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ON SUMS OF SEMIBOUNDED CANTOR SETS

JAKE FILLMAN AND SARA H. TIDWELL

Motivated by questions arising in the study of the spectral theory of models of aperiodic order, we

investigate sums of functions of semibounded closed subsets of the real line. We show that under suitable

thickness assumptions on the sets and growth assumptions on the functions, the sums of such sets contain

half-lines. We also give examples to show our criteria are sharp in suitable regimes.

1. Introduction

1A. Background and motivation. The present paper is concerned with the following question:

Question. If F ⊆ R is closed and bounded from below and g : [inf(F), ∞) → R is increasing and

continuous, under what conditions (on F , g, or both) does g(F) + g(F) contain a half-line?

This question has its roots in some recent work on spectral theory of multidimensional quasicrystals.

To set the stage, we will explain how this question arose and then give an answer: if F is thick and the

relative Lipschitz behavior of g is controllable (in senses to be made precise later), then g(F) + g(F)

contains a half-line. Moreover, we will show that these hypotheses are necessary by exhibiting examples

in which they fail and the resultant sums do not contain half-lines.

Since their discovery in the 1980s by Shechtman et al. [34], quasicrystals1 have been studied intensively

by mathematicians and physicists. We direct the readers to the books [2; 3] for background. This paper is

motivated by questions that arise when one studies the spectra of multidimensional quasicrystal models.

In particular, one asks whether the spectra of multidimensional continuum quasicrystal models must

contain a half-line. This question itself is motivated by the corresponding question for crystalline (i.e.,

periodic) models, called the Bethe±Sommerfeld conjecture. The conjecture is now a theorem with results

by many authors. After progress in dimension two [33; 36], dimension three [18; 37; 38], dimension

four [15], and general dimensions [43], the conjecture was resolved by Parnovski [32].

To study electronic properties of quasicrystals, one often considers a single-particle Hamiltonian

in L2(Rd) of the form

LV = −1 + V
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1That is, mathematical or physical structures simultaneously exhibiting aperiodicity and long-range order.
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in which the potential V : R → R is pattern-equivariant with respect to a suitable model of aperiodic

order (e.g., the Fibonacci or Penrose tilings). Such models have been heavily studied in dimension d = 1,

where there is a cornucopia of tools available to study the relevant spectral theory, and as a consequence,

one has many results about the spectrum, spectral type, and density of states. For instance, the structure

of the spectrum is now well-understood for Hamiltonians with potentials generated by the Fibonnacci

sequence [11; 39; 40], the period-doubling sequence [5], the Thue±Morse sequence [4; 24; 25], and

general Sturmian sequences [6]. There are comparatively fewer spectral results in higher dimensions,

partially due to the disappearance of some of the key tools in the transition from dimension d = 1 to

dimensions d ≥ 2. Nevertheless, there has been progress in understanding the density of states on aperiodic

tilings [16; 17] and Delone sets [22; 23], particularly the existence of discontinuities caused by finitely

supported eigenfunctions [7; 14; 19; 20]. One fruitful method to push results into higher dimensions is to

study separable potentials, that is, potentials of the form

V (x) =

d∑

j=1

V j (x j ),

where each V j : R → R is a well-understood one-dimensional model. In particular, for the spectrum, this

results in

σ(LV ) = σ(LV1
) + σ(LV2

) + · · · + σ(LVd ) =

{ d∑

j=1

λ j : λ j ∈ σ(LV j )

}
,

the Minkowski sum of sets.

On one hand, the spectra of one-dimensional quasicrystal models have a strong tendency to be zero-

measure Cantor sets [5; 6; 8; 12; 21; 39; 40]. On the other hand, the self-sums of fractal sets of zero

Lebesgue measure can have nonempty interior. For instance, it is well known that if K ⊆[0, 1] denotes the

standard middle-thirds Cantor set, one has K + K = [0, 2]. In particular, the self-sum of a zero-measure

set may be an interval.

In the recent work [9], it was shown that if V j (x) denotes a suitable locally constant version of the

Fibonacci potential, then σ(LV ) contains a half-line for each d ≥ 2. One of the key ingredients of the proof

was an affirmative answer to the main question for the function g(x) = x2 and Cantor sets sufficiently

thick in the sense of Newhouse [29; 30]. This is how Minkowski sums of unbounded fractal sets arise in

spectral theory.

In the present work, we will demonstrate classes of functions and sets for which the result of [9] holds.

We give a class of examples for which one can observe a sharp phase transition between containing and

not containing a half-line.

1B. Definitions and results. Let us begin by defining terminology and recalling some results that will

be useful.

We first discuss the class of functions with which we work. In the sequel, we will consider closed sets

and functions that are bounded from below. Consequently, after shifting, we are free to assume without

loss of generality that all sets are contained in R+ = [0, ∞) and that all functions map R+ to itself.

Loosely speaking, the class of functions for which the result holds true is that of monotonic locally

Lipschitz functions for which the local Lipschitz constants do not vary too quickly in a relative sense,

which we make precise in the following definition.
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Definition 1.1. We say that g : R+ → R+ is an admissible function if it is continuous, strictly increasing,

and satisfies limx→∞ g(x) = ∞. For x ∈ R+, let D± denote the upper and lower derivatives:

D+(g, x) = lim sup
z→x

g(z) − g(x)

z − x
and D−(g, x) = lim inf

z→x

g(z) − g(x)

z − x
.

