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Abstract: We introduce the unitary almost-Mathieu operator, which is obtained from
a two-dimensional quantum walk in a uniform magnetic field. We exhibit a version of
Aubry–André duality for this model, which partitions the parameter space into three
regions: a supercritical region and a subcritical region that are dual to one another, and a
critical regime that is self-dual. In each parameter region, we characterize the cocycle dy-
namics of the transfer matrix cocycle generated by the associated generalized eigenvalue
equation. In particular, we show that supercritical, critical, and subcritical behavior all
occur in this model. Using Avila’s global theory of one-frequency cocycles, we exactly
compute the Lyapunov exponent on the spectrum in terms of the given parameters. We
also characterize the spectral type for each value of the coupling constant, almost every
frequency, and almost every phase. Namely, we show that for almost every frequency
and every phase the spectral type is purely absolutely continuous in the subcritical re-
gion, pure point in the supercritical region, and purely singular continuous in the critical
region. In some parameter regions, we refine the almost-sure results. In the critical case
for instance, we show that the spectrum is a Cantor set of zero Lebesgue measure for
arbitrary irrational frequency and that the spectrum is purely singular continuous for all
but countably many phases.
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1. Introduction

Discrete-time quantumwalks have been extensively studied over the years from different
points of view. They have intrinsic mathematical interest and are important in physics,
where they serve as models for the quantum evolution of single particles with internal
degrees of freedom and bounded hopping length on a lattice or graph. In this context,
quantum walks were shown to exhibit many single and few particle effects, such as
ballistic motion [5,7,47], decoherence [3,5], dynamical localization [4,59,60], and the
formation of bound states [2]. Recently, quantum walks were shown to provide a testbed
for symmetry protected topological order [61] and bulk-boundary correspondence with
a complete set of indices that are stable under compact as well as norm-continuous
perturbations [27,30,31,33]. Complementary to this, quantum walks can be viewed as
quantum mechanical analogues of classical random walks [1]. Their increased ballistic
spreading compared to classical diffusion makes them interesting for applications in
quantum computing such as the element distinctiveness problem [6], universal quantum
computation [67], and search algorithms [72,75].

From a mathematical point of view, a quantum walk is given by a unitary operator
W acting in a suitable Hilbert space with an underlying lattice or graph structure. As
such, the long-time dynamical characteristics of the system are given by powers Wt

with t ∈ Z, and one is naturally led to the study of the spectral problem of the unitary
operator W . See [23–25,34,35,38,39,62,70] and references therein for a partial list of
works that have analyzed quantum walks from the spectral perspective.

The present paper aims to study the spectral properties of quantum walks in a ho-
mogeneous external magnetic field. We are motivated by work on electrons moving in
a two-dimensional lattice under the influence of a uniform magnetic field, a physical
system that has been intensively studied in recent decades; compare, e.g., [50,64,80].
The almost-Mathieu operator (and more generally the extended Harper’s model) is one
example of a model of an electron in a magnetic field, which inspired intense study in
mathematics; see [14,16,19,21,48,51,55,69,73] and references therein for a partial list.
Despite the ostensible simplicity of the setup, the properties of this system are rich and
deep, requiring extensive analysis to understand fully.

Motivated by this, we discuss in this paper two-dimensional quantum walks in ho-
mogeneous magnetic fields, which are constructed via a discrete analogue of minimal
coupling [32]. After a suitable choice of gauge, this leads us to the investigation of one-
dimensional quantum walks with quasiperiodic coin distribution. Using intuition from
the two-dimensional setting, we introduce a pair of coupling constants λ1, λ2 ∈ [0, 1]
for the one-dimensional walk in a novel manner (cf. (2.4) and (2.6)). We then show
that this partitions the parameter space into three regions. When λ1 > λ2, the behavior
of the shift dominates and the resultant operator has absolutely continuous spectrum.
When λ1 < λ2, the coin operator dominates, and one observes localization for typical
frequencies. When λ1 = λ2, one observes singular continuous spectrum for all but an
explicit countable set of phases. We describe the main accomplishments broadly here
and more precisely in Sect. 2.

First, we give a complete account of the spectrum and the spectral type in a measure-
theoretical sense (that is for a.e. frequency and a.e. phase), hence the title, which is
naturally inspired by the titles of [37,58,63]. See Fig. 1 for an illustration of the spectrum.

Next, we answer a question posed by and to the authors of [44]: how can one suitably
incorporate a version of a “coupling constant” into the model of [44] in such a manner
that one sees a phase transition? Their model is given as a one-dimensional quantum
walk, and each such walk is known to be equivalent to a CMV matrix [25,78,79] which
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in turn is specified by a sequence {αn}∞n=−∞ of Verblunsky coefficients inD. In the CMV
setting, it seems natural to introduce a coupling constant by multiplying the Verblunsky
coefficients by a scalar λ; however, this does not lead to fruitful results in the present
setting. See also the discussion in [79, Appendix B], especially item 14 in Section B.1.
Indeed, Simon says therein that the lack of suitable coupling constants “impacted my
ability to discuss almost periodic Verblunsky coefficients”, which suggests that our novel
method of incorporating a coupling constant will have applications in other models.

Let us also point out: as a result of this connection, every result in our paper can be
translated into a result about a suitable CMV matrix. For the reader who is unfamiliar
with OPUC and CMV matrices, we have included a detailed description of the connec-
tion between CMV matrices and one-dimensional quantum walks. We have chosen to
formulate our work in terms of quantum walks, since that makes the origin of the model
more transparent.

The first main ingredient in the proofs of our results is the classification of cocycle
dynamics: in the nomenclature of Avila, we classify the matrix cocycle induced by the
stationary equation of the walk (cf. (2.19)) and show that it is subcritical on the spectrum
when λ1 > λ2, supercritical on the spectrumwhen λ1 < λ2, and critical on the spectrum
when λ1 = λ2. This discussion sweeps a few technicalities under the rug; the transfer
matrix cocycle is not always well-defined for some values of the parameters and hence
one works with a suitable regularization whose dynamics one can then characterize in
the global theory scheme.

The second key ingredient is a suitable version of duality via a Fourier-type transform
(cf. Theorems 2.4 and 2.5); in analogy with the setting of Harper’s model, we call this
“Aubry duality” [8]. Up to a transpose, the duality transformation exchanges the coupling
constants λ1 and λ2, which enables one to translate suitable reducibility or localization
statements from one parameter region to another. In particular, the operators described
herein are quasiperiodic unitary operators that obey a version of Aubry duality, and thus
this work addresses a query from Li–Damanik–Zhou [65]. The form of duality enables
one to show that all three spectral types (absolutely continuous, singular continuous, and
pure point) occur within the non self-dual regimes.

As a byproduct of ourmodel and the detailed cocycle analysis, we produce a family of
quasiperiodic unitaries with positive Lyapunov exponents in certain parameter regions.
As noted by Zhang [84], this is often difficult to accomplish. See also [34,35].

It is worth emphasizing that there are two separate categories of challenges that had
to be overcome for this work to be written. The first and most substantial challenge is
to choose the correct model. At the time when [44] was written, it was not clear how to
correctly incorporate coupling constants into the coins, and moreover, the naive guesses
turned out to be incorrect. After [28], one thenwas able to disentangle the correct choices
from the physical model.

The second challenge is to suitably recontextualize techniques and ideas from the self-
adjoint setting to the unitary setting. This is sometimes easy, sometimes challenging, and
sometimes impossible. In the present case, the techniques fell into the first two classes.
Our main goal was to present a complete picture in the sense that one observes all three
types of cocycle dynamics, precise formulations of duality, and all three spectral types
in suitable parameter regions. In order to achieve this while still keeping the length of
the paper in check, we have aimed to spend less time on techniques and tools that are
obvious generalizations from the self-adjoint setting in order to supply full details for
problems that present genuine challenges and required more novel solutions.
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Fig. 1. Spectrum of the UAMO for different (rational) � on the vertical axis and argument of the spectral
parameter z on the horizontal axis. Left: Critical case with (λ1, λ2) = (1/

√
2, 1/

√
2). Clearly visible is the

fractal structure, which is reminiscent of (a quenched variant of) the Hofstadter butterfly [20,50] (see [28] for
the spectrum for (λ1, λ2) = (1, 1)). Right: Sub-critical case with (λ1, λ2) = (1/

√
4, 1/

√
2). The spectrum

of the super-critical case (λ1, λ2) = (1/
√
2, 1/

√
4) is the same (see Corollary 2.6), but the spectral type is

different

Let us describe a few of the challenges. First, due to singularities that arise at complex
phases in the non-critical cases, the transfer matrix cocycle is singular and hence one
cannot immediately use the “asymptotic cocycle”method as in previous cases to compute
the Lyapunov exponent. We use a topological argument to circumvent this difficulty: we
show that the range of the determinant of the cocycle map has trivial winding around
the origin in the two “perturbative” regions of large and small imaginary parts and
use suitable continuity arguments to establish this for all imaginary parts away from the
singularities. This is inspired by related works of Jitmirskaya–Marx for the (self-adjoint)
extended Harper’s model [56].

The calculations needed to establish the form of Aubry duality are quite delicate
and require several non-obvious changes of coordinates. More generally, because of the
more complicated structure of the operator and its transfer matrices, most calculations
are more involved than the corresponding self-adjoint counterparts. Furthermore, as
mentioned before, it is also not obvious what these analogous calculations should be.

In the proof of continuous spectrum for the case of critical coupling, we need to deal
with the lack of a symplectic symmetry of the cocycle. Concretely, we had to find a
novel symmetry of the cocycle which was then different from the symplectic symmetry
that is typically used in studying reducibility questions for Schrödinger cocycles. In the
Schrödinger setting, one can simply exploit the fact that the transfer matrix is real and
so invariant under complex conjugation, whereas the corresponding symmetry we had
to use was more complicated.

Moreover, in several of the arguments, it is needed to relate the transfermatrix cocycle
to one in SL(2,R) in order to apply the machinery of such cocycles. However, even
after normalization, the cocycle for this model clearly does not belong to SL(2,R);
nevertheless, we found a novel conjugacy from the cocycle into SL(2,R), which again
is not at all obvious from the form of the cocycle.

Finally, our operators are not standard CMV matrices but rather generalized CMV
matrices, which allow for an additional complex phase in some parameters. This obstacle
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is the easiest to overcome: any generalized CMV matrix is unitarily equivalent to a
genuine CMVmatrix by a simple diagonal unitary operator. This allows one to translate
results from CMV matrices to generalized CMV matrices with relative ease. For the
reader’s convenience, we describe this equivalence in Sect. 2.3. This will be discussed
more thoroughly together with some additional applications in the forthcoming work
[29].

We wish to emphasize that, although there are often corresponding results on either
the unitary or self-adjoint side, such results are often about classes of operators (periodic,
random, quasiperiodic), and not specificmodels. That is to say, there is to our knowledge
no dictionary that explicitly connects properties of Schrödinger operators with CMV
matrices or quantum walks in an explicit fashion.

The remainder of the paper is structured as follows.Wedefined themodel and state our
results in Sect. 2. Section3 discusses the two-dimensional quantumwalks fromwhich the
main model of the paper is derived. In Sect. 4, we discuss the associated transfer matrix
cocycle in detail, characterizing the cocycle dynamics according to Avila’s global theory
in each parameter region. Section5 discusses and proves several manifestations of Aubry
duality for the model, which is then put to use in Sects. 6–8 to prove the remainder of
our spectral results.

2. Model and Results

2.1. Setting. We will consider a quantum walkW : �2(Z)⊗C
2 → �2(Z)⊗C

2 =: H1,
defined by a quasiperiodic sequence of coins. In the present section, we will define pre-
cisely themodel,which arises via a one-dimensional representation of a two-dimensional
quantum walk in a magnetic field. However, we emphasize that the one-dimensional
model can be defined and studied without reference to the two-dimensional model. We
explain the connection to two-dimensional magnetic quantum walks in detail in Sect. 3.

Let us write the standard basis ofH1 as

δsn = δn ⊗ es, n ∈ Z, s ∈ {+,−}, (2.1)

where {δn : n ∈ Z} denotes the standard basis of �2(Z) and e+ = [1, 0]�, e− = [0, 1]�
denotes the standard basis of C2. For an element ψ ∈ H1, we write its coordinates as
ψ s
n = 〈δsn, ψ〉 so that

ψ =
∑

n∈Z

(
ψ+
n δ+n + ψ−

n δ−
n

)
,

where ψ+, ψ− ∈ �2(Z). Viewing H1 ∼= �2(Z,C2), it is natural to also put ψn =
[ψ+

n , ψ−
n ]�. Recall that a quantum walk W is specified by the iteration of a suitable

unitary operator. Choosing a sequence of unitary coins

Qn =
[
q11n q12n
q21n q22n

]
∈ U(2,C), (2.2)

and a parameter λ ∈ [0, 1], the walks we consider are given by

W = SλQ, (2.3)

where Q acts coordinatewise via Qn (i.e., [Qψ]n = Qnψn) and Sλ is given by

Sλδ
±
n = λδ±

n±1 ± λ′δ∓
n , λ′ =

√
1 − λ2. (2.4)



750 C. Cedzich, J. Fillman, D. C. Ong

The reader may readily verify that Sλ, Q, and W are all unitary. We call a walk of the
form (2.3) a split-step walk with coupling constant λ.

We are now ready to define ourmainmodel. Given coupling constants λ1, λ2 ∈ [0, 1],
a frequency � ∈ T := R/Z, and a phase θ ∈ T, we consider the walk

Wλ1,λ2,�,θ = Sλ1Qλ2,�,θ (2.5)

where the coins Qn = Qλ2,�,θ,n are given by

Qn = Qλ2,�,θ,n =
[
λ2 cos(2π(n� + θ)) + iλ′

2 −λ2 sin(2π(n� + θ))

λ2 sin(2π(n� + θ)) λ2 cos(2π(n� + θ)) − iλ′
2

]
. (2.6)

By an argument using minimality of θ 
→ θ +� and strong operator convergence, there
is for each λ1, λ2 and irrational � a fixed set 
λ1,λ2,� ⊆ ∂D with

σ(Wλ1,λ2,�,θ ) = 
λ1,λ2,� for every θ ∈ T.

Working out the relevant product, the reader can check that the action ofW = Wλ1,λ2,�,θ

in coordinates is given as

[Wψ]+n = λ1
(
(λ2 cos(2π((n − 1)� + θ)) + iλ′

2)ψ
+
n−1 − λ2 sin(2π((n − 1)� + θ))ψ−

n−1

)

− λ′
1

(
λ2 sin(2π(n� + θ))ψ+

n + (λ2 cos(2π(n� + θ)) − iλ′
2)ψ

−
n

)
,

[Wψ]−n = λ1
(
λ2 sin(2π((n + 1)� + θ))ψ+

n+1 + (λ2 cos(2π((n + 1)� + θ)) − iλ′
2)ψ

−
n+1

)

+ λ′
1

(
(λ2 cos(2π(n� + θ)) + iλ′

2)ψ
+
n − λ2 sin(2π(n� + θ))ψ−

n

)
.

See also Lemma 4.1.
For later use, notice that

det(Qλ2,�,θ,n) = 1 ∀ λ2 ∈ [0, 1], �, θ ∈ T, n ∈ Z. (2.7)

Because of the close parallels between this model and the almost-Mathieu operator
(AMO), we propose calling Wλ1,λ2,�,θ (an instance of) the unitary almost-Mathieu
operator (UAMO). The case λ1 = λ2 = 1 was studied in [28,44,66,76].

Remark 2.1. Let us make a few remarks about the parameters.

(a) Since
√
1 − (−λ)2 = √

1 − λ2, one has

Q−λ2,�,θ = Qλ2,�,θ+ 1
2
.

Moreover, if U denotes the unitary transformation δ±
n 
→ ±δ∓−n , one can check that

USλ1U = −S−λ1 UQλ2,�,θ U = −Qλ2,−�,θ .

