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The geometrical Berry phase is key to understanding the behavior of quantum states under cyclic adiabatic
evolution. When generalized to non-Hermitian systems with gain and loss, the Berry phase can become complex
and should modify not only the phase but also the amplitude of the state. Here, we perform the first experimental
measurements of the adiabatic non-Hermitian Berry phase, exploring a minimal two-site P7 -symmetric Hamil-
tonian that is inspired by the Hatano-Nelson model. We realize this non-Hermitian model experimentally by
mapping its dynamics to that of a pair of classical oscillators coupled by real-time measurement-based feedback.
As we verify experimentally, the adiabatic non-Hermitian Berry phase is a purely geometrical effect that leads
to significant amplification and damping of the amplitude also for noncyclical paths within the parameter space
even when all eigenenergies are real. We further observe a non-Hermitian analog of the Aharonov-Bohm solenoid
effect, observing amplification and attenuation when encircling a region of broken P77 symmetry that serves as
a source of imaginary flux. This experiment demonstrates the importance of geometrical effects that are unique
to non-Hermitian systems and paves the way towards further studies of non-Hermitian and topological physics

in synthetic metamaterials.
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Introduction. Geometrical phases play a fundamental role
across physics as they emerge from the cyclic adiabatic evo-
lution of a system, and depend only on certain intrinsic
geometrical properties within a given parameter space. In
quantum mechanics, a key example of this is the Berry phase
[1], which can be related, not only to the quantum geometry
of eigenstates but also to important topological invariants,
such as the Chern number and winding number [2,3]. Exper-
imentally, the Berry phase has profound effects on material
and transport properties, and it underlies Hall effects, polar-
ization, charge pumping, semiclassical dynamics, and many
other phenomena [2].

Following its discovery, the Berry phase was generalized
to systems with dissipation or gain, in which the Hamiltonian
becomes non-Hermitian [4-11]. Interest in such problems
has continued to grow, inspired by developments in
non-Hermitian experimental platforms, including in
photonics [12,13], mechanics [14-20], electric circuits
[21,22], and cold atoms [23,24] amongst many others
[25-27]. This progress has also been driven by interest in
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topological systems, in which non-Hermiticity leads to
new topological classifications and unusual boundary
phenomena [25,27].

Underlying these effects are fundamental differences
between Hermitian and non-Hermitian Hamiltonians; this in-
cludes that eigenstates can coalesce and become defective
at exceptional points, that the left and right eigenfunctions
will typically be different from each other, and that the
eigenenergies can become complex [13,26]. One important
consequence of these differences is that the Berry phase will,
in general, become complex- instead of real-valued, implying
that the amplitude as well as the phase of a state will vary
under adiabatic dynamical evolution [4—7,28-31].

In this paper, we measure the adiabatic non-Hermitian
Berry phase, demonstrating how non-Hermiticity leads to
gauge-invariant geometrical effects even for noncyclical paths
in parameter space. This goes beyond previous experiments
which observed the real part of a Berry phase for closed loops
around non-Hermitian exceptional points [32-34]; in those
cases, the Berry phase was parametric rather than adiabatic
as adiabaticity inevitably breaks down when an exceptional
point is dynamically encircled [35-37] and geometrical prop-
erties have therefore to be reconstructed from eigenmode
measurements. In contrast, here we study a two-site P7T -
symmetric system, in a regime for which the eigenenergies
are real and adiabatic evolution is possible. To realize our
model, we employ a mapping between quantum evolution
and the classical dynamics of a pair of oscillators coupled
with real-time measurement-based feedback [20]. We evolve
our system adiabatically and experimentally demonstrate that
the imaginary part of the Berry phase leads to significant

Published by the American Physical Society
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FIG. 1. Exploration of the non-Hermitian Berry phase in the two-site Hatano-Nelson model. (a) In non-Hermitian systems with P77~
symmetry, adiabatic paths in parameter space generically results in amplification or attenuation of the time-dependent population N(¢). This
results directly from the imaginary portion of the adiabatic non-Hermitian Berry phase ¢ acquired by a state along its trajectory. (b) (Top)
The Hatano-Nelson (HN) dimer, a minimal non-Hermitian lattice model with nonreciprocal left/right hopping rates J &+ §J and an intersite
frequency imbalance 2A. (Bottom) Implementation of the HN dimer in a mechanical system via measurement-and-feedback. Nonreciprocal
coupling between mechanical oscillators, as well as shifts to their resonance frequencies, are realized through applied forces that are responsive
to real-time measurements. (c) P7 -symmetry breaking phase diagram of the HN dimer. A conical surface of exceptional points in the J-5/-A
parameter space separates regions of broken and preserved P77 symmetry, respectively lying inside and outside of the conical surface.

geometrical amplification and damping, which is intrinsically
non-Hermitian.

