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Abstract: We introduce the unitary almost-Mathieu operator, which is obtained from
a two-dimensional quantum walk in a uniform magnetic field. We exhibit a version of
Aubry—André duality for this model, which partitions the parameter space into three
regions: a supercritical region and a subcritical region that are dual to one another, and a
critical regime that is self-dual. In each parameter region, we characterize the cocycle dy-
namics of the transfer matrix cocycle generated by the associated generalized eigenvalue
equation. In particular, we show that supercritical, critical, and subcritical behavior all
occur in this model. Using Avila’s global theory of one-frequency cocycles, we exactly
compute the Lyapunov exponent on the spectrum in terms of the given parameters. We
also characterize the spectral type for each value of the coupling constant, almost every
frequency, and almost every phase. Namely, we show that for almost every frequency
and every phase the spectral type is purely absolutely continuous in the subcritical re-
gion, pure point in the supercritical region, and purely singular continuous in the critical
region. In some parameter regions, we refine the almost-sure results. In the critical case
for instance, we show that the spectrum is a Cantor set of zero Lebesgue measure for
arbitrary irrational frequency and that the spectrum is purely singular continuous for all
but countably many phases.
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1. Introduction

Discrete-time quantum walks have been extensively studied over the years from different
points of view. They have intrinsic mathematical interest and are important in physics,
where they serve as models for the quantum evolution of single particles with internal
degrees of freedom and bounded hopping length on a lattice or graph. In this context,
quantum walks were shown to exhibit many single and few particle effects, such as
ballistic motion [5,7,47], decoherence [3,5], dynamical localization [4,59,60], and the
formation of bound states [2]. Recently, quantum walks were shown to provide a testbed
for symmetry protected topological order [61] and bulk-boundary correspondence with
a complete set of indices that are stable under compact as well as norm-continuous
perturbations [27,30,31,33]. Complementary to this, quantum walks can be viewed as
quantum mechanical analogues of classical random walks [1]. Their increased ballistic
spreading compared to classical diffusion makes them interesting for applications in
quantum computing such as the element distinctiveness problem [6], universal quantum
computation [67], and search algorithms [72,75].

From a mathematical point of view, a quantum walk is given by a unitary operator
W acting in a suitable Hilbert space with an underlying lattice or graph structure. As
such, the long-time dynamical characteristics of the system are given by powers W’
with ¢ € 7Z, and one is naturally led to the study of the spectral problem of the unitary
operator W. See [23-25,34,35,38,39,62,70] and references therein for a partial list of
works that have analyzed quantum walks from the spectral perspective.

The present paper aims to study the spectral properties of quantum walks in a ho-
mogeneous external magnetic field. We are motivated by work on electrons moving in
a two-dimensional lattice under the influence of a uniform magnetic field, a physical
system that has been intensively studied in recent decades; compare, e.g., [50,64,80].
The almost-Mathieu operator (and more generally the extended Harper’s model) is one
example of a model of an electron in a magnetic field, which inspired intense study in
mathematics; see [14,16,19,21,48,51,55,69,73] and references therein for a partial list.
Despite the ostensible simplicity of the setup, the properties of this system are rich and
deep, requiring extensive analysis to understand fully.

Motivated by this, we discuss in this paper two-dimensional quantum walks in ho-
mogeneous magnetic fields, which are constructed via a discrete analogue of minimal
coupling [32]. After a suitable choice of gauge, this leads us to the investigation of one-
dimensional quantum walks with quasiperiodic coin distribution. Using intuition from
the two-dimensional setting, we introduce a pair of coupling constants A1, A2 € [0, 1]
for the one-dimensional walk in a novel manner (cf. (2.4) and (2.6)). We then show
that this partitions the parameter space into three regions. When A1 > A3, the behavior
of the shift dominates and the resultant operator has absolutely continuous spectrum.
When A1 < X, the coin operator dominates, and one observes localization for typical
frequencies. When A1 = Aj, one observes singular continuous spectrum for all but an
explicit countable set of phases. We describe the main accomplishments broadly here
and more precisely in Sect. 2.

First, we give a complete account of the spectrum and the spectral type in a measure-
theoretical sense (that is for a.e. frequency and a.e. phase), hence the title, which is
naturally inspired by the titles of [37,58,63]. See Fig. 1 for an illustration of the spectrum.

Next, we answer a question posed by and to the authors of [44]: how can one suitably
incorporate a version of a “coupling constant” into the model of [44] in such a manner
that one sees a phase transition? Their model is given as a one-dimensional quantum
walk, and each such walk is known to be equivalent to a CMV matrix [25,78,79] which



Unitary Almost Mathieu Operator 747

in turn is specified by a sequence {a, }°2 _ . of Verblunsky coefficients in ID. In the CMV
setting, it seems natural to introduce a coupling constant by multiplying the Verblunsky
coefficients by a scalar A; however, this does not lead to fruitful results in the present
setting. See also the discussion in [79, Appendix B], especially item 14 in Section B.1.
Indeed, Simon says therein that the lack of suitable coupling constants “impacted my
ability to discuss almost periodic Verblunsky coefficients”, which suggests that our novel
method of incorporating a coupling constant will have applications in other models.

Let us also point out: as a result of this connection, every result in our paper can be
translated into a result about a suitable CMV matrix. For the reader who is unfamiliar
with OPUC and CMV matrices, we have included a detailed description of the connec-
tion between CMV matrices and one-dimensional quantum walks. We have chosen to
formulate our work in terms of quantum walks, since that makes the origin of the model
more transparent.

The first main ingredient in the proofs of our results is the classification of cocycle
dynamics: in the nomenclature of Avila, we classify the matrix cocycle induced by the
stationary equation of the walk (cf. (2.19)) and show that it is subcritical on the spectrum
when A1 > Ay, supercritical on the spectrum when A1 < X, and critical on the spectrum
when A1 = X,. This discussion sweeps a few technicalities under the rug; the transfer
matrix cocycle is not always well-defined for some values of the parameters and hence
one works with a suitable regularization whose dynamics one can then characterize in
the global theory scheme.

The second key ingredient is a suitable version of duality via a Fourier-type transform
(cf. Theorems 2.4 and 2.5); in analogy with the setting of Harper’s model, we call this
“Aubry duality” [8]. Up to a transpose, the duality transformation exchanges the coupling
constants A1 and A, which enables one to translate suitable reducibility or localization
statements from one parameter region to another. In particular, the operators described
herein are quasiperiodic unitary operators that obey a version of Aubry duality, and thus
this work addresses a query from Li-Damanik—Zhou [65]. The form of duality enables
one to show that all three spectral types (absolutely continuous, singular continuous, and
pure point) occur within the non self-dual regimes.

As abyproduct of our model and the detailed cocycle analysis, we produce a family of
quasiperiodic unitaries with positive Lyapunov exponents in certain parameter regions.
As noted by Zhang [84], this is often difficult to accomplish. See also [34,35].

It is worth emphasizing that there are two separate categories of challenges that had
to be overcome for this work to be written. The first and most substantial challenge is
to choose the correct model. At the time when [44] was written, it was not clear how to
correctly incorporate coupling constants into the coins, and moreover, the naive guesses
turned out to be incorrect. After [28], one then was able to disentangle the correct choices
from the physical model.

The second challenge is to suitably recontextualize techniques and ideas from the self-
adjoint setting to the unitary setting. This is sometimes easy, sometimes challenging, and
sometimes impossible. In the present case, the techniques fell into the first two classes.
Our main goal was to present a complete picture in the sense that one observes all three
types of cocycle dynamics, precise formulations of duality, and all three spectral types
in suitable parameter regions. In order to achieve this while still keeping the length of
the paper in check, we have aimed to spend less time on techniques and tools that are
obvious generalizations from the self-adjoint setting in order to supply full details for
problems that present genuine challenges and required more novel solutions.
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Fig. 1. Spectrum of the UAMO for different (rational) ® on the vertical axis and argument of the spectral
parameter z on the horizontal axis. Left: Critical case with (A1, A2) = (1/4/2, 1/4/2). Clearly visible is the
fractal structure, which is reminiscent of (a quenched variant of) the Hofstadter butterfly [20,50] (see [28] for
the spectrum for (11, A7) = (1, 1)). Right: Sub-critical case with (A1, A2) = (l/ﬂ, l/ﬁ). The spectrum
of the super-critical case (A1, A2) = (1/+/2, 1/+/4) is the same (see Corollary 2.6), but the spectral type is
different

Let us describe a few of the challenges. First, due to singularities that arise at complex
phases in the non-critical cases, the transfer matrix cocycle is singular and hence one
cannotimmediately use the “asymptotic cocycle” method as in previous cases to compute
the Lyapunov exponent. We use a topological argument to circumvent this difficulty: we
show that the range of the determinant of the cocycle map has trivial winding around
the origin in the two “perturbative” regions of large and small imaginary parts and
use suitable continuity arguments to establish this for all imaginary parts away from the
singularities. This is inspired by related works of Jitmirskaya—Marx for the (self-adjoint)
extended Harper’s model [56].

The calculations needed to establish the form of Aubry duality are quite delicate
and require several non-obvious changes of coordinates. More generally, because of the
more complicated structure of the operator and its transfer matrices, most calculations
are more involved than the corresponding self-adjoint counterparts. Furthermore, as
mentioned before, it is also not obvious what these analogous calculations should be.

In the proof of continuous spectrum for the case of critical coupling, we need to deal
with the lack of a symplectic symmetry of the cocycle. Concretely, we had to find a
novel symmetry of the cocycle which was then different from the symplectic symmetry
that is typically used in studying reducibility questions for Schrédinger cocycles. In the
Schrodinger setting, one can simply exploit the fact that the transfer matrix is real and
so invariant under complex conjugation, whereas the corresponding symmetry we had
to use was more complicated.

Moreover, in several of the arguments, it is needed to relate the transfer matrix cocycle
to one in SL(2, R) in order to apply the machinery of such cocycles. However, even
after normalization, the cocycle for this model clearly does not belong to SL(2, R);
nevertheless, we found a novel conjugacy from the cocycle into SL(2, R), which again
is not at all obvious from the form of the cocycle.

Finally, our operators are not standard CMV matrices but rather generalized CMV
matrices, which allow for an additional complex phase in some parameters. This obstacle
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is the easiest to overcome: any generalized CMV matrix is unitarily equivalent to a
genuine CMV matrix by a simple diagonal unitary operator. This allows one to translate
results from CMV matrices to generalized CMV matrices with relative ease. For the
reader’s convenience, we describe this equivalence in Sect.2.3. This will be discussed
more thoroughly together with some additional applications in the forthcoming work
[29].

We wish to emphasize that, although there are often corresponding results on either
the unitary or self-adjoint side, such results are often about classes of operators (periodic,
random, quasiperiodic), and not specific models. That is to say, there is to our knowledge
no dictionary that explicitly connects properties of Schrodinger operators with CMV
matrices or quantum walks in an explicit fashion.

The remainder of the paper is structured as follows. We defined the model and state our
results in Sect. 2. Section 3 discusses the two-dimensional quantum walks from which the
main model of the paper is derived. In Sect. 4, we discuss the associated transfer matrix
cocycle in detail, characterizing the cocycle dynamics according to Avila’s global theory
in each parameter region. Section 5 discusses and proves several manifestations of Aubry
duality for the model, which is then put to use in Sects. 6—8 to prove the remainder of
our spectral results.

2. Model and Results

2.1. Setting. We will consider a quantum walk W : ¢2(Z) ® C? — ¢*(Z) @ C* =: /4,

defined by a quasiperiodic sequence of coins. In the present section, we will define pre-

cisely the model, which arises via a one-dimensional representation of a two-dimensional

quantum walk in a magnetic field. However, we emphasize that the one-dimensional

model can be defined and studied without reference to the two-dimensional model. We

explain the connection to two-dimensional magnetic quantum walks in detail in Sect. 3.
Let us write the standard basis of /7] as

8 =6,Re, nel, se+ —} @2.1)

where {3, : n € Z} denotes the standard basis of EZ(Z) ande, =[1,0]",e_ =1[0,11"
denotes the standard basis of C2. For an element Y € J4, we write its coordinates as

Y = (8, V) so that
V= (Ursi+ 8,

nez

where y*, ¥~ € (%(Z). Viewing 74 = 02(Z,C?), it is natural to also put ¥, =
[¥}, ¥, 17. Recall that a quantum walk W is specified by the iteration of a suitable
unitary operator. Choosing a sequence of unitary coins

"1
qn 4

n=1"% "%, | €UQ,C), 2.2
|:q21 qzz} 2,0 (2.2)

n n

and a parameter A € [0, 1], the walks we consider are given by
W =35,0, (23)

where Q acts coordinatewise via Q, (i.e., [QV], = OQn¥y) and S, is given by

S E =8t £ 28T, A =V1-2a2 (2.4)
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The reader may readily verify that S, Q, and W are all unitary. We call a walk of the
form (2.3) a split-step walk with coupling constant A.

We are now ready to define our main model. Given coupling constants A1, > € [0, 1],
afrequency ® € T := R/Z, and a phase 6 € T, we consider the walk

Wit a2, 0.0 = i Q1. 0.0 (2.5)
where the coins O, = Qj,,¢,6,, are given by

. _[A2cos@r(n® +0)) +i)d, —iasinRr(nd +0))
Qn = Q. 00n = [ ho SINQT(MD +0)) Ay cosQT(® +0)) — ix’z] - (26

By an argument using minimality of 6 +— 6 + ® and strong operator convergence, there
is for each A, A, and irrational & a fixed set X, , ¢ € 0D with

o (Wi, a0.0,0) = X, 0.0 forevery 6 € T.

Working out the relevant product, the reader can check that the actionof W = W;, 1, 4.6
in coordinates is given as

Wyl = A1 (o cos@r((n — D)@ +0)) +idy) Y| — Aasin@r((n — D + )y, )
=1} (A2 sinQr(n® +0) ¥y + (A2 cosm(nd +0)) — iA)Y, ),

Wy, = A1 (Aasin@r((n+ D@ +0) Y, + (A cosQr((n+ D +0)) —iry)y, )
+ M) (A2 cosQr(n® +0)) +ir5) Y, — Ao sinQRr(n® +0) Y, ) .

