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Metamaterials based on mechanical elements have been developed over the past decade as a powerful platform
for exploring analogs of electron transport in exotic regimes that are hard to produce in real materials. In addition
to enabling new physics explorations, such developments promise to advance the control over acoustic and
mechanical metamaterials, and consequently to enable new capabilities for controlling the transport of sound
and energy. Here, we demonstrate the building blocks of highly tunable mechanical metamaterials based on real-
time measurement and feedback of modular mechanical elements. We experimentally engineer synthetic lattice
Hamiltonians describing the transport of mechanical energy (phonons) in our mechanical system, with control
over local site energies and loss and gain as well as over the complex hopping between oscillators, including
a natural extension to nonreciprocal hopping. Beyond linear terms, we experimentally demonstrate how this
measurement-based feedback approach makes it possible to independently introduce nonlinear interaction terms.
Looking forward, synthetic mechanical lattices open the door to exploring phenomena related to topology, non-
Hermiticity, and nonlinear dynamics in nonstandard geometries, higher dimensions, and with novel multibody

interactions.
DOLI: 10.1103/PhysRevA.108.012221

Networks of coupled harmonic oscillators have long served
as a foundational model for understanding thermal transport
in solids [1], and over the past decade they have addition-
ally become a powerful theoretical and experimental platform
for exploring topology [2] and its connections to mechani-
cal structures [3—5]. While experiments based on physically
coupled oscillators offer powerful capabilities for the real-
ization of artificial materials and the visualization of novel
transport phenomena therein [6—18], such physical coupling
terms present natural limitations on the Hamiltonians that
may be directly engineered. For example, Newton’s third law
dictates that the direct hopping terms should obey reciprocity,
with forward and backward tunneling pathways having equal
amplitudes. The position dependence of spring forces further
implies the restriction to realizing only time-reversal invariant
hopping Hamiltonians.

While a number of clever approaches have been proposed
[19-22] and implemented [6,7] to circumvent such limitations
while maintaining physical coupling between oscillators, one
may seek alternative approaches that avoid direct physical
connections altogether. In the context of classical electrical
or mechanical metamaterials, where mode occupations are on
the order of the Avogadro number, one can naturally think
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about utilizing measurements of the oscillators’ properties—
e.g., center-of-mass positions and momenta—as a resource
for Hamiltonian engineering, with little concern for the dis-
turbance of the natural system dynamics. Indeed, the natural
suitability of classical metamaterials for measurement-based
feedback has in recent years led to proposals for the real-
ization of designer non-Newtonian systems [23], and even
first demonstrations of the engineering of nonreciprocity in
robotic mechanical metamaterials of physically coupled rotors
[24,25]. Here, through the measurement of and feedback on
a system of otherwise physically disconnected mechanical
oscillators, we demonstrate a general approach to engineering
nonlinear synthetic lattice Hamiltonians. We experimentally
demonstrate the engineering of complex and nonreciprocal
hopping terms, complex local site energies, and synthetic
quartic nonlinearities, exploring the use of feedback-based
control to drive both P7T-symmetry breaking and Josephson
self-trapping phase transitions in a synthetic double-well. The
extension to larger, many-site arrays of synthetically coupled
oscillators, incorporating even more exotic synthetic nonlin-
earities, will enable explorations of novel lattice Hamiltonians
with tailored mean-field interactions.

Looking forward, we expect that this demonstration of
measurement-based feedback in a system of modular mechan-
ical oscillators may be relevant for the extension to many other
metamaterial platforms, enabling myriad explorations of non-
Hermiticity and tunable nonlinearities. Finally, we emphasize
that this fully classical platform, which admits the highly flex-
ible control of nonlinearities by measurement and feedback,
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FIG. 1. Modular mechanical oscillators synthetically coupled by measurement-based feedback. (a) A cartoon depiction of the implemented
mechanical oscillators, which feature embedded accelerometers (marked a) for the real-time measurement of proxies for position (¥) and
momentum (p), a set of four springs (one marked b), and a dipole magnet embedded in a gradient solenoid for the application of forces (marked
¢). Real-time feedback forces F;, which depend on the real-time measurements X; and p;, are used to implement an effective tight-binding
Hamiltonian H. (b) A photograph of the large-scale prototype used to implement the two-site synthetically coupled mechanical lattice depicted
in (a), with letters denoting the same elements. (c) Acquired experimental data and processed observables for a two-site system with synthetic
hopping and synthetic nonlinearity. Panel i: Experimental measurements of ¥, (red) and %, (blue), with the inset showing short-time dynamics
over several oscillator periods from # = 0 to 3 s. Panel ii: Similar plots for the corresponding p; measurements. Panel iii: Constructed proxy
for the local mechanical energy, E; o ¥2 + p7, for two coupled masses with synthetic nonlinearity. Panel iv: Dynamics of the normalized

population imbalance z = (E;

— E;)/(E, + E,). Panel v: Dynamics of the relative oscillator phase A¢ = ¢,

— ¢,, where the local oscillator

phase is reconstructed from the X and p measurements as ¢; = arg(%; + ip;).

can serve to explore the physics of many nominally quantum
or semiclassical problems (such as Josephson dynamics or
superfluidity) in their classical limit.

This paper is organized as follows. Section I describes
our experimental system and presents an informal discussion
of our feedback-based approach to Hamiltonian engineering.
In Sec. II, we provide the formal theoretical framework un-
derlying this approach to engineering effective tight-binding
models for mechanical oscillators synthetically coupled by
measurement-based feedback. In Sec. III, we provide several
examples for the engineering of specific Hamiltonian terms,
such as local site energies (real and imaginary) and inter-
site hopping terms (complex and nonreciprocal), as well as
nonlinear interaction terms. For each example, we provide a
theoretical derivation for the required feedback forces, as well
as an experimental demonstration of the implementation. We
summarize our results in Sec. IV.

I. DESCRIPTION OF THE SYSTEM

As depicted in Figs. 1(a) and 1(b), our prototype for
a “lattice of synthetically coupled oscillators” consists of
modular, large-scale (kg-scale mass) mechanical oscillators.

In the absence of applied feedback forces, these oscillators
are characterized by nearly identical natural oscillation fre-
quencies fy ~ 3.05 Hz and quality factors Q ~ 1000.

