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Most notably, we show that the criterion is met by every 
local weakly F -regular ring whose anti-canonical algebra is 
Noetherian on the punctured spectrum.
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1. Introduction

Suppose R is a Noetherian ring of prime characteristic p > 0 and let R◦ be the set of 

elements which avoid all minimal primes of R. Let I ⊆ R be an ideal of R and denote 

by I [pe] the expansion of I along the eth iterate of the Frobenius endomorphism. The 
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tight closure of I is the ideal I∗ consisting of elements x ∈ R such that there exists an 

element c ∈ R◦ with the property that cxpe

∈ I [pe] for all e � 0. Unlike integral closure 

of ideals, the tight closure of an ideal does not commute with localization, [5]. Brenner’s 

and Monsky’s counterexample to the localization problem leaves open the intriguing 

problem if the property of tight closure being a trivial operation on ideals commutes 

with localization.

Continue to let R be a Noetherian ring of prime characteristic p > 0. The ring R is 

called weakly F -regular if every ideal is tight closed, that is I = I∗ for every ideal I.2

A ring is called F -regular if every localization of R is weakly F -regular. Let F e
∗ R denote 

the restriction of scalars of R along the eth iterate Frobenius endomorphism F e : R → R. 

We say that R is strongly F -regular if for each c ∈ R◦ there exists e ∈ N such that the 

R-linear map R → F e
∗ R defined by 1 �→ F e

∗ c is pure. Every strongly F -regular ring is 

weakly F -regular and the property of being strongly F -regular passes to localization. It 

is conjectured that all three notions of F -regularity agree.

Conjecture 1.1 (The weak implies strong conjecture). If R is an excellent weakly F -

regular ring of prime characteristic p > 0 then R is strongly F -regular.

Williams proved Conjecture 1.1 for the class of 3-dimensional rings, [31]. Every ex-

cellent 4-dimensional F -regular ring is strongly F -regular by pairing [1, Corollary 4.4]

with [4, Corollary K]. The purpose of this article is to extend the results of [1] to rings 

of arbitrary dimension. In particular, if the results of the prime characteristic minimal 

model program in dimension 3 established in [4] are valid in all dimensions, then the 

classes of excellent F -regular and excellent strongly F -regular rings are equivalent.

A prime characteristic ring R is weakly F -regular if and only if Rm is weakly F -

regular for every maximal ideal m ∈ Spec(R). Moreover, an excellent local ring is weakly 

F -regular if and only if its completion is weakly F -regular. Every local weakly F -regular 

ring is a Cohen-Macaulay normal domain. We therefore restrict our attention to the class 

of local Cohen-Macaulay normal domains which admit a canonical module.

Theorem A. Let (R, m, k) be an excellent Cohen-Macaulay normal domain of prime char-

acteristic p > 0, of Krull dimension d, and I ⊆ R an anti-canonical ideal.3 Suppose that 

there exists an m ∈ N such that I(m) is principal when localized at each height 2 prime4

and for each 1 ≤ j ≤ d − 2 there exists an ideal aj of height d − j + 1 such that

2 A defining property of tight closure theory is that every regular ring is weakly F -regular.
3 An ideal I ⊆ R is an anti-canonical ideal if it represents the inverse of the canonical divisor in the class 

group of R. Equivalently, there exists a canonical ideal J ⊆ R, with components disjoint from that of I, so 
that I ∩ J is a principal ideal.

4 Every excellent normal ring which is F -rational in codimension 2 admits an m ≥ 1 with this property. 
Indeed, F -rational rings have pseudo-rational singularities, excellent pseudo-rational singularities are ra-
tional in codimension 2, and 2-dimensional excellent local rational singularities have torsion class group, 
[26,20,19].
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a
pe

j Hj
m

(
R

I(mpe)

)
= 0

for every e ∈ N. If R is weakly F -regular then R is strongly F -regular.