See also Lemma 4.1.
For later use, notice that

det(Qy,,000) =1 YA €[0,1], ®,0 €T, neZ. (2.7)
Because of the close parallels between this model and the almost-Mathieu operator
(AMO), we propose calling Wy, 1, .6 (an instance of) the unitary almost-Mathieu

operator (UAMO). The case A1 = Ap = 1 was studied in [28,44,66,76].

Remark 2.1. Let us make a few remarks about the parameters.

(a) Since v/1 — (—1)2 = /1 — A2, one has
Q—Az,CI),Q = Q)\z’q)’9+%~

Moreover, if U denotes the unitary transformation 8 +— 48¥,, one can check that

USU=—-S_, UOQn,00U =0, —a4-

Thus, we take A1, A2 € [0, 1] and do not consider A; € [—1, 0).
(b) If @ isrational, then { Q,, } is periodic and hence its spectral [79] and dynamical [5,39]
properties are well-understood.
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(c) If Ay = 0, then SO(S,jf = 14,7, so the spectrum of W is pure point and all walkers
are localized for trivial reasons. On the other hand, if A = 0 the coin sequence is
constant. In analogy with the self-adjoint setting, in which one considers A + AV with
A areal coupling constant, the quantity A, /A| appears to play a role similar to 1. In
fact, we will see later that the most appropriate analogue of the coupling constant A
appears to be

a(l+J1=2D (1 +a)
oML+’

Ao = Ao(A1, A) = (2.8)

M(L+,/1—=23)

since we will show (Corollary 2.10) that the Lyapunov exponent is given by max{0,
log Ao} on the spectrum. In particular, A; = O corresponds to 19 = oo, while 1, =0
corresponds to setting Ag = 0.

(d) In fact, the connection to the coupling constant of the almost-Mathieu operator is
even stronger than the previous remark suggests. To wit: we will see that the form
of Aubry duality for the present walk (modulo some niceties that we will discuss
more precisely later in the paper) acts by exchanging A1 and A;, similar to the duality
transformation A > 1/X in the case of the AMO (compare [8,69]). Thus, we have
three interesting regimes to study:

@ Subcritical: 1| > A, (equivalently, Ay < 1)

Critical: 1| = A, (equivalently, Ag = 1) A2

Supercritical: 11 < A, (equivalently, Ao > 1)

0 M1
Later in the paper, we will show that the nomenclature is consistent with the charac-
terization of cocycle dynamics according to Avila’s global theory (cf. Theorem 2.9).

(e) Naturally, one is interested in the dynamical behavior of the walk as well, that is, the
spreading (or lack thereof) associated with the unitary group {W'},cz. Here we note
that (at least for Diophantine ®) one appears to observe a transition from ballistic
motion in the subcritical regime to diffusive motion in the critical case to localization
in the supercritical region. For the frequency ® = (+/5 — 1)/2 and phase 6 = 0, we
plot the standard deviation of the position operator as a function of time in Fig. 2.

2.2. Results. Let us now describe our main results. First, we discuss the spectral type
in each parameter region for a.e. frequency and phase.

Theorem 2.2. Assume A1, Ay € [0, 1].

(a) If A1 > Ay, the spectral type of Wy, »,,@.0 is purely absolutely continuous for a.e. ®
and 6.

(b) If A1 < Ay, the spectral type of Wy, »,.0.0 is pure point for a.e. ® and 6.

(¢) If M < Ao, the spectral type of Wy, 1,. .0 is purely singular continuous for generic
O and all b.

(d) IfO < A = Ay < 1, then Xy, 5,0 is a Cantor set of zero Lebesgue measure for
every irrational .
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Fig. 2. Different spectral types have drastically different dynamical behaviour, even for very small changes
in the coupling constants as can be seen from the square of the variance of the position operator: fixing
O =(1- ﬁ)/z and 6 = 0, the orange line corresponds to the subcritical case with (A1, A2) = (1,1 — 10*4)
where o ~ ¢, the red curve is critical with (11, 22) = (1, 1) and the localized blue curve with o ~ const is
supercritical with (A1, A2) = (1 — ]0*4, 1). The green curve with o ~ /7 is plotted for reference

(©) If 0 < Ay = Ay < 1, the spectral type of Wy, 5., o0 is purely singular continuous for
all irrational ® and all but countably many 6.

(f) If .1 = A2 = 1, the spectral type of W;,, »,..0 is purely singular continuous for all
irrational ® and a.e. 6.

(g) Forany0 <Xy <1, ® € T, and 6 € T, the spectral type of Wy ;,.®,0 is pure point.
For every irrational ®, %9 ;, ¢ = {z € D : |[Re(z)| < A2}.

(h) Forany 0 < A1 <1, ® € T, and 6 € T, the spectral type of Wy, 0.0.0 is purely
absolutely continuous. For every irrational ®, X;, 0.0 = {z € 0D : |[Re(z)| < A1}.

Remark 2.3. Let us make some comments about Theorem 2.2.

(a) The result in Theorem 2.2.(a) is obtained from the result in Theorem 2.2.(b) by
duality, so the sets of ® are the same in each part.

(b) The generic set in Theorem 2.2.(c) consists of those irrational ® satisfying a suitable
Liouville condition, namely,

lim sup IOgﬂ = 00,
k—00 gk
where g, denotes the kth continued fraction denominator associated with ®.

(c) Theorem 2.2.(f) and the case A = A = 1 from Theorem 2.2.(d) were proved in [44]
and are listed here for the sake of completeness. We remark that the full-measure set
of 6 was written down explicitly in [44].

(d) In the region 0 < A; = A < 1 numerical evidence suggests that the spectrum is
purely singular continuous for all phases. In the self-adjoint AMO setting this was
proved in [52] using a particular choice of gauge in which the AMO becomes singular.
However, we were unable to apply this gauge to obtain fruitful results in the current
model.

(e) Parts g and h of Theorem 2.2 are trivial and are listed for the sake of completeness.
Nevertheless, for the reader’s convenience we have included the proofs to these
statements at the end of Sect.4.1.
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®If A > 0, A2 < 1, and P is rational, then W has purely absolutely continuous
spectrum for every phase.

(gIf Ay > 0, A2 = 1, and ® = p/q is rational in lowest terms, then there are two
possibilities. If 6 € }‘ + ‘IYZ + %Z, then again W decouples into an infinite direct sum
and has pure point spectrum with eigenvalues of infinite multiplicity corresponding
to compactly supported eigenfunctions. Otherwise, the spectrum of W is purely
absolutely continuous.

(h) In the region A1 > X,, we expect that purely absolutely continuous spectrum holds
for all & and ® (note that A; > A, implies A1 > 0 and A» < 1 so the examples
with compactly supported eigenfunctions do not occur in this regime). The proof of
this would take us outside the scope of the current paper; we plan to investigate it in
future work.

There are two crucial ingredients involved in the proofs of the main results: (1) a
suitable version of Aubry duality for the operator family {Wj, 1, ¢, : 0 € T} and (2) a
careful analysis of the associated transfer matrix cocycle.

The form of Aubry duality for this model demonstrates that dual of the family
{Wrin. @0 @ 8 € T} is given by {W):Z,MSD,@ : @ € T} in a suitable sense. Let us
make this precise. Define

W){i] A, ®,0 — W):E,kl,¢,9’ (29)

where T denotes the transpose.

Theorem 2.4 (Aubry duality via solutions). Let A1, Ay € [0, 1], ® € T irrational, and
0 € T be given, and suppose y € J41 satisfies Wy, ,.0.0¥ = 2 for some z € dD. If
@5 is defined for € € T by

r§+ 1 . 1 . Y+
Yn _ 2ming l Yr(nd +§)
[(ﬂi } BV, [i 1] [&‘(nqug)] (2.10)

where * denotes the inverse Fourier transform, then
Wi o oct =20 @.11)

for a.e. £. Furthermore, if Y € £Y(Z, C?), then (2.11) holds for all &.

Let us emphasize that ¢* € C% @ C? is not assumed to belong to the Hilbert space
4 = €*(Z) ® C?, so one should 1nterpret Wx o A8 A finite difference operator
in the previous theorem. Indeed, when i is an ‘Anderson localized (i.e., exponentially
decaying) eigenvector of Wj, 1, ¢,¢, then @* is in general an extended state: bounded
but not decaying.

One can also express duality of generalized eigenfunctions via suitable direct inte-
grals. The following formulation is useful.

Theorem 2.5 (Aubry duality via direct integrals). For any A1, Ay, and P,
® ®
/ Wi o, 0.0 dO = / Wi, a0 465
T T

@
where = denotes unitary equivalence of operators on / JA d6.
T
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Let us note the following elementary consequence of Theorem 2.5.

Corollary 2.6. For any L1, Ay € [0, 1] and ® € T irrational,
Y, ® = iy ,hy,®- (2.12)

Proof. By minimality and Theorem 2.5, we have

D D
Zaae =0 (/ Wi 2, 0,0 d9) =0 (/ LAWY d9) = iy, @
T T

as desired. O

The second crucial ingredient in our work is the classification of cocycle behavior
in the language of Avila’s global theory [12]. To formulate these results, let us recall
the general setting. Given & irrational and a continuous map M : T — C2*2, we may
consider the skew product

(@, M):TxC>>TxC?2 B, 6+ M®OW) (2.13)
and its iterates given by (®, M)" = (n®, M"), where

M"(0) = M™®©0) = M((n — DD +6)--- M(D+6)M(H)

0
= [[ MGo+o) (2.14)
j=n—1

for n € N. The map (&, M) is called the quasiperiodic cocycle associated with ® and
M. The Lyapunov exponent of (&, M) is given by

1
L(®, M) znlinéoﬁfquog IM"(6)| d6b. (2.15)

If M is analytic and enjoys an analytic extension to a strip of the form {6 +ie : 0 €
T, |e| < &}, then for |¢| < 8, we consider the complexified cocycle map

M(+ig) : T M@ +ie). (2.16)
For each |¢| < §, one can consider the Lyapunov exponent of the complexified cocycle:
L(®,M,¢e) :=L(D, M(-+ieg)). (2.17)

If, in addition, M : T — SL(2, R), one says that (&, M) is

o Uniformly hyperbolic if || M" ()| > ce*!"! for all n € Z and constants ¢, A > 0
e Supercritical if L(®, M) > 0 and ($, M) is not uniformly hyerbolic

e Suberitical if L(®, M, ¢) = 0 for all € in a strip containing ¢ = 0

e critical if L(®, M) = 0 but (&, M) is not subcritical.
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Let us now explain how quasiperiodic cocycles arise in the spectral analysis of the
operators Wj, 1, .o,6. To study the spectral problem associated with a walk W = S, O,
one naturally studies the generalized eigenvalue equation W = zy with z € C, which
leads to the transfer matrices defined by

T.(n) = L[tz N det @, + WA (g2 — D) + 2 g2 — 0z
) ‘132 —q,%l — Az Az

I:l'—+1 — w; i|
[ w’? :| B TZ(n) I:wn_l

whenever z € C \ {0} and ¢ solves Wi = zy (see Sect. 4.1 for details).

In the primary quasiperiodic setting of this paper with coins Q, = Q;, ®.9,, given
in (2.6), this leads naturally to a quasiperiodic cocycle. To describe this more precisely,
given Ay, A2, @, 0, and z, define A, (0) = A, x,,,(6) to be T;(0) as in (2.18) with O,
as in (2.6), that is,

i|. (2.18)

‘We will show that

—-1_—1 -1 2, —1
A.6) = 1 _ AL 2T 204 AZS(Q/) +2ZA A —Xas(0) — Az ’
rac(0) — ik —A2s8(0) — Ajz A1z
(2.19)
where we adopt the abbreviations
c(f) = cos(2mH), s(0) = sin(276). (2.20)

This defines a cocycle map, whose iterates and Lyapunov exponent may be considered
as in (2.14) and (2.15).
We define

. 1
L() = Ly, 0(@) = L(®, Ay pn,) = lim ~ / log 1 A}:%, ©)]|do
T

which by irrationality of ® and Kingman’s subadditive ergodic theorem satisfies for
each z and a.e. 6:

1 1 n,®
Liin0(@) = lim —log 4%, @),

Later, we will see | det(Ay, 2, (6, 2))| = 1 (see (4.35)), which naturally implies L(z) > 0
for all z € C\{0}.

We will see later that the transfer matrix cocycle map associated with the Aubry dual
walk W is given by

Ail,)nz,z(e) = Aipar.1/2(0). (2.21)

In particular, for z € dID one has Ail oz = Aj, .z» SO statements transfer into the dual
setting in a straightforward fashion.

One must be careful in the present setting for two reasons. First, the transfer matrices
for the UAMO are not in SLL(2, R): indeed they are not even unimodular; this can be
solved with a suitable conjugacy that moves the normalized cocycle A/+/det A into
SL(2, R) (we will give a more detailed description later). Second, in the case A, = 1,
the associated cocycle obviously is not analytic and hence the apparatus of global theory
cannot be applied directly, even after shifting to the real cocycle. To deal with that, we
work with a suitable regularization; in fact, because of singularities that arise off the real
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axis, we use this regularization even when A, # 1. To thatend, we consider B = B;,, 3, ;
given by

2(02¢(0) — iX})
By ,.2(0) = [T’zz Ajy0.2(0)
_ 2 [ 2as@) + 22 —hGas@) + 219 g5
M +25) L —Ai(as®) +A)2) Az ’ ’

The additional prefactor 2/(1 + 1)) is chosen so that the Lyapunov exponents of A and
B are precisely the same (which we will demonstrate later). The regularized cocycle
B is analytic, even for A = 1 and one can classify cocycle dynamics throughout all
parameter regions.

