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ON SUMS OF SEMIBOUNDED CANTOR SETS

JAKE FILLMAN AND SARA H. TIDWELL

Motivated by questions arising in the study of the spectral theory of models of aperiodic order, we
investigate sums of functions of semibounded closed subsets of the real line. We show that under suitable
thickness assumptions on the sets and growth assumptions on the functions, the sums of such sets contain
half-lines. We also give examples to show our criteria are sharp in suitable regimes.

1. Introduction
1A. Background and motivation. The present paper is concerned with the following question:

Question. If F C R is closed and bounded from below and g : [inf(F), o0) — R is increasing and
continuous, under what conditions (on F, g, or both) does g(F') + g(F) contain a half-line?

This question has its roots in some recent work on spectral theory of multidimensional quasicrystals.
To set the stage, we will explain how this question arose and then give an answer: if F is thick and the
relative Lipschitz behavior of g is controllable (in senses to be made precise later), then g(F) + g(F)
contains a half-line. Moreover, we will show that these hypotheses are necessary by exhibiting examples
in which they fail and the resultant sums do not contain half-lines.

Since their discovery in the 1980s by Shechtman et al. [34], quasicrystals' have been studied intensively
by mathematicians and physicists. We direct the readers to the books [2; 3] for background. This paper is
motivated by questions that arise when one studies the spectra of multidimensional quasicrystal models.
In particular, one asks whether the spectra of multidimensional continuum quasicrystal models must
contain a half-line. This question itself is motivated by the corresponding question for crystalline (i.e.,
periodic) models, called the Bethe—Sommerfeld conjecture. The conjecture is now a theorem with results
by many authors. After progress in dimension two [33; 36], dimension three [18; 37; 38], dimension
four [15], and general dimensions [43], the conjecture was resolved by Parnovski [32].

To study electronic properties of quasicrystals, one often considers a single-particle Hamiltonian
in L2(RY) of the form
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in which the potential V : R — R is pattern-equivariant with respect to a suitable model of aperiodic
order (e.g., the Fibonacci or Penrose tilings). Such models have been heavily studied in dimension d =1,
where there is a cornucopia of tools available to study the relevant spectral theory, and as a consequence,
one has many results about the spectrum, spectral type, and density of states. For instance, the structure
of the spectrum is now well-understood for Hamiltonians with potentials generated by the Fibonnacci
sequence [11; 39; 40], the period-doubling sequence [5], the Thue—Morse sequence [4; 24; 25], and
general Sturmian sequences [6]. There are comparatively fewer spectral results in higher dimensions,
partially due to the disappearance of some of the key tools in the transition from dimension d =1 to
dimensions d > 2. Nevertheless, there has been progress in understanding the density of states on aperiodic
tilings [16; 17] and Delone sets [22; 23], particularly the existence of discontinuities caused by finitely
supported eigenfunctions [7; 14; 19; 20]. One fruitful method to push results into higher dimensions is to
study separable potentials, that is, potentials of the form

d
V) =) Vi),
j=1
where each V; : R — R is a well-understood one-dimensional model. In particular, for the spectrum, this

results in
d

o(Ly)=0(Ly)+o(Ly)+---+0o(Ly,)= {Z)»j TAjE U(ij)},
j=1
the Minkowski sum of sets.

On one hand, the spectra of one-dimensional quasicrystal models have a strong tendency to be zero-
measure Cantor sets [5; 6; 8; 12; 21; 39; 40]. On the other hand, the self-sums of fractal sets of zero
Lebesgue measure can have nonempty interior. For instance, it is well known that if K C [0, 1] denotes the
standard middle-thirds Cantor set, one has K + K = [0, 2]. In particular, the self-sum of a zero-measure
set may be an interval.

In the recent work [9], it was shown that if V;(x) denotes a suitable locally constant version of the
Fibonacci potential, then o (L) contains a half-line for each d > 2. One of the key ingredients of the proof
was an affirmative answer to the main question for the function g(x) = x? and Cantor sets sufficiently
thick in the sense of Newhouse [29; 30]. This is how Minkowski sums of unbounded fractal sets arise in
spectral theory.

In the present work, we will demonstrate classes of functions and sets for which the result of [9] holds.
We give a class of examples for which one can observe a sharp phase transition between containing and
not containing a half-line.

1B. Definitions and results. Let us begin by defining terminology and recalling some results that will
be useful.

We first discuss the class of functions with which we work. In the sequel, we will consider closed sets
and functions that are bounded from below. Consequently, after shifting, we are free to assume without
loss of generality that all sets are contained in Ry = [0, oo) and that all functions map R to itself.