Non-Hermitian Berry phase. Before discussing our exper-
iment, we review the basic theory of non-Hermitian systems
[13,26] to motivate the non-Hermitian Berry phase. Various
related definitions exist for this phase [4—11]; here, we intro-
duce a formalism that is motivated by physical observables to
concisely include all relevant geometrical effects using Berry
connections. This definition has the advantage that its imag-
inary part is manifestly gauge-invariant and is immediately
related to measurements of the population. Detailed deriva-
tions are given in Ref. [38].

We consider a N-component state vector [y (¢)), which
depends on time ¢ and obeys the Schrodinger-type equa-
tion id,|¥(¢t)) = HA)|Y(¢)), where the family of N-by-N
non-Hermitian matrices H(A) are parameterized by a set of
real parameters A = (Ay, Az, ...). For a given value of A,
H()) acts as a non-Hermitian Hamiltonian. It has right and
left eigenvectors, denoted by |R, (X)) and (L, (X)| respectively,
which are generally not complex conjugates of each other
[13,26], but which share the same complex eigenvalues &, (),
indexed by n=1,2,...,N. Within the parameter space
spanned by A, four distinct geometrical Berry connections
can then be defined [30,39]; however, for the non-Hermitian
Berry phase, only the following two Berry connections will be
relevant:

AR ) = i{Ly(M) ]85, IR, /(La MR, (), (1)

ARE) = (R0 IRaA)) /(RuM)IR,(A)). ()
Upon a generalized gauge transformation, which multiplies
[R,(A)) and |L,(X)) not just by a phase but also by arbi-
trary and independent nonzero factors, it can be shown that
the following combination of the above Berry connections is

invariant [30]:

5A1,:§7RR()~) = AR (1) — ARR(1). (3)

sJ »J

It is a distinguishing feature of non-Hermitian systems that
gauge-independent quantities can be constructed just from a
linear combination of Berry connections; in Hermitian quan-
tum mechanics, the different Berry connections coincide and
the gauge-invariant combination § A is always zero.

We now consider the adiabatic evolution of a state upon
changing the parameter A(¢) as a function of time ¢ to extract
the non-Hermitian counterpart of the Berry phase [4-7,28—
31,40]. Here, we focus on the situation where all the eigen-
values are real and nondegenerate so that we can apply the
adiabatic theorem [41,42]. Then if the initial state corresponds
to the nth right eigenstate, the state at time ¢ can be written as

IRn(A(1)))
VIR, XO)IR,A0)))

where c(t) is a complex-valued adiabatic factor that the state
acquires as A(r) is varied. In defining c(t), we chose to
separate out the denominator, as we are interested in phys-
ical observables such as the population N(¢), which is then
given simply by N(¢) = (¥ (t)|¥ (1)) = |c(t)|>. We note that
the final result is independent of the way the state |y (¢))
is written as a product of a coefficient c(¢) and a basis
vector, as explained in detail in Ref. [38]. We formally
solve the Schrodinger equation id, [y (¢)) = HA ()| (1)) =
en(A(@®))|¥(2)) by applying (L,(A(z))| from the left, which
yields

1Y (1)) = c() “

t
c(t) = c(0)exp |:—i/ dt'e,(A(1")) + i¢>[C]], )
0

where the first term in the exponent is the dynamical contri-
bution to the adiabatic factor ¢(¢), whereas the second part is
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the non-Hermitian Berry phase that we define by
#[C] = / dr - (AL — iImARR (L)), (6)
c

where AﬁR(k) = (Af;ﬁ ), Aﬁf;(l), ...) and similarly for
.AfR (1). The non-Hermitian Berry phase depends on the path
C taken in parameter space and reflects the geometrical struc-
ture of the eigenstates, analogous to the well-known Berry
phase for Hermitian systems [1,2]. However, unlike the Her-
mitian Berry phase, the non-Hermitian Berry phase has both
real and imaginary parts. In particular, the imaginary part