As mentioned before, the case Ap = 1 presents some complications with the general
nomenclature: the cocycle A is not analytic and the regularized cocycle B has points of
singularity at which det B = 0, so neither can be pushed to SIL(2, R) in a simple way.
Let us address this case first.

Theorem 2.7. Suppose @ is irrational and A = 1.

@ Ifay =Xxy =1, then L(®, B1,1;,€) =2mle| forallz € 11,0 and all .
b)IfO <Ay <Ay =1,then Ly, 1,6(z) > 0forall z € X, 1,¢. Indeed,

1+ 2]
Ly, 1,(z) > log ol (2.23)

with equality if and only if z belongs to the spectrum.

One could consider calling the behavior in Theorem 2.7.(a) “critical” and the behavior
in Theorem 2.7.(b) “supercritical”, but it should be understood that this is a slight abuse
of terminology since those words are generally understood in the literature to refer to
SL(2, R) cocycles.

Now let us consider the cases with 1> < 1. In order to apply the relevant results
from the global theory, we must work with an SIL(2, R) cocycle. There are thus two

impediments: det Ay, »,.; # 1 and A, 1,.z//det Ay, 1,.z ¢ SL(2, R) in general.
Let Y (A) denote the unitary matrix

T+ —iT=A —/T—=r+i/T+A
Y(A)_E[\/I—A+i\/1+k ¢1+A+i¢1—AJ’ (2.24)
and put
% A 1 Z 9
A7 (0) = Yo 2@y 2.25)

N _ AW
22 Jdet Ay, 5,.(0)

Proposition 2.8. Forall 11 € (0, 1], Ap € [0, 1), and z € 9D, A%,Az,z defined in (2.25)
is an analytic map T — SIL(2, R) with analytic extension to a strip. Indeed,

p 1 Rez + A A2s(0 AImz — A Rez — Aps(@
A{;’szz(e) _ [ 1A28(0) 1 1 28( )]

_ 1/ _ /
MJagt + 12c2(g) LHImz = ARez —2250)  Rez+2has(0)

forall 6 € T, where we recall s(6) = sin(2w0) and c(0) = cos(2r0).

(2.26)
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Having conjugated the cocycle into SL(2, R), we can discuss the characterization of
(@, A%) in the language of global theory.

Theorem 2.9. Suppose ® is irrational and Ay < 1.

(@) If0 < ko < A1 < 1, then the cocycle (D, Af’)\z’z) is subcritical forall z € Z 5, ®.
In particular, L(z) = 0 for all z € ¥, 5, -

®) If0 < A1 = Ay < 1, then the cocycle (P, A?I,Az,z) is critical for all z € Xy, j,, 0. In
particular, L(z) = 0 forall z € Z;, 5,. 0.

©If0 < A1 < Xy < 1, then the cocycle (P, Aijl?,kz,z) is supercritical for all z €
21,0, ®- Moreover, the Lyapunov exponent Ly, ;, o satisfies

Ao (1 +)\./1)]

Rl (2.27)

Ly, 3,,0(z) = log [

with equality if and only if 7 belongs to the spectrum.

By Theorems 2.7 and 2.9, one has the following corollary which shows that the
Lyapunov exponent can be explicitly computed on the spectrum.

Corollary 2.10. Forany0 < X1 < 1,0 <A <1, ® € T, and any z € X, 1,4, one
has

Ly, 5,,0(z) = max{0, log Ao},
where g is given by (2.8).

Remark 2.11. The careful analysis of cocycle dynamics pays dividends for the deter-
mination of the spectral type. For instance, we use criticality in an essential manner to
prove that the spectrum is a zero-measure Cantor set in the case A1 = A2 > 0. Similarly,
the subcriticality statement implies that the transfer matrix cocycle is almost reducible
on the spectrum by Avila’s almost-reducibility conjecture announced in [12] and proved
in [9,11]. One can then apply reducibility theory as in [65] in order to deduce purely
absolutely continuous spectrum for all phases. To execute this scheme would take us
outside the scope of the current work; we plan to address it in future investigations.

2.3. Connection to CMV matrices. Let us make explicit a connection between the cur-
rent setup and Cantero—Moral-Velazquez (CMV) matrices. This generalizes the CGMV
connection, which is named after the foundational papers [25,26]. The CMV matrix is a
unitary operator on £%(N) that has many applications in in spectral theory and orthogonal
polynomials on the unit circle (OPUC). This connection is analogous to the relation-
ship between the Jacobi matrix and orthogonal polynomials on the real line (OPRL).
A standard reference for the many connections between the CMV matrix and OPUC is
[78,79]. In situations in which the coefficients are generated by an invertible dynamical
system (such as an irrational circle rotation as in this work), is is natural to work with
extended CMV matrices, which are the natural analogues acting in ¢>(Z).

In the present work, we need some additional flexibility afforded by complexifying
certain parameters, which gives rise to objects we call generalized CMV matrices. How-
ever, we will explain how to relate these objects to standard CMV matrices. Let us first
define generalized CMV matrices. Let D = {z € C : |z| < 1}. For each pair

=2
@p) e =@ 2 eD P+ lal =1},
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put

L = L{(@2n, p20)}nez) =
M = M{(a2n41, P20+1)}nez)
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O, p) = [g _pa} .

Given sequences of elements (¢, p,) € S3, put

P O, p2n),

= @ O(a2n+1, P2n+1)

where in both cases ® (o, p;) acts on 02({j, j +1}). One then takes £ = Ea,p = LM,
which one can check has the matrix representation

a0p—1 aipo  P1Po
c= P0P—1 —po—] —Oqog —pixo . (2.28)
axpl  —oap A3 P302
P01 —P20] —03Q)  —P30)

where all unspecified matrix entries are zero and we have placed a box around the entry
corresponding to (8, £8). If additionally one has p, € [0, 1] for all n, one necessarily
has p, = (1 — |ocn|2)1/ 2, and we simply call this a standard CMV matrix. In this case,
we refer to {o, },cz as the sequence of Verblunsky coefficients of €. If p, = 0 for some
n € Z, the reader can check that £ preserves 2(ZN (=00, n]) and £2(ZN[n+1, 00)), so
the operator £ decomposes as a direct sum of two half-line CMV operators on (—oo, n]
and [n + 1, 00).

In [25], Cantero, Griinbaum, Moral, and Veldzquez observed that one may connect
CMYV matrices and quantum walks. Since our quantum walk setting is slightly more
general than theirs, let us briefly describe this connection. Order the basis of .7 as
follows:

...,6_1,60,8 87.87.85, ...

Computing directly, one observes

(2.29)

/ 218++)\.C]11(S +)»6]115n+1
225% 1 2 /q128, + rql%8T .

W = Sig2 8, +q)'8) = agl's, |
W8, = S (g8, +q.28) = rqP2s, | — g

Thus, writing W in the ordered basis (2.29), we get

Mo, M,
_)\/90 _)‘/qO
2 11 2z 12 21 22
W= qo ‘10 Aqy h , (2.30)
)\’/qlll A ql
)\’qllll )\’qlllz
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where we have boxed the §; -6, entry of W. Thus, if we additionally assume that
det Q,, = 1 for all n, we may write

0, = |:102n—1 _a2n—1i|

qA2pn—1 P2n—1

for some suitable (o2, —1, P2n—1) € S3. With this, W can be identified with a generalized
CMYV matrix with those odd coefficients and such that (a2, p2,) = (A, A) foralln € Z.
In particular, the walk Wy, ,,. 4.6 is equivalent to the generalized CMV matrix &5, 3,,¢.0
given by

-1 = A sinRa (n® +0)), pop—1 = A cosQRr(nd +0)) — i)/z

2.31)
Ap = )‘«/11 Pon = Al.

In view of this connection, each of our main results has an application to a suitable
generalized CMV matrix. We have chosen to begin with quantum walks rather than CMV
matrices since it makes more clear the motivation behind choosing our parameters in
the manner that we did.

Moreover, every generalized CMV matrix is equivalent to a standard CMV matrix in a
simple manner. Since we quote some results from the theory of standard CMV matrices,
let us spell this connection out in more detail. The following result in this formulation
may be found in [29]; for the reader’s convenience, we give the proof. We say that two
operators A and B in ¢2(Z) are gauge equivalent if there is a diagonal unitary operator
D on ¢2(Z) such that DAD* = B.

Proposition 2.12. Every generalized extended CMV matrix is gauge-equivalent to a
standard CMV matrix. Indeed, for any sequence (a, p) € (S*)2, there is a diagonal
unitary operator D so that DEy , D* = &y |

Proof. For z € C, denote ang(z) = z/|z| if z # 0 and ang(0) = 1. Define dy = 1, d,, =
ang(pop1 - - - pp—1) forn > 1, and d, = (ang(pnpps1 --- p—1)) "' forn < —1. A direct
calculation shows that the diagonal unitary [Dv], = d, v, satisfies D&, , D* = & ||

O

Corollary 2.13. The generalized CMV matrix &, ), 0,0 defined by (2.31) is gauge-
equivalent to the standard CMV matrix 5)‘?1)\2@’0 defined by

an =M, a1 = sinRr(n® +6)), pp=+1—|oyl?. (2.32)

As a generalized CMV matrix, there are two other cocycles associated with W,
namely, the Szegd cocycle (cf. [78, Equation (1.5.35)]) and the Gesztesy—Zinchenko
(GZ) cocycle [46]. Denoting

Z —a

1 Ill-a z
X(a’p’Z):;[—aZ 1] P(Ot,p,z)=;[/Z _a},
1[—
Q(a,p,z)=—[1"‘ 1]
ol

—o
the (two-step) Szegd cocycle associated with W, 1, &6 is given by

Spii2(0) = XV, A1, 2)X (Mg sin(276), Ay cos(2mB) — idh, 2) (2.33)
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and the two-step GZ cocycle is given by
G n.2(0) = P(A}, A1, 2) QA sin(270), Ay cos(2m0) — id, 2) (2.34)

An equivalence between G and S is given in [39, Eq. (3.3)], and an equivalence between
G and A is given in [83, Eq. (3.20)]. We have

_ _ —A A
27 S0 = CMAM,)LZ.,zCMl, Cy, =[ ! 01], (2.35)
and
-1 -1 z 0
Dz GunmzD: =2 Sy D= |:0 1:| . (2.36)
Corollary 2.14. For all irrational ®, A1 € (0, 1], A, € [0, 1], and z € D,
L(®, Ay 25.2) = L(D, Sy 0y.2) = L(DP, Gy 0z.2)- (2.37)
Proof. This is immediate from (2.35) and (2.36). O

Together, Corollaries 2.13 and 2.14 allow one to apply much of the theory of standard
CMYV matrices to generalized CMV matrices and in particular to the UAMO.

The remainder of the paper is organized as follows. In Sect. 3, we describe the mo-
tivation behind the study of the model in question by relating it to a two-dimensional
magnetic quantum walk in a uniform magnetic field. Section4 analyzes the transfer ma-
trix cocycle and in particular proves Theorem 2.9 as well as Theorems 2.2.(g) and 2.2.(h).
Section5 works out suitable versions of Aubry duality for the model and contains the
proofs of Theorems 2.4 and 2.5. Section 6 discusses continuous spectrum (that is, the
exclusion of eigenvalues) and contains the proof of Theorem 2.2.(c) and the “purely con-
tinuous” half of Theorem 2.2.(e). Section 7 discusses the phenomenon of zero-measure
Cantor spectrum in the critical case and in particular proves Theorems 2.2.(d) and 2.2.(e).
Section 8 discusses localization in the supercritical region and spectral consequences, in
particular proving Theorems 2.2.(b) and 2.2.(a).

3. Motivation: Two-Dimensional Magnetic Quantum Walks

Let us describe the motivation behind studying quantum walks with quasiperiodic coins
as in (2.6). The reader who is not interested in the physical origins of the model could
skip this section, but it explains why we study the one-dimensional quasiperiodic walks
that we choose to study and it also provides some insight into why we could expect such
walks to exhibit a suitable version of Aubry duality. Indeed, since the almost-Mathieu
operator arises from the study of a two-dimensional tight-binding model of an electron
subjected to an external magnetic field, the natural starting point of our model is a
two-dimensional quantum walk subjected to an external magnetic field. We also direct
the reader to [68,77] for additional insights about the relationship between self-adjoint
one-dimensional quasiperiodic and two-dimensional magnetic operators.

As already mentioned, one can simply start from the model defined in (2.3), (2.4), and
(2.6), but it is helpful to see how this arises physically, which also explains the choice
of the model.

Let us recall the two-dimensional magnetic QW model of [28]. The state space will
be 4 = £2(Z*) ® C? with orthonormal basis

{8y =6, ®es:neZ’ se(£)=17L)}
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As before, view C2? = ¢2(Z,) and write e, = [1,0] " ande_ = [0, 1]". Fix a magnetic
flux ®. In the symmetric gauge, the magnetic translations are given by [32]

T\ =Tio: 8 e 78 . 3.1)
Ty=To: 8 ", (3.2)

Viewing 7% = 02(Z2) @ €%(Z?) in the natural manner, we have

Uio O
Tm:[ 0 dej

where U; = U ¢ are the corresponding shifts on £2(Z). Again in the symmetric gauge,
one can take

—in<1>n25 in<1>n18

Uyp:8,—e e, Uzo 18> € ntes -

We now also introduce the coupling parameter A € [0, 1] to get the coupled operators

Tj’)“@ giVCI’l by
T _|Uje 0|2 -A[{1 O | AU; —A
PREZ10 1[0 oa [[0Ue]| TN AU

Let us briefly explain the terminology. We call A a “coupling constant” to elucidate an
analogy with the self-adjoint setting. Namely, A is a parameter that dictates how strongly
neighboring sites interact with one another by mediating the strength of the shift relative
to the coins. Thus, as A decreases from one to zero, neighboring sites interact less and
less and hence are less coupled together. Moreover, the main model of the present paper
experiences a phase transition in the coupling constants that is similar to the phase
transition exhibited in the self-adjoint Harper’s model and that is unitary for each choice
of parameters, which in turn requires genuine care in the definition of the model.