Thus, we take λ1, λ2 ∈ [0, 1] and do not consider λ j ∈ [−1, 0).
(b) If� is rational, then {Qn} is periodic and hence its spectral [79] and dynamical [5,39]

properties are well-understood.
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(c) If λ1 = 0, then S0δ±
n = ±δ∓

n , so the spectrum of W is pure point and all walkers
are localized for trivial reasons. On the other hand, if λ2 = 0 the coin sequence is
constant. In analogy with the self-adjoint setting, in which one considers
+λV with
λ a real coupling constant, the quantity λ2/λ1 appears to play a role similar to λ. In
fact, we will see later that the most appropriate analogue of the coupling constant λ
appears to be

λ0 = λ0(λ1, λ2) :=
λ2(1 +

√
1 − λ21)

λ1(1 +
√
1 − λ22)

= λ2(1 + λ′
1)

λ1(1 + λ′
2)

, (2.8)

since we will show (Corollary 2.10) that the Lyapunov exponent is given by max{0,
log λ0} on the spectrum. In particular, λ1 = 0 corresponds to λ0 = ∞, while λ2 = 0
corresponds to setting λ0 = 0.

(d) In fact, the connection to the coupling constant of the almost-Mathieu operator is
even stronger than the previous remark suggests. To wit: we will see that the form
of Aubry duality for the present walk (modulo some niceties that we will discuss
more precisely later in the paper) acts by exchanging λ1 and λ2, similar to the duality
transformation λ 
→ 1/λ in the case of the AMO (compare [8,69]). Thus, we have
three interesting regimes to study:

Subcritical: λ1 > λ2 (equivalently, λ0 < 1)

Critical: λ1 = λ2 (equivalently, λ0 = 1)

Supercritical: λ1 < λ2 (equivalently, λ0 > 1) 0

1

0 1

λ2

λ1

Later in the paper, we will show that the nomenclature is consistent with the charac-
terization of cocycle dynamics according to Avila’s global theory (cf. Theorem 2.9).

(e) Naturally, one is interested in the dynamical behavior of the walk as well, that is, the
spreading (or lack thereof) associated with the unitary group {Wt }t∈Z. Here we note
that (at least for Diophantine �) one appears to observe a transition from ballistic
motion in the subcritical regime to diffusive motion in the critical case to localization
in the supercritical region. For the frequency � = (

√
5 − 1)/2 and phase θ = 0, we

plot the standard deviation of the position operator as a function of time in Fig. 2.

2.2. Results. Let us now describe our main results. First, we discuss the spectral type
in each parameter region for a.e. frequency and phase.

Theorem 2.2. Assume λ1, λ2 ∈ [0, 1].
(a) If λ1 > λ2, the spectral type of Wλ1,λ2,�,θ is purely absolutely continuous for a.e. �

and θ .

(b) If λ1 < λ2, the spectral type of Wλ1,λ2,�,θ is pure point for a.e. � and θ .

(c) If λ1 < λ2, the spectral type of Wλ1,λ2,�,θ is purely singular continuous for generic
� and all θ .

(d) If 0 < λ1 = λ2 ≤ 1, then 
λ1,λ2,� is a Cantor set of zero Lebesgue measure for
every irrational �.
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Fig. 2. Different spectral types have drastically different dynamical behaviour, even for very small changes
in the coupling constants as can be seen from the square of the variance of the position operator: fixing
� = (1−√

5)/2 and θ = 0, the orange line corresponds to the subcritical case with (λ1, λ2) = (1, 1−10−4)
where σ ∼ t , the red curve is critical with (λ1, λ2) = (1, 1) and the localized blue curve with σ ∼ const is
supercritical with (λ1, λ2) = (1 − 10−4, 1). The green curve with σ ∼ √

t is plotted for reference

(e) If 0 < λ1 = λ2 < 1, the spectral type of Wλ1,λ2,�,θ is purely singular continuous for
all irrational � and all but countably many θ .

(f) If λ1 = λ2 = 1, the spectral type of Wλ1,λ2,�,θ is purely singular continuous for all
irrational � and a.e. θ .

(g) For any 0 ≤ λ2 ≤ 1, � ∈ T, and θ ∈ T, the spectral type of W0,λ2,�,θ is pure point.
For every irrational �, 
0,λ2,� = {z ∈ ∂D : |Re(z)| ≤ λ2}.

(h) For any 0 < λ1 ≤ 1, � ∈ T, and θ ∈ T, the spectral type of Wλ1,0,�,θ is purely
absolutely continuous. For every irrational �, 
λ1,0,� = {z ∈ ∂D : |Re(z)| ≤ λ1}.

Remark 2.3. Let us make some comments about Theorem 2.2.

(a) The result in Theorem 2.2.(a) is obtained from the result in Theorem 2.2.(b) by
duality, so the sets of � are the same in each part.

(b) The generic set in Theorem 2.2.(c) consists of those irrational � satisfying a suitable
Liouville condition, namely,

lim sup
k→∞

log qk+1
qk

= ∞,

where qk denotes the kth continued fraction denominator associated with �.
(c) Theorem 2.2.(f) and the case λ1 = λ2 = 1 from Theorem 2.2.(d) were proved in [44]

and are listed here for the sake of completeness. We remark that the full-measure set
of θ was written down explicitly in [44].

(d) In the region 0 < λ1 = λ2 ≤ 1 numerical evidence suggests that the spectrum is
purely singular continuous for all phases. In the self-adjoint AMO setting this was
proved in [52] using a particular choice of gauge inwhich theAMObecomes singular.
However, we were unable to apply this gauge to obtain fruitful results in the current
model.

(e) Parts g and h of Theorem 2.2 are trivial and are listed for the sake of completeness.
Nevertheless, for the reader’s convenience we have included the proofs to these
statements at the end of Sect. 4.1.
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(f) If λ1 > 0, λ2 < 1, and � is rational, then W has purely absolutely continuous
spectrum for every phase.

(g) If λ1 > 0, λ2 = 1, and � = p/q is rational in lowest terms, then there are two
possibilities. If θ ∈ 1

4 +
1
qZ + 1

2Z, then again W decouples into an infinite direct sum
and has pure point spectrum with eigenvalues of infinite multiplicity corresponding
to compactly supported eigenfunctions. Otherwise, the spectrum of W is purely
absolutely continuous.

(h) In the region λ1 > λ2, we expect that purely absolutely continuous spectrum holds
for all θ and � (note that λ1 > λ2 implies λ1 > 0 and λ2 < 1 so the examples
with compactly supported eigenfunctions do not occur in this regime). The proof of
this would take us outside the scope of the current paper; we plan to investigate it in
future work.

There are two crucial ingredients involved in the proofs of the main results: (1) a
suitable version of Aubry duality for the operator family {Wλ1,λ2,�,θ : θ ∈ T} and (2) a
careful analysis of the associated transfer matrix cocycle.

The form of Aubry duality for this model demonstrates that dual of the family
{Wλ1,λ2,�,θ : θ ∈ T} is given by {W�

λ2,λ1,�,θ : θ ∈ T} in a suitable sense. Let us
make this precise. Define

W �
λ1,λ2,�,θ = W�

λ2,λ1,�,θ , (2.9)

where � denotes the transpose.

Theorem 2.4 (Aubry duality via solutions). Let λ1, λ2 ∈ [0, 1], � ∈ T irrational, and
θ ∈ T be given, and suppose ψ ∈ H1 satisfies Wλ1,λ2,�,θψ = zψ for some z ∈ ∂D. If
ϕξ is defined for ξ ∈ T by

[
ϕ

ξ,+
n

ϕ
ξ,−
n

]
= 1√

2
e2π inθ

[
1 i
i 1

] [
ψ̌+(n� + ξ)

ψ̌−(n� + ξ)

]
, (2.10)

where ·̌ denotes the inverse Fourier transform, then
W �

λ1,λ2,�,ξ ϕ
ξ = zϕξ (2.11)

for a.e. ξ . Furthermore, if ψ ∈ �1(Z,C2), then (2.11) holds for all ξ .

Let us emphasize that ϕξ ∈ C
Z ⊗ C

2 is not assumed to belong to the Hilbert space
H1 = �2(Z) ⊗ C

2, so one should interpret W �
λ1,λ2,�,ξ as a finite difference operator

in the previous theorem. Indeed, when ψ is an Anderson localized (i.e., exponentially
decaying) eigenvector of Wλ1,λ2,�,θ , then ϕξ is in general an extended state: bounded
but not decaying.

One can also express duality of generalized eigenfunctions via suitable direct inte-
grals. The following formulation is useful.

Theorem 2.5 (Aubry duality via direct integrals). For any λ1, λ2, and �,
∫ ⊕

T

Wλ1,λ2,�,θ dθ ∼=
∫ ⊕

T

W �
λ1,λ2,�,θ dθ,

where ∼= denotes unitary equivalence of operators on
∫ ⊕

T

H1 dθ .
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Let us note the following elementary consequence of Theorem 2.5.

Corollary 2.6. For any λ1, λ2 ∈ [0, 1] and � ∈ T irrational,


λ1,λ2,� = 
λ2,λ1,�. (2.12)

Proof. By minimality and Theorem 2.5, we have


λ1,λ2,� = σ

(∫ ⊕

T

Wλ1,λ2,�,θ dθ

)
= σ

(∫ ⊕

T

W�
λ2,λ1,�,θ dθ

)
= 
λ2,λ1,�,

as desired. ��
The second crucial ingredient in our work is the classification of cocycle behavior

in the language of Avila’s global theory [12]. To formulate these results, let us recall
the general setting. Given � irrational and a continuous map M : T → C

2×2, we may
consider the skew product

(�, M) : T × C
2 → T × C

2, (θ, v) 
→ (θ + �, M(θ)v) (2.13)

and its iterates given by (�, M)n = (n�, Mn), where

Mn(θ) = Mn,�(θ) = M((n − 1)� + θ) · · · M(� + θ)M(θ)

=
0∏

j=n−1

M( j� + θ) (2.14)

for n ∈ N. The map (�, M) is called the quasiperiodic cocycle associated with � and
M . The Lyapunov exponent of (�, M) is given by

L(�, M) = lim
n→∞

1

n

∫

T

log ‖Mn(θ)‖ dθ. (2.15)

If M is analytic and enjoys an analytic extension to a strip of the form {θ + iε : θ ∈
T, |ε| < δ}, then for |ε| < δ, we consider the complexified cocycle map

M(· + iε) : T 
→ M(θ + iε). (2.16)

For each |ε| < δ, one can consider the Lyapunov exponent of the complexified cocycle:

L(�, M, ε) := L(�, M(· + iε)). (2.17)

If, in addition, M : T → SL(2,R), one says that (�, M) is

• Uniformly hyperbolic if ‖Mn(θ)‖ ≥ ceλ|n| for all n ∈ Z and constants c, λ > 0
• Supercritical if L(�, M) > 0 and (�, M) is not uniformly hyerbolic
• Subcritical if L(�, M, ε) = 0 for all ε in a strip containing ε = 0
• critical if L(�, M) = 0 but (�, M) is not subcritical.
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Let us now explain how quasiperiodic cocycles arise in the spectral analysis of the
operators Wλ1,λ2,�,θ . To study the spectral problem associated with a walk W = SλQ,
one naturally studies the generalized eigenvalue equationWψ = zψ with z ∈ C, which
leads to the transfer matrices defined by

Tz(n) = 1

q22n

[
λ−1z−1 det Qn + λ′λ−1(q21n − q12n ) + zλ′2λ−1 q12n − λ′z

−q21n − λ′z λz

]
. (2.18)

We will show that [
ψ+
n+1

ψ−
n

]
= Tz(n)

[
ψ+
n

ψ−
n−1

]

whenever z ∈ C \ {0} and ψ solves Wψ = zψ (see Sect. 4.1 for details).
In the primary quasiperiodic setting of this paper with coins Qn = Qλ2,�,θ,n given

in (2.6), this leads naturally to a quasiperiodic cocycle. To describe this more precisely,
given λ1, λ2, �, θ , and z, define Az(θ) = Aλ1,λ2,z(θ) to be Tz(0) as in (2.18) with Qn
as in (2.6), that is,

Az(θ) = 1

λ2c(θ) − iλ′
2

[
λ−1
1 z−1 + 2λ′

1λ
−1
1 λ2s(θ) + zλ′

1
2
λ−1
1 −λ2s(θ) − λ′

1z−λ2s(θ) − λ′
1z λ1z

]
,

(2.19)
where we adopt the abbreviations

c(θ) = cos(2πθ), s(θ) = sin(2πθ). (2.20)

This defines a cocycle map, whose iterates and Lyapunov exponent may be considered
as in (2.14) and (2.15).

We define

L(z) = Lλ1,λ2,�(z) = L(�, Aλ1,λ2,z) = lim
n→∞

1

n

∫

T

log ‖An,�
λ1,λ2,z

(θ)‖ dθ

which by irrationality of � and Kingman’s subadditive ergodic theorem satisfies for
each z and a.e. θ :

Lλ1,λ2,�(z) = lim
n→∞

1

n
log ‖An,�

λ1,λ2,z
(θ)‖.

Later, wewill see | det(Aλ1,λ2(θ, z))| ≡ 1 (see (4.35)), which naturally implies L(z) ≥ 0
for all z ∈ C\{0}.

We will see later that the transfer matrix cocycle map associated with the Aubry dual
walk W � is given by

A�
λ1,λ2,z

(θ) = Aλ2,λ1,1/z̄(θ). (2.21)

In particular, for z ∈ ∂D one has A�
λ1,λ2,z

= Aλ2,λ1,z , so statements transfer into the dual
setting in a straightforward fashion.

One must be careful in the present setting for two reasons. First, the transfer matrices
for the UAMO are not in SL(2,R): indeed they are not even unimodular; this can be
solved with a suitable conjugacy that moves the normalized cocycle A/

√
det A into

SL(2,R) (we will give a more detailed description later). Second, in the case λ2 = 1,
the associated cocycle obviously is not analytic and hence the apparatus of global theory
cannot be applied directly, even after shifting to the real cocycle. To deal with that, we
work with a suitable regularization; in fact, because of singularities that arise off the real
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axis, we use this regularization evenwhen λ2 �= 1. To that end, we consider B = Bλ1,λ2,z
given by

Bλ1,λ2,z(θ) =
[
2(λ2c(θ) − iλ′

2)

1 + λ′
2

]
Aλ1,λ2,z(θ)

= 2

λ1(1 + λ′
2)

[
z−1 + 2λ′

1λ2s(θ) + zλ′
1
2 −λ1(λ2s(θ) + λ′

1z)−λ1(λ2s(θ) + λ′
1z) λ21z

]
. (2.22)

The additional prefactor 2/(1 + λ′
2) is chosen so that the Lyapunov exponents of A and

B are precisely the same (which we will demonstrate later). The regularized cocycle
B is analytic, even for λ2 = 1 and one can classify cocycle dynamics throughout all
parameter regions.

As mentioned before, the case λ2 = 1 presents some complications with the general
nomenclature: the cocycle A is not analytic and the regularized cocycle B has points of
singularity at which det B = 0, so neither can be pushed to SL(2,R) in a simple way.
Let us address this case first.

Theorem 2.7. Suppose � is irrational and λ2 = 1.

(a) If λ1 = λ2 = 1, then L(�, B1,1,z, ε) = 2π |ε| for all z ∈ 
1,1,� and all ε.
(b) If 0 < λ1 < λ2 = 1, then Lλ1,1,�(z) > 0 for all z ∈ 
λ1,1,�. Indeed,

Lλ1,1,�(z) ≥ log

[
1 + λ′

1

λ1

]
, (2.23)

with equality if and only if z belongs to the spectrum.

One could consider calling the behavior in Theorem2.7.(a) “critical” and the behavior
in Theorem 2.7.(b) “supercritical”, but it should be understood that this is a slight abuse
of terminology since those words are generally understood in the literature to refer to
SL(2,R) cocycles.

Now let us consider the cases with λ2 < 1. In order to apply the relevant results
from the global theory, we must work with an SL(2,R) cocycle. There are thus two
impediments: det Aλ1,λ2,z �= 1 and Aλ1,λ2,z/

√
det Aλ1,λ2,z /∈ SL(2,R) in general.