Loosely speaking, the class of functions for which the result holds true is that of monotonic locally
Lipschitz functions for which the local Lipschitz constants do not vary too quickly in a relative sense,
which we make precise in the following definition.
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Definition 1.1. We say that g : R, — Ry is an admissible function if it is continuous, strictly increasing,
and satisfies lim,_, o, g(x) = oco. For x € Ry, let D¥ denote the upper and lower derivatives:

8(2) —g(x) 8(z) —g)

D" (g, x) =limsup and D7 (g, x) =liminf
X Z—X

X —X
Given an admissible function g and constants y > 0 and M > 0, define

D*(g, x)
D= (g, )

Note that A(g, y, M) > 1 for all M and y, and for fixed y, it is nonincreasing in M, and define

(1-1) Ag,y, M)=sup{ :x,y>M and |x—y|§y}.

(1-2) A(g,y):= lim A(g,y, M).
M— o0

We say that g has bounded relative variation (in short, g € BRV) if A(g, y) < oo for some y > 0 and
trivial relative variation (g € TRV) if A(g, y) =1 for some y. We will show later that neither of these
notions depends on the particular choice of y (see Proposition 2.4), and hence one has

TRV = {g : g is admissible and A(g, 1) =1} and BRV ={g: g is admissible and A(g, 1) < oo}.
Remark 1.2. Let us make some comments about the definitions.

(a) We think it is extremely probable that these spaces of functions have been considered in other works,
likely under a different name. However, we were unable to locate a precise reference.

(b) The assumptions imply that BRV functions are differentiable almost everywhere and locally Lipschitz
continuous for sufficiently large x. If g is everywhere differentiable and g € BRV, then one can
check that log g’ is a function of bounded variation on any compact subinterval of [M, co) for M
sufficiently large.

(c) However, we find it prudent not to restrict to differentiable functions, first, since the results do not
need that assumption, and second, piecewise affine functions supply a useful set of test cases and
examples to consider.

Next, we describe the kinds of closed sets to which we may apply our results. In order to do this, let
us formulate precisely what it means to say that a set is thick. The ideas and key results date back to work
of Newhouse [29; 30]. Let K € R be a compact set and denote by I = [min K, max K] its convex hull.
Any connected component of /\K is called a gap of K. A presentation of K is given by an ordering
U = {Uy}n>1 of the gaps of K. If u € K is a boundary point of a gap U of K, we denote by B the
connected component of I\(U; UU,U---UU,) (with n chosen so that U, = U) that contains « and write

_ |B]
(K, %, u)=—.
|U|
The thickness t(K) of K is given by

T(K) =supinft (K, %, u).
7% u
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The reader can check that 7(K) < oo for any K having at least one gap. By convention, 7(K) = oo if K
is a closed interval. It is well known that one can take as a maximizer any presentation % in which the
gaps are ordered in such a way that the gap lengths are nonincreasing [31].

The following consequence of the Newhouse gap lemma [29; 30] is stated as [10, Lemma 6.2]
and proved there for the case 7(K) - 7(K’) > 1; the improvement to 7(K) - T(K’) > 1 is discussed
in [42, Theorem 1.1]; see also [31].

Lemma 1.3. Suppose K, K' C R are compact sets with T(K) - t(K') > 1. Assume also that the size of
the largest gap of K’ is not greater than the diameter of K, and the size of the largest gap of K is not
greater than the diameter of K'. Then

K 4+ K’ = [min K +min K’, max K +max K'].

Remark 1.4. A particular consequence of Lemma 1.3 is the following: if K € R is a Cantor set with
7(K) > 1, then
K+ K =[2min K, 2max K].

Thickness is a ubiquitous notion in geometric analysis. For a partial list, it has applications in
geometric measure theory [26; 35], number theory [46], spectral theory [9; 10; 13; 27; 28; 41], fractal
geometry [42; 44], and pinned distance problems [26]. Multidimensional generalizations have been
considered in [35; 45]. For additional information about thickness, we direct the reader to [1; 31].

As mentioned before, we will consider only semibounded closed sets, so after shifting, we will also
always assume that said sets lie in Ry = [0, 00).

Definition 1.5. An ordered fragmentation of a semibounded closed set F' is a decomposition
o0

(1-3) F=JkK.
n=0

where each K, is compact and nonempty, and max K,, < min K, for all n. We call K,, the n-th fragment
of F.
Given constants A, a, t > 0, we say F is (A, a, t)-thick if F has an ordered fragmentation such that

(1-4) A <diam(K,) <2A forall n >0,
(1-5) dist(K,, K,+1) <a forall n >0,
(1-6) t(Ky) >t forall n>0.