Remark 1.2. The Matlis dual of the local cohomology module Hj
m(R/I(mpe)) is the com-

pletion of Extd−j
R (R/I(mpe), J), a module which is not supported in codimension d − j if 

j ≤ d −2. Hence Hj
m(R/I(mpe)) is annihilated by an ideal of height d −j+1. The criterion 

of Theorem A is therefore reasonable as it is natural to anticipate that the annihilators 

of Hj
m(R/I(mpe)) are of linear comparisons as e → ∞.

Remark 1.3. Let (R, m, k) be as in Theorem A and assume that R is Cohen-Macaulay. 

Suppose that ER(k) is an injective hull of the residue field. Let 0∗
ER(k) and 0∗fg

ER(k) denote 

the tight closure and finitistic tight closure respectively of the 0-submodule of ER(k), 

see Section 3 for definitions. Then 0∗fg
ER(k) = 0∗

ER(k)
under the hypotheses of Theorem A, 

see Theorem 4.10. Therefore the test ideal and big test ideal of R agree by [14, Propo-

sition 8.23] and [3, Theorem 3.2], cf. [22, Theorem 7.1 and Theorem 7.2]. By definition, 

the test ideal of R is the unit ideal if and only if R is weakly F -regular and the big test 

ideal of R is the unit ideal if and only if R is strongly F -regular. Therefore Theorem A

is a consequence of Theorem 4.10.

Conjecture 1.1 is valid for rings R which are standard graded over a field, [21]. It 

would be interesting to know if such rings satisfy the hypotheses of Theorem A. With-

out the standard graded assumption, most established cases of Conjecture 1.1 require 

an assumption on R that is akin to being Gorenstein. Hochster and Huneke proved 

Conjecture 1.1 for the class of Gorenstein rings, [15]. Building upon Williams’ proof of 

Conjecture 1.1 for the class of 3-dimensional rings, [31], MacCrimmon proved the weak 

implies strong conjecture for rings which are Q-Gorenstein on the punctured spectrum, 

[9]. Singh announced that Conjecture 1.1 is valid for rings whose anti-canonical algebra5

is Noetherian. Singh’s result was never published, but has since been recaptured by oth-

ers, [10]. Takagi established the validity of Conjecture 1.1 for rings that are numerically 

Q-Gorenstein, as shown in [29, Main Theorem]. Furthermore, Takagi demonstrated the 

equality of test ideals under the numerically Q-Gorenstein hypothesis, a hypothesis that 

is weaker to being Q-Gorenstein. If the anti-canonical algebra of R is Noetherian, then the 

condition of numerically Q-Gorenstein is equivalent to Q-Gorenstein, [29, Lemma 3.5].

Singularities of prime characteristic rings are related to KLT singularities of the com-

plex minimal model program through the process of reduction to prime characteristic, 

[12,28]. Theorems of the complex minimal model program establish that if R is essentially 

of finite type over C with at worst KLT singularities, then the symbolic Rees algebras 

associated to ideals of pure height 1 are Noetherian. It is therefore natural to conjecture 

5 Suppose that R is a normal domain and I ⊆ R is an anti-canonical ideal. The anti-canonical algebra of 
R is the symbolic Rees algebra R ⊕ I ⊕ I(2) ⊕ · · · , an algebra unique up to R-algebra isomorphism.
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the same in strongly F -regular rings and that the hypotheses of Singh’s Theorem are 

vacuous.

Conjecture 1.4. If R is an excellent strongly F -regular ring of prime characteristic p > 0

and I ⊆ R an ideal of pure height 1. Then the symbolic Rees algebra of I is Noetherian.

Progress around Conjecture 1.4 is quite limited. An elementary and (mostly) algebraic 

proof of Conjecture 1.4 for the class of 2-dimensional F -regular rings can be derived 

from [23, Corollary 3.2]. Recent progress of the minimal model program establishes 

Conjecture 1.4 for the class of 3-dimensional F -regular rings, see [4, Corollary K] and [1, 

Proof of Corollary 4.5] for necessary details.