Denoting by

1 1 i
=754 4)
we then want to consider
2
W =W, o =Ti1.0C0T21,.0C0.

see Fig.3. The coin Cy is chosen to be a conjugate of the Hadamard coin, which is a
popular choice for an unbiased coin in the quantum walk setting. The particular conjugate
is chosen so that our quantum walk has a relatively simple form, yet other choices are
possible (see the recent experimental work [82]).

Let us now pass to a universal setting — the rotation algebra A = Ag, which is the
C*-algebra generated by elements u, v satisfying the commutation relation

uv = e 2 Pyy, (3.3)

One obtains W from the matrix algebra A ® C2*? via the following representation.
Define py : Ay — B*(Z?)) by pa(u) = Uj,¢ and pp(v) = Uz, . Here, the “2” refers
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(W), 2
[ [
\ i / o i|>\1>\2|2
o— .O . %|>‘1>‘l2|2

/ i \ @ | LN
INIAS |2

Fig. 3. Neighborhood structure and transition amplitudes for the walk w®

to the dimension of the representation. Presently, we will define the representation p;
carrying Ag into (7). Noting that one indeed has

Omid
UioUso = ¢ ™' 0Ul 0

we see that this is well-defined. One can then extend to the matrix algebra Ag ® C2*2
in the standard way: p2({u;;j}) = {p2(u;;)}. One then obtains W from the algebra via

W = pa(w), where

[ ru = Aav —A)
w= [ o m*} Co[ 2 | Co (34)
1 2

On the other hand, we can map 4 ¢ into B(*(Z)) via p1(u) = S and p;(v) = Mo,
where § denotes the shift §,, = 8,41 and M = Mg ¢ denotes the multiplication operator

M(Sn — ezni(n¢+9)6n.

Note that SMo = e~ >"® M4, S, so this indeed defines arepresentation Ay — Z(¢2(Z))
and hence extends to a representation of the matrix algebras p; : Agp ® C**? —
AB(*(Z) ® C?). Thus, applying p; to w yields the operator

W= S)»] Q)»z,(b,@

where Q;, ¢ is a coin operator with local coins

1 1 i )L26,271i(n<l>+9) —\ 1 i
Qn = ka,@,@,n = 5 |:—l _1i| |: )"/2 )\'28—27[1'(211@+0) —7 —1

_ [hacos@r(n® +0)) +ik, —hpsinQm(nd +6))
- AosinRmr(n® +6))  AycosRm(n® +6)) —iry |

4. Classification of Cocycle Behavior

In the following sections we aim at characterizations of the spectrum and spectral proper-
ties of Wy, 1,,®,0. This requires knowledge about the cocycle of its transfer matrices. We
begin by describing the transfer matrix formalism for Wiy = z and the dual equation
W Ty = zi. We then prove a lower bound on the Lyapunov exponent in the super-
critical region via a Herman-type estimate. Afterwards, we completely classify cocycle
behavior according to the relationship between the coupling constants.
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4.1. Transfer matrices. We begin by writing W in coordinates.

Lemma 4.1. Suppose . € (0,1] and W = S, Q is a split-step walk with coupling
constant ). and coins {Q, }nez, as in (2.3). For each n € 7, we have

Wyly =r(abivig v a2, ) =% (v +aivy ). @D
Wy, =2 (%ﬁﬂﬁﬂ + 61331%11) +2/ (%%11#; + %%2%_) . 4.2)
Proof. Writing out the coordinates, we have
Wy, =[SOV,
=0V, —XN[QV],
=i (v v a ) ¥ (a2 v+ aur ).,
proving (4.1). The proof of (4.2) is similar. |
Analogously, we can write W | in coordinates.

Lemma 4.2. Suppose . € (0,1] and W = S, Q is a split-step walk with coupling
constant ) and coins {Qy}nez as in (2.3). For each n € 7, we have

(WYL =gy Wy + X ¥0) + a7 (X9 + Ay, ) 4.3)
(WY, = a2 Mty + M) + a2 (=2 Y + Ay, ). (4.4)
Proof. This is almost identical to the proof of Lemma 4.1. O

Proposition 4.3. Suppose A € (0, 1] and W = S, Q is a split-step walk with coupling
constant ) and coins {Qp},cz as in (2.3).

(a) Ifz € C\ {0}, W = zv, and Q,, is not an off-diagonal matrix, then

r-:+l — I/f;
[ v } = L) [wn‘_l} ’ @)

where T,(n) is given by (2.18).
(b) Ifz € C\ {0}, W = zv, and Q,, is not an off-diagonal matrix, then

]

(¢) If z € C\ {0} and Q,, is not off-diagonal,

11
9n

det Tz(n) = 4.7)
q;

which is unimodular.
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Proof. (a) Beginning with Lemma 4.1, plug (4.1) into the eigenvector equation Wi =
zyr and shift indices n — n + 1 to obtain

Wpy = A (%111#; +61r12%7) A (qn+1¢n+1 +qn+an+l) (4.8)
Similarly, we obtain from (4.2), Wi = z¢,andn +— n — 1
oy =a (2 v g )+ (alli a2 e) . @9)
Then, (4.2)-1/+(4.8)-A and (4.1)-1/— (4.9)-A give
Ve aavg = (2407) (e v+ atun ) =i ey, @10)
and
Ny =zt == (2 +27%) (v +aPun ) = —a2u - Py, @D
respectively. Solving (4.11) for ¥, yields
Vo = q% (2w — @ + 2205 (4.12)
n
which is the bottom row of (4.5). Note that this step uses the assumption that Q,, is not

off-diagonal, that is, |q,§1| = |qn2| # 0. Solving (4.10) for F | and inserting (4.12)
produces

1 SNy —
via = o2 (a0 v+ @ = 2ovy)

1 /
=—Z(q,11w;+(q xz)(qzz (xzwn . (q,%lmz)w:)))

(@'a? = @2 = XD + 22007 + @) =MDy, )

>~

T g

1 1 _ 2. _ _
Zﬁ(k Lo ldet @ + /471 (g2 — g% + 20" 1)1/f;+(q;2—x’z)1/fn71),
n

concluding the proof of (4.5).

(b) Since Q is unitary and S, is real-symmetric, QT = a* = a_l and S)T =5 = S;l.
Thus, (4.6) follows from (4.5) and noting

Wiy =z¢ & Q'S ¢y =z < 7'y =50y

(c) For the determinant, we have

det T.(n) =

dot [rlz—l det 0, + 1271 (g2 — ) +2020 7 g2 — )Jz]
AZ

[¢321? —q?' =Nz

1 2
= [q22]2 ((det On + )\/Z(‘Iy%l - LI}'{2) + Zz)\/ ) - (61,12 — )L/Z)(—q,%l — k/z))
n
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1
= W—z]z(det On + qizqﬁl)
n

11
4,

- 22
qn

proving (4.7). Unimodularity of det T (n) then follows from unitarity of Q,,. |

As a consequence of this formalism, let us note the following result for the primary
model of the manuscript.

Proposition 4.4. If0 < A1 < 1,0 < Ay < 1, and D is irrational, then:
(a) For each z € 0D,

{9 € T : z is an eigenvalue of W,\l,,\z,(p,g}

has zero Lebesgue measure.
(b) 2).,.1,,@ has no isolated points.

Proof. This is a well-known argument using ergodicity; compare [36,71]. Since our set-
ting is slightly different than the other settings in which this has been proved, we include
the details for the reader’s convenience. Indeed, the spectral projector x(z; (W, 1,,0,0)
is a weakly measurable function of & € T that is covariant with respect to the shift

U S,jf — 82[”, on account of the identity:

&
UWi,0,0,0:0U" = Wiy ,,0,0-

By ergodicity, the trace of x(;}(Wj, 1,,4,6) is almost-surely constant in €, and the
almost-sure constant value must be 0 or co. Since 0 < A, Proposition 4.3 implies
the eigenspace corresponding to eigenvalue z is always finite-dimensional, and hence
we have x(;}(Wy, 1,,0,0) = 0 for a.e. 6, proving part (a). Since an isolated point of the
spectrum is necessarily an eigenvalue, part (b) follows immediately. O

Remark 4.5. In fact, the reader can check that the conclusions (a) and (b) of Propo-
sition 4.4 are true when A1 = 0 as long as A, > 0. Of course, one can check that
20,0,0 = {=%i} and %i are eigevalues of infinite multiplicity for arbitrary phase, and
hence the conclusions do not extend to A; = A, = 0.

At this point, one can prove the trivial parts of Theorem 2.2.

Proof of Theorems 2.2.(g), and 2.2.(h). Suppose first A; = 0 and A1 > 0. The transfer
matrix cocycle is constant and given by

Jattz Ve 2at —arz] A e bz = ) =M 2
A 0) = 1 1~ 1% = 1 1 12|
21,0,2(0) =i |: _)‘/IZ Az l _)\/12 Az

In particular, the spectral type is purely absolutely continuous by Floquet theory and
the spectrum may be computed from the discriminant. Normalizing the determinant, we
have

Tr(—iAx0.00)) =2 Re(Al_lz), z € 0D, (4.13)

and hence

0.0 = {z € 9D : Tr(—i Ay, 0.(0)) € [<2,2]} = {z € D : Re(r] '2) € [—1, 1]}
={z € 3D : [Re(z)| < A1},
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as desired. Now, suppose A1 = 0 (and note that the the cocycle is no longer well-defined).
In this case, the shift is given by Sp= = £87, so W = SoQ1,.0.0 is a direct sum of
2 x 2 blocks of the form

, [ —Aesin@r(®+6)) —(AzcosQu(nd +0)) —idh) 414
QAZ,CIJ,G,n_ )chos(zn(nd>+9))+ik’2 —dsin2r (n® + 0)) @14

and hence has pure point spectral type.
It is straightforward to check that the eigenvalues of Q) 4 , are

=Xl sin(Qr(n® +6)) £ i\/k’zz + )»% cos2r(n® +0)).

This shows the spectrum of Wy, 00 is {z € 0D : |Re(z)] < Az} whenever @ is
irrational. m]

4.2. The Herman estimate. Let us show that the Lyapunov exponent is uniformly posi-
tive throughout the region A; < A;.

Theorem 4.6. Let ® be irrational. For all Ly, Ay, z, we have

L (o) ae——— 4.
Ak, @(Z) = 108 )\1(1 )\'/2
In particular, Ly, », (z) > 0 for all z € 0D whenever 0 < A1 < Ay < 1 and
lim L = OQ. 4.16
}jlo M,)»z,d)(Z) ( )

forall z € dD, Ay > 0, and irrational P.

Of course, if Ao < Ap, the right-hand side of (4.15) is nonpositive and hence the
content of the theorem is empty in that case.

The central argument in the proof of Theorem 4.6 is Herman’s argument via com-
plexification and subharmonicity [49]. To get the sharpest possible inequality, we need
to compute exactly a specific integral. We only need the ¢ = 0 case for the Herman
estimate, but we will need the calculation for nonzero ¢ for the eventual classification
of cocycle behavior.

Lemma 4.7. Forallt € [0, 1], denote g9 = &o(t) = %arcsinh\/t—2 — 1. Fort € [0, 1]
and € € R, one has

;

log[1+ 21_’ ]—2n(e+so) £ < —g
1
/ 10g‘tcos(2n(9+i£)) — i1 —t2‘ do = log[1+ 21’ ] —gg <& <¢g
0

log[“ 21_’2] +2m(e —eg) € > .

-
)

;

4.17)

11— 42
= log |:1+21tj| + 27 max{0, |¢| — &g9}. (4.18)
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Proof. When t = 0, one has /1 — t2 = 1 and £¢(0) = oo, so that both sides of (4.17)
are zero for all ¢. Thus, the + = 0 case is trivial. For 0 < ¢ < 1, define

t t
g() = Eefzmz2 —ivV1—12z+ 562”8

so that |g(e*™?)| = |e 2710 g(e?™19)| = |t cos(2m (0 + ig)) — iv/1 — t2|. The desired
result follows from Jensen’s formula applied to g. O

With the desired integral in hand, we now prove the theorem. Of course, the Herman
estimate will be superseded by the global theory classification; since it is short and self-
contained, we include the proof of positivity for the convenience of the reader who is
unfamiliar with the Herman argument.

Proof of Theorem 4.6. Let A1, Ao, ®, and z be given. The transfer matrix cocycle of
Wi, a0, @,0 18 given by (2.19):

AM,Az,z(a)
_ 1 Az 4 20 A D sin20) + 20 P —hasin2rd) — Az
Ao cos(2ml) — iA —A2sin(2m6) — Az Az '

We view A1, A2, and @ as fixed, so we suppress them from the subscripts throughout
the argument, simply writing, for instance, A,(9) and L(z) instead of Ay, »,.(f) and
Ly, .2, (z). Note that for fixed z € 0D, this map is analytic (as a function of 6) for
A2 < 1 and meromorphic when A = 1.

