage-inducible chromosomal phage-like element (PLE). The PLE-encoded nuclease Nix was found to cleave the phage genome at specific sites early in the phage replication cycle to prevent phage DNA packaging and thus enable the PLE to be packaged instead.
- 58. Fillol-Salom A, Rostøl JT, Ojiogu AD, Chen J, Douce G, Penadés JR: Bacteriophages benefit from mobilizing pathogenicity islands encoding immune systems against competitors. Cell 2022, 185:3248-3262.
- 59. Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT: A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat Microbiol 2022, **7**:1568-1579

This study reports on the discovery and validation of 21 novel immune systems in a library of E. coli genomes using a novel unbiased functional screen. Remarkably, many of the immune systems were found within/near mobile genetic elements, thus corroborating findings from previous, more focused studies and also highlighting the need to broaden the search for new defenses to encompass areas that fall outside core 'defense islands'.

- 60. Rocha EPC, Bikard D: Microbial defenses against mobile genetic elements and viruses: who defends whom from what? PLoS Biol 2022, 20:e3001514.
- 61. Hsueh BY, Severin GB, Elg CA, Waldron EJ, Kant A, Wessel AJ, Dover JA, Rhoades CR, Ridenhour BJ, Parent KN, et al.: Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nat Microbiol 2022, 7:1210-1220.

This study describes a new mechanism of antiphage immunity in Vibrio cholerae mediated by AvcD, a deaminase, and AvcI, a noncoding RNA. In the resting state, Avcl inhibits AvcD. However, phage infection releases this inhibition and allows for deaminase activation. The deaminase depletes dNTP pools in the cell, thereby hindering phage DNA replication without causing abortive infection.

- Montgomery MT, Bustamante AG, Dedrick RM, Jacobs-Sera D. Hatfull GF: Yet more evidence of collusion: a new viral defense system encoded by Gordonia phage CarolAnn. MBio 2019, 10:e02417-e02418.
- 63. Tal N, Millman A, Stokar-Avihail A, Fedorenko T, Leavitt A,
 Melamed S, Yirmiya E, Avraham C, Brandis A, Mehlman T, et al.: Bacteria deplete deoxynucleotides to defend against bacteriophage infection. Nat Microbiol 2022, 7:1200-1209

This article uncovers a family of deoxynucleotidases (dCTP deaminase and dGTPases), which provide protection against phages by depleting cellular pools of dNTPs. This halts viral replication without causing abortive infection.

64. Guo L, Sattler L, Shafqat S, Graumann PL, Bramkamp M: A bacterial dynamin-like protein confers a novel phage resistance strategy on the population level in Bacillus subtilis. MBio 2022, 13:e03753-21.

This article uncovers a novel mechanism for population-level defense mediated by dynamins, in which host lysis is delayed to stem the spread of the phage infection.

- Ko C-C, Hatfull GF: Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection. *Mol Microbiol* 2018, **108**:443-460
- 66. Cheng R, Huang F, Wu H, Lu X, Yan Y, Yu B, Wang X, Zhu B: A nucleotide-sensing endonuclease from the Gabija bacterial defense system. Nucleic Acids Res 2021, 49:5216-5229.