An analog accelerometer (EVAL-ADXL.203) is fixed to
each oscillator, and we acquire real-time measurements of
acceleration a(t) by sending the signals to a common com-
puter. By taking the numerical derivative of the acquired
signal, we additionally acquire real-time measurements of the
oscillators’ jerk j(tr) = da(t)/dt. As the signals come from
harmonic oscillators with roughly constant frequencies, we
can associate the measured acceleration and jerk signals as
proxies for the oscillator position x(¢#) and momentum p(¢)
signals, respectively (as the sets of variables {a, x} and {j, p}
have proportional relationships, as we explain in more detail
later). We hereafter refer to the input signals as position ¥
and momentum p. In experiment, we normalize the ¥ and p
signals to the same dimensionless amplitude, reflecting the
equipartition of kinetic and potential energy.

Our “synthetic mechanical lattice” approach implements
an effective Hamiltonian H = H + Hj in the oscillator array,
where the portion H can be considered as a perturbation to
the bare Hamiltonian Hy of the uncoupled, identical oscil-
lators. The modified part of the Hamiltonian, H (the terms
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of which have frequency scales < fj), describes the trans-
port of mechanical energy (phonons) between the oscillators,
small shifts to the oscillator frequencies, and any engineered
nonlinearities. Roughly speaking, to implement H we apply
individual feedback forces to the oscillators that reflect the
relationship F; ~ —dH/0X; [cf. Fig. 1(a)]. These forces can
in principle have almost any dependence on the positions ;
and momenta p;, including higher powers thereof, opening up
new possibilities for Hamiltonian engineering [26]. We will
develop the framework for this feedback-based control more
formally in Sec. II.

We implement these feedback forces magnetically, avoid-
ing any added mechanical contacts. Each oscillator has a
dipole magnet attached to a central, cylindrical shaft. The
dipole magnet is embedded in a wound coil (gradient solenoid
[27], with a higher winding density at its base than at its
top). We control the current (between 0 and 2 A) in the coil,
which produces an axial magnetic field gradient that in turn
creates a force on the oscillator. While there is a fixed direction
of current flow, we operate with a nominal offset gradient
and control the variations about this offset, thus achieving an
effective bidirectional (positive and negative along the axial
direction) control of forces.

Figure 1(c) displays the typical real-time measurements
acquired for one example experiment, which explores a self-
trapped mode in a nonlinear double-well (discussed further
later on, in the context of Fig. 7). The measured ¥ (panel i)
and p (panel ii) signals for oscillators 1 (red) and 2 (blue)
are shown in panels i and ii, including zoomed-in views
over several seconds showing the intraenvelope dynamics.
From these primary measurements, we construct a proxy for
the local mechanical energy E; = (5c,-2 + ﬁ?) /2, as shown in
panel iii. The local mechanical energy plays a role analo-
gous to the local particle probability density |v;]* of a wave
function i under the evolution of the implemented tight-
binding Hamiltonian. One may also extract the local phase
¢; = arg(X; + ip;) at each oscillator, associated with arg(i;)
of the corresponding evolving wave function. To note, the
initial linear and quadratic rise of the signals in panels i/ii
and iii, respectively, relates to an initial preparation step of
10 s during which a sinusoidal force prepares the respective
energy and phases of the two oscillators. In panels iv and v,
we plot further derived experimental quantities relevant to the
dynamics in this case of a tunnel-coupled double-well with
nonlinear interactions. Panel iv depicts the normalized energy
imbalance z = (E| — E;)/(E| + E»), and panel v depicts the
relative oscillator phase A¢ = ¢ — ¢,. The trajectories of z
and A¢ reflect a self-trapped mode with a trapped population
imbalance but a running relative phase.

II. MAPPING AND THEORY BACKGROUND

The theoretical basis for our synthetic mechanical meta-
material is a mapping that can be made in certain limits from
Newton’s equations of motion to the Heisenberg equations for
a tight-binding quantum Hamiltonian. Such an approach has
previously been used, for example, to propose how to simulate
a Peierls hopping phase and an effective Harper-Hofstadter
model with time-modulated classical coupled harmonic oscil-
lators [19,20]. In this section, we show how this approach can

be applied to implement a wide variety of Hamiltonian terms
by subjecting individual and pairs of classical oscillators to
weak feedback.

Before entering into details of the mapping, we start by
considering the equations of motion for a pair of uncoupled
and identical harmonic oscillators:

mx;(t) = pi(t),  pit) = —mwxi(t), (1)

where x;(¢) and p;(¢) are the position and momentum of an
oscillator at time ¢ with the index i = 1,2 running over the
two oscillators, @ = w; = w, is the angular oscillation fre-
quency, and m = m; = m; is the mass. The dots over variables
denote the first derivative in time. Below, we often suppress
the explicit time dependence, (¢), when it is obvious. For
convenience of measurement, it is more natural for us to work
with the acceleration, a;(t), and the jerk, j;(t) = a;(t), instead
of the position and momentum. However, for a harmonic
oscillator, these are simply related as

2

ai(t) = —Px, (1), ﬁm=—%mm 2)

and their equations of motion are
ai(t) = ji(t), Jit) = —w’a;(1) 3)

suggesting the acceleration as a proxy for the position, and
the jerk as a proxy for the momentum. To make this concept
clearer in what follows, we shall introduce the notation X; =
a; and P; = j;, so that the equations of motion become
X;=P., F=-0X. “)
To couple the two oscillators and simulate different effects,
we now add feedback to the system such that the equations of
motion become
X;=P, P=-0X+F, (5)
where F; is a function of (Xi, X5, P|, P;). In analogy with
the real momentum, this feedback acts as a “force” on the
oscillator. Here we present a general recipe, while below we
shall discuss specific examples of F; that we consider to map
to different Hamiltonians. As stated above, the experiment
works with normalized effective variables for position and
momentum. However, for concreteness, we retain the dimen-
sionality of X; and P; and include relevant angular frequency
w terms below.
To map the above equations to Heisenberg equations, we
introduce the classical complex variables [19,20]:

a; = \/7X +l\/ P, (6)

in analogy with the annihilation operator of the quantum har-
monic oscillator. It can be straightforwardly shown from this
that |;|? then scales with the instantaneous oscillation energy
of a given mass. From this, it follows that we can reexpress

the acceleration and jerk as
i lw(w o) @)
2 i

1
2w
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and hence the equations of motion are

. . l
o; iwo; + mF, ®)
where the feedback term, F;, should also be reexpressed as a
function of (ay, af, a2, @3). Note that the complex conjugate
of this equation describes the time evolution of the conjugate
variables, o

In the absence of the feedback, it can be seen from Eq. (8)
that the time dependence of the complex amplitudes is given
by a;(t) o e [and similarly o} (f) ox '] as expected for
harmonic oscillators. Including the feedback naturally mod-
ifies the dynamics. However, provided that w remains the
largest frequency-scale in the problem and that the feedback is
sufficiently weak, these dynamical changes will be slow and
small compared to the natural oscillations. In this limit, we can
assume that the complex amplitudes’ fastest time dependence
is still given by «;(1) e~ [19,20], or in other words, that
the o; variables “rotate” with a frequency ~ w (while the
conjugate variables o} “rotate” with ~ —w).

