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Abstract Stable isotope-based reconstructions of past ocean salinity and hydroclimate depend on accurate,
regionally constrained relationships between the stable oxygen isotopic composition of seawater (§'30,,) and
salinity in the surface ocean. An increasing number of 880, observations suggest greater spatial variability
in this relationship than previously considered, highlighting the need to reassess these relationships on a global
scale. Here, we use available, paired 5'80, and salinity data (N = 11,119) to create global interpolations

of each variable. We then use a self-organizing map, a specialized form of machine learning, to define 19
regions with unique 5'80, -salinity relationships in the surface (<50 m) ocean. Inclusion of atmospheric
moisture-related variables and oceanic tracer data in additional self-organizing map experiments indicates
global surface 880, -salinity spatial patterns are strongly forced by the atmosphere, as the SOM spatial output
is highly similar despite no overlapping input data. Our approach is a useful update to the previously delimited
regions, and highlights the utility of neural network pattern extraction in spatiotemporally sparse data sets.

Plain Language Summary Our understanding of past changes in the ocean and atmosphere often
comes from information stored in biological marine carbonate archives. Stable oxygen isotope measurements
from such archives record past ocean temperature as well as the stable oxygen isotopic composition of
seawater. In the surface ocean, stable oxygen isotope values have a strong, linear, relationship with salinity,
thought to be the result of evaporation and precipitation affecting stable isotope ratios and salinity in a similar
manner. This permits reconstruction of past ocean salinity from marine carbonates, which may be used to
infer large-scale hydroclimate variability, in some cases. However, this manner of reconstruction relies on the
linear isotope-salinity relationship, which remains poorly constrained and is influenced by a combination of
oceanic and atmospheric processes. In this work, we define regional isotope-salinity relationships and broadly
assess whether ocean or atmospheric processes play a larger role in the spatial distribution of these regions.
We identify new regions compared to previous work, and find that over most of the ocean, precipitation,
precipitation isotope values, and evaporation are important in setting seawater isotope-salinity patterns.

1. Introduction

Stable oxygen isotope (5!80) values of fossil marine carbonates are widely used to understand past climate and
ocean variability, including changes in sea surface temperature and salinity on interannual to million-year times-
cales (e.g., Abram et al., 2020; Chen et al., 2018; Gorman et al., 2012; Grothe et al., 2020; Holbourn et al., 2021;
Reed et al., 2022). These §'30 values are primarily a function of ocean temperature and the stable oxygen isotope
composition of seawater (§'30, ) during formation (Epstein et al., 1953), with a smaller contribution from seawa-
ter pH (Krief et al., 2010; Robbins et al., 2017; Spiro et al., 1997). As the temperature contribution can be assessed
independently through paired measurements of §'%0 and St/Ca in corals or §'®0 and Mg/Ca in foraminifera
(Alibert & McCulloch, 1997; Gagan, 1998; Mitsuguchi et al., 1996), 880, can be estimated, given that the
temperature-dependent fractionation between seawater and biogenic carbonate (3'%0,-5'%0) is well-defined
(e.g., Epstein et al., 1953; O’Neil et al., 1969). The resulting 8'80_, reconstructions can provide valuable informa-
tion on past salinity, as 8'80, and salinity are strongly related in the surface mixed layer (Craig & Gordon, 1965).
In turn, salinity may provide information on atmospheric moisture balance (Durack et al., 2012), as well as ocean
circulation (Yu et al., 2020).

The linear 8'30,  -salinity relationship, observed across different water masses and regions, varies due to ocean
circulation, water mass mixing, and disparate regional hydrologic processes. Regional atmospheric moisture
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balance, or evaporation minus precipitation (E-P), is a key control on sea surface salinity, and thus §'80_, as these
processes impact both variables in a similar manner. However, the additional sensitivity of 880, to precipitation
and runoff with varying §'80 values can alter the slope and intercept of the §'80_-salinity relationship. The §'30
signature of regional precipitation (SISOP) and runoff is thus integrated into the §!0,, values of the mixed layer.
This influx reflects many influences, such as the seasonality of precipitation 8'30 values moisture source regions,
rain reevaporation, cloud type, and cloud microphysics, none of which influence salinity (Konecky et al., 2019).
Additionally, ocean advection and upwelling can further influence the mixed layer 8'80_-salinity relationship
(Benway & Mix, 2004; Conroy et al., 2023; Stevenson et al., 2018). In high latitudes, seasonal sea ice melt/forma-
tion and runoff can also affect the SIXOSW-salinity relationship (Bauch et al., 2005; Dubinina et al., 2017, 2019).
The y-intercept of the 880 -salinity relationship, the “freshwater endmember,” is thought to be an integrated
measure of evaporation, precipitation, and the isotope signal of each, providing additional information about
regional hydroclimate (Delaygue et al., 2001), along with the slope, which is critical for isotope-based proxy
forward models of marine paleoclimate archives (Thompson et al., 2022). Consequently, it is essential to have an
accurate understanding of the modern spatial variability in 880 -salinity relationship to begin to tease apart its
numerous controls and to provide a framework suitable for stable isotope-based paleoceanographic and paleocli-
mate interpretations.