Theorem 1.6. Assume that F C Ry is an (A, a, 1)-thick semibounded closed set for constants A > a > 0
and t > 1. Suppose g € TRV, and let F = g(F). Then F + F contains a half-line.

One can weaken the assumption g € TRV (A(g, y) = 1) somewhat, depending upon the constants
A, a > 0. Namely, one can show that F' 4+ F contains a half-line if F is (A, a, t)-thick for some t > 1
and A(g) is sufficiently small.

Theorem 1.7. Given A >a > 0and ¢ >0, there exists 6 =6(A, a, &) >0 such thatif F is (A, a, 1+¢)-thick
and g e BRV has 1 < A(g, A) <146, then F + F contains a half-line, where F = g(F).
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Remark 1.8. (a) The proof of Theorem 1.7 gives an explicit bound on §, but we have not optimized the
constants in the proof.

(b) One can clearly relax some of the hypotheses. For instance, in Theorem 1.7, it suffices that F be
eventually (A, a, 1+¢)-thick in the sense that F N [c, 00) is (A, a, 1+¢&)-thick for some ¢ > 0. One
can similarly relax hypotheses on g.

(c) The work of Takahashi [42] on products of Cantor sets is closely related to the themes and strategy
of this work. Given Cantor sets K1, K, > 0 with 0 € K;, Takahashi studies the product K - K, by
studying the sum of the sets K; =log(K; \ {0}), which are then semibounded Cantor sets.

Let us remark that the assumptions of Theorem 1.6 are met with f any polynomial function nonnegative
on R4, as well as subexponential functions such as exp(x*), 0 <« < 1. The assumptions of Theorem 1.7
are met by those functions and exponential functions of the type exp(rx) with r > 0 sufficiently small.
We give an account of these objects in Section 2 including a discussion of the structure of the spaces TRV
and BRV. One can use this to prove spectral results for separable operators modeled on the Fibonacci
tiling. To define such potentials, fix A > 0, define

(1-7) Vi) =2 ) xi1—an (e mod 1) Xt (¥),

nez

and put X; = o(—A +V,). Notice that V, > 0 and hence inf X, > 0, so one may consider
¥ ={E':EcX,}
for any s > 0.

Corollary 1.9. Forany . > 0 and s > 0, X; + X] contains a half-line.

Proof. It was shown in [9] that Ei/ 2is eventually (A, a, 7)-thick for suitable A, a, t. Since x > x> is
in TRV, the result follows immediately from Theorem 1.6. (I

Of course, the sum in Corollary 1.9 corresponds to the operator
HY + Hy = (=07 + Vo () + (=0} + Va(»)’.

It would also be of interest to study the operator (—A)* + V, (x) + V,.(y), but this is not within reach of
the methods of this paper.

One can turn the formulation of Theorem 1.7 around and see that the result also holds in an appropriate
dual asymptotic regime of bounded A (g, A) and sufficiently large thickness. More precisely, Theorem 1.7
can be viewed as fixing an (A, a, 7)-thick set F' and proving the desired half-line statement for g € BRV
with A sufficiently small. One can also fix a BRV function and prove a similar statement if F is
“sufficiently thick”.

Theorem 1.10. Given A > 0 and R > 1, there exist constants ay = aop(A, R) and 19 = 19(R) > 0 such
that the following holds. If F C Ry is (A, a, t)-thick for some 0 < a < ag and Tt > 19, and A(g, A) < R,
then F + F contains a half-line.

The arguments proving Theorems 1.7 and 1.10 follow the proof of [9, Lemma 2.3] with a few minor
quantitative and conceptual refinements. This work addresses the comment in [9, Remark 2.4] which
asked for what class of functions [9, Lemma 2.3] holds.
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To round out the discussion, we give an example to show that F+F may not contain a half-line. To
that end, let us say that F is a-sparse if it has infinitely many open gaps of length at least a, that is, if F
enjoys an ordered fragmentation {K,}°° , satisfying

(1-8) dist(K,, K,+1) >a forall n>0.

Notice that the thickness of the pieces is irrelevant. Indeed, the following result remains true even if all
fragments are closed intervals.

Theorem 1.11. Givenr > 0, let g, (x) = €. Given a > 0, if F is an a-sparse closed set, ra > log 2, and
F =g, (F), then F 4+ F does not contain a half-line.

We will also show that ra > log?2 is sharp in the previous theorem by giving an example for each
a < r~'log2 of an a-sparse set with F+F containing a half-line.