In light of Conjecture 1.4, it would be desirable to remove the assumption that the 

anti-canonical algebra of R is Noetherian in Singh’s Theorem and replace it with the 

milder hypothesis that the anti-canonical algebra is assumed to be Noetherian at non-

closed points of Spec(R). Such a step puts forth a much needed inductive program to 

establish Conjecture 1.4, or at the very least establish that the class of F -regular and 

strongly F -regular rings agree. This is what we accomplish and is the main contribution 

of this article.

Theorem B. Let (R, m, k) be an excellent weakly F -regular ring of prime characteristic 

p > 0, of Krull dimension d, and I ⊆ R an anti-canonical ideal. Suppose that the anti-

canonical algebra of R is Noetherian on the punctured spectrum. There exists m ∈ N so 

that I(m) is principal when localized at each height 2 prime and for each 1 ≤ j ≤ d − 2

there exists an ideal aj of height d − j + 1 such that

a
pe

j Hj
m

(
R

I(mpe)

)
= 0

for every e ∈ N. In particular, the ring R is strongly F -regular by Theorem A.

Remark 1.5. The implications of the techniques employed in this article regarding the 

agreement between the test ideal and big test ideal of R are not explicitly clear when 

only considering the assumption that the anti-canonical algebra is Noetherian on the 

punctured spectrum. Our approach requires not only Noetherianity of the anti-canonical 

algebra of R on the punctured spectrum, but also the additional condition of Cohen-

Macaulayness on the punctured spectrum. We observe that this condition holds true 

if R is weakly F -regular, see the proof of Corollary 2.7. To establish the equality of 

test ideals solely based on the assumption that the anti-canonical algebra is Noetherian 

on the punctured spectrum, one would need to appropriately modify the outcomes and 

methodologies presented in Section 2 to accommodate algebras that may not be Cohen-

Macaulay.
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2. Annihilators of local cohomology

This section is devoted to proving Theorem B. Let (R, m, k) be an excellent local 

normal domain of Krull dimension d ≥ 3 and I ⊆ R an ideal of pure height 1. Let 

W = R \
⋃

P ∈min(I) P and for each n ∈ N let I(n) = InRW ∩ R denote the nth symbolic 

power of the ideal I. To study the annihilators of Hi
m(R/I(n)) we will approximate the 

ideals I(n) by ideals of the form (y1, . . . , yh)n where h is “small,” y1, . . . , yh ∈ I, and J

denotes the integral closure of an ideal J ⊆ R.

Let J ⊆ R be an ideal and n ∈ N. There are short exact sequences

0 →
Jn−1

Jn
→

R

Jn
→

R

Jn−1
→ 0,

and so there are exact sequences of local cohomology modules

Hi
m

(
Jn−1

Jn

)
→ Hi

m

(
R

Jn

)
→ Hi

m

(
R

Jn−1

)
.

Our aim is to establish uniform annihilators of the local cohomology modules Hi
m(Jn−1/

Jn) that are independent of n. For the sake of convenience, we adopt the following 

notation:

• R[Jt] =
⊕

n≥0 Jntn is the Rees algebra of J ;

• R[Jt, t−1] =
⊕

n∈N Jntn is the extended Rees algebra of J , i.e. R[Jt, t−1] agrees 

with the Rees algebra R[Jt] in positive degree and contains copies of R in negative 

degree;

• R is the integral closure of the Rees algebra R[Jt] in R[t]; R is N-graded and the 

nth graded piece of R is Jn;

• R[t−1] is the integral closure of the extended Rees algebra R[Jt, t−1] in R[t, t−1]. If 

n ≥ 0 then the nth graded piece of R[t−1] is Jn. The algebra R[t−1] contains copies 

of R in negative degrees.

If x ∈ R then xHi
m(Jn−1/Jn) = 0 for all n ∈ N if and only if

xHi
m(R[t−1]/(t−1R[t−1]) = 0.

The Faltings Annihilator Theorem, later generalized by Brodmann, provides a criterion 

to establish such annihilation properties.