Over the last two decades, the NASA GISS Seawater Oxygen Isotope database has been the primary source for
8180, data (Schmidt, 1999). These data were used to define widely used regional mixed layer, intermediate, and
deep water mass 8'30_ -salinity relationships (LeGrande & Schmidt, 2006). For the mixed-layer regions, surface
circulation patterns and regions “expected to have distinct §'30 signatures” were used to geographically partition
the data to define 5'80 -salinity relationships. In this sense, geographical and ocean circulation features were
used to infer the spatial boundaries of regions with specific §!%0, -salinity relationships. Sixteen mixed layer
regions were calculated from linear regressions of the upper 50 m of observational data, though the boundaries
of these regions were not provided (LeGrande & Schmidt, 2006). Use of these regions is further complicated by
recent model and observational data indicating additional spatial variability not captured by these mixed-layer
regions (e.g., Bauch et al., 2005; Conroy et al., 2017; Dubinina et al., 2017; Russon et al., 2013; Stevenson
et al., 2015). This is partly due to the limited availability of global, paired §'80, -salinity data, but may also be
related to the method of region identification. Ultimately, this limited understanding of 5'80,-salinity relation-
ships inhibits accurate regional interpretations of marine carbonate §'80 records.

Here, we build on previous work by using a specialized form of neural network, the self-organizing map (SOM), to
define regions with specific, paired SISOSW-salinity values (Akman et al., 2019; Kohonen, 1982; Liu et al., 2006).
The SOM approach can be particularly useful in the earth sciences, as it can extract complex and nonlinear
patterns in time or space from sparse, multidimensional data sets (Liu et al., 2006; Liu & Weisberg, 2011).
In this work, we provide 1° x 1° gridded, global 880, and salinity data sets from paired 8'80,, and salinity
observations to a feed-forward back propagation neural network. We then use the SOM, as implemented in
the SOMPY library, as a tool for region identification based on spatial patterns in the model output (Moosavi
et al., 2014). We apply contour mapping on the SOM output to define regional spatial boundaries of 19 regions
and we then assess the §'80_ -salinity relationships in these regions. Finally, we evaluate how the spatial patterns
for regional 5'80, -salinity relationships change when we include key atmospheric and oceanic tracer data along
with 880 -salinity data in additional SOM experiments.

2. Materials and Methods
2.1. Data Sources and Parameters

Data for this project come from three publicly available §'30_, databases. We utilize data from the NASA GISS
Seawater Oxygen-18 Database, GEOTRACES, and L’OCEAN, along with recent data from the tropical Pacific
(Anderson et al., 2014; Conroy et al., 2017; Reverdin et al., 2022; Schmidt et al., 1999). We select samples with
only paired 880, and salinity measurements (N = 11,119) for the 1° x 1° gridded neural network interpolations
(Figure 1). This maintains direct spatial and temporal overlap of the input observational data and provides the
same “starting point” for the interpolation. Data are filtered by depth (<50 m) to approximate the mixed layer of
the ocean and we set a threshold of 20 PSU to remove strongly freshwater-influenced datapoints. We chose the
estimate of mixed layer depth in line with the methods of LeGrande and Schmidt (2006). However, we refer to
our data as the “surface ocean,” to acknowledge that a boundary set at 50 m does not perfectly capture regional
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Figure 1. (a) Map of paired 5'30-salinity datapoints used in this study.
Color bar denotes 530, value (%o, VSMOW) for each point. 1° x 1°
feed-forward, back propagation interpolations of (b) §'%0, and (c) salinity.
Spatial patterns are similar globally, as is expected from the linear relationship
between 830, and salinity, but with notable regional differences.

or seasonal changes in mixed layer depth. Temporally, the §'30_, and salinity
data set spans 1950-2021. Due to the sparsity of the observations, all data
are treated as representative of the long-term mean, similar to previous work
(LeGrande & Schmidt, 2006).