Of course, it is no accident that the phase transition (from containing to not containing a half-line)
occurs precisely at e"* = 2, since one can easily check that A(e"*, a) =e"?

The remainder of the paper is organized as follows. We prove some basic estimates for BRV functions
in Section 2. We prove Theorems 1.6, 1.7, and 1.10 in Section 3, and we prove Theorem 1.11 in Section 4.

2. Functions of bounded relative variation

We collect here some useful properties of functions in BRV. We will use the following calculation
somewhat frequently. Although it is well known, we include the proof for the reader’s convenience and
to keep the paper more self-contained.

Lemma 2.1. Forany g : [a, b] - R,

b —
@1 inf D(g.x) < $P78@ _ gy DHg ).
x€la,b] b—a

x€la,b]
Proof. First, observe thatif r < ¢, A € (0, 1), and s = Ar 4+ (1 — L)t, then

2-2) 81 —g(r) _, 8(t)—g(s) L _)\)g(s) —8)

t—r t—s §—r

Using (2-2), start with [ag, bg] = [a, b] and choose [ag, bg] 2 [a1, b1] 2 - - - so that [a,+1, by+1] has half
the length of [a,, b, ] and

g(bpy1) —glans1) - g(by) — glay)
- b,—a,

bn+l —Aap+1

Choosing x* in the intersection of all [a,, b, ], one can use (2-2) again to see that

b) —
2-3) sup D (g, x) = D (g, x*) > $D Z 8@

xela.b] b—a
The other inequality is proved in the same manner. (I

Using Lemma 2.1, we deduce the following inequality that relates average rates of change for admissible
functions to A.
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Lemma 2.2. Suppose g is an admissible function and M > 0. For any intervals [a, b], [c, d] C [M, o0)
for which diam([a, b]U [c, d]) < vy, one has

g(d)—ge) _

2-4
@ g(b) —gla) ~

_d—c
(A(g, vy, M)) h—a
—a
Proof. By the previous lemma,

M> inf D7 (g,z) and M< sup Dt (g, w).

(2-5) > =
d—rc z€le,d] b—a wela,b]

Since g is increasing on [M, 0o), the previous inequalities yield

2-6) g(d) —g() _ ( inf cfe.) D™(g, ) ) d—c
g) —g(a@) = \supypqpy D* (g, w) Jb—a’
The result follows by definition of A(g, vy, M). [l

We begin by clarifying some of the main properties of A(g, y). First, it is submultiplicative in the
sense that A(g, y1 +12) < A(g, y1)A(g, v2).

Proposition 2.3. Suppose g : Ry — Ry is admissible. For any y1, v» > 0,
(2-7) A(g, 1 +12) < A(g, y1)A(g, v2).
Proof. Let M > 0. If x,y > M and |x — y| < y1 + y2, we choose z > M for which |x — z| < y; and

|z — y| < y», leading to

D*(g,x) _D'(g,%) D¥(g,2)
A(g, y1, MYN(g, y2, M),
D (e ) D (s 5D (e y) = &7 MG 2 M)

from which (2-7) follows by sending M — oc. U

The previous calculation enables us to see that the sets TRV and BRV do not depend on the choice
of y used to test A(g, y). More precisely:

Proposition 2.4. Suppose g : Ry — Ry is admissible.
(@) g € TRV ifand only if A(g, y) =1 forall y > 0.
(b) g € BRV ifand only if A(g, y) < oo forall y > O.

Proof. (a) One direction is trivial. For the other direction, suppose g € TRV, which implies A(g, y') =1
for some y’ > 0. By Proposition 2.3, we get A(g, ny’) <1 for all n. Since A(g, y) > 1 for all y and
A(g, -) is nondecreasing A(g, y) = 1 for every y.

(b) The proof is almost identical to that of (a). O

Next, we discuss the arithmetic properties of TRV and BRV. We will show that these sets are closed
under sums and products. The following bound supplies the needed input to prove that both sets are
closed under sums.

Proposition 2.5. Suppose g, h : Ry — R, are admissible. For all y > 0, one has

(2-8) A(g+h,y) <max(A(g,y), Ah, y)).
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Proof. Let M > 0. Since DT (g +h,x) <D"(g,x)+D"(h,x) and D™ (g +h, x) >D (g, x) + D (h, x)
we have the following for any x, y > M with |x —y| < y:
D*(g+h, x) - D*(g, x)+D%(h, x)
D=(g+n,y) ~ D7 (g.y) +D7(h, y)
_D @ »AE, v, M) +D" (1, y)Ah, y, M)
B D= (g, y) +D~(h, y)
< max(A(g, y, M), Ah, y, M)).