Let Y (λ) denote the unitary matrix

Y (λ) = 1

2

[√
1 + λ − i

√
1 − λ −√

1 − λ + i
√
1 + λ√

1 − λ + i
√
1 + λ

√
1 + λ + i

√
1 − λ

]
, (2.24)

and put

AR
λ1,λ2,z(θ) := Y (λ1)

∗ Aλ1,λ2,z(θ)√
det Aλ1,λ2,z(θ)

Y (λ1). (2.25)

Proposition 2.8. For all λ1 ∈ (0, 1], λ2 ∈ [0, 1), and z ∈ ∂D, AR
λ1,λ2,z

defined in (2.25)
is an analytic map T → SL(2,R) with analytic extension to a strip. Indeed,

AR
λ1,λ2,z(θ) = 1

λ1

√
λ′
2
2 + λ22c

2(θ)

[
Re z + λ′

1λ2s(θ) λ1Im z − λ′
1Re z − λ2s(θ)

−λ1Im z − λ′
1Re z − λ2s(θ) Re z + λ′

1λ2s(θ)

]

(2.26)
for all θ ∈ T, where we recall s(θ) = sin(2πθ) and c(θ) = cos(2πθ).
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Having conjugated the cocycle into SL(2,R), we can discuss the characterization of
(�, AR) in the language of global theory.

Theorem 2.9. Suppose � is irrational and λ2 < 1.

(a) If 0 ≤ λ2 < λ1 ≤ 1, then the cocycle (�, AR
λ1,λ2,z

) is subcritical for all z ∈ 
λ1,λ2,�.
In particular, L(z) = 0 for all z ∈ 
λ1,λ2,�.

(b) If 0 < λ1 = λ2 < 1, then the cocycle (�, AR
λ1,λ2,z

) is critical for all z ∈ 
λ1,λ2,�. In
particular, L(z) = 0 for all z ∈ 
λ1,λ2,�.

(c) If 0 < λ1 < λ2 < 1, then the cocycle (�, AR
λ1,λ2,z

) is supercritical for all z ∈

λ1,λ2,�. Moreover, the Lyapunov exponent Lλ1,λ2,� satisfies

Lλ1,λ2,�(z) ≥ log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
(2.27)

with equality if and only if z belongs to the spectrum.

By Theorems 2.7 and 2.9, one has the following corollary which shows that the
Lyapunov exponent can be explicitly computed on the spectrum.

Corollary 2.10. For any 0 < λ1 ≤ 1, 0 ≤ λ2 ≤ 1, � ∈ T, and any z ∈ 
λ1,λ2,�, one
has

Lλ1,λ2,�(z) = max{0, log λ0},
where λ0 is given by (2.8).

Remark 2.11. The careful analysis of cocycle dynamics pays dividends for the deter-
mination of the spectral type. For instance, we use criticality in an essential manner to
prove that the spectrum is a zero-measure Cantor set in the case λ1 = λ2 > 0. Similarly,
the subcriticality statement implies that the transfer matrix cocycle is almost reducible
on the spectrum by Avila’s almost-reducibility conjecture announced in [12] and proved
in [9,11]. One can then apply reducibility theory as in [65] in order to deduce purely
absolutely continuous spectrum for all phases. To execute this scheme would take us
outside the scope of the current work; we plan to address it in future investigations.

2.3. Connection to CMV matrices. Let us make explicit a connection between the cur-
rent setup and Cantero–Moral–Velázquez (CMV) matrices. This generalizes the CGMV
connection, which is named after the foundational papers [25,26]. The CMVmatrix is a
unitary operator on �2(N) that hasmany applications in in spectral theory and orthogonal
polynomials on the unit circle (OPUC). This connection is analogous to the relation-
ship between the Jacobi matrix and orthogonal polynomials on the real line (OPRL).
A standard reference for the many connections between the CMV matrix and OPUC is
[78,79]. In situations in which the coefficients are generated by an invertible dynamical
system (such as an irrational circle rotation as in this work), is is natural to work with
extended CMV matrices, which are the natural analogues acting in �2(Z).

In the present work, we need some additional flexibility afforded by complexifying
certain parameters, which gives rise to objects we call generalized CMVmatrices. How-
ever, we will explain how to relate these objects to standard CMV matrices. Let us first
define generalized CMV matrices. Let D = {z ∈ C : |z| ≤ 1}. For each pair

(α, ρ) ∈ S
3 =

{
(z1, z2) ∈ D

2 : |z1|2 + |z2|2 = 1
}
,
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put

�(α, ρ) =
[
α ρ

ρ −α

]
.

Given sequences of elements (αn, ρn) ∈ S
3, put

L = L({(α2n, ρ2n)}n∈Z) =
⊕

�(α2n, ρ2n),

M = M({(α2n+1, ρ2n+1)}n∈Z) =
⊕

�(α2n+1, ρ2n+1)

where in both cases �(α j , ρ j ) acts on �2({ j, j + 1}). One then takes E = Eα,ρ := LM,
which one can check has the matrix representation

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . .

α0ρ−1 −α0α−1 α1ρ0 ρ1ρ0

ρ0ρ−1 −ρ0α−1 −α1α0 −ρ1α0
α2ρ1 −α2α1 α3ρ2 ρ3ρ2
ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

. . .
. . .

. . .
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.28)

where all unspecified matrix entries are zero and we have placed a box around the entry
corresponding to 〈δ0, Eδ0〉. If additionally one has ρn ∈ [0, 1] for all n, one necessarily
has ρn = (1 − |αn|2)1/2, and we simply call this a standard CMV matrix. In this case,
we refer to {αn}n∈Z as the sequence of Verblunsky coefficients of E . If ρn = 0 for some
n ∈ Z, the reader can check that E preserves �2(Z∩(−∞, n]) and �2(Z∩[n+1,∞)), so
the operator E decomposes as a direct sum of two half-line CMV operators on (−∞, n]
and [n + 1,∞).

In [25], Cantero, Grünbaum, Moral, and Velázquez observed that one may connect
CMV matrices and quantum walks. Since our quantum walk setting is slightly more
general than theirs, let us briefly describe this connection. Order the basis of H1 as
follows:

. . . , δ−
−1, δ

+
0 , δ−

0 , δ+1 , δ−
1 , δ+2 , . . . (2.29)

Computing directly, one observes

Wδ+n = Sλ(q
21
n δ−

n + q11n δ+n ) = λq21n δ−
n−1 − λ′q21n δ+n + λ′q11n δ−

n + λq11n δ+n+1

Wδ−
n = Sλ(q

22
n δ−

n + q12n δ+n ) = λq22n δ−
n−1 − λ′q22n δ+n + λ′q12n δ−

n + λq12n δ+n+1.

Thus, writing W in the ordered basis (2.29), we get

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

λq210 λq220−λ′q210 −λ′q220
λ′q110 λ′q120 λq211 λq221
λq110 λq120 −λ′q211 −λ′q221

λ′q111 λ′q121
λq111 λq121
. . .

. . .
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.30)
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where we have boxed the δ−
0 -δ

−
0 entry of W . Thus, if we additionally assume that

det Qn = 1 for all n, we may write

Qn =
[
ρ2n−1 −α2n−1
α2n−1 ρ2n−1

]

for some suitable (α2n−1, ρ2n−1) ∈ S
3. With this,W can be identified with a generalized

CMVmatrix with those odd coefficients and such that (α2n, ρ2n) = (λ′, λ) for all n ∈ Z.
In particular, the walkWλ1,λ2,�,θ is equivalent to the generalized CMVmatrix Eλ1,λ2,�,θ

given by

α2n−1 = λ2 sin(2π(n� + θ)), ρ2n−1 = λ2 cos(2π(n� + θ)) − iλ′
2

α2n = λ′
1, ρ2n = λ1.

(2.31)

In view of this connection, each of our main results has an application to a suitable
generalizedCMVmatrix.We have chosen to beginwith quantumwalks rather thanCMV
matrices since it makes more clear the motivation behind choosing our parameters in
the manner that we did.

Moreover, every generalizedCMVmatrix is equivalent to a standardCMVmatrix in a
simple manner. Since we quote some results from the theory of standard CMVmatrices,
let us spell this connection out in more detail. The following result in this formulation
may be found in [29]; for the reader’s convenience, we give the proof. We say that two
operators A and B in �2(Z) are gauge equivalent if there is a diagonal unitary operator
D on �2(Z) such that DAD∗ = B.

Proposition 2.12. Every generalized extended CMV matrix is gauge-equivalent to a
standard CMV matrix. Indeed, for any sequence (α, ρ) ∈ (S3)Z, there is a diagonal
unitary operator D so that DEα,ρD∗ = Eα,|ρ|
Proof. For z ∈ C, denote ang(z) = z/|z| if z �= 0 and ang(0) = 1. Define d0 = 1, dn =
ang(ρ0ρ1 · · · ρn−1) for n > 1, and dn = (ang(ρnρn+1 · · · ρ−1))

−1 for n < −1. A direct
calculation shows that the diagonal unitary [Dψ]n = dnψn satisfies DEα,ρD∗ = Eα,|ρ|.

��
Corollary 2.13. The generalized CMV matrix Eλ1,λ2,�,θ defined by (2.31) is gauge-
equivalent to the standard CMV matrix ERλ1,λ2,�,θ defined by

α2n = λ′
1, α2n−1 = λ2 sin(2π(n� + θ)), ρn =

√
1 − |αn|2. (2.32)

As a generalized CMV matrix, there are two other cocycles associated with W ,
namely, the Szegő cocycle (cf. [78, Equation (1.5.35)]) and the Gesztesy–Zinchenko
(GZ) cocycle [46]. Denoting

X (α, ρ, z) = 1

ρ

[
z −α

−αz 1

]
, P(α, ρ, z) = 1

ρ

[−α z
1/z −α

]
,

Q(α, ρ, z) = 1

ρ

[−α 1
1 −α

]

the (two-step) Szegő cocycle associated with Wλ1,λ2,�,θ is given by

Sλ1,λ2,z(θ) = X (λ′
1, λ1, z)X (λ2 sin(2πθ), λ2 cos(2πθ) − iλ′

2, z) (2.33)
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and the two-step GZ cocycle is given by

Gλ1,λ2,z(θ) = P(λ′
1, λ1, z)Q(λ2 sin(2πθ), λ2 cos(2πθ) − iλ′

2, z) (2.34)

An equivalence between G and S is given in [39, Eq. (3.3)], and an equivalence between
G and A is given in [83, Eq. (3.20)]. We have

z−1Sz,λ1,λ2 = Cλ1 Aλ1,λ2,zC
−1
λ1

, Cλ1 =
[−λ′

1 λ1
1 0

]
, (2.35)

and

D−1
z Gλ1,λ2,z Dz = z−1Sλ1,λ2,z, Dz =

[
z 0
0 1

]
. (2.36)

Corollary 2.14. For all irrational �, λ1 ∈ (0, 1], λ2 ∈ [0, 1], and z ∈ ∂D,

L(�, Aλ1,λ2,z) = L(�, Sλ1,λ2,z) = L(�,Gλ1,λ2,z). (2.37)

Proof. This is immediate from (2.35) and (2.36). ��
Together, Corollaries 2.13 and 2.14 allow one to apply much of the theory of standard

CMV matrices to generalized CMV matrices and in particular to the UAMO.
The remainder of the paper is organized as follows. In Sect. 3, we describe the mo-

tivation behind the study of the model in question by relating it to a two-dimensional
magnetic quantum walk in a uniform magnetic field. Section4 analyzes the transfer ma-
trix cocycle and in particular proves Theorem 2.9 aswell as Theorems 2.2.(g) and 2.2.(h).
Section5 works out suitable versions of Aubry duality for the model and contains the
proofs of Theorems 2.4 and 2.5. Section6 discusses continuous spectrum (that is, the
exclusion of eigenvalues) and contains the proof of Theorem 2.2.(c) and the “purely con-
tinuous” half of Theorem 2.2.(e). Section7 discusses the phenomenon of zero-measure
Cantor spectrum in the critical case and in particular proves Theorems 2.2.(d) and 2.2.(e).
Section8 discusses localization in the supercritical region and spectral consequences, in
particular proving Theorems 2.2.(b) and 2.2.(a).

3. Motivation: Two-Dimensional Magnetic Quantum Walks

Let us describe the motivation behind studying quantum walks with quasiperiodic coins
as in (2.6). The reader who is not interested in the physical origins of the model could
skip this section, but it explains why we study the one-dimensional quasiperiodic walks
that we choose to study and it also provides some insight into why we could expect such
walks to exhibit a suitable version of Aubry duality. Indeed, since the almost-Mathieu
operator arises from the study of a two-dimensional tight-binding model of an electron
subjected to an external magnetic field, the natural starting point of our model is a
two-dimensional quantum walk subjected to an external magnetic field. We also direct
the reader to [68,77] for additional insights about the relationship between self-adjoint
one-dimensional quasiperiodic and two-dimensional magnetic operators.

As alreadymentioned, one can simply start from themodel defined in (2.3), (2.4), and
(2.6), but it is helpful to see how this arises physically, which also explains the choice
of the model.

Let us recall the two-dimensional magnetic QW model of [28]. The state space will
beH2 := �2(Z2) ⊗ C

2 with orthonormal basis

{δsn := δn ⊗ es : n ∈ Z
2, s ∈ {±} = Z2}.
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As before, view C
2 = �2(Z2) and write e+ = [1, 0]� and e− = [0, 1]�. Fix a magnetic

flux �. In the symmetric gauge, the magnetic translations are given by [32]

T1 = T1,� : δsn 
→ e−siπ�n2δsn+se1 , (3.1)

T2 = T2,� : δsn 
→ esiπ�n1δsn+se2 (3.2)

Viewing H2 = �2(Z2) ⊕ �2(Z2) in the natural manner, we have

Tj,� =
[
Uj,� 0
0 U∗

j,�

]

whereUj = Uj,� are the corresponding shifts on �2(Z). Again in the symmetric gauge,
one can take

U1,� : δn 
→ e−iπ�n2δn+e1 , U2,� : δn 
→ eiπ�n1δn+e2 .

We now also introduce the coupling parameter λ ∈ [0, 1] to get the coupled operators
Tj,λ,� given by

Tj,λ,� =
[
Uj,� 0
0 1

] [
λ −λ′
λ′ λ

] [
1 0
0 U∗

j,�

]
=
[
λUj −λ′
λ′ λU∗

j

]

Let us briefly explain the terminology.We call λ a “coupling constant” to elucidate an
analogy with the self-adjoint setting. Namely, λ is a parameter that dictates how strongly
neighboring sites interact with one another by mediating the strength of the shift relative
to the coins. Thus, as λ decreases from one to zero, neighboring sites interact less and
less and hence are less coupled together. Moreover, the main model of the present paper
experiences a phase transition in the coupling constants that is similar to the phase
transition exhibited in the self-adjoint Harper’s model and that is unitary for each choice
of parameters, which in turn requires genuine care in the definition of the model.

Denoting by

C0 = 1√
2

[
1 i
−i −1

]
,

we then want to consider

W (2) = W (2)
λ1,λ2,�

= T1,λ1,�C0T2,λ2,�C0,

see Fig. 3. The coin C0 is chosen to be a conjugate of the Hadamard coin, which is a
popular choice for an unbiased coin in the quantumwalk setting. The particular conjugate
is chosen so that our quantum walk has a relatively simple form, yet other choices are
possible (see the recent experimental work [82]).

Let us now pass to a universal setting – the rotation algebra A = A�, which is the
C∗-algebra generated by elements u, v satisfying the commutation relation

uv = e−2π i�vu. (3.3)

One obtains W (2) from the matrix algebraA� ⊗C
2×2 via the following representation.

Define p2 : A� → B(�2(Z2)) by p2(u) = U1,� and p2(v) = U2,�. Here, the “2” refers
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|(W (2)ψ)n|2
1
4 |λ1λ2|2
1
2 |λ1λ

′
2|2

1
2 |λ′

1λ2|2
|λ′

1λ
′
2|2

Fig. 3. Neighborhood structure and transition amplitudes for the walk W (2)

to the dimension of the representation. Presently, we will define the representation p1
carrying A� intoB(H1). Noting that one indeed has

U1,�U2,� = e−2π i�U2,�U1,�

we see that this is well-defined. One can then extend to the matrix algebra A� ⊗ C
2×2

in the standard way: p2({ui j }) = {p2(ui j )}. One then obtains W from the algebra via
W = p2(w), where

w =
[
λ1u −λ′

1
λ′
1 λ1u∗

]
C0

[
λ2v −λ′

2
λ′
2 λ2v

∗
]
C0 (3.4)

On the other hand, we canmapA� intoB(�2(Z)) via p1(u) = S and p1(v) = M�,θ ,
where S denotes the shift δn 
→ δn+1 and M = M�,θ denotes the multiplication operator

Mδn = e2π i(n�+θ)δn .