Theorem 2.1 ([7, Theorem 9.5.1]). Let S be a Noetherian ring which is the homomorphic 

image of a regular ring, M a finitely generated S-module, and let a, b ⊆ R be ideals. Then

min{i ∈ N |� ∃C : aCHi
b(M) = 0} = min{depth(MP ) + height((b + P )/P ) | P �∈ V (a)}.
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Our first step towards proving Theorem B is the following lemma.

Lemma 2.2. Let (R, m, k) be an excellent local normal domain of Krull dimension d and 

J ⊆ R an ideal generated by at most h elements. Suppose that the associated graded 

algebra 
⊕

n≥0 Jn/Jn+1 ⊗R Rx is Cohen-Macaulay. Then there exists a constant C so 

that

xCHi
m(Jn/Jn+1) = 0

for every 0 ≤ i ≤ d − h − 1 and n ∈ N.

Proof. Without loss of generality, we may pass to the completion of R and assume that R

is the homomorphic image of a regular local ring. Let S = R[t−1] and G = S/t−1S. The 

lemma is equivalent to the assertion that there exists a constant C so that xCHi
mS(G) = 0

for every 1 ≤ i ≤ d −h −1. By Theorem 2.1, it suffices to show that if P ∈ Spec(S) \V (xS)

then

depth(GP ) + height

(
mS + P

P

)
≥ d − h.

If P �∈ V (xS) then GP is Cohen-Macaulay. Therefore

depth(GP ) = dim(GP ) = heightS(P ) − 1.

Then, because S is catenary,

depth(GP ) + height

(
mS + P

P

)
= heightS(P ) − 1 + dim(S/P ) − dim(S/mS + P )

= heightS(P ) − 1 + d + 1 − heightS(P )

− dim(S/mS + P )

= d − dim(S/mS + P ).

Recall that S is the integral closure of R[t−1] in R[t, t−1]. It follows that S/mS is a finite 

extension of the fiber cone of J , an R/m-algebra of Krull dimension at most h. Therefore

dim(S/mS + P ) ≤ dim(S/mS) = h

and so depth(GP ) + height
(
mS+P

P

)
≥ d − h as needed. �

Corollary 2.3. Let (R, m, k) be an excellent local normal domain of Krull dimension d and 

J ⊆ R an ideal generated by at most h elements. Suppose that the ring 
⊕

Jn/Jn+1⊗RRx

is Cohen-Macaulay. Then there exists a constant C so that
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xCnHi
m(R/Jn) = 0

for every 0 ≤ i ≤ d − h − 1 and n ∈ N.

Proof. For every i ≥ 0 and for every n ∈ N there are exact sequences of local cohomology 

modules

Hi
m(Jn/Jn+1) → Hi

m(R/Jn+1) → Hi
m(R/Jn).

By Lemma 2.2, if i ≤ d − h − 1, then there exists a constant C so that xC annihilates 

the left most module of the above exact sequences for all n ≥ 0. By induction, xCn

annihilates Hi
m(R/Jn) for every n ∈ N. �

Remark 2.4. If we are only interested in annihilation properties of H1
m(Jn/Jn+1), then 

many of the assumptions of Lemma 2.2 and Corollary 2.3 are not necessary. One only 

needs to assume that R is an excellent normal domain and J is generated by at most d −2

elements to conclude that there exists a constant C so that mC annihilates H1
m(Jn/Jn+1)

for every n ∈ N. Indeed, height(mS + P/P ) ≥ 1 for all P ∈ Spec(S) \ V (mS). Thus, to 

show

depth(GP ) + height(mS + P/P ) ≥ 2

for every P ∈ Spec(S) \ V (mS), it suffices to show that height(mS + P/P ) ≥ 2 whenever 

depth(GP ) = 0. If depth(GP ) = 0 then P ∈ Spec(S) is an associated prime of t−1S. The 

ring S is normal and t−1 is a nonzerodivisor. Therefore every associated prime of t−1S

is minimal and so dim(GP ) = 0. One can now proceed as in the proof of Lemma 2.2 to 

show that height(mS + P/P ) ≥ 2.