Im(g[C]) = / d\ - Tm§ ALR=RR (3 @)
C

depends solely on the imaginary part of BAI,;R*RR(X) =
(SAﬁlel_RR ), SAﬁlg_RR (X), ...), which is the gauge-invariant
combination of Berry connections introduced in Eq. (3).
Therefore, it is then immediately obvious that the imaginary
part of the non-Hermitian Berry phase is gauge independent
even when the path C is not closed [40]. On the other hand,
the real part of the Berry phase is gauge invariant only when
the path C forms a closed path, just like in the Hermitian case
[2]. When the eigenvalues are all real, the evolution of the
population [as depicted in Fig. 1(a)] is thus determined purely
by the imaginary part of the Berry phase as

N(t) = |c(t)|* = N(0) exp [-2Im(¢[C])], ®)

which is directly observable in our experiment.

Experimental setup. To experimentally explore the effects
of non-Hermitian geometry, we implement the simple two-site
model Hamiltonian

J+ 8J>’ ©)

—A

= <J —8 A
as depicted in Fig. 1(b). The elements of H have units of fre-
quency, consistent with the aforementioned Schrodinger-type
equation describing the system dynamics. Physically, the real
parameters A, J, and §J relate to relevant frequency shifts of
(A) and hopping rates between (J & §J) the oscillators. This
model is inspired by the Hatano-Nelson model for a 1D lattice
[43], which has nonreciprocal hoppings between neighboring
lattice sites and which can exhibit nontrivial topology and the
non-Hermitian skin effect [27]. The eigenvalues of Eq. (9) are
given by ex = ++/A2 + J2 — §J2, which means that the two
eigenvalues are both real when A? + J? > §J2, corresponding
to the PT-symmetric region. If A% + J? = §J2, the eigen-
values coalesce at an exceptional point; within the parameter
space of (A, J, §J), the surface of exceptional points corre-
sponds to a double cone, with its apex at the origin [11], as
shown in Fig. 1(c).

The gauge-invariant combinations of the Berry connec-
tions within the P7T-symmetric region [cf. Eq. (3)] are
all purely imaginary, and they diverge as we approach the
PT -symmetry breaking transition, where adiabaticity breaks
down. (Analytical expressions of the Berry connections and
associated Berry curvatures are derived in Ref. [38], and can
be interpreted in terms of a complex hyperbolic pseudomag-
netic monopole in parameter space [11,31].) This in turn
means that the only nonvanishing part of the non-Hermitian
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FIG. 2. PT-symmetry breaking phase diagram of the unbiased
(A = 0) Hatano-Nelson dimer. (a) White points mark the experimen-
tally measured exceptional points (EPs). Critical §J values for these
points are determined by detecting the breakdown of adiabaticity as
the EP is crossed. (b) Experimental energy dynamics of prepared
eigenstates along the ramp of §J [dashed red line in (a)] for J = 6.0
mHz. The measured energy at site 1 decays (while the site 2 and
total energy grow) until the EP is reached at §J ~ J. Here, we plot
the site 1 (E), site 2 (E;), and total energy (E7) normalized to their
respective initial values (E;). (c) Crossing of the EP is marked by the
onset of growth of the otherwise decaying site 1. The red dashed line
is an empirical fit to the data, with the fit minimum defining §J.
Here, we plot the energy in oscillator 1 normalized to its initial value

(E1/E).

Berry phase [Eq. (6)] is purely imaginary and therefore gauge-
invariant for any path.