Denote the regularized transfer matrices by B;(6):

2(hacos(2mO) —id})

B (9) = [ Y ] Az (0) 4.19)
3 2 [Z—l + 222 sin(276) + 24} 2 =1 (A2 sin(276) + X’lz):|
M+ [ —Ar(Aasin2rd) + 1) 2) Az ‘

(4.20)

By Lemma 4.7 (with ¢ = 0), we note that

1 /! 1!
L(z) = lim —/ log ||A?(9)|| df = lim —/ log ||BZ"(9)|| do =: L(®, B,).
n—oon 0 . n—-oon 0 4

4.21)
Write w = exp(2i0) and define M, (w) to mean B, recontextualized as a function of
w, that is

2 7 h 2000 [w_z—lf—l] + 207 =11 0 [w_z—'f_l] +112)

M;(w) = ———~ -
: Iay) | =G [25 |+ 20 e

Finally, let N,(w) = wM_(w), which one can check is an entire function N, : C —
GIL(2, C). Notice that

ira 20 —A
N(0) = ————| 1 . 4.22
0 A1+ 4)) [—M 0 } *-22)
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Given n € N, we define the iterates of M, and N, in the usual manner (keeping in mind
that we are writing the circle multiplicatively here):

0 0
M;l(w) = l_[ Mz(e2"ikq)w), N?(w) = l_[ Nz(eZHika).
k=n—1 k=n—1

In view of the identity N (w) = w" M (w) and the definion of M;, one has
INZ @) = M2 ()] = 1B} O)] (4.23)

forall & € T. Since N'(-) is analytic, it follows that log | N (-)|| is subharmonic. Using
the definition of the Lyapunov exponent, (4.23), subharmonicity of log | N, (4.22),
and Gelfand’s formula (in that order), we get

1!
L(®. B;) = lim — /0 log | B2 (6)]| d6

1! .
= lim — / log [ N" (e*™%)|| a6
0

n—oon

1
> lim sup — log [| N/ (0) |

n—oo N

— tim toe | —22 4 Liog [[24 M
=1 I PRI e | VSN0
A2 20" —Aq
—log| —22 |41 I , 424
Og[xl(lug)}”gwr[—h 0} @29

where spr denotes the spectral radius. One can check that the matrix in the last expression
has eigenvalues A} & 1, which yields

spr [E)i/ll _6\1} — 1+ (4.25)
Combining (4.25) with (4.24) and putting this together with (4.21), we have obtained
Ly, 5,,0(2) = L(®, B;) = log [M] , (4.26)
Ar(1+A5
which concludes the proof. O

4.3. Analytic one-frequency cocycles: a briefreview. Let A : T — C>*2 be continuous
and ® e T irrational. Recall from (2.14) that the iterates of A are given by

A"PO) = A((n — DD +0)--- AP +60)A@H), neN 4.27)

and the Lyapunov exponents of the cocycle (®, A) are given by

1
Li(®, A) =n1g20,—l/?10g A% )| do (4.28)

1 .
L(®, 4) = lim — A log LA™ ®@)17"1|7" d6. (4.29)
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In (4.29), || -=! || =! simply computes the smaller singular value and hence one should
interpret IA~1=" = 0 if A is not invertible. We will focus almost exclusively on the
upper Lyapunov exponent and hence simply write L(®, A) instead of L{(P, A).

Definition 4.8. We say that (®, A) enjoys a dominated splitting if there is a continuous
splitting C2? = A1(9) ® A»(0) into one-dimensional subspaces with

AO)A;(0) S Aj(0+D)
and such that there exists k € N such that
1AL @)1l > A5 @)va
for all & € T and all unit vectors v; € A;(0)

If in addition A is analytic with an analytic extension to a strip {# +ie : 0 € T, |e| <
8}, we may consider the complexified cocycle map and its Lyapunov exponent as in
(2.16) and (2.17): L(®P, A, &) = L(D, A(- +i¢)).

Definition 4.9. The acceleration of A is defined by

1

w(A) =1lim —(L(P, A, &) — L(D, A)).
el0 2me
More generally, for || < § we also denote
1
w(A,n) =w(AC+in) =lim —(L(P, A, n+¢) — L(P, A, n)).
el0 2me

Let us collect the main properties of this apparatus. For details and proofs, we
direct the reader to Avila [12] (who proved the result for unimodular cocycles) and
Jitomirskaya—Marx [56,57] (who extended the result to singular cocycles). See also
Avila—Jitomirskaya—Sadel for the generalization to higher dimensions [17].

Theorem 4.10 (Avila [12], Jitomirskaya—Marx [56,57]). Suppose A : T — C2%2 g
analytic with an analytic extension to the strip {0 +ie : 0 € T, |e| < §}.

(a) The function ¢ — L(®, A, ¢€) is continuous, convex, and piecewise affine.

(b) w(A, n) € 3Zforall || < 8.

() IfA@®) € SL(2,C) forall 6 € T, then w(A, n) € Z for all |n| < 3.

(D IfL1(D,A) > Lr(D, A) and ¢ — L(®P, A, ¢) is affine on a neighborhood of ¢ = 0,
then (®, A) enjoys a dominated splitting.

As soon as one has an invertible cocycle A : T — GIL(2, C), one can attempt to push
into the unimodular setting by considering the normalized cocycle A/+/det A. Thus, as
discussed in [57], for invertible (that is, GIL(2, C)) cocycles, the central issue is whether
det(A) enjoys holomorphic square root, and this is precisely where the “1/2” in Theorem
4.10 comes from. Namely, if det(A) has a holomorphic square root, then one can apply
Avila’s result to A/+/det A without further complication. Otherwise, one can check that
det(A) enjoys a holomorphic square root of period 2 and hence one can apply Avila’s
work to a cocycle with doubled period.

Aside from the importance as an idea in dynamical systems, the notion of a dominated
splitting plays a crucial role in the current paper by determining the complement of the
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spectrum. To spell this out in detail, we need to define the regularized GZ cocycle.
Concretely, put

Pan =it L] dwa=[7 L]

Gryine = POV, 2) Q0 sin(270), 2), (4.30)

define

and note that G, 1),z arises from Gy, ;,,; in (2.34) by clearing denominators.
As a consequence of a general result in [44, Theorem 6.1], one has the following
characterization of the almost-sure spectrum:

Theorem 4.11. If ® is irrational, then

a i d = {z e D : (D, cN;M,m) does not enjoy a dominated splitting} 4.31)
= {z € dD : (D, B;, 1,,7) does not enjoy a dominated splitting}. (4.32)

Proof. The firstline is an immediate consequence of [44, Theorem 6.1], (and the fact that
translation by ® is a strictly ergodic isometry of T) while the second follows from the
definitions of and relationship between the various cocycles. Concretely, apply (2.22),
(2.35), (2.36), and (4.30) 21 that order to see that (®, By, ;,,;) enjoys a dominated

splitting if and only if (®, Gy, »,,7) does. O

4.4. Classification of cocycles for the UAMO. Recall thatthe cocyclemap A; = Ay, 1.z
is given by (2.19) and the regularized cocyle B, = By 3, is given by (4.19). As before,
to keep the notation cleaner in this section, we view A| and A, as fixed and suppress
them from the notation, writing A;(0) and B;(0) for A;, ,,.;(¢) and By, ;,.-(6).

Let us point out the following: B, is always analytic, but (as we will see shortly), A,
has singularities at some complex phases. We will see concrete manifestations of this
in the graph of L(®, A, ¢), which we will see is not convex. However, it is convex on
subintervals of the e-axis that avoid values of ¢ for which A, (- + i¢) has singularities.
We will see that there are two such values when 0 < A < 1 and only one when A, = 1,
and moreover the exceptional values of ¢ are explicit functions of the coupling constant
attached to the coin sequence. Indeed, let us define g( by

sinh(2meg) = A5 /A2, (4.33)

(formally allowing &g = oo when Ay = 0). Recalling Lemma 4.7, the Lyapunov expo-
nents of the complexifications of the cocycles A; and B, are related via

L(®, B;,e) = L(®, Az, &) +2m max{|e| — &9, 0}. 4.34)

In particular, L(®, A;, &) = L(®P, B;, ¢) whenever |¢| < .
We begin with our first key technical result: by Proposition 4.3
A cos(2mh) + ik,

detA 9 = )
ris22(6) Apcos(2ml) — i)

(4.35)

so A; is not always a unimodular cocycle. Nevertheless, the acceleration of A, and the
acceleration of all cocycles arising from A, via complexification of the phase are always
integer-valued.
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Fig. 4. Range of 0 > det(A(0 + ie)) for several values of & # . Here, Ay = 1/+/2 such that g =
sinh_l(k’z/kz)/(h{) ~ .1403. For this value of ¢ the range of 6 > det(A(6 +i¢)) is a circle with infinite
radius along the imaginary axis

Lemma 4.12. Fix0 <11 <1,0< X <1, ® e T\Q, andz € D, andlet A = A, », ;
and B; = By, »,,;. We have

w(A,e) € ZVNe # +ey, and w(B,¢e) € ZVe € R, (4.36)
where gq is as in (4.33).

Proof. Case 1: 1 = 0. In this case, A and B are constant cocycles, so the result follows.
Case 2: 0 < Ay < 1. In view of (4.34), it suffices to prove w (A, ¢) € Z forall ¢ # =+¢y.
Write § = 0 + i¢, recall (4.35), and apply the sum identity for cosine to get

Aacos(2mé) +i))
det(A =
et(4E) Apcos(2mE) — ik
) cos(270) cosh(2me) +i (A — A2 sin(270) sinh(27r¢))
" A cos(276) cosh(2re) — i(k’2 + A sin(2m0) sinh(2mwe))

(4.37)

(4.38)

Recall that ¢ is given by (4.33). Note that the denominator of (4.38) vanishes if and
onlyif 0 = 1/4mod Z and ¢ = —gp or 8 = 3/4 mod Z and ¢ = g¢. In particular, the
cocycle A(- +i¢) has singularities when || = &g and is analytic otherwise. Similarly,
the numerator of (4.38) has a root if and only if ¢ = +¢y.

Since > < 1, a direct calculation (using Proposition 4.3) yields

det(A(6)) € {e” 10 < 2arctan(Wy/A2) < 5 < 2(7 — 2arctan(Wy/A2)) < 271}.

(4.39)
In particular, the image of 6 + det(A(0)) lies in a simply connected subset of C \ {0}
and hence 6 — det(A(0)) has trivial winding around the origin. Since det(A(§)) # 0
for all & with [Im(§)| < &o,

0 +— det A(6 + i¢) has trivial winding aroung the origin (4.40)

for all |¢| < &p; compare Fig. 4. Similarly, one can check that if || is sufficiently large,

1
[1 —det(AO +ig))| < 3 forall9 € T.
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Consequently, 6 +— det(A(0 + i¢)) has trivial winding around zero for such large |¢],
and hence (4.40) also holds true for all |¢| > &g. Thus, for all ¢ # +¢&g, det(A(0 +i¢, z))
enjoys a holomorphic square root, so (4.36) for A and ¢ # =¢g follows by applying
Theorem 4.10 to A(-, z)/+/det A(-, z). As discussed above, the claim for B follows by
applying (4.34); the extension to € = ¢ follows from continuity and piecewise affinity
ofe — L(®P, B, ¢).

Case 3: 1, = 1. Notice that A(-+i¢) is an analytic SIL(2, C) cocycle for all ¢ # 0. Thus,
the result for A at nonzero ¢ follows immediately from Theorem 4.10. The extension to
B uses (4.34) and properties of L(®P, B, ¢) as before. m]

The central idea is now to analyze the behavior as ¢ — 00, then use quantization of
acceleration, continuity, and convexity to bring this information to & near zero. The key
technical result is the following asymptotic calculation for the regularized cocycle.

Proposition4.13. Fix 0 < A < 1,0 < Xy < 1, ® € T\Q, and z € 0D, and let
B; = By, 1,z For all |e| sufficiently large,

4.41)

A (1 + A
L(CID,BZ,8)=2JT|8|+10g[2( 1)].

A1+ )\/2)
Moreover, L(®, B, ¢) is an even function of ¢ € R.

Proof. Define gzig by

BE.(0) = eT*B.(6 +ie)

_ 2eF2E Nl L 20 AT g sin@ (6 + i6)) + 24 2AT! —hasin@m (0 +ig)) — Az
1+ 1, —A28inQ27 (0 +ie)) — M)z Az :

Naturally, one has
L(®, BE,) = L(®, B (- +i¢)) F 27e

for any ¢. Define

~ Die~2mi0 [ary—1y Ay =270 ;o
Boo(®) = lim BE,(0) = == [m] 2 )»2/2i|_l 2e [le M]‘

L+ | =22/2 0 | a@+ay) |[—2 O

Notice that the convergence is uniform in 8. Using (4.25), we can directly calculate
the Lyapunov exponent of the cocycle By, via

(4.42)

L(®, Bs) = logspr(Bs(0)) = log [M} )

Ar(1 +)\./2

By (4.42), quantization of acceleration, convexity, and continuity of the Lyapunov ex-
ponent [12,56] we get

A(1+ )\/1)

L(®, B, &) =lo [—
SLa+ Ay

i| + 27 |e| for all |¢| sufficiently large. 4.43)

By (4.43), convexity, and quantization of acceleration, L(®, B_, ) is even. O
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z€ 0D\ X z €N
L L
£ L(®, B.,e)
)\1 < >\2 . leé
5= L(®, Az €) ! !
N TN Y T
£0 €0
L L
AL =2
( (
1 1
N T €
€0 €0
L L
A > Ao
| (
=" ., ¢ B
€0 €0

Fig. 5. Complexified Lyapunov exponents in the sub-critical, critical and super-critical regime

As discussed in Sect.2, the remaining technical task is to show that A;, ;, ./

Jdet A, 1,z is conjugate to an SL(2, R) cocycle, which is the content of Proposi-
tion 2.8.

Proof of Proposition 2.8. Denoting

Ao
one can easily check X = X* = X! and TrX = 0. By a straightforward cal-

culation, one may check that AVM,;LZ,Z(O) = Axn,z(0)//det Ay y,.-(0) belongs to
SU(, 1, X (A1), that is,

(A 5 O X 1) Asy 2y.2(0) = X (A1)

forany 0 € T,0 < A1 < 1,0 < Xy < 1, and z € dD. Moreover, one can confirm that
* 0 i
YOO)*X(WDY (L) = ~io
where Y is as in (2.24). In view of the discussion in [79, Section 10.4], this implies that

AY , .(0) eSLQ.R).

The form of A‘f .z in (2.26) follows from direct calculations. As discussed previ-
ously, we may analytically choose the branch of the square root, so analyticity follows
immediately. Alternatively, analyticity is obvious from (2.26). O
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At last, we may combine all of these tools and conclude with the proofs of the main
statements regarding the cocycles.