Lemma 2.5. Let (R, m, k) be an excellent Noetherian local normal domain with infinite 

residue field, I ⊆ R an ideal, P1, . . . , Pt ∈ Spec(R) a finite collection of non-comparable 

prime ideals, and W = R \
⋃t

i=1 Pi. Suppose that �RPi
(IRPi

) ≤ h for every 1 ≤ i ≤ t. 

Then there exist elements y1, . . . , yh ∈ I and x ∈ W with the following properties:

(1) (y1, . . . , yh)RW ⊆ IRW is a reduction of IRW ;

(2) xnIn ⊆ (y1, . . . , yh)n for all n ∈ N.

Proof. Recall the following: Suppose (S, n, �) is a local ring and J ⊆ I are ideals. Then J

is reduction of I if and only if S[Jt] ⊗S � → S[It] ⊗S � is finite, see [27, Proposition 8.2.4]. 

In particular, if J ′ ⊆ I is an ideal such that J ′ ≡ J + nI and J is a reduction of I then 

J ′ is a reduction of I.

To prove the lemma start by choosing elements y1,i, . . . , yh,i ∈ I so that (y1,i, . . . ,

yh,i)RPi
forms a reduction of the ideal IRPi

. Choose elements rj ∈ (∩i
=jPi) \ Pj and 

set yi =
∑

rjyj,i. Then (y1, . . . , yh)RPi
forms a reduction of IRPi

for each 1 ≤ i ≤ t
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by the above discussion. Therefore (y1, . . . , yh)RW forms a reduction of IRW by [27, 

Propositions 8.1.1.].

Let J = (y1, . . . , yh). Then JRW = IRW and so there exists an element x ∈ W such 

that xI ⊆ J , in particular xI ⊆ J . Raising the containment to the nth power we find 

that xnIn ⊆ Jn for every n ∈ N. We claim that xnIn ⊆ Jn. Let r ∈ In, then there 

exists a t ∈ N and an equation

rt + a1rt−1 + · · · + at−1r + at = 0

such that aj ∈ Inj for each 1 ≤ j ≤ t. Multiplying by xnt we find that there is an 

equation

(xnr)t + xna1(xnr)t−1 + · · · xn(t−1)at−1 + xntat = 0.

The elements xnjaj belong to Jnj and therefore xnr ∈ Jn = Jn. �

Theorem 2.6. Let (R, m, k) be an excellent local Cohen-Macaulay normal domain of Krull 

dimension d ≥ 3 and I ⊆ R an ideal of pure height 1 with the following properties:

• InRP = I(n)RP for every P ∈ Spec(R) \ {m} and every n ∈ N;

• If P ∈ Spec(R) \ {m} and G = R[t−1]/t−1R[t−1] is the associated graded ring of I

then GP is Cohen-Macaulay.

Then there exists a system of parameters x1, x2, . . . , xd such that for every 3 ≤ t ≤ d;

(xn
1 , . . . , xn

t )Hj
m(R/I(n)) = 0

for every 0 ≤ j ≤ d − (t − 1) and n ∈ N.

Proof. The ideal I is locally principal at its height 1 components because R is normal. 

Therefore In ⊆ I(n). Our assumptions inform us that I(n)/In is 0-dimensional for every 

integer n. Therefore for every integer i ≥ 1

Hi
m(R/In) ∼= Hi

m(R/I(n)).

Start by choosing x1 ∈ I. Then clearly xn
1 ∈ In and therefore xn

1 annihilates Hi
m(R/In)

for all integers i and n. If W1 is the complement of the union of the minimal primes of 

x1R then IRW1
is a principal ideal. By Lemma 2.5 there exists an element y ∈ I and 

x ∈ W1 so that xnIn ⊆ ynR for every n ∈ N. There are short exact sequences

0 →
In

ynR
→

R

ynR
→

R

In
→ 0
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and so Hj
m(R/In) ∼= Hj+1

m (In/ynR) if j ≤ d − 3 and there is an injective map 

Hd−2
m (R/In) → Hd−1

m (In/ynR). Therefore xn annihilates Hj
m(R/In) for every j ≤ d − 2

and we take x2 = x.