2.2. Neural Network

To build a 880, -salinity data set, we use a feed-forward back propagation
neural network with two hidden layers to interpolate the two global data
sets for 880, and salinity (Figure 1 and Figure S1 in Supporting Informa-
tion S1). We use 85% of the data for training and 15% for validation, the opti-
mum ratio and the training precedent for machine learning (Bishop, 2006).
During the training process, 85% of the data is given to the neural network,
which iterates until the weights in the hidden layer have converged to produce
a fit to the data. The weights are trained using AdaGrad, the Adaptive Gradi-
ent algorithm, a stochastic gradient descent method with a dynamic learning
rate. This ensures consistent convergence and removes the need for tuning the
learning rate hyperparameter (Duchi et al., 2011). After the training step, the
remaining 15% of the data is incorporated into the input. Using the trained
model, we feed 100% of the data back into the model to verify that the model
is predictive beyond the training data. The training output and the validation
output are compared to compute a total error for the neural network. This
verification step demonstrated that our model had a 2.9% error on the training
data, and a 3.8% error on the test data. The increase in the error indicates that
the model is reasonably generalizable without having overfit to the training
data. Plots showing the error of each point with respect to the neural network
model are shown in Figures S2 and S3 in Supporting Information S1.

In the neural network used here, the input layer consists of four variables:
8180, or salinity, latitude, longitude, and sample depth. The first hidden
layer is composed of 1,500 nodes, and the second layer is composed of 500
nodes. The architecture was converged by scanning over each layer depth in
increments of 250 until the model error was reasonable and matched coastal
features. The final output of each neural network provides a 1° X 1° global
data set for 8'80, and salinity (Figure 1).

2.3. Self-Organizing Map

The SOM is a specialized form of a neural network which takes in data
as a grid of nodes that spatially adjust during training. SOMs are used for
dimensionality reduction and have been shown to identify patterns with noisy
data and nonlinear trends better than empirical orthogonal functions (Liu
et al., 2006). During data processing, the SOM uses competitive learning to

take each data vector (the data at each 1° X 1° grid point) from the interpolations and sort it into a “best matching

unit” (BMU) based on the dimensions of the data (i.e., depth, §'%0

> and salinity). There is thus no numeric

information in the BMUs, they only indicate similarity of data points as measured by a Euclidean distance in

feature space. This provides information about the relationships within the data set, that is, what grids are similar
to one another, based on the input data.

For our application, we are concerned with how the feature space (depth, 8'30

o and salinity) maps to a single

classifying variable, the BMU. In our analysis, we assume that large changes in feature space will map to distinct

spatial regions where the boundaries between regions are marked by large BMU changes over small spatial

extents. This approximation allows us to identify surface ocean regions with large amounts of data that congre-

gate in feature space but lacks the ability to distinguish distinct linear relationships that are very similar in feature

space. For example, this method excels at identifying the large, subtropical North Pacific gyre region, but will
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not show small subsets of that data which may fall off the overall regional
relationship, such as a single cruise in a single season in the North Pacific.

2.3.1. Self-Organizing Map: Training and Error

The SOM is trained in two parts: a coarse stage and a fine stage. During
training, we designate an initialization mechanism, a number of nodes, a
number of training iterations (both a fine and coarse stage) and calculate two
error values: the quantization and topographic error. Both errors are unit-
less. The quantization error is the sum of the Euclidean distances between

the data points and their respective BMUSs. The topographic error evaluates

what proportion of the data points do not have its first or second BMU as a

1400 1600

neighboring unit. During training, the rough and fine training lengths were
adjusted to reduce topographic error and quantization error. During this same
step, the SOM was initialized by one of two methods: random or principal
components. With a random initialization, it is often challenging to get repro-
ducible output from the SOM (Schlegel et al., 2017). Accordingly, we use a
principal component initialization, which uses a principal component analysis
calculated from the provided data set and creates a reproducible output. The
initial weights are normalized by the variance of the data to ensure numerical
stability. We determine that a coarse training length of 30 iterations and a fine

training length of 10 iterations converges the errors to a topographic error of
0.00 and a quantization error of 0.04. We train the SOM on our 830, and
salinity interpolation data sets. The result is a more robust SOM output than

By what could be generated from the 11,119 observational data points alone,

as there is significantly more data for training. The SOM output from the
Figure 2. (a) Self-organizing map (SOM) output for the global ocean with
regions corresponding to Table 1 labeled. The SOM is generated from 1° X 1°
grid interpolations of 8'80, and salinity and the boundaries between regions

interpolated data points and the output from the observed data points are in
good agreement (Figure 2), indicating the §'%0 and salinity interpolations
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are taken from contour lines applied in (b). SOM output is in feature space
and has no numeric value, however a scale showing the range of best matching
units (BMU) is provided. Grid point color shows the BMU and relationships
between grid points. Regions with similar colors have similar data in feature
space: 8180, and salinity (e.g., red regions are similar to other red regions).
(b) SOM validation output after observational data is fed back into the SOM

are accurate representations of the observational data set.