Working in this high-frequency limit allows us to apply
the “rotating-wave approximation” (RWA) to simplify Eq. (8)
[19,20]. The RWA is an approach that is well known from
quantum optics, in which only so-called “corotating terms”
with a frequency & w are kept in the dynamics. To physically
understand the RWA, we can imagine transforming Eq. (8)
into a “corotating frame” at the natural frequency w. In this
frame, a term o «;, for example, varies relatively slowly (due
to feedback), while a term o o] oscillates rapidly at a fre-
quency ~ —2w. Terms like the former are “corotating,” while
the latter are “counter-rotating” as they will rapidly average
to zero over the timescale for the slow dynamics. In the limit
that w — o0, only “corotating terms” with a frequency ~ w
remain important, justifying the RWA assumption that all
other terms can be dropped.

Under the condition of high natural frequency and weak
feedback, we can therefore re-write Eq. (8) as

i
& = —iwa; + Yy ——FMq;, )
e

where F; — > i E?WAa ; is the RWA, i.e., where we only keep
suitable corotating terms in the feedback applied to oscillator
i. Note that such terms must contain at least one factor of
either «r; or oy (as both oscillators have natural frequency w),
and so we have explicitly factored out «; in this expression
for convenience. In general, FRYA can still be any suitable
function of (ay, af, a2, o), as discussed further below, and
so it can encode a wide range of physical effects. Explicit ex-
amples are given in the following sections to further illustrate
this approximation.

The equation of motion [Eq. (9)] can be regarded as the
Heisenberg equation of motion derived from a quantum-
mechanical Hamiltonian (with 7 suppressed)

1 1 .
H=) wdlegj— —Y ——a F*Wq 10
Xi: ’ sz;nﬁl SRR

where &ZT and &; are creation and annihilation operators for
site i obeying bosonic commutation relations. The operator

FXVA is an operator obtained by replacing (a1, f, a2, @)
in E?WA by (&1, &, &, &}) and moving all the creation op-
erators to the left of the annihilation operators. The factor
of n; is the number of the operators aj appearing in E?WA.
With the identification o; = (&;) and o} = (&iT ), where (-) is
the quantum-mechanical average of the operator with respect
to the initial state, the Heisenberg equation of motion for
Eq. (10) reduces exactly to Eq. (9) when E‘}WA does not

itself contain operators. When E?WA contains operators, this
will correspond to interparticle interactions in the quantum-
mechanical language, as discussed further below. In such
cases, assuming that the energy in each oscillator is large
enough so that we are in the classical limit, we can approx-
imate (F¥%Aa;) ~ FXWAa; such that interaction terms also
reduce to the corresponding terms in Eq. (9).

Hence, the dynamics of our synthetic mechanical meta-
material can be used to simulate the above general class of
quantum-mechanical tight-binding Hamiltonians. Note also
that although we focus experimentally in this paper on up to
two oscillators, the above equations are valid for » identical
oscillators, in which case H will describe an n-site Hamil-
tonian. The generalization to nonidentical oscillators is also
straightforward, as discussed in Ref. [19], provided that all the
natural oscillator frequencies are large enough that the RWA
can be applied.

Having reviewed the above general theoretical recipe, we
shall now give explicit examples for using feedback to en-
gineer specific types of desired terms in the tight-binding
Hamiltonian, both in theory and experiment.

III. HAMILTONIAN CONTROL EXAMPLES

A. Control of local site energy shifts

As a first example of this theoretical approach, we show
how adding weak feedback corresponding to F; o X; leads to
local site energy shifts in the above Hamiltonian mapping.
Physically, such a term corresponds in experiment to applying
a local feedback that is proportional to the measured acceler-
ation of the given oscillator.

Theoretically, we start by writing the feedback term as

A
F=AXi = —(u +af), (11)
l V2w

where A; ; is the (weak) amplitude for the feedback applied to
oscillator i, which depends on the measurements of X;. (Note
that Einstein’s index summation convention is not applied
here.)

Adding a feedback like this means that one of our
equations of motion becomes P, = —(0? — A; )X;, which is
equivalent to having a new effective natural frequency @; =
J@?* — A; ;. Assuming weak amplitudes for the driving force
and taking a Taylor expansion of this expression, we obtain
w; >~ w— Al,/2w

Alternatively, this result can be obtained by substituting the
applied feedback form into Eq. (8), leading to

. . A
&; = —iwo; + i—(o; + o). (12)
2w
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FIG. 2. Local control of site energy shifts by position-dependent
feedback. (a) Oscillation frequency of an individual oscillator (deter-
mined by Fourier analysis of the experimental oscillator dynamics)
as a function of the coefficient for the position-dependent feedback
force. Error bars (smaller than the data points) represent the standard
error of the mean of the fit used to determine the points. (b) Scaled
power spectra of the Fourier-transformed oscillator position dynam-
ics for three different values of the X feedback coefficient, with colors
relating to those of the points in (a).

Applying the RWA means that we neglect the counter-rotating
o term such that

A .
FRWAq, — Bodi fori=j, (13)
" 0 for i # j.
The Hamiltonian [Eq. (10)] then follows directly as
M=) (o+ A& a (14)

where A; = —A; ;/2w. In terms of the tight-binding Hamilto-
nian, this is interpreted as adding a tunable site energy shift A;
to site i of the lattice, as desired. Physically, this corresponds
to a local shift of the corresponding oscillator frequency by an
amount A;.

We now demonstrate experimentally this control of local
site energies by position-dependent self-feedback. Figure 2
depicts the control of the oscillator frequency, corresponding
to site energy shifts in the equivalent tight-binding model,
through the application of ¥-dependent self-feedback. In
Fig. 2(a), we plot the experimentally measured oscillator
frequency as a function of the applied coefficient of self-
feedback. We find a linear relationship between the measured
frequency and the applied feedback, consistent with the fact
that we are safely in the limit of weak feedback, with the
modifications to the bare oscillator frequency at the level of
<0.5%.