If W2 is the complement of the union of the minimal primes of (x1, x2) then IRW2

has analytic spread at most 1, see [11, Proof of Theorem 1.5]. The ring RW2
is normal, 

every principal ideal in a normal ring is integrally closed, and therefore IRW2
is a prin-

cipal ideal. We therefore proceed as before to find an element x3 so that xn
3 annihilates 

Hj
m(R/In) for every j ≤ d − 2 as needed.

Inductively, suppose that we have found parameter elements x1, . . . , xi, with i ≥ 3, 

so that if 3 ≤ t ≤ i then

(xn
1 , . . . , xn

t )Hj
m(R/In) = 0

for every 0 ≤ j ≤ d − (t − 1). It is important that t ≥ 3 in the inductive step of the 

proof. If t = 2 then it is not the case that (xn
1 , xn

2 ) annihilates Hj
m(R/In) for every 

0 ≤ j ≤ d − (2 − 1) = d − 1. Indeed, the annihilator of the top local cohomology module 

Hd−1
m (R/In) is the height 1 ideal I(n) and (xn

1 , xn
2 ) �⊆ I(n). If i = d then we are done. 

Suppose that i ≤ d − 1. Our aim is to find a parameter element xi+1 so that

xn
i+1Hj

m(R/In) = 0

for every j ≤ d − i.

Let W be the complement of the union of the minimal primes of the parameter ideal 

(x1, . . . , xi). Then InRW = I(n)RW for all integers n and so the localization of IRW at 

a maximal ideal of RW is an ideal of analytic spread at most i − 1, see [11, Proof of 

Theorem 1.5]. By Lemma 2.5 there exist elements y1, . . . , yi−1 ∈ I and x′
i+1 ∈ W so that

(1) (y1, . . . , yi−1)RW ⊆ IRW is a reduction of IRW ;

(2) (x′
i+1)nIn ⊆ (y1, . . . , yi−1)n for all n ∈ N.

Let J = (y1, . . . , yi−1) and consider the short exact sequences

0 →
In

Jn
→

R

Jn
→

R

In
→ 0.

The element (x′
i+1)n annihilates the left-most module in the above short exact sequence 

and there are exact sequences of local cohomology modules

Hj
m

(
R

Jn

)
→ Hj

m

(
R

In

)
→ Hj+1

m

(
In

Jn

)
.

The element (x′
i+1)n annihilates the right-most module. By our hypothesis that the asso-

ciated graded ring of I is Cohen-Macaulay on the punctured spectrum of R, Corollary 2.3
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implies that there exists a constant C so that (x′
i+1)Cn annihilates Hj

m(R/Jn) for every 

j ≤ d − (i − 1) − 1 = d − i. Therefore (x′
i+1)C(n+1) annihilates Hj

m(R/In) for every 

j ≤ d − i. Therefore xi+1 = (x′
i+1)2C has the desired annihilation properties. �

Theorem B is a consequence of the following theorem.

Corollary 2.7. Let (R, m, k) be an excellent local Cohen-Macaulay normal domain of 

prime characteristic p > 0 and Krull dimension d ≥ 3. Suppose that R is a splinter 

on the punctured spectrum of R and that the anti-canonical algebra of R is Noetherian 

on the punctured spectrum. Then there exists an ideal I ⊆ R of pure height 1 and pa-

rameters x1, . . . , xd with the following properties:

(1) I ∼= ω
(−m)
R for some m ≥ 1;

(2) For each 1 ≤ j ≤ d − 2, the ideal aj := (x1, . . . , xd−j+1) is such that

a
[pe]
j Hj

m(R/I(pe)) = 0

for each e ∈ N.