Finally, a key decision in the training process is designating a number of
nodes in the SOM, or the “grid size,” which determines the number of
BMUs. With too few nodes, the resolution is too coarse, potentially leading
to missed regions. With too many nodes, there is a negligible effect, but there

model. Observational datapoints are shown as squares and the datapoint color
indicates the BMU. Observational datapoint BMUs generally correspond with
interpolation BMUs (background SOM output). This indicates that the 5'%0,
and salinity interpolations are good models of the observational data.

would be many regions with too few points to perform linear regressions.
There is no risk of overfitting unless the number of nodes equals the number
of data points or more. In this case, each 1° X 1° grid datapoint would be in
its own BMU and there would be no regional relationship. We used 40 nodes
(i.e., a 1,600 BMU grid) as this is the minimum number of nodes needed
to converge the SOM. After 40 nodes, no change is apparent in the output, therefore no benefit is gained from
additional nodes.

2.3.2. Self-Organizing Map: Region Identification

Regional boundaries coincide with BMU color gradients and are most reliable in the areas with large amounts
of observational data (Figure 2). The SOM does not define sharp boundaries between regions with no observa-
tional data separating them. A salient example of a large interpolation distance with no observational data is the
southeastern subtropical Pacific. Such locations with limited or no observational data are unable to be statistically
identified as distinct from or similar to surrounding regions.

In addition to the initial SOM, based solely on 8'30_, and salinity, we run three additional SOM experiments
that include ocean and atmospheric variables known to affect 880, and salinity values. In one experiment, we
also include an “ocean tracer” that includes nitrate, phosphate, silicate and dissolved oxygen circulation tracers
sourced from the NOAA World Ocean Atlas, a suite of quality controlled global ocean data sets (Garcia et al.,
2006). In the second experiment, we add an “atmospheric tracer” that includes global E-P reanalysis data from
ERA-Interim, a global atmospheric reanalysis data set, and 8‘80p (Dee et al., 2011; IAEA). For this SOM exper-
iment, long-term annual mean 5‘80p data was sourced from the International Atomic Energy Agency Global
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Figure 3. (2) SOM with §'%0,, and salinity data (same as in Figure 2a). (b) “All tracer” SOM generated with §'%0,, salinity, §'%0, (GNIP annual mean (1953-2021),
all sites) E-P (long-term annual mean (1979-2016) mm/day from ERA-Interim reanalysis data set), and ocean tracers to 50 m (phosphate, nitrate, dissolved oxygen,
and silicate, accessed from NOAA World Atlas 05). (c) “Atmospheric tracer” SOM run with only atmospheric variables: SISOP, E-P. (d) “Ocean tracer” SOM with only
oceanic tracers (nitrate, phosphate, dissolved oxygen, and silicate).

Network of Isotopes in Precipitation (IAEA GNIP), and interpolated to 1° x 1° using PyKrige, a Python library
used for kriging in geoscience data sets. We use a Gaussian variogram and parameters determined by an L1 norm
minimization. Finally, an SOM containing the ocean tracers, atmospheric tracers and the original %0, and
salinity data (“all tracer” SOM) was created (Figure 3b).

2.4. Regional $'80_ -Salinity Fittings

We calculate linear regressions on the 8'80_, and salinity observational datapoints in each SOM-defined region
(Table 1). The observational data used for each regional linear regression is decided by data points that fall
into the contour-identified regions of the SOM. Contours were calculated using the “serial” algorithm from
ContourPy. The number of contours was determined by using clearly separated regions (e.g., Mediterranean Sea,
Southern Ocean) as a threshold. Spurious signals (i.e., contour “dots” enclosing areas smaller than 2° X 2° grid
points) were removed for clarity and ease of use. Secondary regressions are also reported for a region when multi-
ple relationships are apparent and N > 10. These secondary relationships were visually identified and typically
are derived from single data sets that represent a smaller sub-region or time period. We do not consider values
that do not represent open-ocean conditions (e.g., samples from lagoonal environments), although these points
are still included in the figures.