Note that SM� = e−2π i�M�S, so this indeed defines a representationA� → B(�2(Z))

and hence extends to a representation of the matrix algebras p1 : A� ⊗ C
2×2 →

B(�2(Z) ⊗ C
2). Thus, applying p1 to w yields the operator

W = Sλ1Qλ2,�,θ

where Qλ2,�,θ is a coin operator with local coins

Qn = Qλ2,�,θ,n = 1

2

[
1 i
−i −1

] [
λ2e2π i(n�+θ) −λ′

2
λ′
2 λ2e−2π i(n�+θ)

] [
1 i
−i −1

]

=
[
λ2 cos(2π(n� + θ)) + iλ′

2 −λ2 sin(2π(n� + θ))

λ2 sin(2π(n� + θ)) λ2 cos(2π(n� + θ)) − iλ′
2

]
.

4. Classification of Cocycle Behavior

In the following sectionswe aim at characterizations of the spectrum and spectral proper-
ties ofWλ1,λ2,�,θ . This requires knowledge about the cocycle of its transfer matrices.We
begin by describing the transfer matrix formalism for Wψ = zψ and the dual equation
W�ψ = zψ . We then prove a lower bound on the Lyapunov exponent in the super-
critical region via a Herman-type estimate. Afterwards, we completely classify cocycle
behavior according to the relationship between the coupling constants.
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4.1. Transfer matrices. We begin by writing W in coordinates.

Lemma 4.1. Suppose λ ∈ (0, 1] and W = SλQ is a split-step walk with coupling
constant λ and coins {Qn}n∈Z as in (2.3). For each n ∈ Z, we have

[Wψ]+n = λ
(
q11n−1ψ

+
n−1 + q12n−1ψ

−
n−1

)
− λ′ (q21n ψ+

n + q22n ψ−
n

)
, (4.1)

[Wψ]−n = λ
(
q21n+1ψ

+
n+1 + q22n+1ψ

−
n+1

)
+ λ′ (q11n ψ+

n + q12n ψ−
n

)
. (4.2)

Proof. Writing out the coordinates, we have

[Wψ]+n = [SQψ]+n
= λ[Qψ]+n−1 − λ′[Qψ]−n
= λ

(
q11n−1ψ

+
n−1 + q12n−1ψ

−
n−1

)
− λ′ (q21n ψ+

n + q22n ψ−
n

)
,

proving (4.1). The proof of (4.2) is similar. ��
Analogously, we can write W� in coordinates.

Lemma 4.2. Suppose λ ∈ (0, 1] and W = SλQ is a split-step walk with coupling
constant λ and coins {Qn}n∈Z as in (2.3). For each n ∈ Z, we have

[W�ψ]+n = q11n (λψ+
n+1 + λ′ψ−

n ) + q21n (−λ′ψ+
n + λψ−

n−1) (4.3)

[W�ψ]−n = q12n (λψ+
n+1 + λ′ψ−

n ) + q22n (−λ′ψ+
n + λψ−

n−1). (4.4)

Proof. This is almost identical to the proof of Lemma 4.1. ��
Proposition 4.3. Suppose λ ∈ (0, 1] and W = SλQ is a split-step walk with coupling
constant λ and coins {Qn}n∈Z as in (2.3).

(a) If z ∈ C \ {0}, Wψ = zψ , and Qn is not an off-diagonal matrix, then

[
ψ+
n+1

ψ−
n

]
= Tz(n)

[
ψ+
n

ψ−
n−1

]
, (4.5)

where Tz(n) is given by (2.18).
(b) If z ∈ C \ {0}, W�ψ = zψ , and Qn is not an off-diagonal matrix, then

[
ψ+
n+1

ψ−
n

]
= T1/z̄(n)

[
ψ+
n

ψ−
n−1

]
. (4.6)

(c) If z ∈ C \ {0} and Qn is not off-diagonal,

det Tz(n) = q11n
q22n

, (4.7)

which is unimodular.
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Proof. (a) Beginning with Lemma 4.1, plug (4.1) into the eigenvector equation Wψ =
zψ and shift indices n 
→ n + 1 to obtain

zψ+
n+1 = λ

(
q11n ψ+

n + q12n ψ−
n

)
− λ′ (q21n+1ψ+

n+1 + q22n+1ψ
−
n+1

)
. (4.8)

Similarly, we obtain from (4.2), Wψ = zψ , and n 
→ n − 1

zψ−
n−1 = λ

(
q21n ψ+

n + q22n ψ−
n

)
+ λ′ (q11n−1ψ

+
n−1 + q12n−1ψ

−
n−1

)
. (4.9)

Then, (4.2)·λ′+(4.8)·λ and (4.1)·λ′− (4.9)·λ give

λ′zψ−
n + λzψ+

n+1 =
(
λ2 + λ′2) (q11n ψ+

n + q12n ψ−
n

)
= q11n ψ+

n + q12n ψ−
n (4.10)

and

λ′zψ+
n − λzψ−

n−1 = −
(
λ2 + λ′2) (q21n ψ+

n + q22n ψ−
n

)
= −q21n ψ+

n − q22n ψ−
n , (4.11)

respectively. Solving (4.11) for ψ−
n yields

ψ−
n = 1

q22n

(
λzψ−

n−1 − (q21n + λ′z)ψ+
n

)
, (4.12)

which is the bottom row of (4.5). Note that this step uses the assumption that Qn is not
off-diagonal, that is, |q11n | = |q22n | �= 0. Solving (4.10) for ψ+

n+1 and inserting (4.12)
produces

ψ+
n+1 = 1

λz

(
q11n ψ+

n + (q12n − λ′z)ψ−
n

)

= 1

λz

(
q11n ψ+

n + (q12n − λ′z)
(

1

q22n

(
λzψ−

n−1 − (q21n + λ′z)ψ+
n

)))

= 1

λzq22n

(
(q11n q22n − (q12n − λ′z)(q21n + λ′z))ψ+

n + (q12n − λ′z)λzψ−
n−1

)

= 1

q22n

(
λ−1z−1 det Qn + λ′λ−1(q21n − q12n ) + zλ′2λ−1)ψ+

n + (q12n − λ′z)ψ−
n−1

)
,

concluding the proof of (4.5).

(b) Since Q is unitary and Sλ is real-symmetric, Q� = Q
∗ = Q

−1
and S�

λ = S∗
λ = S−1

λ .
Thus, (4.6) follows from (4.5) and noting

W�ψ = zψ ⇐⇒ Q�S�
λ ψ = zψ ⇐⇒ z−1ψ = SλQψ.

(c) For the determinant, we have

det Tz(n) = 1

[q22n ]2 det
[
λ−1z−1 det Qn + λ′λ−1(q21n − q12n ) + zλ′2λ−1 q12n − λ′z

−q21n − λ′z λz

]

= 1

[q22n ]2
((

det Qn + λ′z(q21n − q12n ) + z2λ′2)− (q12n − λ′z)(−q21n − λ′z)
)
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= 1

[q22n ]2 (det Qn + q12n q21n )

= q11n
q22n

,

proving (4.7). Unimodularity of det Tz(n) then follows from unitarity of Qn . ��
As a consequence of this formalism, let us note the following result for the primary

model of the manuscript.

Proposition 4.4. If 0 < λ1 ≤ 1, 0 ≤ λ2 ≤ 1, and � is irrational, then:

(a) For each z ∈ ∂D,
{
θ ∈ T : z is an eigenvalue of Wλ1,λ2,�,θ

}

has zero Lebesgue measure.
(b) 
λ1,λ2,� has no isolated points.

Proof. This is a well-known argument using ergodicity; compare [36,71]. Since our set-
ting is slightly different than the other settings in which this has been proved, we include
the details for the reader’s convenience. Indeed, the spectral projector χ{z}(Wλ1,λ2,�,θ )

is a weakly measurable function of θ ∈ T that is covariant with respect to the shift
U : δ±

n 
→ δ±
n+1, on account of the identity:

UWλ1,λ2,�,�+θU
∗ = Wλ1,λ2,�,θ .

By ergodicity, the trace of χ{z}(Wλ1,λ2,�,θ ) is almost-surely constant in θ , and the
almost-sure constant value must be 0 or ∞. Since 0 < λ1, Proposition 4.3 implies
the eigenspace corresponding to eigenvalue z is always finite-dimensional, and hence
we have χ{z}(Wλ1,λ2,�,θ ) = 0 for a.e. θ , proving part (a). Since an isolated point of the
spectrum is necessarily an eigenvalue, part (b) follows immediately. ��
Remark 4.5. In fact, the reader can check that the conclusions (a) and (b) of Propo-
sition 4.4 are true when λ1 = 0 as long as λ2 > 0. Of course, one can check that

0,0,� = {±i} and ±i are eigevalues of infinite multiplicity for arbitrary phase, and
hence the conclusions do not extend to λ1 = λ2 = 0.

At this point, one can prove the trivial parts of Theorem 2.2.

Proof of Theorems 2.2.(g), and 2.2.(h). Suppose first λ2 = 0 and λ1 > 0. The transfer
matrix cocycle is constant and given by

Aλ1,0,z(θ) = i

[
λ−1
1 z−1 + zλ′

1
2
λ−1
1 −λ′

1z−λ′
1z λ1z

]
= i

[
λ−1
1 z−1 + z(λ−1

1 − λ1) −λ′
1z−λ′

1z λ1z

]
.

In particular, the spectral type is purely absolutely continuous by Floquet theory and
the spectrum may be computed from the discriminant. Normalizing the determinant, we
have

Tr(−i Aλ1,0,z(θ)) = 2 Re(λ−1
1 z), z ∈ ∂D, (4.13)

and hence


λ1,0,� = {z ∈ ∂D : Tr(−i Aλ1,0,z(θ)) ∈ [−2, 2]} = {z ∈ ∂D : Re(λ−1
1 z) ∈ [−1, 1]}

= {z ∈ ∂D : |Re(z)| ≤ λ1},
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as desired. Now, suppose λ1 = 0 (and note that the the cocycle is no longerwell-defined).
In this case, the shift is given by S0δ±

n = ±δ∓
n , so W = S0Qλ2,�,θ is a direct sum of

2 × 2 blocks of the form

Q′
λ2,�,θ,n =

[ −λ2 sin(2π(n� + θ)) −(λ2 cos(2π(n� + θ)) − iλ′
2)

λ2 cos(2π(n� + θ)) + iλ′
2 −λ2 sin(2π(n� + θ))

]
, (4.14)

and hence has pure point spectral type.
It is straightforward to check that the eigenvalues of Q′

λ2,�,θ,n are

−λ2 sin(2π(n� + θ)) ± i
√

λ′
2
2 + λ22 cos

2(2π(n� + θ)).

This shows the spectrum of W0,λ2,�,θ is {z ∈ ∂D : |Re(z)| ≤ λ2} whenever � is
irrational. ��

4.2. The Herman estimate. Let us show that the Lyapunov exponent is uniformly posi-
tive throughout the region λ1 < λ2.

Theorem 4.6. Let � be irrational. For all λ1, λ2, z, we have

Lλ1,λ2,�(z) ≥ log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
. (4.15)

In particular, Lλ1,λ2,�(z) > 0 for all z ∈ ∂D whenever 0 < λ1 < λ2 ≤ 1 and

lim
λ1↓0

Lλ1,λ2,�(z) = ∞. (4.16)

for all z ∈ ∂D, λ2 > 0, and irrational �.

Of course, if λ2 ≤ λ1, the right-hand side of (4.15) is nonpositive and hence the
content of the theorem is empty in that case.

The central argument in the proof of Theorem 4.6 is Herman’s argument via com-
plexification and subharmonicity [49]. To get the sharpest possible inequality, we need
to compute exactly a specific integral. We only need the ε = 0 case for the Herman
estimate, but we will need the calculation for nonzero ε for the eventual classification
of cocycle behavior.

Lemma 4.7. For all t ∈ [0, 1], denote ε0 = ε0(t) = 1
2π arcsinh

√
t−2 − 1. For t ∈ [0, 1]

and ε ∈ R, one has

∫ 1

0
log
∣∣∣t cos(2π(θ + iε)) − i

√
1 − t2

∣∣∣ dθ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

log
[
1+

√
1−t2
2

]
− 2π(ε + ε0) ε ≤ −ε0

log
[
1+

√
1−t2
2

]
−ε0 ≤ ε ≤ ε0

log
[
1+

√
1−t2
2

]
+ 2π(ε − ε0) ε ≥ ε0.

(4.17)

= log

[
1 +

√
1 − t2

2

]
+ 2π max{0, |ε| − ε0}. (4.18)



Unitary Almost Mathieu Operator 767

Proof. When t = 0, one has
√
1 − t2 = 1 and ε0(0) = ∞, so that both sides of (4.17)

are zero for all ε. Thus, the t = 0 case is trivial. For 0 < t ≤ 1, define

g(z) = t

2
e−2πεz2 − i

√
1 − t2z +

t

2
e2πε

so that |g(e2π iθ )| = |e−2π iθg(e2π iθ )| = |t cos(2π(θ + iε)) − i
√
1 − t2|. The desired

result follows from Jensen’s formula applied to g. ��
With the desired integral in hand, we now prove the theorem. Of course, the Herman

estimate will be superseded by the global theory classification; since it is short and self-
contained, we include the proof of positivity for the convenience of the reader who is
unfamiliar with the Herman argument.

Proof of Theorem 4.6. Let λ1, λ2, �, and z be given. The transfer matrix cocycle of
Wλ1,λ2,�,θ is given by (2.19):

Aλ1,λ2,z(θ)

= 1

λ2 cos(2πθ) − iλ′
2

[
λ−1
1 z−1 + 2λ′

1λ
−1
1 λ2 sin(2πθ) + zλ′

1
2
λ−1
1 −λ2 sin(2πθ) − λ′

1z−λ2 sin(2πθ) − λ′
1z λ1z

]
.

We view λ1, λ2, and � as fixed, so we suppress them from the subscripts throughout
the argument, simply writing, for instance, Az(θ) and L(z) instead of Aλ1,λ2,z(θ) and
Lλ1,λ2,�(z). Note that for fixed z ∈ ∂D, this map is analytic (as a function of θ ) for
λ2 < 1 and meromorphic when λ2 = 1.

Denote the regularized transfer matrices by Bz(θ):

Bz(θ) =
[
2(λ2 cos(2πθ) − iλ′

2)

1 + λ′
2

]
Az(θ) (4.19)

= 2

λ1(1 + λ′
2)

[
z−1 + 2λ′

1λ2 sin(2πθ) + zλ′
1
2 −λ1(λ2 sin(2πθ) + λ′

1z)−λ1(λ2 sin(2πθ) + λ′
1z) λ21z

]
.

(4.20)

By Lemma 4.7 (with ε = 0), we note that

L(z) = lim
n→∞

1

n

∫ 1

0
log ‖An

z (θ)‖ dθ = lim
n→∞

1

n

∫ 1

0
log ‖Bn

z (θ)‖ dθ =: L(�, Bz).

(4.21)
Write w = exp(2π iθ) and define Mz(w) to mean Bz recontextualized as a function of
w, that is

Mz(w) = 2

λ1(1 + λ′
2)

⎡

⎣z
−1 + 2λ′

1λ2

[
w−w−1

2i

]
+ zλ′

1
2 −λ1(λ2

[
w−w−1

2i

]
+ λ′

1z)

−λ1(λ2

[
w−w−1

2i

]
+ λ′

1z) λ21z

⎤

⎦

Finally, let Nz(w) = wMz(w), which one can check is an entire function Nz : C →
GL(2,C). Notice that

Nz(0) = iλ2
λ1(1 + λ′

2)

[
2λ′

1 −λ1
−λ1 0

]
. (4.22)
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Given n ∈ N, we define the iterates of Mz and Nz in the usual manner (keeping in mind
that we are writing the circle multiplicatively here):

Mn
z (w) :=

0∏

k=n−1

Mz(e
2π ik�w), Nn

z (w) :=
0∏

k=n−1

Nz(e
2π ik�w).