These oscillation frequencies are determined by first de-
positing mechanical energy into the oscillator over 10 s (by
application of a strong oscillating force) and then allowing
the oscillator to ring down freely over 100 s. We then perform
a numerical Fourier transform of the position data and fit the
resulting spectrum to a Lorentzian line shape, extracting the
center frequency. Figure 2(b) shows several such experimental
line-shape curves, with colors corresponding to the data points
of the extracted center frequencies in Fig. 2(a).
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FIG. 3. Local control of loss and gain by momentum-dependent
feedback. (a) Damping rate of an individual oscillator as a function
of the applied coefficient of momentum-dependent feedback. The
damping rate y for each point is determined by fitting experimen-
tal data sets of the mechanical energy dynamics to an exponential
decay o< e2?7r")_with negative y values relating to gain. Error bars
(smaller than the data points) represent the standard error of the mean
of the fit. (b) Mechanical energy dynamics for several values of the
applied p feedback coefficient. Colors relate to those of the points in
(a). Inset: semilog plot of the same oscillator energy growth/decay
curves.

B. Local control of loss and gain

Similarly, local feedback can be used to simulate on-site
loss and gain. For a tight-binding Hamiltonian, this would
correspond to having

M=) (0—in)ia, (15)

where y; is real, and with y; > 0 and y; < O representing local
loss and gain, respectively. From this, we can read off that we
require

RWA . _ Jiviv2wa;  fori=j,
Fj ey = {() fori # j. (16)

It is straightforward to see from Eq. (7) that a suitable choice
of feedback is

F, =B, P, = _iBi,i\/g(ai —af), (17)

where y; = —B, ;/2, as the unwanted «; term in this expres-
sion will be neglected in the RWA. Here, B;; is the (weak)
amplitude for the feedback applied to oscillator i, which de-
pends on the measurements of P,. Physically, this corresponds
in our setup to local feedback which is proportional to the jerk
of the oscillator.

Our control of the local loss and gain terms of a sin-
gle oscillator (site) is demonstrated in Fig. 3. Figure 3(a)
plots the measured rate of mechanical energy damping as a
function of the applied coefficient of momentum-dependent
self-feedback. We find a very linear relationship between the
applied amplitude of feedback and the shift of the measured
rate of damping/gain (with a nearly identical slope to that
found in Fig. 2(a), due to our normalization of the dimension-
less X and p signals).

The damping rates in Fig. 3(a) are determined as follows.
We first excite the oscillator (as in Fig. 2) by sinusoidally

012221-5



RITIKA ANANDWADE et al.

PHYSICAL REVIEW A 108, 012221 (2023)

(a) (b)
,G‘ T — T T T T

T 005 L —" .

5

: -
2 =
E‘ 0.04 B g
- g
> 2
5 0.03F ‘ 158
5 ** 5
c 0.02F 1 B
kS, G
c o)
E o
S 0.01F B

(7]

S

0.00E ] | 1 1 =
0 10 .20 30 40
time [s]

015F
000}

-0.15 [/
0.15f

0.00 -

015}/
0.15F

0.00 -

/\,\

4 =\/ 1{/2\

) 1.4
tlme[]

-0.15 ¢!

106
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respectively. (b) Experimental oscillator position (¥) dynamics over several oscillation periods, for the cases of tunneling phase values ¢ =
(top), —m /4 (middle), and —7 /2 (bottom). (c) Phase space maps depicting the dynamical trajectories of the measured normalized mechanical
energy imbalance z and relative oscillator phase A¢ of the oscillator double-well. The trajectories related to the three tunneling phase values
depicted in (b), for ¢ = 7 (orange), ¢ = —m /4 (purple), and ¢ = —m /2 (brown). The trajectories reflect data sampled from one period of the
mechanical energy dynamics (~50 s), with a low-pass filter applied to the plotted data.

driving it near resonance for 10 s, and then we allow it
to undergo free evolution under the applied feedback for
up to 1000 s. We then compute a proxy of the mechanical
energy stored in the oscillator, E = (¥* 4+ p?)/2, as plotted
for the four different feedback cases shown in Fig. 3(b).
A simple exponential decay curve is fit to the dynamics of
the mechanical energy, with negative decay values indicating
an exponential gain. Starting from a relatively long decay
time of ~200 s, corresponding to a natural quality factor of
nearly 1000, we can introduce greatly enhanced loss or even
strong gain through this momentum-dependent feedback. Im-
portantly, for the investigation of unitary dynamics, we can
also achieve an excellent cancellation of the loss/gain terms
by the appropriate weak self-feedback [cf. the red curve in
Fig. 3(b)]. We note that similar feedback for the enhancement
of mechanical quality factors has previously been reported in
Ref. [16].

C. (Complex) interoscillator hopping

So far, only self-feedback of the form E»?WAOJ j o< &;; has
been taken into consideration, and, as a consequence, only
on-site phenomena have been investigated. However, if one
were to reproduce, for example, a Hamiltonian containing a
hopping term like

H = Za)a a; —JZ(e"poe

i>j

j+Hc),  (18)

then a feedback involving interoscillator forces is needed.
In the equation above, J is the hopping amplitude, and ¢
is the tunneling phase that mimics the Peierls phase gained
by a charged particle hopping on a tight-binding lattice in
the presence of a magnetic vector potential. Hence, the lat-
ter may be designed to engineer artificial magnetic fields
and topological quantum Hall tight-binding models in larger
systems.

To realize Eq. (18), we require

fori = j,
{«/_Je"p/‘aj fori # j,
with @;; = ¢ and ¢; ; = —¢. In this case, a possible choice of

feedback applied to the ith oscillator depending on the jth one
is

RWA
E;

F=A;X;+B;Pj, i#]

\/_(otj—i—a ) — lBj,[(aj—a ).

Hence, one needs to set A;; =2Jwcosg;; and B;; =
—2J sin@; ;. Experimentally, this can be realized by mea-
suring both jerk and acceleration from one oscillator, and
applying a commensurate feedback to the other. Note that for
a system with many oscillators, the hopping amplitudes and
phases can be chosen to have arbitrary spatial dependence so
as to encode the desired lattice geometry, connectivity, and
gauge fields.

In experiment, working with normalized measurements for
X and p, the application of conjugate forces for the imple-
mentation of complex hopping is relatively straightforward.
We demonstrate this control in Fig. 4 . Figure 4(a) plots the
dynamics of the mechanical energy stored in oscillator 1 (red)
and oscillator 2 (blue) as a function of evolution time under the
applied interoscillator feedback. Prior to the plotted dynamics,
we again include an initialization step during which energy
is deposited into oscillator 1 by a sinusoidal drive. High-
visibility Rabi oscillations are observed in the mechanical
energy dynamics, with energy flowing from oscillator 1 to
oscillator 2, and back. As noted by the inset, these dynamics
occur for a tunneling phase of ¢ = 7.