Proof. Start by choosing an ideal I ⊆ R of pure height 1 so that I ∼= ω
(−1)
R is an anti-

canonical ideal. We are assuming that the anti-canonical algebra is Noetherian on the 

punctured spectrum. Therefore if P ∈ Spec(R) \ {m} then there exists an integer m

such that the symbolic Rees algebra of I(m)RP is standard graded. The set of prime 

ideals ∪ Ass(R/I(m)n) is a finite set by [6], see also [17]. By prime avoidance there exists 

an s ∈ R \ P which is contained in each non-minimal member of ∪ Ass(R/I(m)n). Then 

I(m)nRs = I(mn)Rs for every n ∈ N. The space Spec(R\{m} is quasi-compact. Therefore 

there exists finitely many open sets D(s1), . . . , D(St) covering Spec(R\{m} and integers 

mi, 1 ≤ i ≤ s, so that for all n ∈ N I(mi)nRsi
= I(min)Rsi

. If m is a common multiple 

of m1, . . . , ms and then the symbolic Rees algebra of I(m) is standard graded on the 

punctured spectrum, i.e. I(m)nRP = I(mn)RP for all n ∈ N and P ∈ Spec(R) \ {m}. 

We replace I by I(m). By Theorem 2.6, it suffices to show that R is Cohen-Macaulay 

and that if G = GrI(R) is the associated graded ring of I then GP is a Cohen-Macaulay 

algebra for all P ∈ Spec(R) \ {m}.

For each non-maximal prime P the localized ring RP is strongly F -regular by [10, 

Corollary 5.9], see also [30, Theorem 0.1]. Therefore the localized (symbolic) Rees alge-

bras R[It] ⊗ RP are Cohen-Macaulay for all P ∈ Spec(R) \ {m}, see [10, Lemma 6.1]. 

We may now conclude that GP is a Cohen-Macaulay algebra for all P ∈ Spec(R) \ {m}

by [16, Proposition 1.1]. �
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3. Tight closure, local cohomology, and local cohomology bounds

3.1. Tight closure

Let R be a ring of prime characteristic p > 0 and let R◦ be the complement of the 

union of the minimal primes of R. The eth Frobenius functor, or the eth Peskine-Szpiro 

functor, is the functor F e : Mod(R) → Mod(R) obtained by extending scalars along the 

eth iterate of the Frobenius endomorphism. If N ⊆ M are R-modules and m ∈ M , then 

m is in the tight closure of N relative to M if there exists a c ∈ R◦ such that for all 

e � 0 the element m is in the kernel of the following composition of maps:

M → M/N → F e(M/N)
·c
−→ F e(M/N).

In particular, if we consider an inclusion of R-modules of the form I ⊆ R then F e(R/I) ∼=

R/I [pe] where I [pe] = (rpe

| r ∈ I), and an element r ∈ R is in the tight closure of I

relative to R if there exists a c ∈ R◦ such that crpe

∈ I [pe] for all e � 0. The tight closure 

of the module N relative to the module M is denoted N∗
M . In the case that M = R and 

N = I is an ideal then we denote the tight closure of I relative to R as I∗. We say that 

N is tightly closed in M if N = N∗
M . If an ideal is tightly closed in R then we simply say 

that the ideal is tightly closed. The finitistic tight closure of N ⊆ M is denoted N∗fg
M

and is the union of (N ∩ M ′)∗
M ′ where M ′ runs over all finitely generated submodules of 

M .

The notions of weak F -regularity and strong F -regularity can be compared by study-

ing the finitistic tight closure and tight closure of the zero submodule of the injective hull 

of a local ring by [14, Proposition 8.23] and [25, Proposition 7.1.2]. Suppose that (R, m, k)

is complete local and ER(k) is the injective hull of the residue field. The finitistic test 

ideal of R is τfg(R) =
⋂

I⊆R AnnR(I∗/I) and agrees with AnnR(0∗fg
ER(k)). The (big) test 

ideal of R is τ(R) =
⋂

N⊆M∈Mod(R) AnnR(N∗
M /N) and agrees with AnnR(0∗

ER(k)). The 

ring R is weakly F -regular if and only if τfg(R) = R and R is strongly F -regular if 

and only if τ(R) = R. Thus to prove the conjectured equivalence of weak and strong 

F -regularity it is enough to show 0∗
ER(k) = 0∗fg

ER(k) under hypotheses satisfied by rings 

which are weakly F -regular.

