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Glucose is an important biomarker for diagnosing and prognosing various diseases, including diabetes

and hypoglycemia, which can have severe side effects, symptoms, and even lead to death in patients. As a

result, there is a need for quick and economical glucose level measurements to help identify those at

potential risk. With the increase in smartphone users, portable smartphone glucose sensors are becoming

popular. In this paper, we present a disposable microfluidic glucose sensor that accurately and rapidly

quantifies glucose levels in human urine using a combination of colorimetric analysis and computer

vision. This glucose sensor implements a disposable microfluidic device based on medical-grade tapes

and glucose analysis strips on a glass slide integrated with a custom-made polydimethylsiloxane (PDMS)

micropump that accelerates capillary flow, making it economical, convenient, rapid, and equipment-free.

After absorbing the target solution, the disposable device is slid into the 3D-printed main chassis and illu-

minated exclusively with Light Emitting Diode (LED) illumination, which is pivotal to color-sensitive experi-

ments. After collecting images, the images are imported into the algorithm to measure the glucose levels

using computer vision and average RGB values measurements. This article illustrates the impressive accu-

racy and consistency of the glucose sensor in quantifying glucose in sucrose water. This is evidenced by

the close agreement between the computer vision method used by the sensor and the traditional

method of measuring in the biology field, as well as the small variation observed between different sensor

performances. The exponential regression curve used in the study further confirms the strong relationship

between glucose concentrations and average RGB values, with an R-square value of 0.997 indicating a

high degree of correlation between these variables. The article also emphasizes the potential transferabil-

ity of the solution described to other types of assays and smartphone-based sensors.

1. Introduction

Glucose, also known as blood sugar, is a crucial component of

the human body and is the primary source of energy for cells.

The blood carries glucose to all the human body’s cells for

energy. When glucose levels become abnormal, they can lead

to various diseases, including diabetes. This condition occurs

when blood sugar levels are too high and can cause serious

long-term health problems.1,2 According to the Centers for

Disease Control and Prevention, there are currently

37.3 million diabetes patients in the US, with an additional

96 million people aged 18 years or older having prediabetes

which takes the total to 38% of the adult US population.3

Treating diabetes is costly, with an estimated total cost of 327

billion USD in the US in 2017, due to the many health pro-

blems associated with high blood glucose, such as heart

disease, stroke, kidney disease, and eye problems.4 Even indi-

viduals without diabetes may experience issues with blood

sugar that is too low or high. Maintaining a regular schedule

of eating, physical activity, and taking medicines can help to

manage blood sugar levels which in the normal range for

glucose varies generally from 70 to 99 mg dL−1. The cost of

glucose tests is critical for individuals at risk, and with the

increasing popularity, convenience, and user-friendly nature of

smartphones, they are becoming an essential tool for monitor-

ing and diagnosing glucose levels in healthcare.

In the last few decades, biomedical devices and sensors

have been rapidly developing to meet the requirements and

challenges of modern society. These devices and sensors can

utilize small volumes of fluids for medical detection and

diagnosis.5–12 Specifically, microfabrication technology has

had a profound effect on the types of biosensors and has been

introduced into biological assays.13–20 However, microfabrica-

tion techniques technically require a cleanroom environment

to fabricate devices, which makes it difficult to operate equip-
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ment and reduce the price. As a result, PDMS was explored as

a replacement for microfabrication, thanks to its advantages

such as being low-cost, biocompatible, flexible, and having

inert elastomers. PDMS is commonly used as the material to

fabricate soft microfluidic channels, which can adjust their

dimensions and shapes according to the design of molds.

Cured PDMS is then treated by baking or oxide plasma to

bond onto substrates and form microfluidic channels.

However, bonding issues during the bonding of PDMS to

other substrates are common.21–26 Additionally, PDMS needs

time and temperature to cure and reach a solid state. Different

molds are also required to fabricate microfluidic channels

with various dimensions and shapes to obtain the expected

PDMS channels.