To see the consequence of the imposed tunneling phase
¢, we need only look at the traces of either ¥ or p for the
two oscillators, which provide information about the relative
phase of the oscillators. Figure 4(b) shows the dynamics of
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FIG. 5. Avoided crossing in a biased double-well. (a) A two-oscillator “double-well” with synthetic hopping J and an interwell bias A.
(b) Frequency spectra of the two-oscillator system as a function of interwell bias A. Overlaid power spectra of the coupled oscillator dynamics
upon initialization of oscillator 1 (red) and oscillator 2 (blue), as determined by a Fourier-transform of the experimental dynamics over 380 s.
White regions relate to frequencies with no weight in either oscillator, purple relates to delocalized modes, and red (blue) regions relate to
modes with weight concentrated in oscillator 1 (2). Insets show the power spectra when initializing in oscillator 1 (red) and 2 (blue) for values
of A = 15 mHz (top) and A = 0 mHz (bottom). (c) Population dynamics as a function of A. Initializing mechanical energy solely in oscillator
1, the plot shows the experimental dynamics of the mechanical energy appearing in oscillator 2, normalized to the total energy.

the position signals of the two oscillators, with a zoom in on
the time (near 10 s) at which the two oscillators first have
nearly equal mechanical energies. For the case of ¢ = m, we
have a position-dependent force, and the two signals are out
of phase by /2, similar to the usual physical scenario of
coupled oscillating masses. However, unlike the usual case,
we find that as energy moves from oscillator 1 to 2, the %
signal actually leads the ¥; signal, whereas it would normally
lag for a physical spring. This reflects our implementation
of a m tunneling phase. The lower two panels indicate the
consequence of introducing a momentum dependence to the
interoscillator coupling. In particular, for ¢ = —m /2, the cou-
pling terms become fully momentum-dependent, leading to
dynamics in which the oscillators swing in phase as energy
is transferred, signaling a concomitant change to the phase
structure of the system’s eigenstates.

To note, there are slight differences in the relative ampli-
tudes of the red and blue curves during this time window
for the three different panels of Fig. 4(b), relating to slightly
different hopping rates for the different ¢ values. This stems
from the presence of a small natural coupling between the
oscillators, which do in fact share a common physical support
apparatus for convenience. To avoid such effects, one can sim-
ply actively cancel such natural contributions prior to adding
synthesized hopping (which is done later for the probing of
nonreciprocal hopping in Fig. 6 ). Here, by working with
synthesized coupling terms that are much larger than the nat-
ural coupling, we simply work above it and tolerate a small
@-dependence to the hopping rate.

Figure 4(c) depicts more comprehensively how the rela-
tive phase and mechanical energy of the oscillators evolve
throughout the dynamics. Taking advantage of the ability
to simultaneously measure both the ¥ and p signals at all
sites, we reconstruct both the normalized energy imbalance
of the two oscillators, z = (E| — E»)/(E| + E»), as well as
the relative phase between them, A¢ = ¢ — ¢,, where we
simply determine the energies and phases of the oscillators
as E = (¥ 4+ jp?)/2 and ¢ = arg(# + ip). The evolution of z

and A¢ under the system evolution maps out the phase-space
dynamics of this simple two-mode system. For the case of
hopping with equal site energies, these dynamics should map
out trajectories as shown in Fig. 4(c), with full oscillations
between z = +1, and with the curves centered about a A¢
value determined directly by the tunneling phase ¢. In an
analogous description in terms of an effective Bloch sphere
(with the energy initiated at site 1 relating to a state vector
initially aligned along +z), these trajectories simply relate to
the paths traversed in response to different applied tunneling
“torque” vectors lying (at azimuthal angles ¢) in the equatorial
plane.

We now integrate our demonstrated control over site
energy terms with this control over intersite hopping. In par-
ticular, we investigate how the frequency spectrum of this
two-oscillator system evolves as we add a variable intersite
frequency offset A (applied as equal amplitude shifts of =A /2
to oscillators 1 and 2, respectively) while keeping a fixed
interoscillator hopping rate J, as depicted in Fig. 5(a). Sim-
ilar to Fig. 2, we obtain these frequency spectra by looking
at the dynamics and performing a numerical Fourier trans-
form. Figure 5(b) shows this spectrum, with the canonical
avoided crossing encountered near A = 0 as the modes of
the two oscillators hybridize due to the engineered hopping.
To note, the color indexing of Fig. 5(b) reflects the weight
of the response at a given frequency that is found to relate
to energy in oscillator 1 (red) and oscillator 2 (blue). Specif-
ically, we investigate the dynamical evolution following the
initialization of energy at site 1 or 2, yielding distinct Fourier
spectra as depicted in red and blue, respectively. One sees
that for large A the eigenmodes are nearly localized to the
individual oscillators, while they are near-evenly delocalized
near resonance. Finally, in Fig. 5(c), starting with energy in
oscillator 1, we plot the dynamical evolution of the normalized
energy in oscillator 2 as a function of A. This Chevron Rabi
pattern relates to high-visibility oscillations near A = 0, with
faster and lower-amplitude oscillations for larger values of the
site-to-site frequency mismatch.
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FIG. 6. Nonreciprocal hopping and PT symmetry breaking. (a) Two oscillators coupled with nonreciprocal hopping terms, J % 8J.
(b) Experimental population dynamics, starting with all energy in the first oscillator, for §J/J = 0.125 and 0.875. (c) Fit-extracted peak
locations of the power spectra based on experimental dynamics when starting with all energy in oscillator 1 (red dots) and with all energy in
oscillator 2 (blue dots). The solid lines relate to the expected real eigenspectrum for f; = 3.0489 Hz and J = 27 x 8.4 mHz. Error bars, which
are smaller than the points, relate to the standard error of the fits to two Gaussian peaks. (d) Experimental total energy (E; + E,) dynamics for
excitation of eigenmodes in the case of fully asymmetric hopping (i and iv, with J = 0) and fully symmetric hopping (ii and iii, with §J = 0).
For the symmetric case, the initial states relate to the two oscillators having equal energy and an initial relative oscillator phase of O (ii) and
(iii). For the asymmetric case, the initial states relate to the two oscillators having equal energy and an initial relative oscillator phase of 7 /2

(i) and —m /2 (iv).