Given an admissible function g and constants γ > 0 and M ≥ 0, define

(1-1) 3(g, γ, M) = sup

{
D+(g, x)

D−(g, y)
: x, y ≥ M and |x − y| ≤ γ

}
.

Note that 3(g, γ, M) ≥ 1 for all M and γ , and for fixed γ , it is nonincreasing in M , and define

(1-2) 3(g, γ ) := lim
M→∞

3(g, γ, M).

We say that g has bounded relative variation (in short, g ∈ BRV) if 3(g, γ ) < ∞ for some γ > 0 and

trivial relative variation (g ∈ TRV) if 3(g, γ ) = 1 for some γ . We will show later that neither of these

notions depends on the particular choice of γ (see Proposition 2.4), and hence one has

TRV = {g : g is admissible and 3(g, 1) = 1} and BRV = {g : g is admissible and 3(g, 1) < ∞}.

Remark 1.2. Let us make some comments about the definitions.

(a) We think it is extremely probable that these spaces of functions have been considered in other works,

likely under a different name. However, we were unable to locate a precise reference.

(b) The assumptions imply that BRV functions are differentiable almost everywhere and locally Lipschitz

continuous for sufficiently large x . If g is everywhere differentiable and g ∈ BRV, then one can

check that log g′ is a function of bounded variation on any compact subinterval of [M, ∞) for M
sufficiently large.

(c) However, we find it prudent not to restrict to differentiable functions, first, since the results do not

need that assumption, and second, piecewise affine functions supply a useful set of test cases and

examples to consider.

Next, we describe the kinds of closed sets to which we may apply our results. In order to do this, let

us formulate precisely what it means to say that a set is thick. The ideas and key results date back to work

of Newhouse [29; 30]. Let K ⊆ R be a compact set and denote by I = [min K , max K ] its convex hull.

Any connected component of I\K is called a gap of K . A presentation of K is given by an ordering

U = {Un}n≥1 of the gaps of K . If u ∈ K is a boundary point of a gap U of K , we denote by B the

connected component of I\(U1 ∪U2 ∪· · ·∪Un) (with n chosen so that Un = U ) that contains u and write

τ(K , U , u) =
|B|

|U |
.

The thickness τ(K ) of K is given by

τ(K ) = sup
U

inf
u

τ(K , U , u).
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The reader can check that τ(K ) < ∞ for any K having at least one gap. By convention, τ(K ) = ∞ if K
is a closed interval. It is well known that one can take as a maximizer any presentation U in which the

gaps are ordered in such a way that the gap lengths are nonincreasing [31].

The following consequence of the Newhouse gap lemma [29; 30] is stated as [10, Lemma 6.2]

and proved there for the case τ(K ) · τ(K ′) > 1; the improvement to τ(K ) · τ(K ′) ≥ 1 is discussed

in [42, Theorem 1.1]; see also [31].

Lemma 1.3. Suppose K , K ′ ⊆ R are compact sets with τ(K ) · τ(K ′) ≥ 1. Assume also that the size of
the largest gap of K ′ is not greater than the diameter of K , and the size of the largest gap of K is not
greater than the diameter of K ′. Then

K + K ′ = [min K + min K ′, max K + max K ′].

Remark 1.4. A particular consequence of Lemma 1.3 is the following: if K ⊆ R is a Cantor set with

τ(K ) ≥ 1, then

K + K = [2 min K , 2 max K ].

Thickness is a ubiquitous notion in geometric analysis. For a partial list, it has applications in

geometric measure theory [26; 35], number theory [46], spectral theory [9; 10; 13; 27; 28; 41], fractal

geometry [42; 44], and pinned distance problems [26]. Multidimensional generalizations have been

considered in [35; 45]. For additional information about thickness, we direct the reader to [1; 31].

As mentioned before, we will consider only semibounded closed sets, so after shifting, we will also

always assume that said sets lie in R+ = [0, ∞).

Definition 1.5. An ordered fragmentation of a semibounded closed set F is a decomposition

(1-3) F =

∞⋃

n=0

Kn,

where each Kn is compact and nonempty, and max Kn < min Kn+1 for all n. We call Kn the n-th fragment
of F .

Given constants A, a, τ > 0, we say F is (A, a, τ )-thick if F has an ordered fragmentation such that

A ≤ diam(Kn) ≤ 2A for all n ≥ 0,(1-4)

dist(Kn, Kn+1) < a for all n ≥ 0,(1-5)

τ(Kn) ≥ τ for all n ≥ 0.(1-6)

Theorem 1.6. Assume that F ⊆ R+ is an (A, a, τ )-thick semibounded closed set for constants A > a > 0

and τ > 1. Suppose g ∈ TRV, and let F̃ = g(F). Then F̃ + F̃ contains a half-line.

One can weaken the assumption g ∈ TRV (3(g, γ ) = 1) somewhat, depending upon the constants

A, a > 0. Namely, one can show that F̃ + F̃ contains a half-line if F is (A, a, τ )-thick for some τ > 1

and 3(g) is sufficiently small.