3. Results

Broadly, all four SOM outputs (Figure 3) share core features, but with significant differences reflective of the
input data sets. All SOM outputs reflect the subtropical gyres in low BMUs (red/orange), separations between
them, and high latitude regions on the opposite end of the BMU spectrum (blue-green). Generally, the boundaries
between regions are sharper in the SOM models with atmospheric or oceanic tracers (Figures 3b—3d) compared

MURRAY ET AL.

5of 11

A ‘6 “€T0T ‘STSYTLST

:sdpy woiy papeoy:

ASUBDI'T SUOWIO) dANERI1) d[qeorjdde o) Aq PaUIdA0T 21 SAONIE Y 1350 JO SN 10J AILIGHT AUIUQ AJ[IA UO (SUOHIPUOO-PUE-SULID) W0 AA[1MAIBIH[AUT[UO//:5d1Y) SUONIPUOY) pue SULID [, a1 23S “[€Z0T/T1/40] U Areiqr auruQ Ad[ipn “(-ou] BANGET) 2qnopeay AQ 19400V dET0T/6TOT 0 1/10p/w0d A[1M”



A7oN |
NI
ADVANCING EARTH
AND SPACE SCIENCES

Paleoceanography and Paleoclimatology 10.1029/2023PA004612

Table 1
Regional 5'%0,, -Salinity Relationships Calculated in This Study
Sample size Slope error Intercept error RMSE
Map ID Region name (N) Slope Intercept  R? (1o) (lo) (%o0)
A Arabian Sea Primary 302 0.17 -5.52 042 0.01 0.41 0.12
Arabian Sea: Secondary 17 0.57 —-19.08 0.44 0.17 5.82 0.24
B Arctic Ocean 874 0.57 -19.94  0.80 0.01 0.29 0.98
C Atlantic Ocean Primary 932 0.18 -5.57 054 0.01 0.20 0.16
Atlantic Ocean Secondary: Delaware Coastal Current 29 0.18 -6.87 0.88 0.01 0.40 0.14
Atlantic Ocean Secondary: Bahamas, Florida, Mid-Atlantic coast 114 0.13 -2.89 0.56 0.01 0.36 0.45
D Bay of Bengal 112 0.19 -6.22  0.87 0.01 0.23 0.17
Bay of Bengal Secondary 16 0.24 =877 0.78 0.03 1.06 0.30
E Northeastern Pacific/Bering Sea/Chukchi Sea 608 0.37 —13.01 0.48 0.02 0.49 0.72
F Central/Eastern Equatorial Pacific 720 0.14 —-4.46  0.70 0.00 0.12 0.11
G Northeast Atlantic 569 0.18 -591 091 0.00 0.08 0.16
H GIN Seas, Northeast Atlantic 2,072 0.32 —11.07 0.61 0.01 0.19 0.5
I Svalbard 197 0.19 -647 039 0.02 0.58 0.26
Svalbard: secondary 20 0.06 -1.97  0.09 0.05 1.59 0.26
J Hudson Bay, Hudson Strait, Baffin Bay, Northwestern Passages 622 0.44 -15.70 0.49 0.02 0.57 0.65
K Indian Ocean 429 0.35 -11.78 043 0.02 0.69 0.11
Indian Ocean Secondary 25 0.12 -3.30 0.57 0.02 0.68 0.28
L, Mediterranean Sea 147 0.226 —-8.66 0.76 0.01 0.47 1.42
M Tropical to Subtropical North Pacific Primary 188 0.55 —18.70  0.92 0.01 0.48 0.11
Tropical to Subtropical North Pacific Secondary: SPURS?2 cruise 45 0.03 -0.78  0.02 0.03 1.01 0.10
N Red Sea 48 0.30 -10.27  0.95 0.01 0.38 0.10
(6] Sea of Okhotsk 282 0.44 —-15.00 0.94 0.01 0.21 0.24
B South Pacific 36 0.33 -1127  0.63 0.04 1.56 0.22
Q Southern Ocean 1,942 0.40 -13.76  0.58 0.01 0.26 0.15
R Western Tropical Atlantic 404 0.17 -525 0.76 0.00 0.16 0.44
S Western Pacific 340 0.28 -9.28 0.76 0.01 0.29 0.16
Western Pacific Secondary: New Guinea 10 0.12 —-4.22 039 0.05 1.93 0.09

Note. Map ID corresponds to those labeled in Figure 2. Secondary and tertiary slopes are shown in italics.

to the output generated from the paired 880, -salinity alone (Figure 3a). The ocean tracer data set has a smaller
range in BMU values and less spatial variability (Figure 3d). The Intertropical Convergence Zone (ITCZ) is only
readily apparent in the SOM output with §'%0, and E-P data (Figure 3c), not in the §'*0,-salinity output alone
(Figure 3a).