To explore the two-site Hatano-Nelson model, we con-
struct a synthetic mechanical lattice consisting of two classical
oscillators artificially coupled by real-time feedback measure-
ments, based on our approach reported in Ref. [20]. The essen-
tial idea of this scheme is to map the Heisenberg equations of
motion for a desired tight-binding quantum Hamiltonian onto
Newtons equations of motion for classical oscillators in
phase-space within a rotating wave-approximation [44,45]. As
discussed in [20], the use of real-time feedback then means
that almost any two level non-Hermitian Hamiltonian can be
realized with this setup. Here, we use self- and cross-feedback
between the oscillators to realize the Hamiltonian described in
Eq. (9), as depicted at the bottom of Fig. 1(b). Self-feedback
terms proportional to the oscillator positions (F; o x;) allow us
to shift their frequencies by £ A from a nominal starting value
of fo ~ 3.05 Hz. Cross-feedback forces (F; o x;) allow us to
introduce independent left-to-right and right-to-left hopping
terms J % §J, with no intrinsic limitation to reciprocal energy
exchange. By applying self-feedback terms proportional to
the oscillator’s momenta (F; & p;), we cancel the oscillator’s
natural damping and explore coherent dynamics for well over
1000 s (>3000 periods). These long timescales are crucial
to performing the first explorations of adiabatic response in
a non-Hermitian system. Beyond single-body (quadratic, in
the operator sense) terms, we additionally apply higher-order
feedback to cancel nearly all native quartic nonlinearities.
However, small residual nonlinearities remain, serving to,
e.g., cap the energy growth in cases of broken P77 symmetry.
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FIG. 3. Geometric energy amplification and attenuation in the Hatano-Nelson dimer. (a) (Left) Dynamics of the total energy Er = E| + E,
for adiabatic transformations (normalized to its initial value E7 ;). (Inset) Path of the adiabatic transformation, for fixed J/ = 6.5 mHz, ramping
from §J = 0 to/from different maximum values of §J,,x = 3.4 (yellow), 4.3 (red), and 5.2 mHz (blue). (Right) Plot of the total energy vs
the instantaneous 8J value, for the yellow and blue paths. The black dotted line shows the expected parametric dependence of Er/Er; on
8J for fully adiabatic evolution under H. (b) Dynamics of Er for CW (purple) and CCW (gold) paths as specified by the inset, centered at
(J,8J) = (6.5, 2.2) mHz and having a radius of 2.2 mHz. The colored dashed lines in the main panels relate to the time-dependent solutions of
the Schrodinger-type equation based on evolution under the ideal HN model, including nonadiabatic effects caused from finite ramp durations
of Tramp = 500 for (a) and 1000 s for (b).

Results. We first experimentally establish the P7T- ferent values of §Jnax), and back. It is seen in Fig. 3(a) that
symmetry breaking phase diagram of the canonical two-site the total energy increases as the trajectory moves closer to

Hatano-Nelson model, with tunable reciprocal (/) and nonre- the exceptional line, with the blue (8J,x = 5.16 mHz) path
ciprocal (6J) components of the real-valued intersite hopping, showing the largest gain. For such a trajectory, the energy
but with no intersite bias (A = 0). In this case, for fixed J, an in the system is determined by the instantaneous §J value,
exceptional point and P7T -symmetry breaking phase transi- as confirmed by the parametric collapse of the energy vs.

tion are encountered at §J = J, as previously demonstrated 8J for the yellow and blue curves, shown in the right plot.
with this platform by spectral analysis in Ref. [20]. In the = To note, slight wiggles in both the data (solid lines) and the
full (J, §J) parameter space, there are two distinct regions of numerical simulation curves (dashed lines that include effects
conserved and broken P77 symmetry, denoted by white and of the finite ramp duration), arise primarily from nonadiabatic
grey in Fig. 2(a). We experimentally determine the excep- deviations accumulated near the exceptional line. However,
tional line separating these regions by probing the breakdown for all curves the total energy returns to near its initial value at
of adiabaticity and the rapid onset of energy growth as states the end of the trajectories, consistent with adiabatic evolution

cross over into the P7 -broken region, as shown in Fig. 2(b). along a time-reversed path that encloses zero non-Hermitian
We prepare eigenmodes of the symmetric double-well for  flux.

various fixed values of the reciprocal hopping J, and then In Fig. 3(b), we start from the same conditions but now
linearly ramp §J from O to 1.2 J over 400 s. We establish the move along closed circular loops by also varying the sym-
exceptional points (white circles) by determining the instanta- metric hopping term J by a sinusoidal function over a time
neous §J values for which there begins to be energy growth  period of 1000 s. Coordination between the variation of J
at the otherwise decaying first site, as shown in Fig. 2(c). and 8/ allows us to make either clockwise or counterclock-

Here, an observable proportional to the i oscillator energy wise paths in parameter space (inset). The energy dynamics
E;(t) is reconstructed from the measured x; and p; signals curves for the two path directions are essentially (up to small
[20]. We can then associate the oscillators’ energy dynamics nonadiabatic corrections) mirrored versions of each other with
with relative changes in the macroscopic mechanical energy respect to the time midpoint Timp/2, as the gauge-invariant

population N;(¢) ~ E;(t)/hfo. Berry phase accumulated from the common starting point is
We now restrict ourselves to the P7 -symmetric region again uniquely determined by the instantaneous position in
of Fig. 2(a), exploring the adiabatic gauge invariant non- parameter space. This is consistent with the fact that these