Proof of Theorem 2.9. Let Ay < 1 be given. First, notice that the Lyapunov exponents
of A, B, and AZ all coincide in a strip, that is,

L(®, B, 8) = L(®, A, ¢) = L(®, AZ ¢), |e| <& = %arcsinh,/kgz -1
(4.44)

which holds on account of (4.35) and Lemma 4.7. Since A, < 1, the strip has positive
width. Thus, to conclude the desired statements about (®, A% .20.2)» 1t suffices to prove
suitable statements about the shape of the graph of L(®, By, »,,;, €) near ¢ = 0. From
here, the proofs of the three statements are nearly identical, so we only write the details
for the proof of part (c), since it requires some additional work compared to the other
two.

In part (c) A1 < A2 < 1, so that

A (1+ 2]
log 2(—-’-}) >0
A (L+245)

Consider z € 0D and let B = By, ,,,; be the associated cocycle map. By Proposi-
tion4.13, w(B, ¢) = sgn(e) whenever |¢| is very large. By quantization of acceleration,
convexity, and evenness of the function ¢ — L(®, B, ¢), there are two possibilities.
Case 1: (B, &) = 0 for some ¢ € R. In this case, L(®P, B, ¢) is positive and affine in
a neighborhood of ¢ = 0, which implies that (®, B) enjoys a dominated splitting [17],
and hence that z ¢ ¥ by Theorem 4.11.

Case 2: w(B, €) # 0 for all €. By the previously discussed properties of L, we have

(4.45)

da(l+2)
L(®, B,¢e) =2m|e| + log [m}

In view of (4.34), (4.45) yields

Aa(1+21))

L(®, A, 8) =2r|e| +log | ——— 12
( g) =2m|e| Og|:)»1(1+)»/2)

i|, le| < &p.

In particular, this implies that z belongs to ¥ and that L(z) = L(®P, A, 0) = log xg, as
desired, where Aq is given by (2.8). O

In thinking about the proof of Theorem 2.9, the reader may find it helpful to consult
Fig.5.

Proof of Theorem 2.7. Partaisprovedin[44, Section5]. Simply note that —i By 1,¢,6(2) =
NZ(6) in the notation of [44]. Part b follows directly from Proposition 4.13 using the
same argument used to prove part (c) of Theorem 2.9. O
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5. Aubry-André Duality

One crucial aspect of the model is that it enjoys a version of Aubry duality. We will
describe two formulations of duality, each of Which expresses self-similarity of the

operator families {Wy, 5, ¢, : 6 € T} and {W)\ P Y W; 0.0 : 0 € T}, both
of which are useful. The first manifestation of duahty shows how to relate solutions
of the eigenvalue equation Wj, 1, ¢,¢¥ = zy to formal solutions of the dual equation

Wf 130009 = 2¢. The second manifestation of duality expresses a unitary equivalence

between the direct integrals of the families Wy, ;, o9 and Wfl »s.0,0 Via the Fourier
transform.

5.1. Duality via solutions. For f € €*(Z), we denote its inverse Fourier transform by
f, which is defined for absolutely summable f by

OED B

nez

Given ¢ € £%(Z) ® C?, let us define (motivated by (2.10)):

¢ = %(&* +iyT), ¢ = %(i&* +97). (5.1)

Proof of Theorem 2.4. From (4.1) and Wy = zy/, we have

W =n (el + a2, ) =M (a2 + @ ).

Taking the inverse Fourier transform of both sides, shifting the indices of the terms
containing n — 1, and substituting the explicit form of Q, from (2.6) yields

Wt x) = Z AN ((hg cosQRr(n® +6)) +id5) Y — A sinQRr(n® +0)) ¢, )
nez

=Y P (ha sinQr(n® + 0)) Yy + (g cosQ2r (n® +0)) — iAH)Y,,)
nez
for a.e. x € T. Using the exponential formulations of sine and cosine, and expressing in

terms of the inverse Fourier transform this becomes
2mwix . . ) . .
W@ = - (e2”’9)\1121/f+(x +0)+ e 20 padt (x — ®) + 2ixlx’21/f+(x))
eZm'x
+

(ze2’“9,\1x2w (x +®) — ie 2T Jadh~ (x — q>))
+ ; ( X0 )10 (x + ) — i 2 At (x — q>))

1 o o .
43 (AT e @) — 2T A) T (- @) + 2iA AT ()



776 C. Cedzich, J. Fillman, D. C. Ong

for a.e. x. Rearranging to collect like terms yields

e2mx

2t (x) = 271 <T,\1)\2 + %ik’lM) (W(x D) +iY (x + cb))

+ie® ALY T () + iM ALY T (x)

) e2mix 1 v M
+e—27'[19 < 2 )\‘1)“2_51)\‘/1)\‘2> (w*’(x—d))—ll//_(x—@))

for a.e. x.
Applying the same steps to (4.2) yields

e—me

2 (x) = 20 ( Ada + %qu) <—i¢+(x +O) +Y (x + q>))

+iM YT (x) — ie ALY (x)

. e—271ix 1 . .
4 ¢ 2mif ( Mk - Eixm) (i¢+(x @) (x — <1>))

for a.e. x. From these expressions for 1}* and 1}‘, we obtain fora, b € C
2(@Pt (@) +bY (1))
= %ezﬂf‘)imz(a — ib) (&*(x + ) iy (x+ cb))

+ (—1)%e*2m’9i}\’1x2(—ia +b) (n]ﬁ(x — )+ (x — (D))

+ %8’”9/\112 (aehix — ibe_2”i") <1Z+(x + O+ (x + q>))

+ %e_znieklkg (—iaezmx +be_2”ix) (ivﬁ*'(x — D) +yY (x — CD))

+ A (aez’”'%*(x) _ be*zﬂi%*(x)) +iM) (wﬁ*(x) + b&*(x))
Writing eE2miX — cos(2x) £ i sin(27rx) and sorting the terms, this amounts to
2@P* () + by~ (1))

_leZJrzf)(X s/ _ (V+ - Y — )
= 1cos2mx) +ilPDro(a —ib) (Y (x + ) +iYy ™ (x + D)

2

- ée—h“’(xl cos(2rx) — iX)Aa(ia — b) (n]ﬁ(x — )Y (x — d)))
+ %ezﬂi"xl,\z sin(7x)(ia — b) <1Z+(x D) +iY(x+ q>))

+ %e—zﬂi"xlxz sin(27x)(a — ib) (iJﬁ(x — )+ (x — q>))

+ il (cos(znx)(aW(x) — by () +i sinrx) @yt (x) + b&‘(x)))
+id) (ax]ﬁ(x) + be*(x))
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Thus, choosing (a, b) = (1,i) and (a, b) = (i, 1), respectively, and setting ¢V>+ and ¢V>_
as in (5.1) we obtain

29T (x) = ¥ 0y cosRrx) +iXDAdT (x + D) + e sinRrx) A A2d (x — D)

+ (A cos(2mx) +iA))A5 T (x) — A1A, sinQRrx)dt (x), (5.2)
207 (x) = =¥ sinrx) A A2dt (x + D) + e T (g cos2mx) — iA)DA2d T (x — D)
— (A1 cos2mx) — iM)A5PT (x) — 1A sinrx)d ™ (x). (5.3)

To conclude the proof, we apply WA—;,M@,E to @) = goﬁ,s = 270 4S5 (nd + £) and
write y = y(n, &) = n® + &. Thus from Lemma 4.2 we have in coordinates:

[Wiyi. 0690 = dn' G211 +200,) + 45 (—2o0y + 320, )
= 7" (A cosmy) +ir) (@ hapt (v + ) + My~ (1))
+ A1 sinQ2ry) (—25¢7 (3) + e 000¢ ™ (v — ®))]
_ o2mind gt (1

+
= zp,,

where we used (5.2). An analogous calculation shows that [W)LTZ’ m0e®ln =29, O

5.2. Duality via direct integrals. Recalling /4 = ¢>(Z) ® C?, let us define

® ®
I =/ J0d0, Wi o =/ Wi, a0,0,0 d6.
T T

We write the coordinates of W € 7% as W, (0) where n € Z, s € {£}, and 6 € T. For
W € 75, let W be its Fourier transform, given by

Ui (0) = Z fre*Z”fm%*zm'”w;l(x)dx, neZ 0eT, s e{+}.

mez

The Aubry dual operator is given by A = Ag : H#g — %, where
LAV () = U (n® +6).
We also define X : 75 — % by
@ 1Tl
X = f — |: :| dx.
T ;6.2 ﬁ 11
Theorem 5.1 (Aubry Duality for Operators). For all A1, A>, and irrational ®,

WinodoX = Ao XW, , o. (5.4)
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Proof. Recall that every one-dimensional quantum walk can be related by an extended
CMYV matrix viathe CGMYV connection and that one can recover the £ M factorization of
the associated CMV matrix by inserting an infinite direct sum of o1 ’s, viz.: W), = S, 0 =
(S501)(01Q), where a1 denotes an infinite direct sum of copies of ¢1. This motivates
one to define operators J = J,, U = U, o9, and V = Vj @9 on J4 = 2(Z) ® C* by

[Jroly = —Nopy +re,_,

[1@ly = Ay + 20y

[Upl: = (AsinRr(n® +6))g} + (AcosQr(n® +6)) —ir ),

[Uepl, = (Acos@r(n® +6)) + i)/)go,;' —Asin@2r(n® +6))p,

[V(P]:,— — —)»/(P; + )Leoni(n<b+9)¢nf

[V(p]; — keZm‘(ndH@)(p;— + )‘/Qn_a

and denote the corresponding direct integrals by

® ® ®
I =/ Jdo, U;.o =/ Uropdb, Vo =/ Vi, 0,0 do.
T T T

One deduces
Wiise =JnUne (5.5)

from the pointwise identity Wy, », .6 = J1, Ux,,#,6. From the calculation

1[—i1 Asinr(n® +60)) AcosQRr(n®+0)) —i) ||il
211 —i||Acos@r(n® +6))+i) —AisinRr(nd +0)) 11

[ _)\‘/ Xe—zni(n(b+0)j|

)\‘eZHi(nd>+(9) 2z
we get
XUy 0X =Viyo. (5.6)
Taking the transpose of both sides of (5.6) establishes
XV o X =U] . (5.7)
Next, we show
AL T Ae =V 4. (5.8)

Indeed, from the definitions,
[J5 AV (0) = =2 [Ae VT (O) + A[Ae V], (0)

— —)»/ Z / e—2nim(n<l>+9)e—2ninx\p;-1(x) dx
T

mez

+A Z / e—2m’m((n—1)<I>+9)€—27ri(n—1)xlpr;(x) dx
T

meZ

=[As V] o1} (0).
A similar argument works for the spin-down component, proving (5.8) Finally, we show

ALV oAe = J). (5.9)
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Calculating V; ¢.Agp gives
[VioAs W] = —V[ApW]} +re T [ Ag ]

Z / o 2mim(n®+9) ,~2minx (—)J‘I’;;(x) + )\e*ZHi(”CDw)\IIr;(x)) dx
T

meZ

_ Z / e—27rim(n<l>+(7‘)e—2ninx (—)»/\I':,’l(x) +)‘\I”r;—l(x)) dx
T

mez

= [As J, V], (9).

The other component of (5.9) is similar. Putting together (5.5), (5.6), (5.7), and (5.8),
(5.9) (and using Ap X = X Ag), we get

X ALW, n.0hAeX = XFAL T Ae X AGX Uy, 0 X Ag
= X*VI]’@XAZV)LZ@A@
= UATI,<DJ)»2

_ T
=W e

since J, = J;. O

Proof of Theorem 2.5. Since Ag and X are unitary, this is an immediate consequence
of Theorem 5.1. O

6. Continuous Spectrum

Having studied the Lyapunov exponent and cocycle dynamics in detail, we now move
towards the analysis of the spectrum and spectral type of Wj, 1,.¢,¢. We begin in the cur-
rent section with results on continuous spectrum; equivalently, we prove several results
that establish the absence of eigenvalues, which is equivalent to continuity of spectral
measures. We present three results, each of which covers a particular paramter region.
We begin with the sharp Gordon argument showing that for suitable Liouville numbers
(dependent on the coupling via the Lyapunov exponent), the spectrum is purely contin-
uous. Coupled with positivity of the Lyapunov exponent in the supercritical region, this
immediately yields singular continuous spectrum. Next, we show continuous spectrum
in the self-dual region for all irrational ® and all but countably many 6. Later on, we will
show that the spectrum has zero Lebesgue measure in the self-dual region so this shall
again yield purely singular continuous spectrum for each irrational frequency and all
but countably many phases. Finally, we show that this (i.e., purely continuous spectrum)
holds uniformly in the frequency and phase in the subcritical region.

6.1. Liouville fields: sharp Gordon criterion. We begin with Theorem 2.2.(c). This is
a combination of two facts: absence of absolutely continuous spectrum, which follows
from positivity of the Lyapunov exponent and Kotani theory and absence of eigenvalues,
which follows from Gordon-type arguments. By applying Gordon’s lemma for CMV
matrices [42], one can immediately see that the spectral type is purely continuous when-
ever @ is Liouville. In fact, by using the sharp Gordon criterion as in [14,19,53-55], one
can prove singular continuous spectrum for all ® above a suitable arithmetic threshold
dictated by the Lyapunov exponent.
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Definition 6.1. Given ® € T irrational, let py/gx denote the continued fraction conver-
gents of @ and

1
B(®) = lim sup %. (6.1)
k—o00
Theorem 6.2. If A1 < Ay and
Ao (1 +A/1)
) 1 - 6.2
B(P) > Og[kl(“_ké) (6.2)

then Wy, x,,@,0 has purely singular continuous spectrum for every 6 € T.