In this paper, we present an alternative approach for fabri-

cating biomedical devices using polymer materials and

paper.27–29 These devices have desirable features such as dis-

posability, ease of fabrication, and low risk of mutual contami-

nation, making them ideal for use in the biomedical field.30–33

Specifically, we describe the design and fabrication of a

glucose diagnostic sensor that utilizes colorimetric measure-

ment based on a smartphone camera and computer vision

algorithm; making it completely user-friendly and eliminating

the need for large and expensive equipment for detection.10,34

Compared with the methods discussed in Yanyan Xia’s review

paper,33 we improved the accuracy of this sensor by utilizing

external light sources and implementing background illumina-

tion control. These enhancements positively impacted the

sensor’s performance, in addition to incorporating a 3D-

printed portable phone chassis.34 This approach satisfies the

ASSURED criteria (Affordable, Sensitive, Specific, User-friendly,

Rapid and Robust, Equipment-free, and Deliverable) estab-

lished by the WHO.35 The design and fabrication process of

the sensor is simple and easy. AutoCAD was used to design the

sensor features, and a laser cutter was used to cut out the fea-

tures on medical tapes, enabling easy shaping of the channels.

The cost of each piece can be lowered to 0.24 USD per sensor,

which is more economical than microfabrication and commer-

cial glucose test kits. Compared to other similar approaches,

this solution offers greater flexibility for application in various

assays and contexts. The laser-cut channels can be con-

veniently reshaped to match the dimensions and shapes of the

substrates.36,37 To enhance the flow speed and reaction rate in

the channel and avoid solution waste, we used PDMS micro-

pumps to control the volume and speed of the solution

directly.37,38,46 To process a large number of pictures in a short

time automatically,39,40 we utilized a computer vision method,

and the automatic algorithm has been verified to replace the

manual traditional measurement methods. This automatic

customized detector has potential to be utilized in a wide

range of assays effortlessly, providing advantages over the

phone application and more convenient transferability over

the cluster algorithm described in Uddin Jalal and Marzia

Hoque Tania’s papers.35,36 The regression model obtained

from titration experiments can show the relationship between

glucose concentrations and average RGB values.15,38,41,46

2. Methods and materials
2.1. Hardware components

The hardware used for the smartphone-based glucose

measurement platform includes a lens band (Easy-Macro Lens

Band, Easy-Marco, MA, USA),42 which can reduce the depth of

focus of the smartphone camera and further decrease the size

of the main chassis, especially its height. Two LED diodes are

used as illumination sources instead of the smartphone flash

or other external sources for the purpose of eliminating the

external light noise and consistently controlling the illumina-

tion magnitude. A customized 3D-printed chassis is used to

house all components (weight: 178 g including LEDs, two coin

batteries, one battery holder, chassis; size: 15.4 × 8.5 ×

5.9 cm).38,41,43,44,46 An iPhone 12 (Apple, Inc., Cupertino, CA,

USA) is utilized as the primary smartphone camera to conduct

all experiments. The 3D-printed chassis was designed in

AutoCAD and 3D printed using an Ultimaker S5 3D printer

and Ultimaker Polylactic acid (PLA) as the filament material

(Ultimaker, Utrecht, Netherlands). It is designed to fit the

iPhone 12 (Apple, Inc., Cupertino, CA, USA) and acts as a

whole black opaque phone holder, which can block the

outside light noise that fluctuates with different

environments.34,38,41,43,46

In Fig. 1A, the main chassis is introduced, and a strips-

window is designed to slide standard microscope glass slides

(AmScope, United Scope LLC., CA, USA) where the glucose

sensor is bonded. After absorbing the sucrose solution,

glucose sensors are slid into the main chassis through the

strip window which is shown in Fig. 1B.38,46

2.2. Microfluidic device fabrication

For this glucose sensor, there are in total three components

consisting of a microfluidic channel, PDMS micropump, and

Fig. 1 Smartphone-based glucose detection platform. (a) 3D-printed

smartphone box. (b) Actual image that was taken after sliding the

microfluidics device into the platform.
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PDMS extension part. The microfluidic channel was created

using two medical-grade tapes. The double-sided adhesive

tape (3M 9965 Diagnostic Microfluidics tape, 3M, MN, USA)

was engraved using a laser cutter (Boss LS1420, MinPower

(%)-1: 14, MaxPower (%)-1: 14, speed (mm s−1): 9, Boss Laser,

FL, USA) to form the structure of the microfluidic channel.