Taking the supremum over x, y > M with |x — y| <y and then sending M — oo gives (2-8). U

We also want to bound A(gh, y) for a pair of BRV functions g and %, which turns out to be slightly
more delicate, because (due to the Leibniz rule) we will need to control ratios of values of g and & as
well as their derivatives. The following proposition will be helpful.

Proposition 2.6. If g € BRV and y > 0, then

(2-9) lim suP{@ ix,yz=Mand|x —y| < y} < Ag,2y) < (A(g, V)™

M—o0 g(y)

Proof. Notice that the limit on the left-hand side of (2-9) exists since the sets in question are decreasing
in M. The second inequality in (2-9) follows from Proposition 2.3, so it remains to prove the first inequality

in (2-9). Writing A = A(g, 2y), let us suppose for the sake of contradiction that there exists § > 0 such that

(2-10) sup{&:x,szandlx—ylfy}>A+8
gy)
for every M. Fix 0 < ¢ < 4, and choose k € N large enough that
k
(2-11) (A=148)) (A&7 >1,

j=l1

which can clearly be done since the left-hand side of (2-11) converges to

A—1436

—_— >

A—1+¢

Now, choose M large enough that M > ky and

(2-12) A(g,2y, M —ky) < A+e.
By (2-10) and monotonicity of g, we may find x > M for which g(x 4+ y)/g(x) > A + §. Naturally, this
yields

gx+y)—gk) - A—1496
Y
Inductively applying (2-12) together with Lemma 2.2, we observe that

(2-13)

g(x).

o1 g(x—(j—l)y)—g(x—jy)>(A+8)jA—y1+8g(x)

14
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forall j =0,1,2,...,k. Thus,

yi gx—(—Dy)—glx—jy)

glx —ky)=gx)—

j=1 v
£ A—148
<g—y YA+ s)‘f%g(x)
j=1
k
= g(x)(l —(A=148)> (A +g)f')

j=1
<0,

which is a contradiction.

Proposition 2.7. Suppose g, h : Ry — R are admissible. For all y > 0, one has

(2-15) A(gh,y) < A(g, ¥)A(h, y) max(A(g, y), A(h, ).
Proof. First, note that
8(@)h(z) — g(x)h(x)

(2-16) D (gh, x) = limsup
X I—X
<1 8(@)h(z) —g@hx) . 8(2)h(x) — g(x)h(x)
< lim sup + lim sup
7—X I—X 7—X —X

= g()D* (h, x) +h(x)D* (g, x).
Similarly,

(2-17) D™ (gh, x) = g(x)D" (h, x) + h(x)D™ (g, x).
Given ¢ > 0, choose M large enough that
(2-18) A(g, v, M) <A(g,y)+e and A(h,y, M) <A(h,y) +e,

and use Proposition 2.6 to ensure that M is also large enough that

745

(2-19) g(x) <g((A(g, ¥)*+e) and h(x) <h()(A(h,y)*+e)  forall x,y>=M, [x—y|<y.

Let x, y > M with |x — y| < y be given. Putting together (2-16)—(2-19),
D (gh, x) - g(x)D* (h, x) +h(x)D" (g, x)
D=(gh,y) = ¢(»D~(h, y)+h(y)D~(g, y)

_ (A, ¥’ +e)(Ah, y) +e)g()D~(h, y) + (Alg, y) +&)(A(h, ¥)* +&)h(y)D™ (g, y)

g(y)D~(h,y) +h(y)D™(g, y)
< max((A(g, Y)* +&)(Alh, y) +¢), (Ag, ¥) + &) (Ah, ¥)> +¢)).

Sending M — oo and ¢ | 0 gives the desired result.

O

Proposition 2.8. The sets TRV and BRV are closed under finite sums, products, and scaling by positive

constants.
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Proof. This follows immediately from the bounds in Propositions 2.5 and 2.7. ]
Let us now give some examples of functions with bounded relative variation.
Proposition 2.9. (a) For any m > 0, g(x) = x™ is an admissible TRV function.
(b) Foranya,b >0, g(x) = %" is in BRV ifand only if b < 1 and in TRV if and only if b < 1.

Proof. Since these functions are differentiable, D™ (g, x) = D™ (g, x) = g’(x), which we use throughout
the proof.

(a) Write g(x) =x".If x,y> M, |x —y| <y,and m > 1, then
+ / m—1 m—1
D (g,X)zg/(X)zx 1 S(y-H/> <y,
D=(g.y) &y y"~ y
which converges to one as M — co. A similar argument works when 0 < m < 1, but one must bound
things differently since ¢ — ™! is decreasing for m < 1.