Proof. Suppose A1 < Ay. By Theorem 2.9.(c), the Lyapunov exponent is uniformly
positive and given by

ra(l +,\’1)] 63

L ) =1 _
rhe,@(2) = log [)»1(1 3)

for z € Xy, .1,,. By Kotani theory, the a.c. spectrum of Wj, 1, ¢, is absent for a.e.
6. More precisely, recalling the gauge equivalence of Wy, ;, o0 and E;Jf’ YR R
Corollary 2.13 and the equivalence between the Szegd cocycle and the cocycle A, in
Corollary 2.14, the absence of a.c. spectrum follows from [79, Theorem 10.11.1]. By
minimality then, the absolutely continuous spectrum is empty for all & € T by the
Last—Simon theorem for CMV matrices; cf. [79, Theorem 10.9.11].

On the other hand, using the exact form of the Lyapunov exponent from (6.3) and
the sharp Gordon criterion, which was worked out for CMV matrices in Li-Damanik—
Zhou (see [65, Appendix C]), one sees that every spectral measure is continuous. More
precisely, the desired absence of eigenvalues may be deduced from the argument of [65]
after taking two things into account. First, use the gauge equivalence of Wj, 1, ¢,¢ and

SZ} 3.@.0 3s in Corollary 2.13 to equate purely continuous spectrum for Wy, 1, o,¢ with
that of é’f 30,0+ Second, apply a nearly-verbatim repetition of the arguments of [65]

for 53?’ 7.0, DY passing to blocks of length two; that is, work with the two-step Szegd
cocycle as in (2.33), which is genuinely quasiperiodic (and which belongs to SU(1, 1)
[79, Section 10.4]), enabling the application of their techniques. O

Proof of Theorem 2.2.(c). Since the set of ® with 8(®) = oo is known to be residual,
this follows immediately from Theorem 6.2. O

6.2. Continuous spectrum in the critical regime. We now discuss the critical case. Later
in the manuscript, we will show that when A1 = A, € (0, 1], the spectrum is a Cantor set
of zero Lebesgue measure and hence cannot support any absolutely continuous spectrum.
To classify the spectral type, it then remains to see whether there may be any eigenvalues.
We will see that in the critical case 0 < A1 = Ay < 1, the point spectrum is empty away
from a countable set of phases, and the set of exceptional phases is an explicit subset
defined by possible reflection symmetries of the coins:

Definition 6.3. If ® € T is irrational, we say that ¢ € T is irrational with respect to ®
if 2¢ + k® ¢ Z every k € Z. Otherwise, we say ¢ is rational with respect to .
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Our primary goal in the present section is to prove the following theorem. The proof
follows the overall structure of [10] (see also [16]), but there are several complications
arising from the more involved structure of the cocycle. Additionally, the reflection
symmetry of the cocycle as in Proposition 6.6 is different from that in the self-adjoint
case and required novel analysis to find.

Theorem 6.4. Consider0 < A < 1. Foreveryirrational ® and every 0 for which 6 —1 /4
is irrational with respect to @, the operator W), ) .9 has empty point spectrum.

Remark 6.5. The theorem is clearly false if A = 0. When A = 1, it holds in a more
restricted form (namely, for all irrational ® and a.e. 8) [44]. Naturally, for a given
irrational @, there are only countably many 6 that are rational with respect to @, so this
suffices to establish the continuity half of Theorem 2.2.(e).

For the work ahead, we need to note a reflection symmetry of the cocycles.

Proposition 6.6. Let z, A1, and A be given, let A, = A, »,,; denote the cocycle defined
in (2.19), and let Ag denote the dual cocycle from (2.21). For all 0 € T, one has

1
R'A,(0)7'R = -4, (E — 9) 6.4)
1
R'AYO) 'R = -A? <§ - 9) , (6.5)
where
01
R = [_1 0]' (6.6)
Proof. Note that the inverse of A, () is given by
_ 1 Az A2s(6) + Az
AO) ' ——— _ RO _ 6.7
() Ac(0) +ik [/\zs(e)+/\’lz AT T 4 20 AT as(0) + 20 2! ©D
One has
-1 “1,_| 01 _1]/0 -1
R™'A,(0)'R = [_1 0] A:(6) [1 0 ]
_ 1 AT 2T 20 AT as(0) + 20 AT —(as(0) + 1) 2)
Aac(9) +ik —(X28(0) + 12) Az

so, exploiting s(1/2 — 0) = s(0) and c(1/2 — 8) = —c(0) give us

R7'A.(0)7'R

-1 AT e 20 AT as(1/2 — ) + 22 2T —(has(1/2 — 0) + 4 2)
—(h2s(1/2 = 0) +X,2) Az

T ac(1/2-0) — ik,

—AIG
= A\ 59,

proving (6.4). The identity (6.5) follows immediately from (6.4) and (2.21). |
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Crucial in the proof of Theorem 6.4 is a dynamical reformulation of duality, which
we presently make precise. If ¢ is an £2-eigenfunction of Wi.1.00,®,0, then Theorem 2.4
implies that exp(2ni9n)¢vﬁ(nd> + &) is a solution of Wfl ,Az,<b,é¢ = z¢ for a.e. & (with ¢V>
defined by (5.1)). Consequently, we have

€2ﬂi9(i;+(x + qD) _at (Z;+(x)
|: ¢V>’(x) } = Axl,/\z,z(x) e*Z”i"q;*(x — ) (6.8)

for a.e. x, with A* defined in (2.21). Now, substitute ¥ = 1/2 — x for x and apply (6.4)
to get

[e2”f9é+<1/2—x+<b>] _ gl ¢+(1/2 —x) }

-1
¢~ (1/2 —x) g )R [e—zﬂi%—(l/z —x—®d)

Use (4.35) and the definition of R to see

—¢7(1/2-x) ] _ 2t [—é(l/z —(x+ )

_ Al
A)Lls)xzﬁz(x) |:e27[i0¢;+(1/2 — (x — D)) 627”'9(5"'(1/2 —x) :| (6.9)

Putting together (6.8) and (6.9), we get

4 eZniG
AL 5, (OMX) = M(x + ®) [ _ezm.e} , (6.10)
where
_ ¢t (x) —$=(1/2-x)
M(x) = [e—zmo(l;—(x — @) 2TOGH(1/2 — (x — @))] . (6.11)

Proof of Theorem 6.4. Let .1 = Ay = A € (0, 1), ® irrational, and 0 irrational with
respect to ® be given, and assume on the contrary that W), , &6 has nonempty point
spectrum. Let ¢ denote a normalized eigenfunction with corresponding eigenvalue z.
Define q; by (5.1) and consider M as in (6.11). Since |det(A§l’M’Z(x))| =1, (6.10)
implies that |det(M (x))| = |det(M(x + ®))|. By ergodicity of x — x + ® on T,
| det(M (x))| is a.e. constant with respect to x.

Also |M(x)|| > 0 for a.e. x, since if not, |[M(x)|| = O for a.e. x by (6.10) and
ergodicity of x — x + ®. However, this would imply qvbi (x) vanishes for a.e. x, which
contradicts nontriviality of the eigenfunction i that generates .

Next we prove that det M (x) # 0 for a.e. x. Assume for the sake of contradiction that
det M = 0 on a positive-measure set. Since | det M| is a.e. constant, one has det M = 0
a.e, which means that the columns of M (x) are linearly dependent for a.e. x. Equivalently,
there is a function £ : T — C with £(x) # 0 such that

¢t (x) _ —$~(1/2 — x)
|:e—2m'9q;_(x B q>)] = £(x) [62ni9$+(1/2 o <I>))} . (6.12)
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Using (6.12), (6.10), (6.12), and again (6.10) we have

—~ (12— x+®)] _ [ ¢*(x+®)
L(x + D) [ ezm'gé.;.(l/z —x) ] - |:672m‘(~)q37(x)i|
= e’zniﬁAil,xz,z(x) |:e—271i6¢;—()(2 _ q>)]
_ om0 —¢=(1/2—x)
=¢ AAI,Az-z(X)e(X) [ezniﬂq;+(]/2 —(x = q)))]

_ 26 _—2ni6 —$(1/2 = (x + )
=e £(x)(—e )|: €2ﬂi9(5+(1/2—x) i|

_amieg ) [9TU2— (x+ @)
_ e e(x>[ S ] 6.13)

which implies —e~#7%¢(x) = £(x+®) fora.e. x. Fourier expanding £(x) = _ Ope?mikx
this gives

_e—4JTi9 Zé\kezn’ikx — Zé\keZJTikq)eZHikx. (614)

Since @ — 1/4 is irrational with respect to ®, we have —e~*710 =£ 27ik® for all k € Z.
Combined with (6.14), this implies that all Fourier coefficients of £ must vanish, forcing
£ = 0, a contradiction.

Let us now consider for n > 1 the n-step transfer matrix given by

AT = A5 (= D®AL (o (n=2)®@) .. AL+ DAL (),

(6.15)
where we choose notation consistent with (2.14). Then, by (6.10)
fin e2]‘[i9 0 n 1
AP(x) = M(x +n®) [ 0 _ezme} M)~ 6.16)
We define
) " eZniG 0 n
Wi (x) = Tr A¥"(x) — Tr <|: 0 _e_zm-ei| ) (6.17)
— Tr Aﬁn(x) _ (627Ti)19 + (_1)7!8727'[[}19)’ (618)

and note that
6271 i0 0

w)(x):Tr((M(x+n<1>)—M(x))[ 0 _e_zﬂ,.e} M(x)—‘). (6.19)

Since we have the inequality | Tr(0)| < 2||2(|| and the identity |2~ || = ||]l/| det()],
we have

W (x)| < M(x+n®) — M M) 6.20
W ()| = |detM|” (x+nd) CONIM )| (6.20)

By the Cauchy-Schwarz inequality,
||\p(")(x)||L1 < IM(x+nd®) — M) 2IMX)]| 2. (6.21)

~ |det M|
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Note that ||[M(x)||;2 is finite by unitarity of the inverse Fourier transform. This also
implies that [[W||, 1 can be made arbitrarily small by making dist(n®, Z) sufficiently
small. We then have
liminf [|[W™ (x)||;1 =0 (6.22)
n—oo

On the other hand, by (2.19), (2.21), and (6.17) we notice that v s a trigonometric
polynomial divided by

n—1 n—1
Q" = Q1" () = [ [ g1 (x +k®) = [ [ (A cos@m(x + k) +iR). (6.23)
k=0 k=0

By [16, Theorem 2.3] we can control this quantity with the help of Lemma 4.7 with
& = 0. Thus we can modify (6.22) to be

L. 1+ )\./ - (n) (n)
lim inf 5 Q1 ()W (x) =0 (6.24)
n—o0 Ll
We observe from (6.18) that
O™ = O (x) Tr A (x) — Q" (1) (™™ + (—1)"e™M%). (6.25)

It is clear that the second term on the right hand side of the above equation is a constant
multiple of the trigonometric polynomial, Qi")(x), (recall that 6 is currently fixed). By
(2.19) and (2.21), it is also true that Q(ln) Tr A" (x) is a trigonometric polynomial. We

will estimate the leading coefficients of these trigonometric polynomials, that is, the
coefficients of the ¢>™"* and e~ """ terms. One sees immediately that the leading

coefficients of Qg") have absolute value (A/2)".

Next, we examine the leading coefficient of Qi") (x) Tr A™ (x) term of (6.25). Recall
by (6.23) that Qﬁ") (x) is a product of q}l terms, and by (6.16) A™ (x) is a product of
A®(x+ j ®) terms. Thus to understand Q(ln) (x) Tr A®(x) we multiply out q} TAR(x+j®).
Since we are trying to express Q(I") (x) Tr A®(x) as a trigonometric polynomial, we are
only concerned with terms that are multiples of qul, since only these terms produce

trigonometric expressions. So separating out the terms that are multiples of qu.l , we have

. 207 —1 Noo=x2], . .
qj' Af(x + j®) = [ AT }qu.l +C = [—k/Z 0/ i|2sm(27r(]<1> +x)+C,
e e’

=6()
(6.26)
where C is a matrix that does not depend on x. We want to compute the leading coeffi-

cients of Q(ln) (x) Tr A®(x) expressed as a trigonometric polynomial. Note that this is a
product of the n expressions of the form (6.26) with j = 0, ..., n — 1. The leading terms
of the trigonometric polynomial will be multiples of e"* and e~>""* The only way to
obtain terms of the form e2*** and e~2"7I* from Qi") (x) Tr A®(x) is by multiplying n
sines in (6.26), from j = 0, 1, ..., n— 1. Thus we can see that these coefficients of these
terms are obtained from calculating G(A)". One can check that (1) has eigenvalues
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ut = pu+(A) = (M £ 1)/2 (compare (4.25)). Diagonalizing & explicitly, we have the
following forn > 0:

o = [ G ]
2 —Apy 4+ Apl (1= A+ (1+ Ay

Thus, the leading coefficient of Qi") (x) Tr A®™ (x) has absolute value uh+u”t . But then,

writing ¢, for the leading coefficient of ;" Q(I") Tr A™, this all means that

noon 2\ A —1\" A n
el = T (L2) o — >1—o(l) (627)
ul 204 M+1 MN+1

as n — oo. However,

1 ) Q(") Q(”)

lenl = / e2miny =1Ly (xydx| < | —L 7w w)|
0 1+) 1+)

(%) (%) B

s0 (6.27) contradicts (6.24), which concludes the proof. |

6.3. The subcritical regime. The duality in Theorem 2.4 together with the positivity of
the Lyapunov exponent of the dual model in Theorem 4.6 allows us to exclude point
spectrum in the subcritical region for all phases 6 and all irrational fields ¢ by Delyon’s
argument [41].

Proposition 6.7. Let ® be irrational and .1 > Ajy. For every 0 € R, the point spectrum
of Wi, ,,0.6 Is empty.

Proof. This follows from an argument of Delyon [41]. Arguing by contradiction, assume
that for some A1 > A, the operator Wy, ;,. ¢ has an eigenvalue z with corresponding
eigenvector ¢ € 7 normalized by ||| = 1. Applying Theorem 2.4, it follows that

@ = ¢° given by )
[w;} _ in [@*(mb +s>}
n ¢~ mnP+6)]’

with ¢V>i as in (5.1) is a formal eigenfunction of W/j\il,/\zmé for a.e. £. Note that the

inverse Fourier transform of  is only defined almost everywhere on T, so ¢f itself is
only defined for a.e. § € T.