We use the “8'80, -salinity only” SOM as the focus of our discussion on regional relationships to compare
with previously defined regions and to avoid prior assumptions and biases in the SOM. Although we include
the atmospheric and oceanic variables in our secondary SOM experiments to assess their contributions to
8180, -salinity values, using these versions of the SOM for region delineation would include the prior assumption
that atmospheric or oceanic variables are a significant control globally, which may not be an appropriate umbrella
assumption. However, regional boundaries and relationships could certainly defined from the multitracer SOMs,
for specific regional studies where the impact of the atmospheric or oceanic forcing is significant.

We identify 19 regions from the “3'80-salinity only” SOM (Figure 2 and Table 1). Several of these regions
were not previously identified in LeGrande and Schmidt (2006), though some are identified in regionally focused
studies, such as the western tropical Pacific and the Russian Arctic seas (Bauch et al., 2005; Conroy et al., 2017;
Dubinina et al., 2017). Slope values range from —0.07%o to 0.57%/PSU and intercept (freshwater endmember)
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Figure 4. Linear regressions for regions in Table 1. Primary relationships are shown in green-blue. Gray points are considered outliers and not included in regressions;
secondary regressions and associated values are shown in yellow and tertiary regressions are shown in light green.

values range from —19.95%o to —0.79%o, with the slopes and freshwater endmembers significantly correlated
(r=-0.99, i.e., low slopes coincide with more positive intercepts) (Figure 4). Generally, R? values are moderate
to high and most relationships are statistically significant, with the exception of one high latitude relationship
(Svalbard secondary) and one cruise (SPURS?2) in the North Pacific (Table 1). Higher slopes tend to have higher
R? values (r = 0.35).

4. Discussion
4.1. SOM Patterns and Regional §'80_,-Salinity Relationships

Four SOM outputs are produced to provide insight into the magnitude of influence between atmospheric versus
oceanic drivers in the §'%0_ -salinity relationship. To do this, we compared the “ocean tracer” and “atmospheric
tracer” (Figures 3¢ and 3d) output to the “3'80,,, and salinity only” output (Figure 3a). The BMU range of all
outputs is the same, but derived from different input data sets. Despite this, the spatial patterns in the “5'%0_, and
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salinity only” and “atmospheric tracer” output share many features and are notably similar, with the exception of
the prominent equatorial band (the ITCZ) in the latter. This suggests that globally, the §'30_,-salinity relation-
ship is highly influenced by 6180p and E-P, which are the data sets used for the atmospheric tracer. The “ocean
tracer” output, by contrast, is more dissimilar to the “8'30,,, and salinity only” output and the ocean tracer's inclu-
sion in the “all tracer” output (Figure 3b) leads to more spatial differences from the “3'%0, and salinity only”
output than atmospheric alone. While both the tracers produced in this work are imperfect representations of all
real-world ocean and atmospheric processes, our data imply that atmospheric processes strongly influence 50,
and salinity data globally. From the SOM tracer experiments, we move forward using the “8'30,, and salinity
only” output, henceforth called simply, “the SOM.”

Generally, the SOM output partitions the global ocean into two endmembers, visualized by red-orange or
blue-green BMUs (Figure 2). Although the SOM output is defined by both salinity and §'#0,, values, there is a
broad pattern in the BMUs that is reflective of salinity, given the strong covariation of these variables. Here we
focus on the differences, which are reflected in different regional slopes and freshwater endmembers (intercepts).
Generally, low slopes and more positive freshwater endmembers are expected in the tropics due to moisture
source proximity minimizing isotopic distillation and maintaining relatively higher 6'30p values. This leads to a
smaller change in 880, per unit change in salinity and more positive freshwater endmember values (LeGrande
& Schmidt, 2006). Indeed, most tropical slopes are low (~0.2-0.3). However, §'30-salinity slopes in the tropics
can also be influenced by specific, local processes. For example, the higher slope in the western Pacific relative to
the eastern and central Pacific may reflect the impact of lower & 18Op values in this area with higher precipitation
amounts, leading to a larger change in §'%0,, per unit salinity (Conroy et al., 2017).