Theorem 1.7. Given A>a >0 and ε>0, there exists δ=δ(A, a, ε)>0 such that if F is (A, a, 1+ε)-thick
and g ∈ BRV has 1 ≤ 3(g, A) < 1 + δ, then F̃ + F̃ contains a half-line, where F̃ = g(F).
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Remark 1.8. (a) The proof of Theorem 1.7 gives an explicit bound on δ, but we have not optimized the

constants in the proof.

(b) One can clearly relax some of the hypotheses. For instance, in Theorem 1.7, it suffices that F be

eventually (A, a, 1+ε)-thick in the sense that F ∩ [c, ∞) is (A, a, 1+ε)-thick for some c > 0. One

can similarly relax hypotheses on g.

(c) The work of Takahashi [42] on products of Cantor sets is closely related to the themes and strategy

of this work. Given Cantor sets K1, K2 ≥ 0 with 0 ∈ K j , Takahashi studies the product K1 · K2 by

studying the sum of the sets K̂ j = log(K j \ {0}), which are then semibounded Cantor sets.

Let us remark that the assumptions of Theorem 1.6 are met with f any polynomial function nonnegative

on R+, as well as subexponential functions such as exp(xα), 0 < α < 1. The assumptions of Theorem 1.7

are met by those functions and exponential functions of the type exp(r x) with r > 0 sufficiently small.

We give an account of these objects in Section 2 including a discussion of the structure of the spaces TRV

and BRV. One can use this to prove spectral results for separable operators modeled on the Fibonacci

tiling. To define such potentials, fix λ > 0, define

(1-7) Vλ(x) = λ
∑

n∈Z

χ[1−α,1)(nα mod 1)χ[n,n+1)(x),

and put 6λ = σ(−1 + Vλ). Notice that Vλ ≥ 0 and hence inf 6λ ≥ 0, so one may consider

6s
λ = {E s : E ∈ 6λ}

for any s > 0.

Corollary 1.9. For any λ > 0 and s > 0, 6s
λ + 6s

λ contains a half-line.

Proof. It was shown in [9] that 6
1/2
λ is eventually (A, a, τ )-thick for suitable A, a, τ . Since x 7→ x2s is

in TRV, the result follows immediately from Theorem 1.6. □

Of course, the sum in Corollary 1.9 corresponds to the operator

H s
x + H s

y = (−∂2
x + Vλ(x))s + (−∂2

y + V2(y))s .

It would also be of interest to study the operator (−1)s + Vλ(x) + Vλ(y), but this is not within reach of

the methods of this paper.

One can turn the formulation of Theorem 1.7 around and see that the result also holds in an appropriate

dual asymptotic regime of bounded 3(g, A) and sufficiently large thickness. More precisely, Theorem 1.7

can be viewed as fixing an (A, a, τ )-thick set F and proving the desired half-line statement for g ∈ BRV

with 3 sufficiently small. One can also fix a BRV function and prove a similar statement if F is

ªsufficiently thickº.

Theorem 1.10. Given A > 0 and R > 1, there exist constants a0 = a0(A, R) and τ0 = τ0(R) > 0 such
that the following holds. If F ⊆ R+ is (A, a, τ )-thick for some 0 < a ≤ a0 and τ ≥ τ0, and 3(g, A) ≤ R,

then F̃ + F̃ contains a half-line.

The arguments proving Theorems 1.7 and 1.10 follow the proof of [9, Lemma 2.3] with a few minor

quantitative and conceptual refinements. This work addresses the comment in [9, Remark 2.4] which

asked for what class of functions [9, Lemma 2.3] holds.
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To round out the discussion, we give an example to show that F̃ + F̃ may not contain a half-line. To

that end, let us say that F is a-sparse if it has infinitely many open gaps of length at least a, that is, if F
enjoys an ordered fragmentation {Kn}

∞
n=0 satisfying

(1-8) dist(Kn, Kn+1) ≥ a for all n ≥ 0.

Notice that the thickness of the pieces is irrelevant. Indeed, the following result remains true even if all

fragments are closed intervals.

Theorem 1.11. Given r > 0, let gr (x) = er x . Given a > 0, if F is an a-sparse closed set, ra ≥ log 2, and
F̃ = gr (F), then F̃ + F̃ does not contain a half-line.

We will also show that ra ≥ log 2 is sharp in the previous theorem by giving an example for each

a < r−1 log 2 of an a-sparse set with F̃ + F̃ containing a half-line.

Of course, it is no accident that the phase transition (from containing to not containing a half-line)

occurs precisely at era = 2, since one can easily check that 3(er x , a) = era .

The remainder of the paper is organized as follows. We prove some basic estimates for BRV functions

in Section 2. We prove Theorems 1.6, 1.7, and 1.10 in Section 3, and we prove Theorem 1.11 in Section 4.

2. Functions of bounded relative variation

We collect here some useful properties of functions in BRV. We will use the following calculation

somewhat frequently. Although it is well known, we include the proof for the reader’s convenience and

to keep the paper more self-contained.