Hermitian Berry phase acquired (via the energy dynamics of  finite-area paths enclose zero non-Hermitian Berry phase. To
prepared eigenmodes), as we slowly evolve along controlled note, the curves in Figs. 3(a) and 3(b) do exhibit percent level
paths in parameter space. In Fig. 3(a), we first prepare our sys- gain and loss over their respective evolution times of 500 and
tem as an eigenmode of the symmetric double well for a fixed 1000 s, stemming from residual loss and gain terms at the
reciprocal hopping J = 6.45 mHz, and then we smoothly vary scale of a few uHz.

the asymmetric hopping as 8J(t) = 8Jyax sin’ (7t / Tiamp) Over We now explore closed paths in parameter space that
a time Tramp = 500 s. From the left inset, this corresponds enclose a region of broken P7 symmetry, and which corre-
to a closed linear path in parameter space from the black spondingly acquire a finite non-Hermitian Berry phase. We
dot at §J = 0 to one of the colored dots (representing dif- accomplish this by introducing a site-to-site energy bias (A).
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FIG. 4. Cyclic amplification and attenuation along adiabatic paths enclosing PT -broken sources of non-Hermitian Berry phase. (a) Illus-
tration of the paths traversed in parameter space. For trajectories in the J-A plane at fixed and finite §J, the paths enclose a conical P7T -broken
region that acts as a source of non-Hermitian Berry flux. (b) Dynamics of the total energy Er = E| + E, for CCW (purple) and CW (gold)
paths in the J-A plane as specified in panel (a), shown for three values of the tunneling asymmetry §J. The solid purple (gold) lines are the
measured trajectories from experiment for CCW (CW) paths. The long-dashed and short-dashed lines are theory comparisons, described below.
(c) Ratio of the final total energy Ey f to the initial total energy Er; as a function of the tunneling asymmetry §J. The upper and lower panels
show the energy ratios for one half cycle and one full cycle, respectively. The purple (gold) points are the experimentally measured ratios
for the CCW (CW) paths (with error bars smaller than the data points) and the long-dashed and short-dashed lines are theory comparisons.
For (b) and (c), the black long-dashed lines are the analytical predictions (detailed in Ref. [38]) for the amplification/attenuation under fully
adiabatic evolution according to Eq. (9). The dotted lines are the trajectories determined by numerical simulation of the experimental ramping
procedure, also incorporating weak nonlinear contributions that serve to capture the saturation observed for large amplification (detailed in

Ref. [38]).

To recall, the exceptional surface in the full (A, J, §J) param-
eter space of Eq. (9) corresponds to a double cone with an
apex at the origin [11]. As depicted in Fig. 4(a), this admits
closed paths within the P7-symmetric region that enclose
areas of broken P7 symmetry. The P7T -broken region can,
in a sense, serve as a source of non-Hermitian Berry flux,
analogous to how a magnetic solenoid serves as a source
of flux in the canonical Aharonov-Bohm thought experiment
[46]. Indeed, our procedure can be viewed as measuring the
imaginary Aharonov-Bohm phase in parameter space.

We explore the dynamics of the total energy E; as we
traverse counterclockwise (CCW) and clockwise (CW) paths
in the J-A plane, starting from several fixed values of §J. We
start by preparing eigenmodes of the system with / = 0 and
then ramp, over 1000 s, about an ellipse in the J-A parameter
space as displayed in Fig. 4(a). As we see from Fig. 4(b), the
dynamics of the total energy are strongly dependent on 4J.
In the fully symmetric case, 6J = 0, we find no significant
change to the total oscillator energy, as expected from the lack
of an enclosed PT -broken region. For increasing values of §J,
we find that the CCW (CW) paths in parameter space lead to
an increasing growth (decay) of the energy upon completing
one cycle. Figure 4(c) summarizes the §J-dependence of the
measured gain (attenuation) of the total energy experienced
upon completing one cycle in the CCW (CW) direction. The
near-exponential dependence of the measured gain (attenua-
tion) with 8/ is in qualitative agreement with the expected
variation of the acquired non-Hermitian Berry phase for cyclic
paths. The non-Hermitian Berry phase accumulated around
such paths grows with the size of the PP7 -broken region,

having a form that is nearly proportional to 8/, as presented in
Ref. [38]. For the experimentally traversed path in the CCW
(CW) direction, the system picks up a negative (positive)
contribution of this imaginary phase, and the state of the
oscillators thus experiences a corresponding growth (decay)
in its energy. At short times or for small values of the hopping
asymmetry 8J, the observed amplification and attenuation are
in fair agreement with the analytical form expected based on
pure geometric contributions of an imaginary Berry phase.
However, clear deviations can be found, most prominently
in situations where very large growth of the total energy
are expected (CCW orbits for large 6J values). On physical
grounds, deviations from the expected response can be ex-
pected for very large oscillator displacements due to natural
anharmonicities. We qualitatively capture the observed satu-
ration of growth by comparing to a dynamical evolution that
incorporates small but non-negligible (empirical) nonlinear
contributions, described further in Ref. [38].