In view of the identity Nn
z (w) = wnMn

z (w) and the definion of Mz , one has

‖Nn
z (e2π iθ )‖ = ‖Mn

z (e2π iθ )‖ = ‖Bn
z (θ)‖ (4.23)

for all θ ∈ T. Since Nn
z (·) is analytic, it follows that log ‖Nn

z (·)‖ is subharmonic. Using
the definition of the Lyapunov exponent, (4.23), subharmonicity of log ‖Nn

z ‖, (4.22),
and Gelfand’s formula (in that order), we get

L(�, Bz) = lim
n→∞

1

n

∫ 1

0
log ‖Bn

z (θ)‖ dθ

= lim
n→∞

1

n

∫ 1

0
log ‖Nn

z (e2π iθ )‖ dθ

≥ lim sup
n→∞

1

n
log ‖Nn

z (0)‖

= lim
n→∞

[
log

[
λ2

λ1(1 + λ′
2)

]
+
1

n
log

∥∥∥∥

[
2λ′

1 −λ1
−λ1 0

]n∥∥∥∥

]

= log

[
λ2

λ1(1 + λ′
2)

]
+ log spr

[
2λ′

1 −λ1
−λ1 0

]
, (4.24)

where spr denotes the spectral radius. One can check that thematrix in the last expression
has eigenvalues λ′

1 ± 1, which yields

spr

[
2λ′

1 −λ1
−λ1 0

]
= 1 + λ′

1. (4.25)

Combining (4.25) with (4.24) and putting this together with (4.21), we have obtained

Lλ1,λ2,�(z) = L(�, Bz) ≥ log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
, (4.26)

which concludes the proof. ��

4.3. Analytic one-frequency cocycles: a brief review. Let A : T → C
2×2 be continuous

and � ∈ T irrational. Recall from (2.14) that the iterates of A are given by

An,�(θ) = A((n − 1)� + θ) · · · A(� + θ)A(θ), n ∈ N (4.27)

and the Lyapunov exponents of the cocycle (�, A) are given by

L1(�, A) = lim
n→∞

1

n

∫

T

log ‖An,�(θ)‖ dθ (4.28)

L2(�, A) = lim
n→∞

1

n

∫

T

log ‖[An,�(θ)]−1‖−1 dθ. (4.29)
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In (4.29), ‖ ·−1 ‖−1 simply computes the smaller singular value and hence one should
interpret ‖A−1‖−1 = 0 if A is not invertible. We will focus almost exclusively on the
upper Lyapunov exponent and hence simply write L(�, A) instead of L1(�, A).

Definition 4.8. We say that (�, A) enjoys a dominated splitting if there is a continuous
splitting C2 = �1(θ) ⊕ �2(θ) into one-dimensional subspaces with

A(θ)� j (θ) ⊆ � j (θ + �)

and such that there exists k ∈ N such that

‖Ak,�(θ)v1‖ > ‖Ak,�(θ)v2‖
for all θ ∈ T and all unit vectors v j ∈ � j (θ)

If in addition A is analytic with an analytic extension to a strip {θ + iε : θ ∈ T, |ε| <

δ}, we may consider the complexified cocycle map and its Lyapunov exponent as in
(2.16) and (2.17): L(�, A, ε) = L(�, A(· + iε)).

Definition 4.9. The acceleration of A is defined by

ω(A) = lim
ε↓0

1

2πε
(L(�, A, ε) − L(�, A)).

More generally, for |η| < δ we also denote

ω(A, η) = ω(A(· + iη)) = lim
ε↓0

1

2πε
(L(�, A, η + ε) − L(�, A, η)).

Let us collect the main properties of this apparatus. For details and proofs, we
direct the reader to Avila [12] (who proved the result for unimodular cocycles) and
Jitomirskaya–Marx [56,57] (who extended the result to singular cocycles). See also
Avila–Jitomirskaya–Sadel for the generalization to higher dimensions [17].

Theorem 4.10 (Avila [12], Jitomirskaya–Marx [56,57]). Suppose A : T → C
2×2 is

analytic with an analytic extension to the strip {θ + iε : θ ∈ T, |ε| < δ}.
(a) The function ε 
→ L(�, A, ε) is continuous, convex, and piecewise affine.
(b) ω(A, η) ∈ 1

2Z for all |η| < δ.
(c) If A(θ) ∈ SL(2,C) for all θ ∈ T, then ω(A, η) ∈ Z for all |η| < δ.
(d) If L1(�, A) > L2(�, A) and ε 
→ L(�, A, ε) is affine on a neighborhood of ε = 0,

then (�, A) enjoys a dominated splitting.

As soon as one has an invertible cocycle A : T → GL(2,C), one can attempt to push
into the unimodular setting by considering the normalized cocycle A/

√
det A. Thus, as

discussed in [57], for invertible (that is,GL(2,C)) cocycles, the central issue is whether
det(A) enjoys holomorphic square root, and this is preciselywhere the “1/2” in Theorem
4.10 comes from. Namely, if det(A) has a holomorphic square root, then one can apply
Avila’s result to A/

√
det A without further complication. Otherwise, one can check that

det(A) enjoys a holomorphic square root of period 2 and hence one can apply Avila’s
work to a cocycle with doubled period.

Aside from the importance as an idea in dynamical systems, the notion of a dominated
splitting plays a crucial role in the current paper by determining the complement of the
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spectrum. To spell this out in detail, we need to define the regularized GZ cocycle.
Concretely, put

P̃(α, z) =
[−α z
1/z −α

]
, Q̃(α, z) =

[−α 1
1 −α

]
,

define
G̃λ1,λ2,z = P(λ′

1, z)Q(λ2 sin(2πθ), z), (4.30)

and note that G̃λ1,λ2,z arises from Gλ1,λ2,z in (2.34) by clearing denominators.
As a consequence of a general result in [44, Theorem 6.1], one has the following

characterization of the almost-sure spectrum:

Theorem 4.11. If � is irrational, then


λ1,λ2,� = {z ∈ ∂D : (�, G̃λ1,λ2,z) does not enjoy a dominated splitting
}

(4.31)

= {z ∈ ∂D : (�, Bλ1,λ2,z) does not enjoy a dominated splitting
}
. (4.32)

Proof. The first line is an immediate consequence of [44, Theorem 6.1], (and the fact that
translation by � is a strictly ergodic isometry of T) while the second follows from the
definitions of and relationship between the various cocycles. Concretely, apply (2.22),
(2.35), (2.36), and (4.30) in that order to see that (�, Bλ1,λ2,z) enjoys a dominated
splitting if and only if (�, G̃λ1,λ2,z) does. ��

4.4. Classification of cocycles for theUAMO. Recall that the cocyclemap Az = Aλ1,λ2,z
is given by (2.19) and the regularized cocyle Bz = Bλ1,λ2,z is given by (4.19). As before,
to keep the notation cleaner in this section, we view λ1 and λ2 as fixed and suppress
them from the notation, writing Az(θ) and Bz(θ) for Aλ1,λ2,z(θ) and Bλ1,λ2,z(θ).

Let us point out the following: Bz is always analytic, but (as we will see shortly), Az
has singularities at some complex phases. We will see concrete manifestations of this
in the graph of L(�, Az, ε), which we will see is not convex. However, it is convex on
subintervals of the ε-axis that avoid values of ε for which Az(· + iε) has singularities.
We will see that there are two such values when 0 < λ2 < 1 and only one when λ2 = 1,
and moreover the exceptional values of ε are explicit functions of the coupling constant
attached to the coin sequence. Indeed, let us define ε0 by

sinh(2πε0) = λ′
2/λ2, (4.33)

(formally allowing ε0 = ∞ when λ2 = 0). Recalling Lemma 4.7, the Lyapunov expo-
nents of the complexifications of the cocycles Az and Bz are related via

L(�, Bz, ε) = L(�, Az, ε) + 2π max{|ε| − ε0, 0}. (4.34)

In particular, L(�, Az, ε) = L(�, Bz, ε) whenever |ε| ≤ ε0.
We begin with our first key technical result: by Proposition 4.3

det Aλ1,λ2,z(θ) = λ2 cos(2πθ) + iλ′
2

λ2 cos(2πθ) − iλ′
2
, (4.35)

so Az is not always a unimodular cocycle. Nevertheless, the acceleration of Az and the
acceleration of all cocycles arising from Az via complexification of the phase are always
integer-valued.
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Fig. 4. Range of θ 
→ det(A(θ + iε)) for several values of ε �= ε0. Here, λ2 = 1/
√
2 such that ε0 =

sinh−1(λ′
2/λ2)/(2π) ≈ .1403. For this value of ε the range of θ 
→ det(A(θ + iε)) is a circle with infinite

radius along the imaginary axis

Lemma 4.12. Fix 0 < λ1 ≤ 1, 0 ≤ λ2 ≤ 1,� ∈ T\Q, and z ∈ ∂D, and let A = Aλ1,λ2,z
and Bz = Bλ1,λ2,z . We have

ω(A, ε) ∈ Z ∀ε �= ±ε0, and ω(B, ε) ∈ Z ∀ε ∈ R, (4.36)

where ε0 is as in (4.33).

Proof. Case 1: λ2 = 0. In this case, A and B are constant cocycles, so the result follows.
Case 2: 0 < λ2 < 1. In view of (4.34), it suffices to prove ω(A, ε) ∈ Z for all ε �= ±ε0.
Write ξ = θ + iε, recall (4.35), and apply the sum identity for cosine to get

det(A(ξ)) = λ2 cos(2πξ) + iλ′
2

λ2 cos(2πξ) − iλ′
2

(4.37)

= λ2 cos(2πθ) cosh(2πε) + i(λ′
2 − λ2 sin(2πθ) sinh(2πε))

λ2 cos(2πθ) cosh(2πε) − i(λ′
2 + λ2 sin(2πθ) sinh(2πε))

. (4.38)

Recall that ε0 is given by (4.33). Note that the denominator of (4.38) vanishes if and
only if θ = 1/4 mod Z and ε = −ε0 or θ = 3/4 mod Z and ε = ε0. In particular, the
cocycle A(· + iε) has singularities when |ε| = ε0 and is analytic otherwise. Similarly,
the numerator of (4.38) has a root if and only if ε = ±ε0.

Since λ2 < 1, a direct calculation (using Proposition 4.3) yields

det(A(θ)) ∈
{
eis : 0 < 2 arctan(λ′

2/λ2) ≤ s ≤ 2(π − 2 arctan(λ′
2/λ2)) < 2π

}
.

(4.39)
In particular, the image of θ 
→ det(A(θ)) lies in a simply connected subset of C \ {0}
and hence θ 
→ det(A(θ)) has trivial winding around the origin. Since det(A(ξ)) �= 0
for all ξ with |Im(ξ)| < ε0,

θ 
→ det A(θ + iε) has trivial winding aroung the origin (4.40)

for all |ε| < ε0; compare Fig. 4. Similarly, one can check that if |ε| is sufficiently large,

|1 − det(A(θ + iε))| <
1

2
for all θ ∈ T.
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Consequently, θ 
→ det(A(θ + iε)) has trivial winding around zero for such large |ε|,
and hence (4.40) also holds true for all |ε| > ε0. Thus, for all ε �= ±ε0, det(A(θ + iε, z))
enjoys a holomorphic square root, so (4.36) for A and ε �= ±ε0 follows by applying
Theorem 4.10 to A(·, z)/√det A(·, z). As discussed above, the claim for B follows by
applying (4.34); the extension to ε = ±ε0 follows from continuity and piecewise affinity
of ε 
→ L(�, B, ε).
Case 3: λ2 = 1. Notice that A(·+ iε) is an analytic SL(2,C) cocycle for all ε �= 0. Thus,
the result for A at nonzero ε follows immediately from Theorem 4.10. The extension to
B uses (4.34) and properties of L(�, B, ε) as before. ��

The central idea is now to analyze the behavior as ε → ∞, then use quantization of
acceleration, continuity, and convexity to bring this information to ε near zero. The key
technical result is the following asymptotic calculation for the regularized cocycle.

Proposition 4.13. Fix 0 < λ1 ≤ 1, 0 ≤ λ2 ≤ 1, � ∈ T\Q, and z ∈ ∂D, and let
Bz = Bλ1,λ2,z . For all |ε| sufficiently large,

L(�, Bz, ε) = 2π |ε| + log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
. (4.41)

Moreover, L(�, B, ε) is an even function of ε ∈ R.

Proof. Define B̃±
z,ε by

B̃±
z,ε(θ) = e∓2πεBz(θ + iε)

= 2e∓2πε

1 + λ′
2

[
λ−1
1 z−1 + 2λ′

1λ
−1
1 λ2 sin(2π(θ + iε)) + zλ′

1
2
λ−1
1 −λ2 sin(2π(θ + iε)) − λ′

1z−λ2 sin(2π(θ + iε)) − λ′
1z λ1z

]
.

Naturally, one has

L(�, B̃±
z,ε) = L(�, Bz(· + iε)) ∓ 2πε

for any ε. Define

B∞(θ) = lim
ε→±∞ B̃±

z,ε(θ) = 2ie−2π iθ

1 + λ′
2

[
λ′
1λ

−1
1 λ2 −λ2/2

−λ2/2 0

]
= iλ2e−2π iθ

λ1(1 + λ′
2)

[
2λ′

1 −λ1
−λ1 0

]
.

Notice that the convergence is uniform in θ . Using (4.25), we can directly calculate
the Lyapunov exponent of the cocycle B∞ via

L(�, B∞) = log spr(B∞(0)) = log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
. (4.42)

By (4.42), quantization of acceleration, convexity, and continuity of the Lyapunov ex-
ponent [12,56] we get

L(�, B, ε) = log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
+ 2π |ε| for all |ε| sufficiently large. (4.43)

By (4.43), convexity, and quantization of acceleration, L(�, Bz, ε) is even. ��
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z ∈ ∂D \ Σ z ∈ Σ

λ1 < λ2

L1
2πL(Φ, Bz, ε)

1
2πL(Φ, Az, ε)

ε
ε0

L

ε0
ε

λ1 = λ2

L

ε
ε0

L

ε0
ε

λ1 > λ2

L

ε
ε0

L

ε
ε0

Fig. 5. Complexified Lyapunov exponents in the sub-critical, critical and super-critical regime

As discussed in Sect. 2, the remaining technical task is to show that Aλ1,λ2,z/√
det Aλ1,λ2,z is conjugate to an SL(2,R) cocycle, which is the content of Proposi-

tion 2.8.

Proof of Proposition 2.8. Denoting

X (λ) =
[

λ λ′
λ′ −λ

]
,

one can easily check X = X∗ = X−1 and Tr X = 0. By a straightforward cal-
culation, one may check that Ãλ1,λ2,z(θ) := Aλ1,λ2,z(θ)/

√
det Aλ1,λ2,z(θ) belongs to

SU(1, 1, X (λ1)), that is,

[ Ãλ1,λ2,z(θ)]∗X (λ1) Ãλ1,λ2,z(θ) = X (λ1)

for any θ ∈ T, 0 < λ1 ≤ 1, 0 ≤ λ2 < 1, and z ∈ ∂D. Moreover, one can confirm that

Y (λ)∗X (λ)Y (λ) =
[
0 i
−i 0

]

where Y is as in (2.24). In view of the discussion in [79, Section 10.4], this implies that
ÃR

λ1,λ2,z
(θ) ∈ SL(2,R).

The form of AR
λ1,λ2,z

in (2.26) follows from direct calculations. As discussed previ-
ously, we may analytically choose the branch of the square root, so analyticity follows
immediately. Alternatively, analyticity is obvious from (2.26). ��
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At last, we may combine all of these tools and conclude with the proofs of the main
statements regarding the cocycles.

Proof of Theorem 2.9. Let λ2 < 1 be given. First, notice that the Lyapunov exponents
of A, B, and AR all coincide in a strip, that is,

L(�, Bz, ε) = L(�, Az, ε) = L(�, AR
z , ε), |ε| ≤ ε0 = 1

2π
arcsinh

√
λ−2
2 − 1

(4.44)
which holds on account of (4.35) and Lemma 4.7. Since λ2 < 1, the strip has positive
width. Thus, to conclude the desired statements about (�, AR

λ1,λ2,z
), it suffices to prove

suitable statements about the shape of the graph of L(�, Bλ1,λ2,z, ε) near ε = 0. From
here, the proofs of the three statements are nearly identical, so we only write the details
for the proof of part (c), since it requires some additional work compared to the other
two.

In part (c) λ1 < λ2 < 1, so that

log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
> 0.