The 2D model was designed on AutoCAD. The glucose test

strip (ACCUTEST Urine Reagent Strip, Accutest, CA, USA) was

placed into the channel with the help of a hydrophilic cover

(3M 9962 Diagnostic Microfluidics tape, 3M, MN, USA) that

was designed on AutoCAD and engraved using a laser cutter

(Boss LS1420, MinPower (%)-1: 14, MaxPower (%)-1: 14, speed

(mm s−1): 9, Boss Laser, FL, USA) to assist the liquid flow. The

actual microfluidic channel is shown in Fig. 2A. The inlet of

the channels is located at the end of the device, and the height

of the inlet is equal to the height of double-sided adhesive

tapes, which is 86 μm.

To accelerate the reaction of glucose strips through faster

flow velocity, the PDMS micropump was used as an extremely

powerful active solution. The disposable extension part is also

clean and convenient for absorbing the solution into the

sensor.37,38,46 To fabricate PDMS micropumps and the exten-

sion part, 3D-printed molds were used. However, the rough

surface of the 3D-printed molds could potentially interfere

with the PDMS curing process. To address this issue, acrylic

lacquer (Acrylic lacquer, Rust-oleum) was sprayed onto the

surface after 3D printing, forming a thin smooth acrylic layer

over the coarse 3D-printed mold’s surface. This isolates the

liquid PDMS from the coarse 3D-printed surfaces. The protocol

for forming the acrylic layer involves three steps: first, spray

acrylic to cover all surfaces and bake for 30 minutes; second,

spray acrylic to cover all surfaces again and bake for 30 minutes;

and third, let the mold bake for 60 minutes – baking is needed

after spraying to ensure the solidity of the acrylic. To fabricate

PDMS (Dow Chemical Company, Midland, MI, USA) structures

that can feasibly support the application of a micropump and

extension part, the ratio of elastomer and curing agent was

adjusted from the normal 10 : 1 to 20 : 1. This made the PDMS

soft enough to press with enough strength to support the

mechanical structure. Consequently, the molds, PDMS micro-

pump, and extension part are shown in Fig. 2B and C.

In Fig. S2,† different configurations for diameters and

heights of PDMS micropumps are shown, with the purpose of

analyzing the relationship between theoretical and actual

volumes micropumps can suck up and the effect of diameters

and heights. For this purpose, theoretical volumes of the

micropumps were calculated and compared to the actual

volumes that the micropumps can introduce to the sensor.

Regarding height, three dimensions of micropumps were fab-

ricated with different heights of 1 cm, 0.7 cm, and 0.4 cm, all

with a diameter of 2 cm, as shown in Fig. S2A.† From

Fig. S2C,† it is evident that the 0.7 cm micropump was the

ideal height for this application. Additionally, micropumps

with different diameters of 2 cm, 1.5 cm, and 0.5 cm, all with

a height of 0.7 cm were fabricated, as shown in Fig. S2B.† The

density of dyed DI (deionized) water was measured by weighing

the solution with a known volume to obtain the density, which

is 1 g per cm3. The glucose sensor was weighed before and

after micropumping to calculate the weight difference in terms

of the micropumps’ capability.

Fig. S2† demonstrates that the effect of the diameter is

larger than that of the height on the actual micropumps’ capa-

bility. To investigate the actual volume for micropumps, three

PDMS micropumps were fabricated utilizing the same molds

for each dimension. Three glucose sensors were assembled to

introduce the dyed DI water into the devices. The weights were

measured before and after sucking water into the device, and

the actual volume of micropumps was calculated by dividing

weight difference by the density. Nevertheless, the micropump

is dysfunctional if the height of micropumps is too small since

the structure cannot support the pressing force, which is

shown in Fig. S2C,† and the actual volume for 0.4 cm height is

0. In Fig. S2C,† the ratio of theoretical and actual volume is

about 3 : 1, which is larger than that for micropumps with

different diameters. To make the sensor more convenient to

use, the extension part was fabricated as shown in Fig. 2C. The

glass capillary is utilized as the guide for the solution, which

increases the flexibility of this device. In Fig. 2D, the final bio-

medical device is shown after assembling all components.