D. Nonreciprocal interoscillator hopping

Going further, one advantage of using feedback to engineer
interoscillator hopping terms is that it is straightforward to
realize nonreciprocal couplings. Nonreciprocal Hamiltonians
[28] naturally host chiral phenomena, and they are inti-
mately connected to the physics of non-Hermitian mechanics
[29]. While nonreciprocity would be challenging to access in
physical systems governed by Newtonian mechanics—where
forces come in equal and opposite pairs—it can effectively be
engineered in active matter [24,25,30] and in systems featur-
ing dissipation [31]. Here, as we show, it can be engineered at
will in synthetically coupled mechanical networks.

We consider the following Hamiltonian:

H=> waa—) [(J+8Ne¥aja; + (- sNe ¥aja;),

i>j

where the change in the hopping amplitude J — J £ §J [cf.
‘H in Eq. (18)] represents a nonreciprocal interoscillator cou-
pling. This type of nonreciprocal coupling is well-known from
the Hatano-Nelson model [32-34], and it not only selects
a preferential direction of hopping, but more importantly it
causes this Hamiltonian to become non-Hermitian (H £ #).
Note that for |8§J/J| < 1, this Hamiltonian is P7T -symmetric
and its eigenvalues are real. Conversely, if |6J/J| > 1, the
PT-symmetry of the system is broken and the energies be-
come complex. At |8J/J| =1, the energy levels coalesce
in an exceptional point and the P7 phase transition takes
place. Explicitly, the nonreciprocal double-well (with cou-
pled left and right modes, |L) and |R)) possesses eigenmodes
+4/J% —8J2/(8J — J)|L) + |R) (up to normalization factors),
having eigenfrequencies ++/J% — §J2, respectively.

Following the earlier discussed procedure, it is straightfor-
ward to obtain the new definitions for A;; and B} ;:

A, =2(J+d8J)wcosg and Byp = —2(J +8J)sing,
Ax1 =2(J —8J)wcose and By = 2(J — 8J)sing;

with an analogous physical meaning as before. Because each
of these force terms are added by hand, nonreciprocal hop-
pings are as natural to engineer in this setting as reciprocal
ones.

In Fig. 6 we experimentally demonstrate the ability to
engineer nonreciprocal hopping terms [depicted in the car-
toon of Fig. 6(a)], driving this two-site system across a P7T
symmetry-breaking phase transition. To note, while in the
earlier data (Figs. 2-5) there existed an additional, small
contribution to the hopping due to physical coupling (via the
shared support structure), for these data we take care to first
actively cancel, via feedback, the physical coupling (scale
<1 mHz) prior to introducing our synthetic coupling forces.

For a fixed value of J ~ 27 x 8.4 mHz, we introduce a
tunable hopping asymmetry éJ. Figure 6(b) shows the dynam-
ics of the measured oscillator energies, beginning with energy
residing in oscillator 1, for values of 6J = J/8 (top) and 7J/8
(bottom). Unlike in the case of reciprocal hopping terms,
the total mechanical energy is not fixed throughout these
dynamics, even in the P77 -symmetric phase. As energy flows
from oscillator 1 to 2, the energy of the system grows. The
difference in scale of the two panels of Fig. 6(b) reflects the
fact that this growth in energy becomes more pronounced for
larger values of 8J approaching the P77 symmetry-breaking
phase transition. As stated above, the eigenstates of the system
in the P77 -symmetric regime similarly reflect an asymmetry
between left and right modes, which for larger lattices gives
rise to the non-Hermitian skin effect [35]. One additionally
finds a clear difference in the rate of population exchange
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(Rabi) dynamics observed in these two cases, with the dy-
namics slowing down appreciably as §J/J approaches 1. This
slow-down of the dynamics reflects a change to the eigenspec-
trum of the system, with the real eigenvalues coalescing at an
exceptional point at §J = J, then transforming into imaginary
eigenenergies, reflecting modes that undergo pure exponential
decay or gain (ignoring the intraenvelope X or p dynamics at
the bare frequency w).

We can again directly investigate this frequency response
of the system upon approaching the P7T -breaking phase
transition by simply Fourier-transforming the oscillation dy-
namics (taken over 400 s) and extracting a peak or peaks
in the resulting power spectrum. We perform this analysis
for both the cases of starting in oscillator 1 (red points) and
oscillator 2 (blue points), and we plot the resulting resonance
values in Fig. 6(c). We perform this analysis solely in the
PT-symmetric regime (and up to 8J =J), but we find a
clear closing of the energy gap in the system as the P7T
phase transition is approached. The measured frequency reso-
nance values are in good agreement with the plotted theory
curve, which relates to the form fy & (J/2m)\/1 — (8J/J)?
with fy = 3.0489 Hz and J = 27 x 8.4 mHz.

To gain insight into the structure of the eigenmodes in
the PT -broken region, we seek to prepare these eigenmodes
directly and observe their evolution. Figure 6(d) contrasts the
behavior of prepared eigenmodes in the purely reciprocal case
(curves ii and iii) to those in the purely nonreciprocal case (i
and iv). In the reciprocal case (§J = 0, J = 27 x 8.4 mHz),
we prepare both in-phase and out-of-phase eigenmodes of
the coupled two-oscillator system by initially driving the two
oscillators (to deposit mechanical energy) with a controlled
phase difference, to result in equal-energy superposition states
with relative phases of 0 (ii) and & (iii). We plot, in Fig. 6(d),
the dynamics of the total energy E = E| + E, for these two
cases, observing no appreciable variation in this reciprocal
hopping scenario.

For the purely nonreciprocal case (J =0, 8J ~ 2w x
8.4 mHz), the eigenstate structure is maximally distinct from
the reciprocal case, yielding equal-energy superposition states
with relative phases of /2. Using the same general ini-
tialization procedure, we prepare these eigenmodes of the
nonreciprocal double-well, and we indeed observe distinct dy-
namics of the total energy, resulting in an exponential growth
of the mode with relative phase 7 /2 (i) and an exponential
attenuation of the mode with relative phase —m /2 (iv), at least
up until the scale at which uncontrolled nonlinearities modify
this picture.