Consider z ∈ ∂D and let B = Bλ1,λ2,z be the associated cocycle map. By Proposi-
tion 4.13, ω(B, ε) = sgn(ε) whenever |ε| is very large. By quantization of acceleration,
convexity, and evenness of the function ε 
→ L(�, B, ε), there are two possibilities.
Case 1: ω(B, ε) = 0 for some ε ∈ R. In this case, L(�, B, ε) is positive and affine in
a neighborhood of ε = 0, which implies that (�, B) enjoys a dominated splitting [17],
and hence that z /∈ 
 by Theorem 4.11.
Case 2: ω(B, ε) �= 0 for all ε. By the previously discussed properties of L , we have

L(�, B, ε) = 2π |ε| + log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
, ∀ε. (4.45)

In view of (4.34), (4.45) yields

L(�, A, ε) = 2π |ε| + log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
, |ε| < ε0.

In particular, this implies that z belongs to 
 and that L(z) = L(�, A, 0) = log λ0, as
desired, where λ0 is given by (2.8). ��

In thinking about the proof of Theorem 2.9, the reader may find it helpful to consult
Fig. 5.

Proof of Theorem 2.7. Part a is proved in [44, Section5]. Simplynote that−i B1,1,�,θ (z) =
Nz(θ) in the notation of [44]. Part b follows directly from Proposition 4.13 using the
same argument used to prove part (c) of Theorem 2.9. ��
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5. Aubry–André Duality

One crucial aspect of the model is that it enjoys a version of Aubry duality. We will
describe two formulations of duality, each of which expresses self-similarity of the
operator families {Wλ1,λ2,�,θ : θ ∈ T} and {W �

λ1,λ2,�,θ := W�
λ2,λ1,�,θ : θ ∈ T}, both

of which are useful. The first manifestation of duality shows how to relate solutions
of the eigenvalue equation Wλ1,λ2,�,θψ = zψ to formal solutions of the dual equation
W �

λ1,λ2,�,θϕ = zϕ. The second manifestation of duality expresses a unitary equivalence

between the direct integrals of the families Wλ1,λ2,�,θ and W �
λ1,λ2,�,θ via the Fourier

transform.

5.1. Duality via solutions. For f ∈ �2(Z), we denote its inverse Fourier transform by
f̌ , which is defined for absolutely summable f by

f̌ (x) =
∑

n∈Z
e2π inx fn .

Given ψ ∈ �2(Z) ⊗ C
2, let us define (motivated by (2.10)):

φ̌+ = 1√
2
(ψ̌+ + iψ̌−), φ̌− = 1√

2
(iψ̌+ + ψ̌−). (5.1)

Proof of Theorem 2.4. From (4.1) and Wψ = zψ , we have

zψ+
n = λ1

(
q11n−1ψ

+
n−1 + q12n−1ψ

−
n−1

)
− λ′

1

(
q21n ψ+

n + q22n ψ−
n

)
.

Taking the inverse Fourier transform of both sides, shifting the indices of the terms
containing n − 1, and substituting the explicit form of Qn from (2.6) yields

zψ̌+(x) =
∑

n∈Z
e2π i(n+1)xλ1

(
(λ2 cos(2π(n� + θ)) + iλ′

2)ψ
+
n − λ2 sin(2π(n� + θ))ψ−

n

)

−
∑

n∈Z
e2π inxλ′

1

(
λ2 sin(2π(n� + θ))ψ+

n + (λ2 cos(2π(n� + θ)) − iλ′
2)ψ

−
n

)

for a.e. x ∈ T. Using the exponential formulations of sine and cosine, and expressing in
terms of the inverse Fourier transform this becomes

zψ̌+(x) = e2π i x

2

(
e2π iθλ1λ2ψ̌

+(x + �) + e−2π iθλ1λ2ψ̌
+(x − �) + 2iλ1λ

′
2ψ̌

+(x)
)

+
e2π i x

2

(
ie2π iθλ1λ2ψ̌

−(x + �) − ie−2π iθλ1λ2ψ̌
−(x − �)

)

+
1

2

(
ie2π iθλ′

1λ2ψ̌
+(x + �) − ie−2π iθλ′

1λ2ψ̌
+(x − �)

)

+
1

2

(
−e2π iθλ′

1λ2ψ̌
−(x + �) − e−2π iθλ′

1λ2ψ̌
−(x − �) + 2iλ′

1λ
′
2ψ̌

−(x)
)
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for a.e. x . Rearranging to collect like terms yields

zψ̌+(x) = e2π iθ
(
e2π i x

2
λ1λ2 +

1

2
iλ′

1λ2

)(
ψ̌+(x + �) + iψ̌−(x + �)

)

+ ie2π i xλ1λ
′
2ψ̌

+(x) + iλ′
1λ

′
2ψ̌

−(x)

+ e−2π iθ
(
e2π i x

2
λ1λ2 − 1

2
iλ′

1λ2

)(
ψ̌+(x − �) − iψ̌−(x − �)

)

for a.e. x .
Applying the same steps to (4.2) yields

zψ̌−(x) = e2π iθ
(
e−2π i x

2
λ1λ2 +

1

2
iλ′

1λ2

)(
−iψ̌+(x + �) + ψ̌−(x + �)

)

+ iλ′
1λ

′
2ψ̌

+(x) − ie−2π i xλ1λ
′
2ψ̌

−(x)

+ e−2π iθ
(
e−2π i x

2
λ1λ2 − 1

2
iλ′

1λ2

)(
iψ̌+(x − �) + ψ̌−(x − �)

)

for a.e. x . From these expressions for ψ̌+ and ψ̌−, we obtain for a, b ∈ C

z(aψ̌+(x) + bψ̌−(x))

= 1

2
e2π iθ iλ′

1λ2(a − ib)
(
ψ̌+(x + �) + iψ̌−(x + �)

)

+ (−1)
1

2
e−2π iθ iλ′

1λ2(−ia + b)
(
iψ̌+(x − �) + ψ̌−(x − �)

)

+
1

2
e2π iθλ1λ2

(
ae2π i x − ibe−2π i x

) (
ψ̌+(x + �) + iψ̌−(x + �)

)

+
1

2
e−2π iθλ1λ2

(
−iae2π i x + be−2π i x

) (
iψ̌+(x − �) + ψ̌−(x − �)

)

+ iλ1λ
′
2

(
ae2π i x ψ̌+(x) − be−2π i x ψ̌−(x)

)
+ iλ′

1λ
′
2

(
aψ̌−(x) + bψ̌+(x)

)

Writing e±2π i x = cos(2πx) ± i sin(2πx) and sorting the terms, this amounts to

z(aψ̌+(x) + bψ̌−(x))

= 1

2
e2π iθ (λ1 cos(2πx) + iλ′

1)λ2(a − ib)
(
ψ̌+(x + �) + iψ̌−(x + �)

)

− 1

2
e−2π iθ (λ1 cos(2πx) − iλ′

1)λ2(ia − b)
(
iψ̌+(x − �) + ψ̌−(x − �)

)

+
1

2
e2π iθλ1λ2 sin(2πx)(ia − b)

(
ψ̌+(x + �) + iψ̌−(x + �)

)

+
1

2
e−2π iθλ1λ2 sin(2πx)(a − ib)

(
iψ̌+(x − �) + ψ̌−(x − �)

)

+ iλ1λ
′
2

(
cos(2πx)(aψ̌+(x) − bψ̌−(x)) + i sin(2πx)(aψ̌+(x) + bψ̌−(x))

)

+ iλ′
1λ

′
2

(
aψ̌−(x) + bψ̌+(x)

)
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Thus, choosing (a, b) = (1, i) and (a, b) = (i, 1), respectively, and setting φ̌+ and φ̌−
as in (5.1) we obtain

zφ̌+(x) = e2π iθ (λ1 cos(2πx) + iλ′
1)λ2φ̌

+(x + �) + e−2π iθ sin(2πx)λ1λ2φ̌
−(x − �)

+ (λ1 cos(2πx) + iλ′
1)λ

′
2φ̌

−(x) − λ1λ
′
2 sin(2πx)φ̌+(x), (5.2)

zφ̌−(x) = −e2π iθ sin(2πx)λ1λ2φ̌
+(x + �) + e−2π iθ (λ1 cos(2πx) − iλ′

1)λ2φ̌
−(x − �)

− (λ1 cos(2πx) − iλ′
1)λ

′
2φ̌

+(x) − λ1λ
′
2 sin(2πx)φ̌−(x). (5.3)

To conclude the proof, we apply W�
λ2,λ1,�,ξ to ϕs

n = ϕ
ξ
n,s = e2π inθ φ̌s(n� + ξ) and

write y = y(n, ξ) = n� + ξ . Thus from Lemma 4.2 we have in coordinates:

[W�
λ2,λ1,�,ξ ϕ]+n = q11n (λ2ϕ

+
n+1 + λ′

2ϕ
−
n ) + q21n (−λ′

2ϕ
+
n + λ2ϕ

−
n−1)

= e2π inθ
[
(λ1 cos(2πy) + iλ′

1)(e
2π iθλ2φ

+(y + �) + λ′
2φ̌

−(y))

+ λ1 sin(2πy)(−λ′
2φ̌

+(y) + e−2π iθλ2φ̌
−(y − �))

]

= e2π inθ zφ̌+(y)

= zϕ+
n ,

where we used (5.2). An analogous calculation shows that [W�
λ2,λ1,�,ξ ϕ]−n = zϕ−

n . ��

5.2. Duality via direct integrals. Recalling H1 = �2(Z) ⊗ C
2, let us define

H⊕ =
∫ ⊕

T

H1 dθ, Wλ1,λ2,� =
∫ ⊕

T

Wλ1,λ2,�,θ dθ.

We write the coordinates of � ∈ H⊕ as �s
n(θ) where n ∈ Z, s ∈ {±}, and θ ∈ T. For

� ∈ H⊕, let �̂ be its Fourier transform, given by

�̂s
n(θ) =

∑

m∈Z

∫

T

e−2π imθe−2π inx�s
m(x) dx, n ∈ Z, θ ∈ T, s ∈ {±}.

The Aubry dual operator is given byA = A� : H⊕ → H⊕, where

[A�]sn(θ) = �̂s
n(n� + θ).

We also define X : H⊕ → H⊕ by

X =
∫ ⊕

T

⊕

n∈Z

1√
2

[
i 1
1 i

]
dx .

Theorem 5.1 (Aubry Duality for Operators). For all λ1, λ2, and irrational �,

Wλ1,λ2,�A�X = A�XW�
λ2,λ1,�

. (5.4)
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Proof. Recall that every one-dimensional quantum walk can be related by an extended
CMVmatrix via theCGMVconnection and that one can recover theLM factorization of
the associated CMVmatrix by inserting an infinite direct sum of σ1’s, viz.:Wλ = SλQ =
(Sλσ 1)(σ 1Q), where σ1 denotes an infinite direct sum of copies of σ1. This motivates
one to define operators J = Jλ, U = Uλ,�,θ , and V = Vλ,�,θ onH1 = �2(Z) ⊗C

2 by

[Jλϕ]+n = −λ′ϕ+
n + λϕ−

n−1

[Jλϕ]−n = λϕ+
n+1 + λ′ϕ−

n

[Uϕ]+n = (λ sin(2π(n� + θ)))ϕ+
n + (λ cos(2π(n� + θ)) − iλ′)ϕ−

n

[Uϕ]−n = (λ cos(2π(n� + θ)) + iλ′)ϕ+
n − λ sin(2π(n� + θ))ϕ−

n

[Vϕ]+n = −λ′ϕ+
n + λe−2π i(n�+θ)ϕ−

n

[Vϕ]−n = λe2π i(n�+θ)ϕ+
n + λ′ϕ−

n ,

and denote the corresponding direct integrals by

Jλ =
∫ ⊕

T

Jλ dθ, Uλ,� =
∫ ⊕

T

Uλ,�,θ dθ, Vλ,� =
∫ ⊕

T

Vλ,�,θ dθ.

One deduces
Wλ1,λ2,� = Jλ1Uλ2,� (5.5)

from the pointwise identity Wλ1,λ2,�,θ = Jλ1Uλ2,�,θ . From the calculation

1

2

[−i 1
1 −i

] [
λ sin(2π(n� + θ)) λ cos(2π(n� + θ)) − iλ′

λ cos(2π(n� + θ)) + iλ′ −λ sin(2π(n� + θ))

] [
i 1
1 i

]

=
[ −λ′ λe−2π i(n�+θ)

λe2π i(n�+θ) λ′
]

,

we get
X ∗Uλ,�X = Vλ,�. (5.6)

Taking the transpose of both sides of (5.6) establishes

X ∗V�
λ,�X = U�

λ,�. (5.7)

Next, we show
A∗

� JλA� = V�
λ,�. (5.8)

Indeed, from the definitions,

[JλA��]+n(θ) = −λ′[A��]+n(θ) + λ[A��]−n−1(θ)

= −λ′ ∑

m∈Z

∫

T

e−2π im(n�+θ)e−2π inx�+
m(x) dx

+ λ
∑

m∈Z

∫

T

e−2π im((n−1)�+θ)e−2π i(n−1)x�−
m (x) dx

= [A�V�
λ,�]+n(θ).

A similar argument works for the spin-down component, proving (5.8) Finally, we show

A∗
�Vλ,�A� = Jλ. (5.9)
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Calculating Vλ,�A� gives

[Vλ,�A��]+n = −λ′[A��]+n + λe−2π i(n�+θ)[A��]−n
=
∑

m∈Z

∫

T

e−2π im(n�+θ)e−2π inx
(
−λ′�+

m(x) + λe−2π i(n�+θ)�−
m (x)

)
dx

=
∑

m∈Z

∫

T

e−2π im(n�+θ)e−2π inx (−λ′�+
m(x) + λ�−

m−1(x)
)
dx

= [A� Jλ�]+n(θ).

The other component of (5.9) is similar. Putting together (5.5), (5.6), (5.7), and (5.8),
(5.9) (and usingA�X = XA�), we get

X ∗A∗
�Wλ1,λ2,�A�X = X ∗A∗

� Jλ1A�XA∗
�X ∗Uλ2,�XA�

= X ∗V�
λ1,�

XA∗
�Vλ2,�A�

= U�
λ1,�

Jλ2

= W�
λ2,λ1,�

,

since J�
λ = Jλ. ��

Proof of Theorem 2.5. Since A� and X are unitary, this is an immediate consequence
of Theorem 5.1. ��

6. Continuous Spectrum

Having studied the Lyapunov exponent and cocycle dynamics in detail, we now move
towards the analysis of the spectrum and spectral type ofWλ1,λ2,�,θ . We begin in the cur-
rent section with results on continuous spectrum; equivalently, we prove several results
that establish the absence of eigenvalues, which is equivalent to continuity of spectral
measures. We present three results, each of which covers a particular paramter region.
We begin with the sharp Gordon argument showing that for suitable Liouville numbers
(dependent on the coupling via the Lyapunov exponent), the spectrum is purely contin-
uous. Coupled with positivity of the Lyapunov exponent in the supercritical region, this
immediately yields singular continuous spectrum. Next, we show continuous spectrum
in the self-dual region for all irrational� and all but countably many θ . Later on, we will
show that the spectrum has zero Lebesgue measure in the self-dual region so this shall
again yield purely singular continuous spectrum for each irrational frequency and all
but countably many phases. Finally, we show that this (i.e., purely continuous spectrum)
holds uniformly in the frequency and phase in the subcritical region.

6.1. Liouville fields: sharp Gordon criterion. We begin with Theorem 2.2.(c). This is
a combination of two facts: absence of absolutely continuous spectrum, which follows
from positivity of the Lyapunov exponent and Kotani theory and absence of eigenvalues,
which follows from Gordon-type arguments. By applying Gordon’s lemma for CMV
matrices [42], one can immediately see that the spectral type is purely continuous when-
ever� is Liouville. In fact, by using the sharp Gordon criterion as in [14,19,53–55], one
can prove singular continuous spectrum for all � above a suitable arithmetic threshold
dictated by the Lyapunov exponent.
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Definition 6.1. Given � ∈ T irrational, let pk/qk denote the continued fraction conver-
gents of � and

β(�) = lim sup
k→∞

log qk+1
qk

. (6.1)

Theorem 6.2. If λ1 < λ2 and

β(�) > log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
(6.2)

then Wλ1,λ2,�,θ has purely singular continuous spectrum for every θ ∈ T.