Fig. 2 Actual pictures of a microfluidic channel and molds for the

PDMS components. (a) Microfluidic channel. (b) PDMS micropumps and

3D-printed molds. (c) PDMS extension part, capillary and 3D-printed

molds. (d) Microfluidic device after assembly of all components.
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2.3. Experimental protocol

The first step to utilize this glucose sensor is to mount the

PDMS micropump and PDMS extension onto the microfluidic

channel. The assembled glucose sensor is shown conceptually

in Fig. 3A. To operate and utilize this glucose sensor, the

PDMS micropump is pressed to create a negative pressure

environment inside the whole sensor. Next, the glass capillary

is immersed into the container for sucrose solution or poten-

tial urine as shown in Fig. 3B. In Fig. 3C, the PDMS micro-

pump is thumb-pressed to vent the air before dipping glass

capillary into solution. Once the thumb is released, the solu-

tion is vacuumed into the channel to react with the glucose

test strips. After absorbing enough solution, the device is slid

into the phone chassis which as shown in Fig. 3D, and pic-

tures are taken for the next step of colorimetric measurement.

2.4. Automatic glucose measurement algorithm

To facilitate the convenience and allow accurate measurement

of glucose sensor results in the R, G, and B channels, a combi-

nation of 3D printing technology and computer vision was

implemented. Frames from the videos taken using an iPhone

12 positioned on the chassis were captured for glucose sensors

following the recommended reading time of 30 seconds from

the user manual. For automated glucose sensor measurement,

an automated computer vision method, shown in Fig. 4, was

used as a replacement for traditional manual methods. The

computer vision workflow utilized YOLOv4, one of the most

mature, accurate, and popular computer vision models available,

to detect the target feature in one image and produce the meta-

data associated with the object which is glucose analysis strips in

this application, such as locate target area with the coordinates

of a rectangular box. Sample images of glucose analysis strips

were picked randomly, manually annotated using Roboflow,45

and photos are prepared for training the detector, which can

locate the glucose sensor from background and thereafter and

provide the average RGB values for glucose test strips. To train

the model fits for the photos, 40 sample photos were captured

for training and validating. Then the target areas were manually

selected, and the information was transferred into digital infor-

mation, which is the relative YOLOV4 format coordinate in

Roboflow. This provides the dataset for customized detector

training in Google Colab. The .weights file was exported after

training and was implemented into the TensorFlow platform on

a desktop, which can automatically detect, crop, and send to the

next step to provide measurement results.

To quantitatively measure the colorimetric values, the

average RGB value was selected as the parameter to reflect the

concentration of glucose for the glucose test strips measure-

ment. According to the user manual, the color of reacted ana-

lysis strips will shift from light to dark color as the concen-

tration of glucose increases. Thus, the equation is avg RGB =

(R + G + B)/3 which combines the red, green, and blue chan-

nels and interprets the inverse proportional relationship

between average RGB values and glucose concentrations. This

function was implemented using MATLAB.

3. Results

The comparison between manual (ImageJ) versus automatic

(YOLOV4) measurements was shown in Fig. 5. The glucose

measurement algorithm was able to automatically select the

Fig. 3 Conceptual pictures of the principle of a microfluidic channel.

(a) Microfluidic device. (b) Dip the microfluidic device into a container of

solution. (c) Apply pressure down the micropump to create a negative

pressure environment. (d) Microfluidic device in 3D printed phone

holder after adsorption.