E. Synthetic interactions

Finally, it is worth considering the outcome of weak
nonlinear feedback, as this is a way to simulate mean-
field interactions in the Hamiltonian mapping. In the context
of classical emulation experiments, this feedback-based ap-
proach has connections to recent proposals and realizations in
photonic [36] and electronic [37] networks. As an example
of how feedback can introduce synthetic interactions, con-
sider an energy-dependent feedback F; = (A, ;X7 + B; ;P?)X:.
In this case, a measure related to the “energy” of the system
is used to create a nonlinear on-site potential. By substituting

the results in Eq. (7) into the form of the feedback, we have
Fi = [Aj (o + o)’ = Bii(oi — o) 1o + )
= SZ,,,-(oe,-3 + oz;k3 + ozizoz;‘ + a;"za,-)
+ Qu (ool + a?‘za[),

where 26()12{,",' = Ai,,‘, ZB,',,' = B,',,', and Qi’,’ = A~i7i + Bi,i~ When
applying the RWA, one should be careful in neglecting terms,
since also the contribution from terms like «;° and tx;‘zoc,-
can be discarded. In the former case, we have a much faster
corotating wave, while in the latter case the net contribution in
terms of frequency is & e~ which is counter-rotating with
frequency ~2w in the rotating frame. We are then left with

FRWA,, . _ 24;; |o;*a;  fori=j,
N 0 for i # J.

Then the Hamiltonian in Eq. (10) follows as

H=> wifa; - Udlajaa, U =4/,
i i

where the second term is the on-site interaction. When written
in terms of the equation of motion, Eq. (9), after replacing
operators by c-numbers, features a term that reflects a local
(diagonal, Hartree) mean-field interaction.

We now implement this local mean-field interaction in
our two-oscillator double-well, with a common value of the
nonlinear U term applied to each oscillator. Here, the term
U describes a local angular frequency shift due to mean-field
nonlinearity, where the scale is such that it represents the shift
that would be experienced by a given oscillator when all of
the mechanical energy resides in said oscillator (with total
mechanical energy approximately conserved in the following
scenarios we explore). We calibrate the U term for each os-
cillator by directly measuring the oscillator frequency in an
uncoupled configuration for several values of the nonlinear
feedback coefficient as well as several values of the mechan-
ical energy. To note, while the engineered variations of the
quartic nonlinearity are indeed found to be linearly tunable
by application of feedback force terms o<(5ci2 + ﬁ?)fci, our
calibrations additionally account for natural contributions to
the oscillator nonlinearity due to the physical properties of the
springs. For example, to achieve a “noninteracting” scenario,
we in fact first cancel the relatively weak quartic nonlinearities
that occur naturally due to the physical properties of our
springs. Controlled nonlinear terms are then added to this
“noninteracting” starting point. To note, this cancellation was
performed for the study presented earlier in Fig. 6, and for all
studies presented hereafter.

We now use our ability to apply a tunable nonlinearity to
a tunnel-coupled system to explore the self-trapping phase
transition of the canonical Josephson double-well [38,39].
This mean-field model describing interacting bosonic excita-
tions in a coherently coupled two-mode system is ubiquitous,
describing physical systems ranging from polariton fluids [40]
to cold atomic gases [41-44] to classical photonics [45—48].
Working with a fixed hopping J ~ —2m x 8.4 mHz, we plot
in Fig. 7(a) the mode spectrum of this double-well system
as we tune the nonlinear U term. Specifically, we present
the measured frequency dependence of prepared in-phase
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FIG. 7. Eigenmodes and phase-space dynamics of a two-oscillator system with synthetic interactions. (a) Mode frequencies for a double-
well system with synthetic Hartree-like local interactions, implemented via self-feedback forces F; o E;X;, where E; is the total mechanical
energy in mode i. The frequencies are determined by fits to the experimental population imbalance dynamics of in-phase (A¢ = 0) and
out-of-phase (A¢ = m) modes with an initial population imbalance z = 0.3. The out-of-phase mode stiffens with increasing U/J, while the
in-phase mode softens across the self-trapping transition at U/J ~ 2. The dark blue circles (dark red squares) relate to experimental data, the
light blue (red) points relate to numerical simulations, and the light gray dashed lines relate to the approximate analytical expressions described
in the text. (b) Phase-space maps of the experimental dynamics of the relative oscillator phase A¢ and normalized energy imbalance z, for
U/J = 1, 3, and 6. To note, small residual loss and/or gain terms lead to slightly disconnected trajectories in the experimental panels.

(A¢ = 0) and out-of-phase (A¢ = ) superposition modes,
each having a small initial interwell energy imbalance of
z = 0.3. Similar to before, the relative phase A¢ and energy
imbalance z of the initial state are controlled by the relative
amplitudes and phases of the applied sinusoidal drives during
an initial preparation time step. Here, we determine the mode
frequencies of the system by simply taking the inverse of the
time separation between local extrema of the z dynamics.

Specifically, in Fig. 7(a) we show how the measured in-
phase and out-of-phase mode frequencies evolve as we tune
the ratio of U/J across the expected self-trapping phase
transition at U = 2J. For zero quartic nonlinearity, we find
excellent agreement between the measured frequencies of
the in-phase and out-of-phase modes. Upon adding a weak
U term, however, these modes undergo radically different
responses. The out-of-phase or ¥ mode becomes stiffened,
seeing its frequency increase directly as U is increased. The
in-phase mode, in contrast, acquires a decreased mode fre-
quency, leading to very slow dynamics near U = 2J. Beyond
U = 2J, the frequency of the in-phase mode begins to in-
crease, approaching that of the stiffened A¢ = 7 mode.

This observed difference in the modal frequency
response—that the 7 mode is continuously stiffened
for increasing U, while the O-phase mode undergoes
mode-softening—is completely in line with the expected
response associated with the Josephson double-well [49]
and its supported dynamical self-trapping phase transition
[38,39]. Our measured mode frequencies are in fair agreement
with approximate analytical forms for the 0-phase (plasma)
mode and m-mode oscillation frequencies (Eqgs. 4.7 and
4.10 of Ref. [38], respectively), which we plot as dashed
black lines. We note some disagreement between our data
and these analytical formulas, however, which is expected
as these expressions are strictly valid only near z = 0. We
find considerably better agreement between our data and the

frequencies predicted by numerical simulations of an ideal
Josephson double well for our given initial z value of 0.3,
plotted as the connected-dot curves of Fig. 7(a).

There exist further distinctions between the response of
these two modes beyond their frequency behavior. Specifi-
cally, while the frequencies of the in-phase mode are similarly
small on either side of the mode-softening encountered at
U =2J, we find that there are net swings of the energy
imbalance z for values U < 2J, i.e., z changes sign during
the dynamics. In contrast, for U > 2J we find that the excess
mechanical energy becomes self-trapped to the oscillator in
which it is initiated. This self-trapping transition of the in-
phase mode reflects a drastic modification of the phase-space
portraits describing this system, as a separatrix moves through
the phase space for increasing U /J [38,39].