(b) Notice that g’(x) = abx?~1e" If x, y>M, |x—y|<y,and 0 < b < 1, we get

D" (g. x) _ g'(x) _ P A0 < (1 oy YO )
D=(g.y) &Gk y! N
The right-hand side converges to one as M — oo if b < 1 and converges to a finite value if » = 1. On the
other hand, if » = 1, then one can check that
gx+y) o0
g'(x)
for all x. This shows that g € BRV \ TRV. Similar calculations show that g ¢ BRV whenever b > 1. [J

> 1,

Let us briefly note that every BRV function is exponentially bounded:
Corollary 2.10. If g € BRV, then g is exponentially bounded, that is, g(x) < Ae®* for constants A, B > 0.

Proof. Proposition 2.6 implies that for some ¢ > 0, some large x and all n € N,

(2-20) gx+ny) <g((Ag, )’ +o)".
The result follows by monotonicity. (I

The converse of Corollary 2.10 fails: for any increasing function %, one can find an admissible function
in the complement of BRV that is dominated by #.

Example 2.11. For any continuous increasing function & : Ry — R, such that 4(x) — oo as x — o0,
there is an admissible function g such that g(x) < h(x) for all sufficiently large x and g &€ BRV.

To see this, choose 0 = xg < x; < --- so that h(x,) = n (and hence h(x) > n for x > x,). Pick
0=y9 <y <--- such that

(2-21) Vo > Xy forall n e N,
(2-22) Ynt1— Yn = 1(yp — yn—1) forall n eN.
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Define g to be continuous and piecewise affine with g(y,) = n/2 for each n € Z,. Notice that g is
admissible, that the definition of g and (2-21) ensure g(x) < h(x) for x > x{, and that (2-22) ensures
that ¢ € BRV.

One can mollify this example to produce a smooth admissible g € BRV having similar properties.

3. Proofs of main theorems

Let us prove Theorems 1.6 and 1.7. Clearly the latter implies the former, so we focus on proving
Theorem 1.7. We follow the strategy from [9].

Lemma 3.1. Suppose g € BRV, K C [M, 00) is compact, and diam(K) < y. Then

(3-1) 7(g(K)) = (A(g, v, M)~ '2(K).

Proof. 1If 1(K) = oo, then K and g(K) are both intervals, and there is nothing to do, so assume
7 :=1(K) < 00, and write / = [min K, max K]. Given ¢ > 0, choose a presentation % = {U,,} such that
(K, %)>r1t—e¢.

For any two intervals B = [u, v] and U = [v, w] from [ such that

|B| v—u
— = >T—e¢,
U w-—v
we have, by Lemma 2.2,
18(B)] _ gw) —g)
lg() g(w)—g)

A similar estimate holds for intervals situated in the other order, that is, B = [u, v] and U = [w, u]. Hence
g% ={g(U,)} is a presentation of g(K) satisfying t(g(K), g% ) > (A(g, v, M)~ (t —¢). Thus,

(3-2) 1(g(K)) = (A(g, v. M) ' (r —¢).

= (Ag. v M) ™' = = (Mg . M) (T —e).

Since this holds for arbitrary & > 0, the lemma follows. (Il
Lemma 3.2. If K C R is compact and t1(K) > B, then £(K), the longest gap length of K, satisfies
diam(K)

1+28

Proof. Write I for the convex hull of K so that diam(K) = |I|. If the longest gap U of K satisfies
[U| > |I]/(14+28), then I \ U has two components, one of which must have length no larger than

1 1 1 B
§(|I|—|Ul)<§(1— 1+2ﬂ>|1|— 1+2ﬁlll-

(3-3) §(K) <

Thus, for (at least) one endpoint # of U, one has

(B/A+2BDM] _
(1/A+2p)11|

for every presentation % of K, leading to t(K) < B. The result follows. U

(K, %, u) < B
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Proof of Theorem 1.7. Assume g € BRV, F C R, is (A, a, 1+8) thick, and let {K,}7° , be an ordered
fragmentation of F satisfying (1-4), (1-5), and (1-6). Write Kn = g(Kp,), let I,, denote the convex hull
of K,, and assume

(3-4) Alg, A) < min{ [1te \ﬁ \/E}
1+§8 2 a

We may also choose M large enough that A(g, A, M) is strictly less than the right-hand side of (3-4) as
well.
By Lemma 3.1 and (3-4), if n is large enough that K,, C [M, 00), one has

=~ - ) 1+e\™! i
T(Ky) = (A(g,2A, M) (1+¢e) > (A(g, A, M) “(1+¢)> — (I1+e)=1+ 3¢,

2

and thus 7(K,) > 1+ %8 for all sufficiently large n. Consequently, the sum K, + K, is an interval by
Remark 1.4.