Lemma 2.1. For any g : [a, b] → R,

(2-1) inf
x∈[a,b]

D−(g, x) ≤
g(b) − g(a)

b − a
≤ sup

x∈[a,b]

D+(g, x).

Proof. First, observe that if r < t , λ ∈ (0, 1), and s = λr + (1 − λ)t , then

(2-2)
g(t) − g(r)

t − r
= λ

g(t) − g(s)

t − s
+ (1 − λ)

g(s) − g(r)

s − r
.

Using (2-2), start with [a0, b0] = [a, b] and choose [a0, b0] ⊇ [a1, b1] ⊇ · · · so that [an+1, bn+1] has half

the length of [an, bn] and

g(bn+1) − g(an+1)

bn+1 − an+1

≥
g(bn) − g(an)

bn − an
.

Choosing x∗ in the intersection of all [an, bn], one can use (2-2) again to see that

(2-3) sup
x∈[a,b]

D+(g, x) ≥ D+(g, x∗) ≥
g(b) − g(a)

b − a
.

The other inequality is proved in the same manner. □

Using Lemma 2.1, we deduce the following inequality that relates average rates of change for admissible

functions to 3.
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Lemma 2.2. Suppose g is an admissible function and M ≥ 0. For any intervals [a, b], [c, d] ⊆ [M, ∞)

for which diam([a, b] ∪ [c, d]) ≤ γ , one has

(2-4)
g(d) − g(c)

g(b) − g(a)
≥ (3(g, γ, M))−1 d − c

b − a
.

Proof. By the previous lemma,

(2-5)
g(d) − g(c)

d − c
≥ inf

z∈[c,d]
D−(g, z) and

g(b) − g(a)

b − a
≤ sup

w∈[a,b]

D+(g, w).

Since g is increasing on [M, ∞), the previous inequalities yield

(2-6)
g(d) − g(c)

g(b) − g(a)
≥

(
infz∈[c,d] D−(g, z)

supw∈[a,b] D+(g, w)

)
d − c

b − a
.

The result follows by definition of 3(g, γ, M). □

We begin by clarifying some of the main properties of 3(g, γ ). First, it is submultiplicative in the

sense that 3(g, γ1 + γ2) ≤ 3(g, γ1)3(g, γ2).

Proposition 2.3. Suppose g : R+ → R+ is admissible. For any γ1, γ2 > 0,

(2-7) 3(g, γ1 + γ2) ≤ 3(g, γ1)3(g, γ2).

Proof. Let M ≥ 0. If x, y ≥ M and |x − y| ≤ γ1 + γ2, we choose z ≥ M for which |x − z| ≤ γ1 and

|z − y| ≤ γ2, leading to

D+(g, x)

D−(g, y)
≤

D+(g, x)

D−(g, z)

D+(g, z)

D−(g, y)
≤ 3(g, γ1, M)3(g, γ2, M),

from which (2-7) follows by sending M → ∞. □

The previous calculation enables us to see that the sets TRV and BRV do not depend on the choice

of γ used to test 3(g, γ ). More precisely:

Proposition 2.4. Suppose g : R+ → R+ is admissible.

(a) g ∈ TRV if and only if 3(g, γ ) = 1 for all γ > 0.

(b) g ∈ BRV if and only if 3(g, γ ) < ∞ for all γ > 0.

Proof. (a) One direction is trivial. For the other direction, suppose g ∈ TRV, which implies 3(g, γ ′) = 1

for some γ ′ > 0. By Proposition 2.3, we get 3(g, nγ ′) ≤ 1 for all n. Since 3(g, γ ) ≥ 1 for all γ and

3(g, · ) is nondecreasing 3(g, γ ) = 1 for every γ .

(b) The proof is almost identical to that of (a). □

Next, we discuss the arithmetic properties of TRV and BRV. We will show that these sets are closed

under sums and products. The following bound supplies the needed input to prove that both sets are

closed under sums.

Proposition 2.5. Suppose g, h : R+ → R+ are admissible. For all γ > 0, one has

(2-8) 3(g + h, γ ) ≤ max
(
3(g, γ ),3(h, γ )

)
.
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Proof. Let M ≥ 0. Since D+(g +h, x) ≤ D+(g, x)+D+(h, x) and D−(g +h, x) ≥ D−(g, x)+D−(h, x)

we have the following for any x, y ≥ M with |x − y| ≤ γ :

D+(g + h, x)

D−(g + h, y)
≤

D+(g, x) + D+(h, x)

D−(g, y) + D−(h, y)

≤
D−(g, y)3(g, γ, M) + D−(h, y)3(h, γ, M)

D−(g, y) + D−(h, y)

≤ max
(
3(g, γ, M), 3(h, γ, M)

)
.

Taking the supremum over x, y ≥ M with |x − y| ≤ γ and then sending M → ∞ gives (2-8). □

We also want to bound 3(gh, γ ) for a pair of BRV functions g and h, which turns out to be slightly

more delicate, because (due to the Leibniz rule) we will need to control ratios of values of g and h as

well as their derivatives. The following proposition will be helpful.