We now examine this behavior in Fig. 7(b) by mapping out
the phase-space portraits for several values of U/J, utilizing
the same approach as in Fig. 4(c). The out-of-phase modes,
indicated by the blue trajectories, remain relatively unaffected
in the three phase-space portraits for U/J values of ~1, 3, and
6. In contrast, trajectories starting near the unstable fixed point
at z = 0 and A¢ = 0 are significantly altered by the introduc-
tion of the nonlinear U term. These trajectories first become
self-trapped in both relative phase A¢ and energy imbalance z
for moderate U values just beyond the self-trapping transition
(i.e., for U ~ 3J). For still larger values, we encounter a
different form of self-trapped mode, having z values confined
to either side of z = 0 but experiencing a running relative
phase A¢. These results, in excellent agreement with theory,
demonstrate how the incorporation of real-time measurements
can enable both the implementation of synthetic interactions
as well as visualization of the resulting nonlinear dynamics.

While the mean-field Josephson model with uniform inter-
actions is naturally realized by a range of physical systems,
our general approach to engineering synthetic nonlinearities
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FIG. 8. Space dynamics in a two-oscillator system with oscillator-dependent interactions. (a) Cartoon depiction of two-oscillator system
mimicking a tunnel-coupled double well with well-dependent nonlinear interactions. (b) Left: theoretical phase-space portrait of relative phase
and population in the double-well for U = 2.2/, revealing self-trapped trajectories (blue and red) and modes with full population swings
(orange). Right: experimental phase-space dynamics starting from different initial conditions (indicated by colored circles). (c) Dynamics of
the measured mechanical energy in the left and right oscillators (shown as red and blue signals, respectively, with arbitrary units), for the

indicated experimental trajectories.

allows for the extension to more intricate forms of interac-
tions. As one simple demonstration of this, we examine in
Fig. 8 the phase-space dynamics of a double-well system
under the application of a well-dependent interaction term
Uy = —U, =2.2J. We again start from different points in
phase space (indicated by the colored disks) and study the
phase-space dynamics of z and A¢. Compared to the double-
well with uniform quartic nonlinearity, the phase-space map is
significantly altered, showing two distinct self-trapped regions
at relative phases of A¢ = 0 and . We again find excellent
agreement between the observed trajectories and those pre-
dicted by theory.

F. Additional possible terms

Having given specific examples of the terms that we experi-
mentally engineer in this work, we now briefly highlight, from
a theoretical viewpoint, some general considerations for the
type of terms that could be accessible with this approach [cf.
Eq. (10)]. First, an advantage of using feedback to engineer
the system is that the resulting Hamiltonian can be arbitrarily
long-ranged or spatially structured when it is scaled up to
include more oscillators. For example, there are no fundamen-
tal theoretical constraints on the range or type of interactions
and couplings that are possible between different oscillators,
which allows for, in principle, arbitrary network connectivity
and nonlinearities, provided that the feedback is weak.

Secondly, we have assumed above that the form of the
feedback is time-independent, such that the resulting Hamil-
tonian is also time-independent. However, this is not required
for the RWA to hold so long as the natural frequency, w, re-
mains the largest frequency scale in the problem. This allows,
e.g., for the investigation of time-modulated Hamiltonians, to
introduce still further control for engineering effective models
[19,20] or for the investigation of Floquet or stroboscopic
Hamiltonians for their own sake [50,51]. Alternatively, slow
variations of the feedback parameters can enable the explo-
ration of adiabatic geometric response and dynamical phase
transitions, as well as the population and exploration of sys-
tem eigenstates by Hamiltonian annealing.

Thirdly, as discussed above, the RWA reduces the feedback
to F; — Zj Fi;{WAa ; by only keeping corotating terms with a
frequency ~ w in the laboratory frame. In general, such terms
must have the number of « factors being one greater than the
number of o* factors, as any other combinations should aver-
age to zero in the w — oo limit. This in turn means that in the
RWA Hamiltonian [Eq. (10)], the only terms present will con-
tain equal numbers of o and o* variables. In the language of
quantum creation and annihilation operators, this corresponds
to Hamiltonians that conserve the total number of particles in
the system, but do not necessarily constrain the local particle
number or the energy of the system. This, therefore, allows for
many other types of terms, such as correlated hopping terms
in which, for example, two particles hop at once. Considering
only two-body (quartic) interactions, the degree of control
afforded by this approach should have direct applications in
the engineering of interacting Hamiltonians with exotic forms
[52] or fine-tuned symmetries [53,54]. This approach even al-
lows for the direct engineering of Hamiltonians dominated by
beyond-quartic terms [55], which could enable the realization
of exotic phases requiring higher-order interactions, without
complications due to the presence of lower-order terms [56].

G. Beyond the RWA

Finally, it is worth noting that the RWA is strictly valid
for weak feedback in the limit that @ — oo. In general, there
will be corrections to the RWA coming from the coupling
between the o and o™ variables in the dynamical equations [cf.
Eq. (8)]. For example, as discussed in Refs. [19,20], this can
lead to corrections such as, at lowest order, an overall shift
to the resonance frequency, which is a classical analog of the
Bloch-Siegert shift.

At even lower frequencies or for stronger feedback, the
RWA cannot be applied, and counter-rotating feedback terms,
such as those linearly dependent only on ¢, should not be
neglected. In such cases, by a similar line of reasoning to that
above, the system can be mapped to a tight-binding Hamilto-
nian that now does not conserve the total particle number. As
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is well known, such particle-nonconserving terms in bosonic
Hamiltonians can lead to parametric instabilities, as recently
studied, for example, in topological models [19,20,57-59].

IV. CONCLUSION

We have presented a general recipe for engineering syn-
thetic lattice tight-binding models, featuring both linear and
nonlinear terms, based on the real-time measurement of and
feedback on arrays of isolated mechanical oscillators. We
have experimentally demonstrated the basic elements of this
approach, including the control of real and imaginary site
energies, complex and nonreciprocal intersite hopping terms,
and engineered nonlinear interactions. The presented ap-
proach is general, directly applicable to classical emulators
based on mechanics or electronics and photonics [60], but also
intimately related to recent ideas for the steering of quantum
systems into new many-body phases via measurement-based
feedback [61-64]. Looking forward, as this approach is ex-
panded to many-site arrays of classical oscillators, the ability
to synthesize near-arbitrary mean-field lattice Hamiltonians
will open up new opportunities for exploring exotic trans-
port phenomena in a highly accessible laboratory setting.

More generally, the incorporation of measurement-aided ap-
proaches promises to expand our capabilities for synthetic
lattice and synthetic dimensions [65] engineering.
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