High latitude regions have both the highest and lowest slopes in the data set (>0.5 and < 0.2). Sea ice melt and
formation are implicated as key drivers of the §'30_ -salinity relationships in these areas (Bauch et al., 2005, 2010;
Dubinina et al., 2017; LeGrande & Schmidt, 2006). A sea ice signal may manifest in two parts: during formation,
we expect large increases in salinity associated with brine exclusion (Rohling, 2013). During melting, salinity
decreases. In both cases, we expect low slopes or slopes near zero as stable oxygen isotope fractionation between
sea ice and water is very small, but salinity changes remain comparatively large, as seawater and sea ice salinities
are often >10 PSU different. Large modifications in salinity may even lead to a decoupling of the 5'80_-salinity
correlation (Dubinina et al., 2017), where the range in salinity is so comparatively large compared to §'30,
that there is no significant relationship. Low R? values in such high latitude regions may thus be due to sea ice
related freshwater fluxes, leading to 880 -salinity decoupling. Regional studies of high latitude seas have also
identified continental runoff from rivers with very low 8'80 values as an additional influence on 880, (Bauch
et al., 2005; Dubinina et al., 2017, 2019). Such low §'80 values in high latitude runoff are a result of precipitation
and streamflow with low 8'80 values (Nan et al., 2019). Thus, in the high latitude regions with high slopes and
more negative intercepts, runoff is likely a major control on the §'30_ -salinity relationship.

Several regions defined from the SOM output contain secondary slopes that can be clearly separated from the
primary slopes (Figure 4 and Table 1). Some secondary regression equations may represent different water
masses (e.g., Akhoudas et al., 2021; Benway & Mix, 2004). However, based on the available metadata, spatial and
temporal variability are the main cause of the SOM-region secondary slopes. For example, spatially, the Delaware
Coastal Current and Florida-Bahamas sampling areas plot separately from the rest of the Atlantic basin (Khim
& Krantz, 1996; Surge & Lohmann, 2002). Temporally, the data from a single NASA cruise, SPURS2 (Salinity
Processes in the Upper Ocean Regional Study), plots on an independent line from the rest of the Subtropical
to Tropical North Pacific. This suggests that the data from this cruise may represent a distinct sampling period
with conditions that are not well represented by the majority of the regional data. Furthermore, the Western
Pacific region is composed almost entirely of data from two long-term monitoring sites (Manus, Papua New
Guinea and Koror, Palau). Although spatial data sets from these sites had similar regression equations relative
to temporal data sets, the Palau regression is known to vary interannually, likely due to changes related to the El
Niflo-Southern Oscillation (Conroy et al., 2017; Morimoto et al., 2002).

4.2. 8'80, -Salinity Relationships Versus Previous Work

LeGrande and Schmidt (2006) defined a set of 16 8'30_ -salinity relationships for the mixed layer, constrained by
surface ocean circulation, but not explicitly defined in space. Without a clear understanding of region boundaries,
it is challenging to draw comparisons between the regions calculated here and the previous data set. However, a
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selected subset of regions from both, which are likely to have spatial overlap, will be discussed here: Mediterra-
nean Sea, Southern Ocean, and the tropical Pacific region(s). The Mediterranean Sea calculated here is quite simi-
lar to that calculated in LeGrande and Schmidt (2006) with slopes at 0.23, 0.28%0/PSU and intercepts at —8.66,
—9.24%o, respectively. The similarities between these two regions provide a benchmark for the data throughput
from this study, as the machine learning technique here captures the semiclosed region inferred in previous work.
The Southern Ocean provides an example of a region with significant increases in data since LeGrande and
Schmidt (2006) (N = 503 to N = 1,942). The addition of data here led to a higher slope that is typical of regions
with large freshwater fluxes (0.4 vs. 0.24 %o/PSU previously) and a lower intercept (—13.75%o from —8.45%o
previously) reflecting low 8'30 runoff and precipitation. This makes a strong case for how additional data in the
surface ocean can dramatically change 8'80-salinity relationships and shape our interpretations. In the trop-
ics, our data set provides two distinct 880 -salinity relationships: western Pacific and central/eastern Pacific.
Splitting of the tropics shows a central/eastern Pacific region with a lower slope, higher intercept compared to
the western Pacific region. Our western Pacific region (y = 0.28x — 9.28) is quite similar to the fit provided in
LeGrande and Schmidt (2006) (y = 0.27x — 8.88), which is used to encapsulate the whole of the tropical Pacific in
that study. This change in slopes across the tropics is also noted in regional studies of the tropical Pacific (Conroy
et al., 2017). The classification of the tropics into two regions provides a clear example of our data set providing
additional observed spatial variability compared to previously calculated 8'30,-salinity regions.