Fig. 4 Flowcharts illustrate the steps of training and testing the glucose

detection algorithm. (a) Training flowchart of glucose detector. (b)

Testing flowchart of glucose detector.
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target area with 100% accuracy, as demonstrated as

Glucosestrip 1.00 in the bottom picture. To quantify the

relationship between ImageJ and YOLOV4 measurement

results, 30 frames were captured from recorded videos with a

10-second interval over a 3-minute period. The plots in Fig. 6

show high coherence for glucose concentrations of 50, 100,

250, 500, 1000 and 2000 mg dL−1. Consequently, the computer

vision method can be an efficient replacement of the conven-

tional ImageJ method. The reason for deviation of Fig. 6E is

because the position of the test strip is off from the horizontal

line. Since the YOLOv4 can only detect targets in a square area,

it will detect a small part of the boundary which affected the

results a little.

The titration curve was obtained by plotting the glucose

concentrations obtained from the glucometer (ANKOVO

TD-4627, Shenzhen, China) against the average RGB values of

the glucose sensors obtained from the automatic algorithm.

Titration experiments were performed at six concentrations,

and the average RGB values were measured at 30 seconds after

reacting, which is the recommended reading time. The result

shows an exponential relationship between glucose concen-

trations and the average RGB values, and the function is Y =

72.143 + 76.261 × exp(−0.00409X) and the R-square equals to

0.997, as shown in Fig. 7.

4. Statistical performance

In this section, the main results of the computer vision-related

tests are presented statistically. Fig. 8a shows the correlation

curve for YOLOv4 and ImageJ. The black curve represents the

diagonal line with the formula Y = X. The regression line close

association (R-square = 0.99166) with the artificial diagonal

line validates the utility and accuracy of the computer vision

method. In Fig. 8b, almost all data points are around the

mean line, demonstrating the agreement between these two

different methods. However, a few data points are around the

Fig. 5 Comparison between ImageJ and glucose detector. (a) Manually

selected target area through ImageJ software. (b) Automatically

detected target area by glucose detector.

Fig. 6 Correlation between time and measured average RGB values

and the comparison between ImageJ and glucose detector measure-

ments. (a) 50 mg dL−1 glucose concentration. (b) 100 mg dL−1 glucose

concentration. (c) 250 mg dL−1 glucose concentration. (d) 500 mg dL−1

glucose concentration. (e) 1000 mg dL−1 glucose concentration. (f )

2000 mg dL−1 glucose concentration.

Fig. 7 Regression curve based on glucose detector measurements.
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−1.96 SD line due to the 1000 mg dL−1 glucose concentration

shown in Fig. 6e. This error can be easily eliminated in the

future. The statistical variation of the glucose detector over the

mean average values is shown in Fig. 8c. Most percentage

changes over average RGB values are lower than 5%. For the

2000 mg dL−1 concentration, the percentage changes are

slightly higher, about 8%. The plot’s small variation can prove

that this glucose sensor and the automatic detector are steady

and consistent. The disposable glucose sensor, when com-

bined with the automatic measurement method, has shown to

be a reliable and accurate tool for measuring glucose levels.

Therefore, this approach is a promising candidate for glucose

monitoring in various settings.

5. Conclusions and discussion

The outcome presented in this paper illustrates the ability to

use disposable tapes, PDMS, and glass slides to explore and

fabricate innovative, accurate, and economical types of glucose

sensors. Combining the PDMS extension part and micropump

can bring advantages to assist the usage of glucose sensors.