Conclusion. We have experimentally measured the non-
Hermitian Berry phase for adiabatic evolution in a two-site
Hatano-Nelson model. We have demonstrated significant ge-
ometrical contributions to amplification and damping along
both closed and open paths, and shown that these effects
are observable in a synthetic mechanical metamaterial. Going
further, we will be able to add different types of nonlin-
earities to the two-site Hatano-Nelson model, allowing us
to explore the interplay of interactions with P77 symmetry
[47,48]. As active mechanical metamaterials are scaled up to
larger systems with dozens of oscillators, they will enable con-
trollable explorations of the effects of quantum geometry and
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topology in non-Hermitian Chern insulators, such as, for ex-
ample, the anomalous velocity contributions predicted to arise
from the non-Hermitian Berry phase [30] and the breakdown
of the canonical bulk-boundary correspondence of Hermitian
models [49-51].

Acknowledgments. We thank Barry Bradlyn for helpful
discussions. This material (Y.S., S.A., B.G.) is based upon
work supported by the National Science Foundation under
Grant No. 1945031. Y.S. acknowledges support by the Philip
J. and Betty M. Anthony Undergraduate Research Award and
the Jeremiah D. Sullivan Undergraduate Research Award of

the UIUC Department of Physics. T.O. acknowledges sup-
port from JSPS KAKENHI Grant No. JP20H01845, JST
PRESTO Grant No. JPMJPR19L2, JST CREST Grant No.
JPMJCRI19T1, and RIKEN iTHEMS. E.M. and HM.P. are
supported by the Royal Society via Grants No. UF160112,
No. RGF\EA\180121, and No. RGF\R1\180071. E.M. and
H.M.P. are also supported by the Engineering and Physical
Sciences Research Council (Grant No. EP/W016141/1). This
work was also supported by the BRIDGE Seed Fund for
collaboration between the University of Birmingham and the
University of Illinois at Urbana-Champaign.

[1] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. London A 392, 45 (1984).

[2] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[4] J. C. Garrison and E. M. Wright, Complex geometrical phases
for dissipative systems, Phys. Lett. A 128, 177 (1988).

[5] G. Dattoli, R. Mignani, and A. Torre, Geometrical phase in the
cyclic evolution of non-Hermitian systems, J. Phys. A: Math.
Gen. 23, 5795 (1990).

[6] F. Keck, H. J. Korsch, and S. Mossmann, Unfolding a diabolic
point: A generalized crossing scenario, J. Phys. A: Math. Gen.
36, 2125 (2003).

[7] S.-D. Liang and G.-Y. Huang, Topological invariance and global
berry phase in non-Hermitian systems, Phys. Rev. A 87,012118
(2013).

[8] A. Mondragén and E. Herndndez, Berry phase of a resonant
state, J. Phys. A: Math. Gen. 29, 2567 (1996).

[9] M. V. Berry and M. R. Dennis, The optical singularities of
birefringent dichroic chiral crystals, Proc. R. Soc. London A
459, 1261 (2003).

[10] M. V. Berry, Physics of nonhermitian degeneracies, Czech. J.
Phys. 54, 1039 (2004).

[11] A. I. Nesterov and F. A. de la Cruz, Complex magnetic
monopoles, geometric phases and quantum evolution in the
vicinity of diabolic and exceptional points, J. Phys. A: Math.
Theor. 41, 485304 (2008).

[12] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Observation of P7T-Symmetry Breaking in Complex Optical
Potentials, Phys. Rev. Lett. 103, 093902 (2009).

[13] S. K. Ozdemir, S. Rotter, F. Nori, and L. Yang, Parity—time
symmetry and exceptional points in photonics, Nat. Mater. 18,
783 (2019).

[14] C. Coulais, D. Sounas, and A. Alu, Static non-reciprocity in
mechanical metamaterials, Nature (London) 542, 461 (2017).