Next, let us show that for all sufficiently large n, each of the sets K, and K, Kt has diameter larger
than the largest gap of the other. In that case Lemma 1.3 will imply that K,+K n+1 18 an interval. Write
I, = [x,, y»] for each n. By our assumptions, we have

(3-5) A<y, —x, <2A and x,41—yn=<a

for every n. Since we already know that r(kvn+1) > 1, Lemma 3.2 implies that the largest gap of If('v,hq is
not greater than %(g(ynﬂ) — g(xn+1)), and the diameter of K, is equal to g(y,) — g(x,). Now observe

g(yn) _g(xn) _1 Yn — 53A =13
> (A(g,4A+a, M)) > (A(g, A, M) — > (2) 2=1,
%(g(yn-i-l) — 8(xp41)) § ¢ %(yn_;_] Xn+1) & 2A ~ (2) 2

by (3-4). Consequently, for all sufficiently large values of n, the diameter of K, is greater than the largest
gap of K n+1- Similarly one can show that for all sufficiently large values of n, the diameter of K ntl 18
greater than the largest gap of K.

Consequently, the sets J, := K n+ K nand J) = K n+ K n+1 are intervals for large n. Let us show that
they cover a half-line. To conclude, it suffices to verify J, N J, # @ and J, N J,41 # @.

Recall 1,, = [x,, y,]. It follows from our discussion above that

Jn = [28(xn), 28 (yn)],
Jnr1 = [28(xn11), 28 YnaD],
=[g(xn) + g(xn+l), 8(yn) + g(yn+1)]-

To show that J, is not disjoint from J, we need to check that 2g(y,) > g(x,) + g(x,+1). To that end,
note that

g(yn) — g(xn) > (A(g.2A+a, M)~ Yo — X
g(xn-i-l) _g(yn)

again by (3-4).
One can show that J) is not disjoint from J,,;; from an almost identical argument.

3A
> (A(g, A, M) — > 1,
Xn+1 —
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Putting everything together, the set

o)

n=nq
is a half-line for large enough n¢. Since this set is contained in F + F, we are done. (]
Proof of Theorem 1.6. This follows from Theorem 1.7. U

Let us comment on the assumptions and why they are necessary. Consider first any semibounded
closed set F € R with ordered fragmentation {K,}. One can clearly choose a smooth, nondecreasing
function f € C*°(Ry) that satisfies f|k, = n for each n > 0. Clearly then

F+F=Z+,

which certainly does not contain a half-line. Of course, this f is clearly not admissible. However, one
can certainly perturb about this situation somewhat. Concretely, one can choose f : Ry — R4 smooth
and increasing with I?n = f(K,) C[n—e¢e,n+e¢e]forn e Z,;. One still sees that F + F is contained in
the 2¢-neighborhood of Z.. Evidently, the mechanism that produces this is that /' ~ &/A on the convex
hull of K,, while f’ ~ 1/a in between successive K,,’s, leading to relative variations of f/(x) = D*( £, x)
on the order of A/(ga).

Let us conclude the present section with the proof of Theorem 1.10. Since this is similar to that of
Theorem 1.7, we will only give the main steps.

Proof of Theorem 1.10. Choose ag, To > 0 such that
(3-6) 70> R’ and ay<A/R>.

Since R > 1, note additionally that ¢y < A. Now, assume A(g, A) < R and that F is (A, a, 7)-thick with
0 <a <apand 1t > 19, let {K,} denote an ordered fragmentation of F satisfying (1-4), (1-5), and (1-6),
and use the same notation as in the proof of Theorem 1.7. Using Proposition 2.3, we note

(3-7) A(g,2A) < R?,

so following the steps at the beginning of the proof of Theorem 1.7, we have r(E W) > T0/R?> R > 1
for large enough n.

For large enough #n that the previous thickness statement holds true, the largest gap of En+ 1 is smaller
than (g(yp+1) — g(xn+1))/(2R5 + 1) by Lemma 3.2, and we have

() — §(xn) o oS A .
(/@RS + D)(g0nr1) — 80ur1) — (/RS +1))24

showing that the diameter of K, exceeds the size of the largest gap of I?,H 1 for large enough n (and vice
versa by the same argument). The assumption on ag ensures that

1,

A(g,2A+a) <A(g,3A) <R*< A/a

for large enough n. These ingredients suffice to apply the arguments of the previous proof and conclude
that ' 4 F contains a half-line. ]
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4. Examples not containing half-lines

We now turn towards the construction of suitable examples whose sums do not contain half-lines when
the assumptions of the main theorems are not met.