This glucose sensor is uncomplicated and flexible, even people

without experience can operate it perfectly. The price of one

glucose sensor can be lowered to 0.24 dollars per piece, which

is even lower than the commercial glucose test kits. The retail

price for one sensor is $0.24 USD. Based on bulk production,

the estimated price can be $0.19 USD per sensor for large

orders. However, the final price is subject to negotiations with

the vendor and may vary based on factors such as shipping

costs, taxes, and any other applicable fees. The improvement

of control of the light environment from 3D printed chassis

and LED diodes can provide a consistent and unnoisy light

source for measurement. The results presented in this paper

demonstrate the ability of the YOLOv4 automatic measurement

algorithm to replace the traditional manual measurement

method (which in this paper is ImageJ). Computer vision can

accelerate the measurement process, and in the future, this

algorithm will be transferred onto portable electronics through

TensorFlow Lite. The results presented in this paper demon-

strate the fundamental research and feasibility. One phone

model was tested since it describes the methodology and algor-

ithm using the average RGB value, which is independent of

the phone models. For future work, ultimately, if and when

this device gets used by users of various smartphone models

and cameras, each different phone model will require its own

custom phone chassis design (like any smartphone product

and its respective accessories) and also will need to be recali-

brated for its image response, as every camera model differs

from another. The scope of this paper was fundamental

research and demonstrating feasibility rather than showing

universality across all smartphone models. Finally, the

regression curve was given by different concentrations of

glucose with a 0.997 R-square which demonstrates the confi-

dence of this model.

Scalable manufacturability and flexibility of the substrate

material are key strengths of our device. By utilizing a laser

cutter to create the channels, the device can be easily scaled to

fit the dimensions of various substrates, which allows for

efficient and cost-effective manufacturing. In addition, the

device is compatible with a variety of sterile substrate

materials, which provides flexibility for producers to use what-

ever substrate they have available. Strong transferability is a

key strength of our device, thanks to our flexible manufactur-

ing methods. The device can be easily redesigned to fit other

assay candidates and smartphone candidates, which provides

versatility and adaptability for users and manufacturers. In

addition, the use of low-cost assay test strips makes our sensor

a cost-effective diagnosis method that can be adapted to

various assays. However, it’s important to note that the sensor

is color sensitive and requires the assay reaction to bring

Fig. 8 Statistical performance. (a) Correlation curve of YOLOv4 and

ImageJ. (b) The Bland–Altman plot. (c) Variation for replicates of

different concentrations.
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about obvious color changes for detection. Additionally, the

recommended reading time for specific assays may need to be

recalibrated. These potential challenges should be taken into

account when considering the use of our device for different

assay candidates. Overall, the combination of scalable manu-

facturability, strong transferability, and cost-effectiveness of

our device makes it a highly adaptable and valuable solution

for a range of applications.

6. Glucose sensor measurement
algorithm

To train the YOLOv4 model used in the test strip analysis work-

flow (shown in Fig. 4), we analyzed 40 test strips (in the

GitHub described in the data availability section) that were

manually labeled (using Roboflow [https://roboflow.com];

Annotate—Roboflow) with the positions of each glucose test

strip (i.e., each test was represented/encapsulated by an ‘infor-

mation area’); each area was labeled according to what type of

test it captured (i.e., the “group information” of each infor-

mation area). These annotations were transformed into coordi-

nates and used to train the YOLOv4 detector. The custom

detectors were trained in Google colab with a clone of the

YOLOv4 darknet from Github (https://www.github.com/

AlexeyAB/darknet), implemented with the NVDIA CUDA GPU

acceleration toolkit. After training, we obtained a weights file

which includes all information about the custom detector and

can predict the target areas with 99–100% accuracy. The areas

covering the glucose strips that are extracted from each image

are further processed by Tensorflow (https://www.Tensorflow.

org), which is an open-source software library for machine

learning and artificial intelligence, to detect the glucose ana-

lysis strips. To utilize the weights files/custom detector in a

convenient manner on desktop computers, we created the

Tensorflow GPU environment using the CUDA toolkit and the

Anaconda environment (https://www.anaconda.com) for pro-

cessing graphical input. To implement YOLOv4 using

TensorFlow, we first converted the weights into the corres-

ponding TensorFlow model files and then ran the custom

models on desktop computers. We used computer terminal

commands to crop the detected areas and saved these as new

images for subsequent steps in image processing. The target

areas extracted from each image by the trained YOLOv4 detec-

tor (i.e., the glucose strip from background) are imported into

the colorimetric measurement software in MATLAB (https://

www.mathworks.com/) to generate the average RGB values pro-

duced by the workflow.

Data availability

The glucose strips dataset and workflow are available from https://

github.com/zhuolunmeng/A-Smartphone-Based-Disposable-Micro

fluidic-Glucose-Sensor-Utilizing-Computer-Vision.
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