Proposition 2.6. If g ∈ BRV and γ > 0, then

(2-9) lim
M→∞

sup

{
g(x)

g(y)
: x, y ≥ M and |x − y| ≤ γ

}
≤ 3(g, 2γ ) ≤ (3(g, γ ))2.

Proof. Notice that the limit on the left-hand side of (2-9) exists since the sets in question are decreasing

in M . The second inequality in (2-9) follows from Proposition 2.3, so it remains to prove the first inequality

in (2-9). Writing 3=3(g, 2γ ), let us suppose for the sake of contradiction that there exists δ >0 such that

(2-10) sup

{
g(x)

g(y)
: x, y ≥ M and |x − y| ≤ γ

}
> 3 + δ

for every M . Fix 0 < ε < δ, and choose k ∈ N large enough that

(2-11) (3 − 1 + δ)

k∑

j=1

(3 + ε)− j > 1,

which can clearly be done since the left-hand side of (2-11) converges to

3 − 1 + δ

3 − 1 + ε
> 1.

Now, choose M large enough that M > kγ and

(2-12) 3(g, 2γ, M − kγ ) < 3 + ε.

By (2-10) and monotonicity of g, we may find x ≥ M for which g(x + γ )/g(x) > 3 + δ. Naturally, this

yields

(2-13)
g(x + γ ) − g(x)

γ
>

3 − 1 + δ

γ
g(x).

Inductively applying (2-12) together with Lemma 2.2, we observe that

(2-14)
g(x − ( j − 1)γ ) − g(x − jγ )

γ
> (3 + ε)− j 3 − 1 + δ

γ
g(x)
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for all j = 0, 1, 2, . . . , k. Thus,

g(x − kγ ) = g(x) − γ

k∑

j=1

g(x − ( j − 1)γ ) − g(x − jγ )

γ

< g(x) − γ

k∑

j=1

(3 + ε)− j 3 − 1 + δ

γ
g(x)

= g(x)

(
1 − (3 − 1 + δ)

k∑

j=1

(3 + ε)− j

)

< 0,

which is a contradiction. □

Proposition 2.7. Suppose g, h : R+ → R+ are admissible. For all γ > 0, one has

(2-15) 3(gh, γ ) ≤ 3(g, γ )3(h, γ ) max
(
3(g, γ ),3(h, γ )

)
.

Proof. First, note that

(2-16) D+(gh, x) = lim sup
z→x

g(z)h(z) − g(x)h(x)

z − x

≤ lim sup
z→x

g(z)h(z) − g(z)h(x)

z − x
+ lim sup

z→x

g(z)h(x) − g(x)h(x)

z − x

= g(x)D+(h, x) + h(x)D+(g, x).

Similarly,

(2-17) D−(gh, x) ≥ g(x)D−(h, x) + h(x)D−(g, x).

Given ε > 0, choose M large enough that

(2-18) 3(g, γ, M) < 3(g, γ )+ ε and 3(h, γ, M) < 3(h, γ )+ ε,

and use Proposition 2.6 to ensure that M is also large enough that

(2-19) g(x)≤ g(y)(3(g, γ )2+ε) and h(x)≤ h(y)(3(h, γ )2+ε) for all x, y ≥ M, |x−y|≤γ.

Let x, y ≥ M with |x − y| ≤ γ be given. Putting together (2-16)±(2-19),

D+(gh, x)

D−(gh, y)
≤

g(x)D+(h, x) + h(x)D+(g, x)

g(y)D−(h, y) + h(y)D−(g, y)

≤
(3(g, γ )2 + ε)(3(h, γ )+ ε)g(y)D−(h, y) + (3(g, γ )+ ε)(3(h, γ )2 + ε)h(y)D−(g, y)

g(y)D−(h, y) + h(y)D−(g, y)

≤ max
(
(3(g, γ )2 + ε)(3(h, γ )+ ε), (3(g, γ )+ ε)(3(h, γ )2 + ε)

)
.

Sending M → ∞ and ε ↓ 0 gives the desired result. □

Proposition 2.8. The sets TRV and BRV are closed under finite sums, products, and scaling by positive
constants.
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Proof. This follows immediately from the bounds in Propositions 2.5 and 2.7. □

Let us now give some examples of functions with bounded relative variation.

Proposition 2.9. (a) For any m > 0, g(x) = xm is an admissible TRV function.

(b) For any a, b > 0, g(x) = eaxb
is in BRV if and only if b ≤ 1 and in TRV if and only if b < 1.

Proof. Since these functions are differentiable, D+(g, x) = D−(g, x) = g′(x), which we use throughout

the proof.

(a) Write g(x) = xm . If x, y ≥ M , |x − y| ≤ γ , and m ≥ 1, then

D+(g, x)

D−(g, y)
=

g′(x)

g′(y)
=

xm−1

ym−1
≤

(
y + γ

y

)m−1

≤ (1 + γ M−1)m−1,

which converges to one as M → ∞. A similar argument works when 0 < m < 1, but one must bound

things differently since t 7→ tm−1 is decreasing for m < 1.

(b) Notice that g′(x) = abxb−1eaxb
. If x, y ≥ M , |x − y| ≤ γ , and 0 < b ≤ 1, we get

D+(g, x)

D−(g, y)
=

g′(x)

g′(y)
=

xb−1

yb−1
ea(xb−yb) ≤ (1 − γ M−1)b−1ea((y+γ )b−yb).