[15] M. Brandenbourger, X. Locsin, E. Lerner, and C. Coulais,
Non-reciprocal robotic metamaterials, Nat. Commun. 10, 4608
(2019).

[16] C. Scheibner, W. T. M. Irvine, and V. Vitelli, Non-Hermitian
Band Topology and Skin Modes in Active Elastic Media, Phys.
Rev. Lett. 125, 118001 (2020).

[17] C. Scheibner, A. Souslov, D. Banerjee, P. Surowka, W. T. M.
Irvine, and V. Vitelli, Odd elasticity, Nat. Phys. 16, 475 (2020).

[18] D. Zhou and J. Zhang, Non-Hermitian topological metamateri-
als with odd elasticity, Phys. Rev. Res. 2, 023173 (2020).

[19] A. Ghatak, M. Brandenbourger, J. van Wezel, and C. Coulais,
Observation of Non-Hermitian topology and its bulk—edge cor-
respondence in an active mechanical metamaterial, Proc. Natl.
Acad. Sci. USA (2020).

[20] R. Anandwade, Y. Singhal, S. N. M. Paladugu, E. Martello, M.
Castle, S. Agrawal, E. Carlson, C. Battle-McDonald, T. Ozawa,
H. M. Price, and B. Gadway, Synthetic mechanical lattices with
synthetic interactions, Phys. Rev. A 108, 012221 (2023).

[21] Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Observation of
an anti-PT-symmetric exceptional point and energy-difference
conserving dynamics in electrical circuit resonators, Nat.
Commun. 9, 2182 (2018).

[22] T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling,
L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter,
and R. Thomale, Generalized bulk—boundary correspondence
in non-Hermitian topolectrical circuits, Nat. Phys. 16, 747
(2020).

[23] W. Gou, T. Chen, D. Xie, T. Xiao, T.-S. Deng, B. Gadway,
W. Yi, and B. Yan, Tunable Nonreciprocal Quantum Trans-
port through a Dissipative Aharonov-Bohm Ring in Ultracold
Atoms, Phys. Rev. Lett. 124, 070402 (2020).

[24] J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and
L. Luo, Observation of parity-time symmetry breaking transi-
tions in a dissipative Floquet system of ultracold atoms, Nat.
Commun. 10, 855 (2019).

[25] C. Coulais, R. Fleury, and J. van Wezel, Topology and broken
Hermiticity, Nat. Phys. 17, 9 (2021).

[26] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv.
Phys. 69, 249 (2020).

[27] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[28] S. Longhi, Bloch oscillations in complex crystals with P7T
symmetry, Phys. Rev. Lett. 103, 123601 (2009).

[29] R. Hayward and F. Biancalana, Complex Berry phase dynam-
ics in PT -symmetric coupled waveguides, Phys. Rev. A 98,
053833 (2018).

[30] N. Silberstein, J. Behrends, M. Goldstein, and R. Ilan, Berry
connection induced anomalous wave-packet dynamics in non-
Hermitian systems, Phys. Rev. B 102, 245147 (2020).

[31] R. Hayward and F. Biancalana, Monopole-antimonopole insta-
bility in non-Hermitian coupled waveguides, Phys. Rev. A 101,
043846 (2020).

L032026-6


https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1016/0375-9601(88)90905-X
https://doi.org/10.1088/0305-4470/23/24/020
https://doi.org/10.1088/0305-4470/36/8/310
https://doi.org/10.1103/PhysRevA.87.012118
https://doi.org/10.1088/0305-4470/29/10/032
https://doi.org/10.1098/rspa.2003.1155
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1088/1751-8113/41/48/485304
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1038/nature21044
https://doi.org/10.1038/s41467-019-12599-3
https://doi.org/10.1103/PhysRevLett.125.118001
https://doi.org/10.1038/s41567-020-0795-y
https://doi.org/10.1103/PhysRevResearch.2.023173
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1103/PhysRevA.108.012221
https://doi.org/10.1038/s41467-018-04690-y
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1103/PhysRevLett.124.070402
https://doi.org/10.1038/s41467-019-08596-1
https://doi.org/10.1038/s41567-020-01093-z
https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevA.98.053833
https://doi.org/10.1103/PhysRevB.102.245147
https://doi.org/10.1103/PhysRevA.101.043846

MEASURING THE ADIABATIC NON-HERMITIAN BERRY ...