Lemma 4.1. Suppose

(4-1) F < [ Jtx, yul,

n=0
where x, < y, < Xp41 for every n, and suppose that for some Ny, one has
4-2) 2y, — X0 < Xp41 forall n > Njy.
Then F + F does not contain a half-line.

One can generalize this to sums consisting of more than two sets, which may be distinct. We shall do
that presently and derive Lemma 4.1 as a consequence of a more general statement.

Definition 4.2. For Fi, ..., F; C R, define

d d
(4-3) Y Fi=Fi+- +F= {Zaj taj € Fjforall 1 §j§d}.
j=1 j=1
Lemma 4.3. Suppose that for j =1,2,...,d,
o0
(4-4) Fi € | Jxn yu)
n=0

is contained in a union of closed, bounded intervals such that x, j < yn j < Xp41,j for all n > 0 and
j=1,2,...,d. If for some Ny, one has

d
4-5) Z Yn,j < k_€n2in d(xn+1,k + ZXO’J) for all n > Ny,

=1,2,...,

then Z?:l F; does not contain a half-line.

Proof. Write F = Z?:l F;, and define I, ; = [xp,j, Y j]. For k =1,2,...,d and n > 0, define the
(n, k)-stratum by

d
Se= U DI

0<np,na,...,ng<n j=I1
ng=n

For n > 0, define

d n 00
So=JSukr Ty =USm L= J Su
k=1

m=0 m=n-+1
and note that
FCT, UT forall neN.
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Since
d
- _ . + _ .
mmm—;Mjmdmmm—J%xﬁw+;mJ
J= J

our assumption (4-2) yields

(4-6) @ # G, :=(max 7, , min Tn+) CR\F forall n> Ny,
which suffices to show that F' does not contain a half-line. [l
Proof of Lemma 4.1. This follows immediately from Lemma 4.3. (I

Proof of Theorem 1.11. Let F be a-sparse, and write
o
F=|JK,
n=0
for an ordered fragmentation with dist(K,,, K, 1) > a. Writing [x,,, y,] for the convex hull of K,,, note that
o
F | Ji&, 5l
n=0
with X, = ¢ and y, = ¢7». By assumption, ra > log?2, so we observe
Zyn _JZO — D"V — "0 < er(y,,—i—a) — o < PLETES IS )En—i-l — ' ~ in—i—la
in which the second inequality follows from sparsity. Thus the claim follows from Lemma 4.1. (]

Definition 4.4. Given constants A, a > 0, let F(A, a) denote a union of intervals of length A separated
by a uniform distance of a between consecutive intervals, that is,

F(A,a) = U[n(A +a),n(A+a)+ Al.
n=0

This can be used to show that the bound ra > log 2 is sharp for constructing counterexamples that do
not contain a half-line.

Proposition 4.5. Let A, a,r > 0 and d > 2 be given, and consider g(x) = e'* and F = g(F (A, a)).
(@) If
(4-7) ra =log(2),
then F + F does not contain a half-line.
(b) If
(4-8) ra <log(2)
and A is sufficiently large, then F + F contains a half-line.

Proof. (a) Assume that ra > log(2). Since F (A, a) is clearly a-sparse, this follows from Theorem 1.11.
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(b) On the other hand, suppose ra < log(2) and choose A large enough that
4-9) e+ <2 and e+ > 2.

Define x, =n(A+a), y,=n(A+a)+ A, x, =™, and y, = ¢ so that

o (o.¢]
F=Jbo vl and F =%, 5.l
n=0 n=0

Observe that F + F contains the intervals Jn =[2X,, 29,1 and J, = [X, + Xp+1, Yn + Yn+1]. Observe that
(4-9) yields

(4-10) zyn — 2ern(A+a)+rA -~ (e—rA + era)ern(A-i-a)-i-rA — ern(A+a) +er(n+1)(A+a) =%, +)zn+1-

Similarly, (4-9) gives

(4_11) §n+1 +57n — er(n+l)(A+a)+rA +ern(A+a)+rA — er(n+l)(A+a) (erA +e—ra) - 2er(n+l)(A+a) — 2£n+1-

Thus, F + F contains
UJmu,,
n
which contains a half-line in view of (4-10) and (4-11). O
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