The right-hand side converges to one as M → ∞ if b < 1 and converges to a finite value if b = 1. On the

other hand, if b = 1, then one can check that

g′(x + γ )

g′(x)
= eaγ > 1,

for all x . This shows that g ∈ BRV \ TRV. Similar calculations show that g ̸∈ BRV whenever b > 1. □

Let us briefly note that every BRV function is exponentially bounded:

Corollary 2.10. If g ∈ BRV, then g is exponentially bounded, that is, g(x) ≤ AeBx for constants A, B > 0.

Proof. Proposition 2.6 implies that for some ε > 0, some large x and all n ∈ N,

(2-20) g(x + nγ ) ≤ g(x)(3(g, γ )2 + ε)n.

The result follows by monotonicity. □

The converse of Corollary 2.10 fails: for any increasing function h, one can find an admissible function

in the complement of BRV that is dominated by h.

Example 2.11. For any continuous increasing function h : R+ → R+ such that h(x) → ∞ as x → ∞,

there is an admissible function g such that g(x) ≤ h(x) for all sufficiently large x and g ̸∈ BRV.

To see this, choose 0 = x0 < x1 < · · · so that h(xn) = n (and hence h(x) ≥ n for x ≥ xn). Pick

0 = y0 < y1 < · · · such that

yn ≥ xn for all n ∈ N,(2-21)

yn+1 − yn ≥ n(yn − yn−1) for all n ∈ N.(2-22)
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Define g to be continuous and piecewise affine with g(yn) = n/2 for each n ∈ Z+. Notice that g is

admissible, that the definition of g and (2-21) ensure g(x) ≤ h(x) for x ≥ x1, and that (2-22) ensures

that g ̸∈ BRV.

One can mollify this example to produce a smooth admissible g ∈ BRV having similar properties.

3. Proofs of main theorems

Let us prove Theorems 1.6 and 1.7. Clearly the latter implies the former, so we focus on proving

Theorem 1.7. We follow the strategy from [9].

Lemma 3.1. Suppose g ∈ BRV, K ⊆ [M, ∞) is compact, and diam(K ) ≤ γ . Then

(3-1) τ(g(K )) ≥ (3(g, γ, M))−1τ(K ).

Proof. If τ(K ) = ∞, then K and g(K ) are both intervals, and there is nothing to do, so assume

τ := τ(K ) < ∞, and write I = [min K , max K ]. Given ε > 0, choose a presentation U = {Un} such that

τ(K , U ) > τ − ε.

For any two intervals B = [u, v] and U = [v, w] from I such that

|B|

|U |
=

v − u

w − v
≥ τ − ε,

we have, by Lemma 2.2,

|g(B)|

|g(U )|
=

g(v) − g(u)

g(w) − g(v)
≥ (3(g, γ, M))−1 v − u

w − v
≥ (3(g, γ, M))−1(τ − ε).

A similar estimate holds for intervals situated in the other order, that is, B = [u, v] and U = [w, u]. Hence

gU = {g(Un)} is a presentation of g(K ) satisfying τ(g(K ), gU ) ≥ (3(g, γ, M))−1(τ − ε). Thus,

(3-2) τ(g(K )) ≥ (3(g, γ, M))−1(τ − ε).

Since this holds for arbitrary ε > 0, the lemma follows. □

Lemma 3.2. If K ⊆ R is compact and τ(K ) > β, then ξ(K ), the longest gap length of K , satisfies

(3-3) ξ(K ) ≤
diam(K )

1 + 2β
.

Proof. Write I for the convex hull of K so that diam(K ) = |I |. If the longest gap U of K satisfies

|U | > |I |/(1 + 2β), then I \ U has two components, one of which must have length no larger than

1

2
(|I | − |U |) <

1

2

(
1 −

1

1 + 2β

)
|I | =

β

1 + 2β
|I |.

Thus, for (at least) one endpoint u of U , one has

τ(K , U , u) ≤
(β/(1 + 2β))|I |

(1/(1 + 2β))|I |
= β

for every presentation U of K , leading to τ(K ) ≤ β. The result follows. □
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Proof of Theorem 1.7. Assume g ∈ BRV, F ⊆ R+ is (A, a, 1+ε)-thick, and let {Kn}
∞
n=0 be an ordered

fragmentation of F satisfying (1-4), (1-5), and (1-6). Write K̃n = g(Kn), let In denote the convex hull

of Kn , and assume

(3-4) 3(g, A) < min

{√
1 + ε

1 + 1
2
ε
,

5

√
3

2
,

3

√
A

a

}
.

We may also choose M large enough that 3(g, A, M) is strictly less than the right-hand side of (3-4) as

well.

By Lemma 3.1 and (3-4), if n is large enough that Kn ⊆ [M, ∞), one has

τ(K̃n) ≥ (3(g, 2A, M))−1(1 + ε) ≥ (3(g, A, M))−2(1 + ε)>

(
1 + ε

1 + 1
2
ε

)−1

(1 + ε) = 1 + 1
2
ε,

and thus τ(K̃n) > 1 + 1
2
ε for all sufficiently large n. Consequently, the sum K̃n + K̃n is an interval by

Remark 1.4.