PHYSICAL REVIEW RESEARCH 5, L032026 (2023)

[32] C. Dembowski, H.-D. Grif, H. L. Harney, A. Heine, W. D.
Heiss, H. Rehfeld, and A. Richter, Experimental Observation
of the Topological Structure of Exceptional Points, Phys. Rev.
Lett. 86, 787 (2001).

[33] C. Dembowski, B. Dietz, H.-D. Grif, H. L. Harney, A. Heine,
W. D. Heiss, and A. Richter, Encircling an exceptional point,
Phys. Rev. E 69, 056216 (2004).

[34] T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D.
Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, Y.
Yamamoto, F. Nori, Y. S. Kivshar, A. Truscott, R. Dall, and
E. A. Ostrovskaya, Observation of non-Hermitian degeneracies
in a chaotic exciton-polariton billiard, Nature (London) 526,
554 (2015).

[35] R. Uzdin, A. Mailybaev, and N. Moiseyev, On the observability
and asymmetry of adiabatic state flips generated by exceptional
points, J. Phys. A: Math. Theor. 44, 435302 (2011).

[36] M. V. Berry, Optical polarization evolution near a Non-
Hermitian degeneracy, J. Opt. 13, 115701 (2011).

[37] J. Doppler, A. A. Mailybaev, J. Bohm, U. Kuhl, A. Girschik,
F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter,
Dynamically encircling an exceptional point for asymmetric
mode switching, Nature (London) 537, 76 (2016).

[38] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.L.032026 for a more detailed dis-
cussion and analysis of the theoretical model and for a more
detailed description of the data analysis.

[39] H. Shen, B. Zhen, and L. Fu, Topological Band Theory for Non-
Hermitian Hamiltonians, Phys. Rev. Lett. 120, 146402 (2018).

[40] S. Massar, Applications of the complex geometric phase for
metastable systems, Phys. Rev. A 54, 4770 (1996).

[41] G Nenciu and G Rasche, On the adiabatic theorem for nonself-
adjoint Hamiltonians, J. Phys. A: Math. Gen. 25, 5741 (1992).

[42] J. Holler, N. Read, and J. G. E. Harris, Non-Hermitian adiabatic
transport in spaces of exceptional points, Phys. Rev. A 102,
032216 (2020).

[43] N. Hatano and D. R. Nelson, Localization Transitions in
Non-Hermitian Quantum Mechanics, Phys. Rev. Lett. 77, 570
(1996).

[44] G. Salerno, T. Ozawa, H. M. Price, and 1. Carusotto, Floquet
topological system based on frequency-modulated classical
coupled harmonic oscillators, Phys. Rev. B 93, 085105 (2016).

[45] G. Salerno and I. Carusotto, Dynamical decoupling and dy-
namical isolation in temporally modulated coupled pendulums,
Europhys. Lett. 106, 24002 (2014).

[46] Y. Aharonov and D. Bohm, Significance of electromagnetic
potentials in the quantum theory, Phys. Rev. 115, 485 (1959).

[47] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear
waves in P77 -symmetric systems, Rev. Mod. Phys. 88, 035002
(2016).

[48] Y. Lumer, Y. Plotnik, M. C. Rechtsman, and M. Segev, Nonlin-
early Induced PT Transition in Photonic Systems, Phys. Rev.
Lett. 111, 263901 (2013).

[49] S. Yao, F. Song, and Z. Wang, Non-Hermitian Chern Bands,
Phys. Rev. Lett. 121, 136802 (2018).

[50] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J.
Bergholtz, Biorthogonal Bulk-Boundary Correspondence in
Non-Hermitian Systems, Phys. Rev. Lett. 121, 026808 (2018).

[51] K. Kawabata, K. Shiozaki, and M. Ueda, Anomalous helical
edge states in a non-Hermitian chern insulator, Phys. Rev. B 98,
165148 (2018).

L032026-7


https://doi.org/10.1103/PhysRevLett.86.787
https://doi.org/10.1103/PhysRevE.69.056216
https://doi.org/10.1038/nature15522
https://doi.org/10.1088/1751-8113/44/43/435302
https://doi.org/10.1088/2040-8978/13/11/115701
https://doi.org/10.1038/nature18605
http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.L032026
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevA.54.4770
https://doi.org/10.1088/0305-4470/25/21/027
https://doi.org/10.1103/PhysRevA.102.032216
https://doi.org/10.1103/PhysRevLett.77.570
https://doi.org/10.1103/PhysRevB.93.085105
https://doi.org/10.1209/0295-5075/106/24002
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/PhysRevLett.111.263901
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevB.98.165148