Proof. Suppose λ1 < λ2. By Theorem 2.9.(c), the Lyapunov exponent is uniformly
positive and given by

Lλ1,λ2,�(z) = log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
(6.3)

for z ∈ 
λ1,λ2,�. By Kotani theory, the a.c. spectrum of Wλ1,λ2,�,θ is absent for a.e.
θ . More precisely, recalling the gauge equivalence of Wλ1,λ2,�,θ and ERλ1,λ2,�,θ as in
Corollary 2.13 and the equivalence between the Szegő cocycle and the cocycle Az in
Corollary 2.14, the absence of a.c. spectrum follows from [79, Theorem 10.11.1]. By
minimality then, the absolutely continuous spectrum is empty for all θ ∈ T by the
Last–Simon theorem for CMV matrices; cf. [79, Theorem 10.9.11].

On the other hand, using the exact form of the Lyapunov exponent from (6.3) and
the sharp Gordon criterion, which was worked out for CMV matrices in Li–Damanik–
Zhou (see [65, Appendix C]), one sees that every spectral measure is continuous. More
precisely, the desired absence of eigenvalues may be deduced from the argument of [65]
after taking two things into account. First, use the gauge equivalence of Wλ1,λ2,�,θ and
ERλ1,λ2,�,θ as in Corollary 2.13 to equate purely continuous spectrum forWλ1,λ2,�,θ with

that of ERλ1,λ2,�,θ . Second, apply a nearly-verbatim repetition of the arguments of [65]

for ERλ1,λ2,�,θ by passing to blocks of length two; that is, work with the two-step Szegő
cocycle as in (2.33), which is genuinely quasiperiodic (and which belongs to SU(1, 1)
[79, Section 10.4]), enabling the application of their techniques. ��
Proof of Theorem 2.2.(c). Since the set of � with β(�) = ∞ is known to be residual,
this follows immediately from Theorem 6.2. ��

6.2. Continuous spectrum in the critical regime. We now discuss the critical case. Later
in the manuscript, we will show that when λ1 = λ2 ∈ (0, 1], the spectrum is a Cantor set
of zeroLebesguemeasure and hence cannot support any absolutely continuous spectrum.
To classify the spectral type, it then remains to seewhether theremay be any eigenvalues.
We will see that in the critical case 0 < λ1 = λ2 < 1, the point spectrum is empty away
from a countable set of phases, and the set of exceptional phases is an explicit subset
defined by possible reflection symmetries of the coins:

Definition 6.3. If � ∈ T is irrational, we say that φ ∈ T is irrational with respect to �

if 2φ + k� /∈ Z every k ∈ Z. Otherwise, we say φ is rational with respect to �.
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Our primary goal in the present section is to prove the following theorem. The proof
follows the overall structure of [10] (see also [16]), but there are several complications
arising from the more involved structure of the cocycle. Additionally, the reflection
symmetry of the cocycle as in Proposition 6.6 is different from that in the self-adjoint
case and required novel analysis to find.

Theorem 6.4. Consider 0 < λ < 1. For every irrational� and every θ for which θ−1/4
is irrational with respect to �, the operator Wλ,λ,�,θ has empty point spectrum.

Remark 6.5. The theorem is clearly false if λ = 0. When λ = 1, it holds in a more
restricted form (namely, for all irrational � and a.e. θ ) [44]. Naturally, for a given
irrational �, there are only countably many θ that are rational with respect to �, so this
suffices to establish the continuity half of Theorem 2.2.(e).

For the work ahead, we need to note a reflection symmetry of the cocycles.

Proposition 6.6. Let z, λ1, and λ2 be given, let Az = Aλ1,λ2,z denote the cocycle defined

in (2.19), and let A�
z denote the dual cocycle from (2.21). For all θ ∈ T, one has

R−1Az(θ)−1R = −Az

(
1

2
− θ

)
(6.4)

R−1A�
z(θ)−1R = −A�

z

(
1

2
− θ

)
, (6.5)

where

R =
[
0 1

−1 0

]
. (6.6)

Proof. Note that the inverse of Az(θ) is given by

Az(θ)−1 = 1

λ2c(θ) + iλ′
2

[
λ1z λ2s(θ) + λ′

1z
λ2s(θ) + λ′

1z λ−1
1 z−1 + 2λ′

1λ
−1
1 λ2s(θ) + zλ′

1
2
λ−1
1

]
(6.7)

One has

R−1Az(θ)−1R =
[
0 1

−1 0

]
Az(θ)−1

[
0 −1
1 0

]

= 1

λ2c(θ) + iλ′
2

[
λ−1
1 z−1 + 2λ′

1λ
−1
1 λ2s(θ) + zλ′

1
2
λ−1
1 −(λ2s(θ) + λ′

1z)−(λ2s(θ) + λ′
1z) λ1z

]

so, exploiting s(1/2 − θ) = s(θ) and c(1/2 − θ) = −c(θ) give us

R−1Az(θ)−1R

= −1

λ2c(1/2 − θ) − iλ′
2

[
λ−1
1 z−1 + 2λ′

1λ
−1
1 λ2s(1/2 − θ) + zλ′

1
2
λ−1
1 −(λ2s(1/2 − θ) + λ′

1z)−(λ2s(1/2 − θ) + λ′
1z) λ1z

]

= −Az

(
1

2
− θ

)
,

proving (6.4). The identity (6.5) follows immediately from (6.4) and (2.21). ��
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Crucial in the proof of Theorem 6.4 is a dynamical reformulation of duality, which
we presently make precise. If ψ is an �2-eigenfunction of Wλ1,λ2,�,θ , then Theorem 2.4
implies that exp(2π iθn)φ̌(n� + ξ) is a solution of W �

λ1,λ2,�,ξφ = zφ for a.e. ξ (with φ̌

defined by (5.1)). Consequently, we have

[
e2π iθ φ̌+(x + �)

φ̌−(x)

]
= A�

λ1,λ2,z
(x)

[
φ̌+(x)

e−2π iθ φ̌−(x − �)

]
(6.8)

for a.e. x , with A� defined in (2.21). Now, substitute x̂ = 1/2 − x for x and apply (6.4)
to get

[
e2π iθ φ̌+(1/2 − x + �)

φ̌−(1/2 − x)

]
= −R−1A�

λ1,λ2,z
(x)−1R

[
φ̌+(1/2 − x)

e−2π iθ φ̌−(1/2 − x − �)

]
.

Use (4.35) and the definition of R to see

−A�
λ1,λ2,z

(x)

[ −φ̌−(1/2 − x)
e2π iθ φ̌+(1/2 − (x − �))

]
= e−2π iθ

[−φ̌−(1/2 − (x + �))

e2π iθ φ̌+(1/2 − x)

]
(6.9)

Putting together (6.8) and (6.9), we get

A�
λ1,λ2,z

(x)M(x) = M(x + �)

[
e2π iθ

−e−2π iθ

]
, (6.10)

where

M(x) =
[

φ̌+(x) −φ̌−(1/2 − x)
e−2π iθ φ̌−(x − �) e2π iθ φ̌+(1/2 − (x − �))

]
. (6.11)

Proof of Theorem 6.4. Let λ1 = λ2 = λ ∈ (0, 1), � irrational, and θ irrational with
respect to � be given, and assume on the contrary that Wλ1,λ2,�,θ has nonempty point
spectrum. Let ψ denote a normalized eigenfunction with corresponding eigenvalue z.
Define φ̌ by (5.1) and consider M as in (6.11). Since | det(A�

λ1,λ2,z
(x))| = 1, (6.10)

implies that | det(M(x))| = | det(M(x + �))|. By ergodicity of x 
→ x + � on T,
| det(M(x))| is a.e. constant with respect to x .

Also ‖M(x)‖ > 0 for a.e. x , since if not, ‖M(x)‖ = 0 for a.e. x by (6.10) and
ergodicity of x 
→ x + �. However, this would imply φ̌±(x) vanishes for a.e. x , which
contradicts nontriviality of the eigenfunction ψ that generates φ̌.

Next we prove that det M(x) �= 0 for a.e. x . Assume for the sake of contradiction that
det M = 0 on a positive-measure set. Since | det M | is a.e. constant, one has det M = 0
a.e,whichmeans that the columns ofM(x) are linearly dependent for a.e. x . Equivalently,
there is a function � : T → C with �(x) �= 0 such that

[
φ̌+(x)

e−2π iθ φ̌−(x − �)

]
= �(x)

[ −φ̌−(1/2 − x)
e2π iθ φ̌+(1/2 − (x − �))

]
. (6.12)
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Using (6.12), (6.10), (6.12), and again (6.10) we have

�(x + �)

[−φ̌−(1/2 − (x + �))

e2π iθ φ̌+(1/2 − x)

]
=
[

φ̌+(x + �)

e−2π iθ φ̌−(x)

]

= e−2π iθ A�
λ1,λ2,z

(x)

[
φ̌+(x)

e−2π iθ φ̌−(x − �)

]

= e−2π iθ A�
λ1,λ2,z

(x)�(x)

[ −φ̌−(1/2 − x)
e2π iθ φ̌+(1/2 − (x − �))

]

= e−2π iθ �(x)(−e−2π iθ )

[−φ̌−(1/2 − (x + �))

e2π iθ φ̌+(1/2 − x)

]

= − e−4π iθ �(x)

[−φ̌−(1/2 − (x + �))

e2π iθ φ̌+(1/2 − x)

]
, (6.13)

which implies−e−4π iθ �(x) = �(x+�) for a.e. x . Fourier expanding �(x) =∑ �̂ke2π ikx

this gives

−e−4π iθ
∑

�̂ke
2π ikx =

∑
�̂ke

2π ik�e2π ikx . (6.14)

Since θ − 1/4 is irrational with respect to �, we have −e−4π iθ �= e2π ik� for all k ∈ Z.
Combined with (6.14), this implies that all Fourier coefficients of �must vanish, forcing
� ≡ 0, a contradiction.

Let us now consider for n ≥ 1 the n-step transfer matrix given by

A�n(x) = A�
λ1,λ2,z

(x + (n− 1)�)A�
λ1,λ2,z

(x + (n− 2)�) . . . A�
λ1,λ2,z

(x +�)A�
λ1,λ2,z

(x),
(6.15)

where we choose notation consistent with (2.14). Then, by (6.10)

A�n(x) = M(x + n�)

[
e2π iθ 0
0 −e−2π iθ

]n
M(x)−1. (6.16)

We define

�(n)(x) = Tr A�n(x) − Tr

([
e2π iθ 0
0 −e−2π iθ

]n)
(6.17)

= Tr A�n(x) − (e2π inθ + (−1)ne−2π inθ ), (6.18)

and note that

�(n)(x) = Tr

((
M(x + n�) − M(x)

) [e2π iθ 0
0 −e−2π iθ

]n
M(x)−1

)
. (6.19)

Since we have the inequality |Tr(A)| ≤ 2‖A‖ and the identity ‖A−1‖ = ‖A‖/| det(A)|,
we have

|�(n)(x)| ≤ 2

| det M | ‖M(x + n�) − M(x)‖‖M(x)‖. (6.20)

By the Cauchy-Schwarz inequality,

‖�(n)(x)‖L1 ≤ 2

| det M | ‖M(x + n�) − M(x)‖L2‖M(x)‖L2 . (6.21)
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Note that ‖M(x)‖L2 is finite by unitarity of the inverse Fourier transform. This also
implies that ‖�(n)‖L1 can be made arbitrarily small by making dist(n�,Z) sufficiently
small. We then have

lim inf
n→∞ ‖�(n)(x)‖L1 = 0 (6.22)

On the other hand, by (2.19), (2.21), and (6.17) we notice that �(n) is a trigonometric
polynomial divided by

Q(n)
1 = Q(n)

1 (x) :=
n−1∏

k=0

q11(x + k�) =
n−1∏

k=0

(λ cos(2π(x + k�) + iλ′). (6.23)

By [16, Theorem 2.3] we can control this quantity with the help of Lemma 4.7 with
ε = 0. Thus we can modify (6.22) to be

lim inf
n→∞

∥∥∥∥∥

(
1 + λ′

2

)−n

Q(n)
1 (x)�(n)(x)

∥∥∥∥∥
L1

= 0 (6.24)

We observe from (6.18) that

Q(n)
1 �(n) = Q(n)

1 (x)Tr A�n(x) − Q(n)
1 (x)(e2π inθ + (−1)ne−2π inθ ). (6.25)

It is clear that the second term on the right hand side of the above equation is a constant
multiple of the trigonometric polynomial, Q(n)

1 (x), (recall that θ is currently fixed). By

(2.19) and (2.21), it is also true that Q(n)
1 Tr A�n(x) is a trigonometric polynomial. We

will estimate the leading coefficients of these trigonometric polynomials, that is, the
coefficients of the e2π inx and e−2π inx terms. One sees immediately that the leading
coefficients of Q(n)

1 have absolute value (λ/2)n .

Next, we examine the leading coefficient ofQ(n)
1 (x)Tr A�n(x) term of (6.25). Recall

by (6.23) that Q(n)
1 (x) is a product of q11j terms, and by (6.16) A�n(x) is a product of

A�(x+ j�) terms. Thus to understandQ(n)
1 (x)Tr A�n(x)wemultiply out q11j A�(x+ j�).

Since we are trying to expressQ(n)
1 (x)Tr A�n(x) as a trigonometric polynomial, we are

only concerned with terms that are multiples of q21j , since only these terms produce

trigonometric expressions. So separating out the terms that are multiples of q21j , we have

q11j A�(x + j�) =
[
2λ′λ−1 −1

−1 0

]
q21j + C =

[
λ′ −λ/2

−λ/2 0

]

︸ ︷︷ ︸
=:S(λ)

2 sin(2π( j� + x)) + C,

(6.26)
where C is a matrix that does not depend on x . We want to compute the leading coeffi-
cients ofQ(n)

1 (x)Tr A�n(x) expressed as a trigonometric polynomial. Note that this is a
product of the n expressions of the form (6.26) with j = 0, . . . , n−1. The leading terms
of the trigonometric polynomial will bemultiples of e2nπ i x and e−2nπ i x . The only way to
obtain terms of the form e2nπ i x and e−2nπ i x fromQ(n)

1 (x)Tr A�n(x) is by multiplying n
sines in (6.26), from j = 0, 1, . . . , n−1. Thus we can see that these coefficients of these
terms are obtained from calculating S(λ)n . One can check that S(λ) has eigenvalues
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μ± = μ±(λ) = (λ′ ± 1)/2 (compare (4.25)). Diagonalizing S explicitly, we have the
following for n ≥ 0:

Sn = 1

2

[
(1 + λ′)μn

+ + (1 − λ′)μn− −λμn
+ + λμn−−λμn

+ + λμn− (1 − λ′)μn
+ + (1 + λ′)μn−

]

Thus, the leading coefficient ofQ(n)
1 (x)Tr A�n(x) has absolute valueμn

+ +μn−. But then,
writing cn for the leading coefficient of μ−n

+ Q(n)
1 Tr A�n , this all means that

|cn| ≥ μn
+ + μn−
μn
+

−
(

λ

2μ+

)n

= 1 +

(
λ′ − 1

λ′ + 1

)n

−
(

λ

λ′ + 1

)n

≥ 1 − o(1) (6.27)

as n → ∞. However,

|cn| =

∣∣∣∣∣∣∣

∫ 1

0
e−2π inx Q(n)

1(
1+λ′
2

)n �(n)(x) dx

∣∣∣∣∣∣∣
≤

∥∥∥∥∥∥∥

Q(n)
1(

1+λ′
2

)n �(n)(x)

∥∥∥∥∥∥∥
L1

,

so (6.27) contradicts (6.24), which concludes the proof. ��

6.3. The subcritical regime. The duality in Theorem 2.4 together with the positivity of
the Lyapunov exponent of the dual model in Theorem 4.6 allows us to exclude point
spectrum in the subcritical region for all phases θ and all irrational fields� by Delyon’s
argument [41].

Proposition 6.7. Let � be irrational and λ1 > λ2. For every θ ∈ R, the point spectrum
of Wλ1,λ2,�,θ is empty.