Next, let us show that for all sufficiently large n, each of the sets K̃n and K̃n+1 has diameter larger

than the largest gap of the other. In that case Lemma 1.3 will imply that K̃n + K̃n+1 is an interval. Write

In = [xn, yn] for each n. By our assumptions, we have

(3-5) A ≤ yn − xn ≤ 2A and xn+1 − yn ≤ a

for every n. Since we already know that τ(K̃n+1) > 1, Lemma 3.2 implies that the largest gap of K̃n+1 is

not greater than 1
3
(g(yn+1) − g(xn+1)), and the diameter of K̃n is equal to g(yn) − g(xn). Now observe

g(yn) − g(xn)

1
3
(g(yn+1) − g(xn+1))

≥ (3(g, 4A + a, M))−1 yn − xn
1
3
(yn+1 − xn+1)

≥ (3(g, A, M))−5 3A

2A
>

(
3
2

)−1 3
2
= 1,

by (3-4). Consequently, for all sufficiently large values of n, the diameter of K̃n is greater than the largest

gap of K̃n+1. Similarly one can show that for all sufficiently large values of n, the diameter of K̃n+1 is

greater than the largest gap of K̃n .

Consequently, the sets Jn := K̃n + K̃n and J ′
n := K̃n + K̃n+1 are intervals for large n. Let us show that

they cover a half-line. To conclude, it suffices to verify Jn ∩ J ′
n ̸= ∅ and J ′

n ∩ Jn+1 ̸= ∅.

Recall In = [xn, yn]. It follows from our discussion above that

Jn = [2g(xn), 2g(yn)],

Jn+1 = [2g(xn+1), 2g(yn+1)],

J ′
n = [g(xn) + g(xn+1), g(yn) + g(yn+1)].

To show that Jn is not disjoint from J ′
n we need to check that 2g(yn) ≥ g(xn) + g(xn+1). To that end,

note that

g(yn) − g(xn)

g(xn+1) − g(yn)
≥ (3(g, 2A + a, M))−1 yn − xn

xn+1 − yn
≥ (3(g, A, M))−3 A

a
> 1,

again by (3-4).

One can show that J ′
n is not disjoint from Jn+1 from an almost identical argument.
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Putting everything together, the set ⋃

n≥n0

(Jn ∪ J ′
n)

is a half-line for large enough n0. Since this set is contained in F̃ + F̃ , we are done. □

Proof of Theorem 1.6. This follows from Theorem 1.7. □

Let us comment on the assumptions and why they are necessary. Consider first any semibounded

closed set F ⊆ R+ with ordered fragmentation {Kn}. One can clearly choose a smooth, nondecreasing

function f ∈ C∞(R+) that satisfies f |Kn ≡ n for each n ≥ 0. Clearly then

F̃ + F̃ = Z+,

which certainly does not contain a half-line. Of course, this f is clearly not admissible. However, one

can certainly perturb about this situation somewhat. Concretely, one can choose f : R+ → R+ smooth

and increasing with K̃n = f (Kn) ⊆ [n − ε, n + ε] for n ∈ Z+. One still sees that F̃ + F̃ is contained in

the 2ε-neighborhood of Z+. Evidently, the mechanism that produces this is that f ′ ∼ ε/A on the convex

hull of Kn while f ′ ∼ 1/a in between successive Kn’s, leading to relative variations of f ′(x) = D±( f, x)

on the order of A/(εa).

Let us conclude the present section with the proof of Theorem 1.10. Since this is similar to that of

Theorem 1.7, we will only give the main steps.

Proof of Theorem 1.10. Choose a0, τ0 > 0 such that

(3-6) τ0 > R7 and a0 < A/R3.

Since R > 1, note additionally that a0 < A. Now, assume 3(g, A) ≤ R and that F is (A, a, τ )-thick with

0 < a ≤ a0 and τ ≥ τ0, let {Kn} denote an ordered fragmentation of F satisfying (1-4), (1-5), and (1-6),

and use the same notation as in the proof of Theorem 1.7. Using Proposition 2.3, we note

(3-7) 3(g, 2A) < R2,

so following the steps at the beginning of the proof of Theorem 1.7, we have τ(K̃n) ≥ τ0/R2 > R5 > 1

for large enough n.

For large enough n that the previous thickness statement holds true, the largest gap of K̃n+1 is smaller

than (g(yn+1) − g(xn+1))/(2R5 + 1) by Lemma 3.2, and we have

g(yn) − g(xn)

(1/(2R5 + 1))(g(yn+1) − g(xn+1))
≥ R−5 A

(1/(2R5 + 1))2A
> 1,

showing that the diameter of K̃n exceeds the size of the largest gap of K̃n+1 for large enough n (and vice

versa by the same argument). The assumption on a0 ensures that

3(g, 2A + a) ≤ 3(g, 3A) ≤ R3 < A/a

for large enough n. These ingredients suffice to apply the arguments of the previous proof and conclude

that F̃ + F̃ contains a half-line. □
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4. Examples not containing half-lines

We now turn towards the construction of suitable examples whose sums do not contain half-lines when

the assumptions of the main theorems are not met.