Moreover, by unitarity of the inverse Fourier transform, one also has ||(5 lz2mec? =
1. Consequently, for every € > 0 we have

Jooe, 2

neZ,s==+1

is ® 2 l+e __ —(1+e€)
P (@ +8)| /In|"* =) "|n| < o0,
n

Consequently, for a.e. £ and any € > 0, there exists C¢(§) > 0 such that

P+ 6)| < C@)n| 1+ (6.28)

However, since A1 > A, this contradicts positivity of the Lyapunov exponent associated
with the dual model (cf. Theorem 4.6). This is a standard argument, but let us provide the
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details for the reader’s convenience. First, for any fixed z € dID, the setof & € T for which
zis aneigenvalue of W;, ;, & ¢ is aLebesgue null set (by Proposition 4.4). Consequently,

by the multiplicative ergodic theorem, one must have that P (nd+E) grows exponentially
on at least one half-line for a positive-measure set of £, in contradiction with (6.28). O

7. Zero-Measure Cantor Spectrum

We now discuss the proof of zero-measure Cantor spectrum in the critical case A; =
A2 = & € (0, 1]. As noted before, X1 1,4 was shown to be a zero-measure Cantor set in
[44]. On the other hand, it is trivial to see that ¢ ¢, = {=%i}, so the assumption A > 0
is necessary for the Cantor spectrum result (though obviously not for the zero-measure
result). In view of these comments, we focus on 0 < A < 1 in the present section.

The proof of Theorem 2.2.(d) will follow from the general theory of analytic SL.(2, R)
cocycles as developed in [13,18].

Lemma 7.1. For every A1 € (0, 1], A» € [0, 1] and z € 9D, A?w\z,z is homotopic to a
constant.

Proof. This is a straightforward calculation. O

In order to apply the well-developed machinery of real-analytic cocycles, it is helpful
to note that the cocycle is monotonic in the argument of the spectral parameter. This
is a straightforward (albeit cumbersome) calculation. For the reader’s convenience, we
supply the details.

Lemma 7.2. For .1 > Qand Ay < 1, t — A‘f r.elt is monotonic in t in the following

sense: for any 6 € T and any v € R>*\{0} (any determination of) the argument of
A‘Z relt (6)v has positive derivative with respect to t.
We will need the following elementary calculation.

Lemma 7.3. Suppose a,b,c € R. Ifa, b > 0 and ab — c2 > 0, then
a 0052(19) +b sinz(z?) +2csin cos > 0

forall ¥ € [0, 2]

Proof. First, observe that

a cosz(ﬂ) +b sin2(19) +2c¢sin® cos? > a cosz(z?) +b sin2(19) — |2¢ sin ¥ cos ¥

> acos’(¥) + bsin’(9) — |2\/Esin ¥ cos |
(7.1)

> |Vacos(®)) — vbsin(®)|?

> 0. (7.2)

Since (7.1) is strict whenever cos ¥ sin ¢ # 0 and (7.2) is strict whenever cos ¢ sin ¢ =
0, the lemma is proved. |
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Proof of Lemma 7.2. Let A1, A2, and 0 be given. Of course, positive scalar multiples do
not affect the argument of a vector, so we may consider

mii]),)»z,z(g) = Al )‘/22 + X%CZ(G)A}‘Q;’M’Z(Q)

_ Re z + 1| A2s(0) AImz — A {Rez — A2s(0)
“ | —MImz — ARez — A2s(6) Re z + 1| A2s(0)

Write z = ¢'?, consider v, = [cosu, sinu]", and define Y1, y2 by

[;)}?8:;} - mf,)»z,e” @)vy.

Sincetan(arg(yz, y1)) = y2/y1,computing the derivative of the argument of A‘Zjl? oz ©)vy
with respect to 7 (and denoting the derivative with respect to ¢ by a dot) gives

d y2D 1 V21 — V12
2 ar = ) (7.3)
dt ( g[yl 1+ (y2/y1)? y;

Thus, we are left with considering y,y; — y1y2. We have

y2y1 — y1y2 = [Imzcosu + (A\jRez + AIm 2) sin u]
X [(—rImz — A{Rez — A28(0)) cosu + (Re z + A A2s(0)) sinu]
— [(—A1Rez + A Imz) cos u — Imz sin u]
x [(Rez +A}A28(0)) cosu + (A Imz — AjRe z — A2s8(0)) sin u]
= A1 (1 + A25(8) (V| Rez + A1Imz)) cos® u
+ A1 (1 — A28(0) (=2 Rez + A1Imz)) sin’ u
— 201 (M} + A28(9)Rez) sinu cos u

= acos’u+bsin®u +2ccosusinu, (7.4)
where
a = 2 (1+xr80)(A\|Rez + A1Imz)) (7.5)
b = A1(1 — 228(0)(—A|Rez + A1Imz)) (7.6)
¢ = = (A} + A28(0)Rez). 7.7

Note that the assumptions A1 > 0 and A, < 1 imply a, b > 0. After some algebra, one
gets

ab — ¢ = 33(1 + 2Aas(@)V|Re 7 + A2s(0)* (X, *[Re 21> — 23 [Im 2]%))
— 22\ + 225(0)Re 2)?
=2} ((1 +2228(0)M|Re z + A35(0)*([Re 21> — A3)) — (1] + 12s(0)Re z)z)
_y (—x%,\%s(e)z + ,\%)
=211 = 1350)») > 0, (7.8)
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which is strictly positive by the assumption A, < 1. Combining (7.3), (7.4), (7.5), (7.6),
(7.7), and (7.8) with Lemma 7.3 we get

d y2
o (arg [mD > 0, (7.9

which concludes the proof. O
Given Aq, Ao, and @, let
L =500 ={2€0D: Ly 0@ =0} (7.10)

For) = C%, L2, we say that an SIL(2, R) cocycle (®, A) is V-reducible to rotations
if there exists B € Y(T, SLL(2, R)) such that

[B(x + ®)] ' A(x)B(x) € SO2, R).

Lemma 7.4. For Lebesgue almost every z € 25, 1,.0, (P, A‘fi Y is L2-reducible to

. JA2,2
rotations.
Proof. This follows from Lemma 7.2 and [18, Theorem 1.7]. |
Lemma 7.5. For Lebesgue almost every z € 25, 1,.0 (P, A%,Az,z) is C®-reducible to

rotations.

Proof. This follows from Lemma 7.4, real-analyticity of A‘f{? 2.2 and Avila-Fayad-
Krikorian [13]; see [13, Lemma 1.4] and its proof. See also tzﬁe discussion on [16,
Page 324]. More precisely, [13] yields the desired reducibility for a.e. rotation number.
To pass from a.e. rotation number to a.e. z € 25, »,,4, one uses the relationship between
the rotation number for the Szeg6 cocycle and the density of states for the CMV matrix
[45], Kotani theory for CMV matrices [79, Section 10.11], and the Kotani formula for the
derivative of the CMV density of states on the vanishing set of the Lyapunov exponent
[43].

Let us supply some additional details for the reader’s convenience. For 6 € T, let ng
denote the spectral measure given by

/fdne = (80, f Wiy nn,0,0)85), [ € COD), (7.11)

and recall that the density of states measure v = vy, 3, ¢ associated with the family
{W,.0,.®,0)0eT s given by the average of the spectral measures:

[rav=[ [ ramas= [ 65 rowonsias. a1

Keeping in mind the equivalence between W and an extended CMV matrix as in Corol-
lary 2.13, the result of [43] together with Kotani theory for ergodic CMV matrices [79,
Section 10.11] implies

dv .

%(e”f’) >0 (7.13)
for Lebesgue a.e. e!® € 25, 5,.4. Let p denote the rotation number of the Szeg& cocycle.
By [45], dv/d¢ =0 <= dp/d¢ =0, so (7.13) holds for ae. e/? € 2o 0n,0 With v
replaced by p. This suffices to conclude the argument. O
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Le.n.lma 7.6. For Lebesgue almost every z € 25, 1,.@, the cocycle (P, A‘?;‘M’Z) is sub-
critical.
Proof. This follows from Lemma 7.5 and (2.25). O

Of course, we have already shown that subcriticality is absent for .1 = X, € (0, 1),
so the crucial consequence of Lemma 7.6 is that 2, ) ¢ (and hence X, , o) has zero
Lebesgue measure.

Putting all of this together, we may prove the desired zero-measure Cantor result in
the critical regime.

Proof of Theorem 2.2.(d). The case A = 1 was proved in [44], so let us consider 0 <
A < 1. By Proposition 4.4, the spectrum lacks isolated points. By Theorem 2.9, we have
Z5.0. 0 = Za.. . If the measure of the spectrum is zero, it follows that the spectrum has
empty interior and cannot support any absolutely continuous measures. Thus, it suffices
to show that the measure of X, ; ¢ is zero.

However, this is immediate from Lemma 7.6 and Theorem 2.9.(b). Namely, if the
measure of X, ) ¢ were positive, Lemma 7.6 would imply subcriticality of (®, Ay 1 ;)
for a positive-measure set of z € 9D, which contradicts Theorem 2.9.(b). |

Proof of Theorem 2.2.(e). Since a zero-measure set cannot support absolutely continu-
ous measures, this is an immediate consequence of Theorems 2.2.(d) and 6.4. ]

8. Localization in the Supercritical Region and Consequences

At last, we conclude by discussing localization. Beginning from positivity of the Lya-
punov exponent, which follows from the bound

12(1+x/])}

L(z) > log [—)»1(1 )
2

when A> > A1, there is a cornucopia of techniques that one could apply in order to prove
Anderson localization for Wy, 5, ¢,¢ (for a.e. 9).

We note that the non-perturbative localization proof of Bourgain—Goldstein [22],
generalized to CMV matrices by Wang—Damanik [81], suffices for our purposes. We
expect that most of the other localization techniques that have been employed in the study
of self-adjoint quasiperiodic operators will find fruitful application here. For instance,
we expect Jitomirskaya’s proof of localization for the self-adjoint supercritical almost
Mathieu operator with Diohphantine frequency and nonresonant phase [51] and Avila—
Jitomirskaya’s proof of almost-localization [15] can be generalized to the present setting.
We plan to address this and other finer localization statements in forthcoming work. !

Proof of Theorem 2.2.(b). Consider 0 < A1 < Ay < 1, and recall from Corollaries 2.13
and 2.14 that Wy, ,, &0 is unitarily equivalent to the CMV matrix Eg 5. .0 and that
the cocycle Ay, »,,; is conjugate to the (two-step) Szegd cocycle Sj, ,,;. In particular,
Theorem 4.6 gives

Aa(l +)J1):|

L(S)\],)Q»Z) = L(A)LIV)LLZ) 2 log [)\‘1(1 + )\’/2)

1 Note added in revision: The first goal was accomplished in [83].
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for all z € 0D, so the assumptions of [81, Theorem 1.1] are met with Z the set of
all irrationals and I = 9.2 As such, we get for each 0 a full-measure set of ® for
which Wy, ;,.,6 enjoys Anderson localization. The conclusion then follows by Fubini’s
theorem. o

We may thus conclude the proofs of Theorem 2.2.(a) by leveraging Theorem 2.2.(b)
and duality.

Proof of Theorem 2.2.(a). This follows from Theorem 2.2.(b) and Aubry duality via
standard arguments, which we describe for the reader’s convenience. Let A; > A, be
given, and let @ be taken from the full-measure set of Diophantine irrationals for which

Wfl .0, 18 almost-surely localized. Define

E=¢ 0= {Z coD: ° is an eigenvalue of Wfl,)\zeqw for some 6 ] (8.1)
1242, whose eigenfunction is exponentially localized

By assumption €& supports the spectral measures of W 1.0, @,0 fOr a.e. 0, and hence also
supports a.e. spectral measure of Wy, 5, 4.0 by duality (cf Theorem 2.5) and general
facts about direct integrals which may be found in most texts on operator theory; see,
e.g., [74, Section XIII.16]. Let us describe this in more detail. Denoting 7 = D \ &,
one has

Xr(Wi . 09) =0

for a.e. 6 since € supports the spectral measures of Wfl »o.@.0 fora.e. 6. By Theorem 2.5
and the functional calculus for direct integrals, this in turn implies

XT(W)»l,)nz,(I)ﬁ) =0

for a.e. 6 and hence that & supports the spectral measures of Wy, 5, o9 for a.e. 6. On
the other hand, for each z € €, duality at the level of solutions (i.e., Theorem 2.4) shows
that all solutions to Wy, 1, &, = z are bounded, and hence (for a.e. phase) the dual
model has no subordinate solutions on €. Recalling the gauge equivalence of Wj, 1, 4.6

and 5;/17 .00 A8 in Corollary 2.13, we note that W;, 1, &.¢ has a subordinate solution at

spectral parameter z € 9D if and only if é}f’ 7.9 has a subordinate solution at spectral
parameter z. Consequently, we may apply subordinacy theory for standard CMV matrices
asin [40]. We see that W), 1, 4.6 has purely absolutely continuous spectrum on &, hence
purely absolutely continuous spectrum, concluding the argument. O

There is another proof of Theorem 2.2.(a) which we now sketch for the interested
reader:

Sketch of alternate proof of Theorem 2.2.(a). Let v denote the density of states of
{Wi,.n,@,0} asin (7.12), and let v? denote the density of states associated to the dual
model. Since € (defined in (8.1)) supports the spectral measure of the dual model for a.e.
phase, it supports v¥. By Aubry duality, v¥ = v, so & supports v and hence the spectral
measure of Wy, 5, #,¢ for a.e. 6. One concludes using subordinacy theory as above. O

2 The reader will notice that our Verblunsky coefficients have an alternating quasi-periodic structure, so
formally, [81] does not directly apply. However, passing to blocks of length two, one can re-run the arguments
of [81] with cosmetic changes to deduce the desired localization statement.
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