Proof. This follows from an argument of Delyon [41]. Arguing by contradiction, assume
that for some λ1 > λ2 the operator Wλ1,λ2,�,θ has an eigenvalue z with corresponding
eigenvector ψ ∈ H1 normalized by ‖ψ‖ = 1. Applying Theorem 2.4, it follows that
ϕ = ϕξ given by [

ϕ+
n

ϕ−
n

]
= e2π inθ

[
φ̌+(n� + ξ)

φ̌−(n� + ξ)

]
,

with φ̌± as in (5.1) is a formal eigenfunction of W �
λ1,λ2,�,ξ for a.e. ξ . Note that the

inverse Fourier transform of ψ is only defined almost everywhere on T, so ϕξ itself is
only defined for a.e. ξ ∈ T.

Moreover, by unitarity of the inverse Fourier transform, one also has ‖φ̌‖L2(T)⊗C2 =
1. Consequently, for every ε > 0 we have

∫

T

dξ
∑

n∈Z,s=±1

∣∣∣φ̌s(n� + ξ)

∣∣∣
2
/|n|1+ε =

∑

n

|n|−(1+ε) < ∞.

Consequently, for a.e. ξ and any ε > 0, there exists Cε(ξ) > 0 such that
∣∣∣φ̌s(n� + ξ)

∣∣∣ < Cε(ξ)|n|(1+ε)/2. (6.28)

However, since λ1 > λ2, this contradicts positivity of the Lyapunov exponent associated
with the dual model (cf. Theorem 4.6). This is a standard argument, but let us provide the



786 C. Cedzich, J. Fillman, D. C. Ong

details for the reader’s convenience. First, for any fixed z ∈ ∂D, the set of θ ∈ T forwhich
z is an eigenvalue ofWλ1,λ2,�,θ is a Lebesgue null set (by Proposition 4.4). Consequently,
by themultiplicative ergodic theorem, onemust have that φ̌s(n�+ξ)grows exponentially
on at least one half-line for a positive-measure set of ξ , in contradiction with (6.28). ��

7. Zero-Measure Cantor Spectrum

We now discuss the proof of zero-measure Cantor spectrum in the critical case λ1 =
λ2 = λ ∈ (0, 1]. As noted before, 
1,1,� was shown to be a zero-measure Cantor set in
[44]. On the other hand, it is trivial to see that 
0,0,� = {±i}, so the assumption λ > 0
is necessary for the Cantor spectrum result (though obviously not for the zero-measure
result). In view of these comments, we focus on 0 < λ < 1 in the present section.

The proof of Theorem2.2.(d)will follow from the general theory of analyticSL(2,R)

cocycles as developed in [13,18].

Lemma 7.1. For every λ1 ∈ (0, 1], λ2 ∈ [0, 1] and z ∈ ∂D, AR
λ1,λ2,z

is homotopic to a
constant.

Proof. This is a straightforward calculation. ��
In order to apply the well-developed machinery of real-analytic cocycles, it is helpful

to note that the cocycle is monotonic in the argument of the spectral parameter. This
is a straightforward (albeit cumbersome) calculation. For the reader’s convenience, we
supply the details.

Lemma 7.2. For λ1 > 0 and λ2 < 1, t 
→ AR
λ1,λ2,eit

is monotonic in t in the following

sense: for any θ ∈ T and any v ∈ R
2\{0} (any determination of) the argument of

AR
λ1,λ2,eit

(θ)v has positive derivative with respect to t .

We will need the following elementary calculation.

Lemma 7.3. Suppose a, b, c ∈ R. If a, b > 0 and ab − c2 > 0, then

a cos2(ϑ) + b sin2(ϑ) + 2c sin ϑ cosϑ > 0

for all ϑ ∈ [0, 2π ].
Proof. First, observe that

a cos2(ϑ) + b sin2(ϑ) + 2c sin ϑ cosϑ ≥ a cos2(ϑ) + b sin2(ϑ) − |2c sin ϑ cosϑ |
≥ a cos2(ϑ) + b sin2(ϑ) − |2√ab sin ϑ cosϑ |

(7.1)

≥ |√a cos(ϑ)) − √
b sin(ϑ)|2

≥ 0. (7.2)

Since (7.1) is strict whenever cosϑ sin ϑ �= 0 and (7.2) is strict whenever cosϑ sin ϑ =
0, the lemma is proved. ��
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Proof of Lemma 7.2. Let λ1, λ2, and θ be given. Of course, positive scalar multiples do
not affect the argument of a vector, so we may consider

NR
λ1,λ2,z(θ) = λ1

√
λ′
2
2 + λ22c

2(θ)AR
λ1,λ2,z(θ)

=
[

Re z + λ′
1λ2s(θ) λ1Im z − λ′

1Re z − λ2s(θ)

−λ1Im z − λ′
1Re z − λ2s(θ) Re z + λ′

1λ2s(θ)

]

Write z = eit , consider vu = [cos u, sin u]�, and define y1, y2 by
[
y2(t)
y1(t)

]
= NR

λ1,λ2,eit
(θ)vu .

Since tan(arg(y2, y1)) = y2/y1, computing thederivative of the argument of AR
λ1,λ2,z

(θ)vu
with respect to t (and denoting the derivative with respect to t by a dot) gives

d

dt

(
arg

[
y2
y1

])
= 1

1 + (y2/y1)2
ẏ2y1 − ẏ1y2

y21
. (7.3)

Thus, we are left with considering ẏ2y1 − ẏ1y2. We have

ẏ2y1 − ẏ1y2 = [−Im z cos u + (λ1Re z + λ′
1Im z) sin u]

× [(−λ1Im z − λ′
1Re z − λ2s(θ)) cos u + (Re z + λ′

1λ2s(θ)) sin u]
− [(−λ1Rez + λ′

1Imz) cos u − Imz sin u]
× [(Re z + λ′

1λ2s(θ)) cos u + (λ1Im z − λ′
1Re z − λ2s(θ)) sin u]

= λ1(1 + λ2s(θ)(λ′
1Rez + λ1Imz)) cos2 u

+ λ1(1 − λ2s(θ)(−λ′
1Rez + λ1Imz)) sin2 u

− 2λ1(λ
′
1 + λ2s(θ)Rez) sin u cos u

= a cos2 u + b sin2 u + 2c cos u sin u, (7.4)

where

a = λ1(1 + λ2s(θ)(λ′
1Rez + λ1Imz)) (7.5)

b = λ1(1 − λ2s(θ)(−λ′
1Rez + λ1Imz)) (7.6)

c = −λ1(λ
′
1 + λ2s(θ)Rez). (7.7)

Note that the assumptions λ1 > 0 and λ2 < 1 imply a, b > 0. After some algebra, one
gets

ab − c2 = λ21(1 + 2λ2s(θ)λ′
1Re z + λ22s(θ)2(λ′

1
2[Re z]2 − λ21[Im z]2))

− λ21(λ
′
1 + λ2s(θ)Re z)2

= λ21

(
(1 + 2λ2s(θ)λ′

1Re z + λ22s(θ)2([Re z]2 − λ21)) − (λ′
1 + λ2s(θ)Re z)2

)

= λ21

(
−λ21λ

2
2s(θ)2 + λ21

)

= λ41(1 − λ22s(θ)2) > 0, (7.8)
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which is strictly positive by the assumption λ2 < 1. Combining (7.3), (7.4), (7.5), (7.6),
(7.7), and (7.8) with Lemma 7.3 we get

d

dt

(
arg

[
y2
y1

])
> 0, (7.9)

which concludes the proof. ��
Given λ1, λ2, and �, let

Z = Zλ1,λ2,� = {z ∈ ∂D : Lλ1,λ2,�(z) = 0
}
. (7.10)

For Y = Cω, L2, we say that an SL(2,R) cocycle (�, A) is Y-reducible to rotations
if there exists B ∈ Y(T,SL(2,R)) such that

[B(x + �)]−1A(x)B(x) ∈ SO(2,R).

Lemma 7.4. For Lebesgue almost every z ∈ Zλ1,λ2,�, (�, AR
λ1,λ2,z

) is L2-reducible to
rotations.

Proof. This follows from Lemma 7.2 and [18, Theorem 1.7]. ��
Lemma 7.5. For Lebesgue almost every z ∈ Zλ1,λ2,�, (�, AR

λ1,λ2,z
) is Cω-reducible to

rotations.

Proof. This follows from Lemma 7.4, real-analyticity of AR
λ1,λ2,z

, and Avila–Fayad–
Krikorian [13]; see [13, Lemma 1.4] and its proof. See also the discussion on [16,
Page 324]. More precisely, [13] yields the desired reducibility for a.e. rotation number.
To pass from a.e. rotation number to a.e. z ∈ Zλ1,λ2,�, one uses the relationship between
the rotation number for the Szegő cocycle and the density of states for the CMV matrix
[45], Kotani theory for CMVmatrices [79, Section 10.11], and theKotani formula for the
derivative of the CMV density of states on the vanishing set of the Lyapunov exponent
[43].

Let us supply some additional details for the reader’s convenience. For θ ∈ T, let ηθ

denote the spectral measure given by
∫

f dηθ = 〈δ+0 , f (Wλ1,λ2,�,θ )δ
+
0 〉, f ∈ C(∂D), (7.11)

and recall that the density of states measure ν = νλ1,λ2,� associated with the family
{Wλ1,λ2,�,θ }θ∈T is given by the average of the spectral measures:

∫
f dν =

∫

T

∫
f dηθ dθ =

∫

T

〈δ+0 , f (Wλ1,λ2,�,θ )δ
+
0 〉 dθ. (7.12)

Keeping in mind the equivalence between W and an extended CMVmatrix as in Corol-
lary 2.13, the result of [43] together with Kotani theory for ergodic CMV matrices [79,
Section 10.11] implies

dν

dφ
(eiφ) > 0 (7.13)

for Lebesgue a.e. eiφ ∈ Zλ1,λ2,�. Let ρ denote the rotation number of the Szegő cocycle.
By [45], dν/dφ = 0 ⇐⇒ dρ/dφ = 0, so (7.13) holds for a.e. eiφ ∈ Zλ1,λ2,� with ν

replaced by ρ. This suffices to conclude the argument. ��
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Lemma 7.6. For Lebesgue almost every z ∈ Zλ1,λ2,�, the cocycle (�, AR
λ1,λ2,z

) is sub-
critical.

Proof. This follows from Lemma 7.5 and (2.25). ��
Of course, we have already shown that subcriticality is absent for λ1 = λ2 ∈ (0, 1),

so the crucial consequence of Lemma 7.6 is that Zλ,λ,� (and hence 
λ,λ,�) has zero
Lebesgue measure.

Putting all of this together, we may prove the desired zero-measure Cantor result in
the critical regime.

Proof of Theorem 2.2.(d). The case λ = 1 was proved in [44], so let us consider 0 <

λ < 1. By Proposition 4.4, the spectrum lacks isolated points. By Theorem 2.9, we have
Zλ,λ,� = 
λ,λ,�. If the measure of the spectrum is zero, it follows that the spectrum has
empty interior and cannot support any absolutely continuous measures. Thus, it suffices
to show that the measure of 
λ,λ,� is zero.

However, this is immediate from Lemma 7.6 and Theorem 2.9.(b). Namely, if the
measure of 
λ,λ,� were positive, Lemma 7.6 would imply subcriticality of (�, Aλ,λ,z)

for a positive-measure set of z ∈ ∂D, which contradicts Theorem 2.9.(b). ��
Proof of Theorem 2.2.(e). Since a zero-measure set cannot support absolutely continu-
ous measures, this is an immediate consequence of Theorems 2.2.(d) and 6.4. ��

8. Localization in the Supercritical Region and Consequences

At last, we conclude by discussing localization. Beginning from positivity of the Lya-
punov exponent, which follows from the bound

L(z) ≥ log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]

when λ2 > λ1, there is a cornucopia of techniques that one could apply in order to prove
Anderson localization for Wλ1,λ2,�,θ (for a.e. θ ).

We note that the non-perturbative localization proof of Bourgain–Goldstein [22],
generalized to CMV matrices by Wang–Damanik [81], suffices for our purposes. We
expect thatmost of the other localization techniques that have been employed in the study
of self-adjoint quasiperiodic operators will find fruitful application here. For instance,
we expect Jitomirskaya’s proof of localization for the self-adjoint supercritical almost
Mathieu operator with Diohphantine frequency and nonresonant phase [51] and Avila–
Jitomirskaya’s proof of almost-localization [15] can be generalized to the present setting.
We plan to address this and other finer localization statements in forthcoming work.1

Proof of Theorem 2.2.(b). Consider 0 < λ1 < λ2 ≤ 1, and recall from Corollaries 2.13
and 2.14 that Wλ1,λ2,�,θ is unitarily equivalent to the CMV matrix ERλ1,λ2,�,θ and that
the cocycle Aλ1,λ2,z is conjugate to the (two-step) Szegő cocycle Sλ1,λ2,z . In particular,
Theorem 4.6 gives

L(Sλ1,λ2,z) = L(Aλ1,λ2,z) ≥ log

[
λ2(1 + λ′

1)

λ1(1 + λ′
2)

]
> 0

1 Note added in revision: The first goal was accomplished in [83].



790 C. Cedzich, J. Fillman, D. C. Ong

for all z ∈ ∂D, so the assumptions of [81, Theorem 1.1] are met with I the set of
all irrationals and K = ∂D.2 As such, we get for each θ a full-measure set of � for
whichWλ1,λ2,�,θ enjoys Anderson localization. The conclusion then follows by Fubini’s
theorem. ��

We may thus conclude the proofs of Theorem 2.2.(a) by leveraging Theorem 2.2.(b)
and duality.

Proof of Theorem 2.2.(a). This follows from Theorem 2.2.(b) and Aubry duality via
standard arguments, which we describe for the reader’s convenience. Let λ1 > λ2 be
given, and let � be taken from the full-measure set of Diophantine irrationals for which
W �

λ1,λ2,�,θ is almost-surely localized. Define

E = Eλ1,λ2,� =
{
z ∈ ∂D : z is an eigenvalue of W �

λ1,λ2,�,θ for some θ

whose eigenfunction is exponentially localized

}
. (8.1)

By assumption E supports the spectral measures ofW �
λ1,λ2,�,θ for a.e. θ , and hence also

supports a.e. spectral measure of Wλ1,λ2,�,θ by duality (cf. Theorem 2.5) and general
facts about direct integrals which may be found in most texts on operator theory; see,
e.g., [74, Section XIII.16]. Let us describe this in more detail. Denoting T = ∂D \ E,
one has

χT (W �
λ1,λ2,�,θ ) = 0

for a.e. θ sinceE supports the spectral measures ofW �
λ1,λ2,�,θ for a.e. θ . By Theorem 2.5

and the functional calculus for direct integrals, this in turn implies

χT (Wλ1,λ2,�,θ ) = 0

for a.e. θ and hence that E supports the spectral measures of Wλ1,λ2,�,θ for a.e. θ . On
the other hand, for each z ∈ E, duality at the level of solutions (i.e., Theorem 2.4) shows
that all solutions to Wλ1,λ2,�,θψ = zψ are bounded, and hence (for a.e. phase) the dual
model has no subordinate solutions on E. Recalling the gauge equivalence ofWλ1,λ2,�,θ

and ERλ1,λ2,�,θ as in Corollary 2.13, we note thatWλ1,λ2,�,θ has a subordinate solution at

spectral parameter z ∈ ∂D if and only if ERλ1,λ2,�,θ has a subordinate solution at spectral
parameter z. Consequently,wemayapply subordinacy theory for standardCMVmatrices
as in [40].We see thatWλ1,λ2,�,θ has purely absolutely continuous spectrum onE, hence
purely absolutely continuous spectrum, concluding the argument. ��

There is another proof of Theorem 2.2.(a) which we now sketch for the interested
reader:

Sketch of alternate proof of Theorem 2.2.(a). Let ν denote the density of states of
{Wλ1,λ2,�,θ } as in (7.12), and let ν� denote the density of states associated to the dual
model. SinceE (defined in (8.1)) supports the spectral measure of the dual model for a.e.
phase, it supports ν�. By Aubry duality, ν� = ν, so E supports ν and hence the spectral
measure of Wλ1,λ2,�,θ for a.e. θ . One concludes using subordinacy theory as above. ��

2 The reader will notice that our Verblunsky coefficients have an alternating quasi-periodic structure, so
formally, [81] does not directly apply. However, passing to blocks of length two, one can re-run the arguments
of [81] with cosmetic changes to deduce the desired localization statement.
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