Lemma 4.1. Suppose

(4-1) F ⊆

∞⋃

n=0

[xn, yn],

where xn < yn < xn+1 for every n, and suppose that for some N0, one has

(4-2) 2yn − x0 < xn+1 for all n ≥ N0.

Then F + F does not contain a half-line.

One can generalize this to sums consisting of more than two sets, which may be distinct. We shall do

that presently and derive Lemma 4.1 as a consequence of a more general statement.

Definition 4.2. For F1, . . . , Fd ⊆ R, define

(4-3)

d∑

j=1

F j = F1 + · · · + Fd =

{ d∑

j=1

a j : a j ∈ F j for all 1 ≤ j ≤ d

}
.

Lemma 4.3. Suppose that for j = 1, 2, . . . , d ,

(4-4) F j ⊆

∞⋃

n=0

[xn, j , yn, j ]

is contained in a union of closed, bounded intervals such that xn, j < yn, j < xn+1, j for all n ≥ 0 and
j = 1, 2, . . . , d. If for some N0, one has

(4-5)

d∑

j=1

yn, j < min
k=1,2,...,d

(
xn+1,k +

∑

j ̸=k

x0, j

)
for all n ≥ N0,

then
∑d

j=1 F j does not contain a half-line.

Proof. Write F =
∑d

j=1 F j , and define In, j = [xn, j , yn, j ]. For k = 1, 2, . . . , d and n ≥ 0, define the

(n, k)-stratum by

Sn,k =
⋃

0≤n1,n2,...,nd≤n
nk=n

d∑

j=1

In j , j .

For n ≥ 0, define

Sn =

d⋃

k=1

Sn,k, T −
n =

n⋃

m=0

Sm, T +
n =

∞⋃

m=n+1

Sm,

and note that

F ⊆ T −
n ∪ T +

n for all n ∈ N.
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Since

max(T −
n ) =

d∑

j=1

yn, j and min(T +
n ) = min

k=1,2,...,d

(
xn+1,k +

∑

j ̸=k

x0, j

)
,

our assumption (4-2) yields

(4-6) ∅ ̸= Gn := (max T −
n , min T +

n ) ⊆ R \ F for all n ≥ N0,

which suffices to show that F does not contain a half-line. □

Proof of Lemma 4.1. This follows immediately from Lemma 4.3. □

Proof of Theorem 1.11. Let F be a-sparse, and write

F =

∞⋃

n=0

Kn

for an ordered fragmentation with dist(Kn, Kn+1)≥a. Writing [xn, yn] for the convex hull of Kn , note that

F̃ ⊆

∞⋃

n=0

[x̃n, ỹn]

with x̃n = er xn and ỹn = er yn . By assumption, ra ≥ log 2, so we observe

2ỹn − x̃0 = 2er yn − er x0 ≤ er(yn+a) − er x0 ≤ er xn+1 − er x0 = x̃n+1 − er x0 < x̃n+1,

in which the second inequality follows from sparsity. Thus the claim follows from Lemma 4.1. □

Definition 4.4. Given constants A, a > 0, let F(A, a) denote a union of intervals of length A separated

by a uniform distance of a between consecutive intervals, that is,

F(A, a) =

∞⋃

n=0

[n(A + a), n(A + a) + A].

This can be used to show that the bound ra ≥ log 2 is sharp for constructing counterexamples that do

not contain a half-line.

Proposition 4.5. Let A, a, r > 0 and d ≥ 2 be given, and consider g(x) = er x and F̃ = g(F(A, a)).

(a) If

(4-7) ra ≥ log(2),

then F̃ + F̃ does not contain a half-line.

(b) If

(4-8) ra < log(2)

and A is sufficiently large, then F̃ + F̃ contains a half-line.

Proof. (a) Assume that ra ≥ log(2). Since F(A, a) is clearly a-sparse, this follows from Theorem 1.11.
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(b) On the other hand, suppose ra < log(2) and choose A large enough that

(4-9) e−r A + era < 2 and e−ra + er A > 2.

Define xn = n(A + a), yn = n(A + a) + A, x̃n = er xn , and ỹn = er yn so that

F =

∞⋃

n=0

[xn, yn] and F̃ =

∞⋃

n=0

[x̃n, ỹn].

Observe that F̃ + F̃ contains the intervals Jn = [2x̃n, 2ỹn] and J ′
n = [x̃n + x̃n+1, ỹn + ỹn+1]. Observe that

(4-9) yields

(4-10) 2ỹn = 2ern(A+a)+r A > (e−r A + era)ern(A+a)+r A = ern(A+a) + er(n+1)(A+a) = x̃n + x̃n+1.

Similarly, (4-9) gives

(4-11) ỹn+1 + ỹn = er(n+1)(A+a)+r A +ern(A+a)+r A = er(n+1)(A+a)(er A +e−ra) > 2er(n+1)(A+a) = 2x̃n+1.

Thus, F̃ + F̃ contains ⋃

n

Jn ∪ J ′
n,

which contains a half-line in view of (4-10) and (4-11). □
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