4.3. Applications and Use
4.3.1. Paleoceanography and Paleoclimatology: Coral Forward Modeling

We anticipate that the regions generated in the work will be of specific interest in paleoclimate research that
utilizes marine carbonate §'80 records. The linear relationships defined in this work can aid in reconstruction
of salinity from proxy 8'®0 and 8'30_, records. Additionally, coral 8'80 forward modeling, which uses obser-
vational 8'30_, and SST to predict “pseudocoral” time series, requires both regional 8'30_, data and the locally
calibrated slope value to predict the 880, contribution to coral §'30 records (Reed et al., 2022; Thompson
et al., 2011, 2022). In this way, the regional slope indicates whether the coral record should be interpreted as
largely responding to 8'%0, (salinity) or to SST, and the pseudocorals are highly sensitive to changes in this
slope (Thompson et al., 2022). The distinction between 5'80,, or SST dependent between becomes particularly
important in locations with large freshwater fluxes such as the western tropical Pacific, where 8'30, (salinity) is
the main driver of 8'80, (Conroy et al., 2017). Using the data set provided here, locally constrained slopes can be
used in place of a “bulk tropical Pacific” value when assessing 8'®0_, or SST signals with reduced uncertainty
in the slope value, which can cause overestimation of the 8'0,, contribution (Thompson et al., 2022). Further
understanding of the 880, (salinity) and SST contributions to these proxy records will allow for more detailed
assessments of the main controls on the related ENSO signature in these marine carbonate records.

4.3.2. Isotope-Enabled Climate Models

Water movement through the earth system is a critical part of the global climate system and stable water isotopo-
logues provide a unique ability to trace hydroclimate processes in climate models as well as paleoclimate proxies
(Dee et al., 2023). Global climate models are increasingly including an isotopic tracer, such as the isotope-enabled
Community Earth System Model (iCESM) (Brady et al., 2019). This effort requires a gridded input data set of
global 8'%0_, values, such as that computed in this work. Ascertaining the performance of these isotope-enabled
climate models is also contingent on accurate modern §'%0 measurements. For example, in iCESM (Brady et al.,
2019), the simulated 8'%0_-salinity slopes are consistently lower in the Atlantic and Pacific compared to the
observation-based slopes provided in LeGrande and Schmidt (2006) and surface ocean §'30 in the Atlantic and
Pacific tropics and subtropics is also too depleted. At present, it is unclear whether these differences arise from
model biases, creation of regions that are not representative of real-world 8'80_ -salinity relationships, or tempo-
ral variability in the 8'80-salinity relationship. Regardless, the data set provided here will be useful for future
isotope-enabled model benchmarking exercises.

5. Conclusions

Accurate interpretations of marine carbonate 5'80 records depend on robust, regional §'30_-salinity relation-
ships to understand past changes in ocean salinity, ocean circulation, and climatic variability. Despite limited
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observational data, we show that neural network learning is able to define regions with specific §'®0_,, and salin-
ity values. With this method, we identify distinct surface ocean regions that range from entire ocean basins to
smaller regions associated with unique sources of freshwater forcing, and then calculate the linear 5'80_-salinity
relationships in these regions. We also show that unique secondary slopes are a function of small-scale spatial
and temporal variability. The spatial data set developed in this project opens up possibilities to further investigate
what drives changes in the 5'%0, -salinity relationship. Additionally, the data processing provided here allows
for reproducibility so that regions may be updated as more data becomes available. SOM experiments produced
here using atmospheric and ocean tracers show that our E-P and 6180p “atmospheric tracer” produces spatial
patterns that are highly similar to the 8'80_-salinity output used to derived regional fits. This suggests that the
8180, -salinity relationship is highly influenced by atmospheric processes globally. Thus, the extra degree of
freedom accorded by measuring 8'30,, along with salinity may provide enhanced ability to find atmospheric
signals in modern seawater and paleoseawater archives.

Data Availability Statement

Code and interpolations developed for this research is available at Zenodo (Murray et al., 2023b). Individual data
points used in this work, along with their metadata and region assignment, are available at NOAA Paleo Data
Search (Murray et al., 2023a).
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