To explore the tight closure of the zero submodule of ER(k) we exploit the structure 

of ER(k) as a direct limit of 0-dimensional Gorenstein quotients of R described in [13]. 

Suppose (R, m, k) is a complete local Cohen-Macaulay domain of Krull dimension d and 

J1 � R a canonical ideal. Let 0 �= x1 ∈ J1, x2, . . . , xd ∈ R a parameter sequence, and for 

each t ∈ N let It = (xt−1
1 J1, xt

2, . . . , xt
d). The sequences of ideals {It} form a decreasing 

sequence of irreducible m-primary ideals cofinal with {mt}. Moreover, the direct limit 

system lim
−−→

R/It
·x1···xd−−−−−→ R/It+1 is isomorphic to ER(k). The following lemma uses this 

description of the injective hull of the residue field to describe any potential difference 

between the modules 0∗
ER(k) and 0∗fg

ER(k). We refer the reader to the discussion at the 

beginning of [2, Section 2] for details.
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Lemma 3.1. Let (R, m, k) be a complete Cohen-Macaulay local ring of prime characteristic 

p > 0 and of Krull dimension d. Let J1 � R be a choice of canonical ideal and x1, . . . , xd

a system of parameters such that x1 ∈ J . Make the following identification of ER(k):

ER(k) ∼= lim
−−→

(
R

(xt−1
1 J1, xt

2, · · · xt
d)

·x1···xd−−−−−→
R

(xt
1J1, xt+1

2 , · · · xt+1
d )

)

If η = [r + (xt−1
1 J1, xt

2, · · · xt
d)] ∈ ER(k) then

(1) η ∈ 0∗fg
ER(k) if and only if there exists a c ∈ R◦ and s ∈ N such that for all e ∈ N

c(r(x1x2 · · · xd)s)pe

∈ (xs+t−1
1 J1, xs+t

2 , . . . , xs+t
d )[pe];

(2) η ∈ 0∗
ER(k) if and only if there exists a c ∈ R◦ such that for all e ∈ N there exists 

an s = s(e) such that

c(r(x1x2 · · · xd)s)pe

∈ (xs+t−1
1 J1, xs+t

2 , . . . , xs+t
d )[pe].

3.2. Local cohomology bounds

We will relate the modules 0∗fg
ER(k) and 0∗

ER(k) in Lemma 3.1 through the language of 

local cohomology bounds. To this end, suppose that M is a module over a ring R and 

x = x1, . . . , xd a sequence of elements. For each j ∈ N let xj = xj
1, . . . , xj

d and for each 

pair of integers j1 ≤ j2 let α̃•
M ;xi;j1;j2

be the map of Kosul cocomplexes

0 M
·x

j1
i

=

M

·x
j2−j1
i

0

0 M
·x

j2
i

M 0

Let α̃•
M ;x;j1;j2

be the following product:

α̃•
M ;x;j1;j2

:= α̃•
R;x1;j1;j2

⊗ α̃•
R;x2;j1;j2

⊗ · · · ⊗ α̃•
R;xd;j1;j2

⊗ M.

Then α̃•
M ;x;j1;j2

is a map of Koszul cocomplexes

K•(xj1 ; M)
α̃•

M;x;j1;j2−−−−−−→ K•(xj2 ; M).

Let αi
M ;x;j1;j2

denote the induced map of Koszul cohomologies

Hi(xj1 ; M)
αi

M;x;j1;j2−−−−−−→ Hi(xj2 ; M).
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Then

lim
−−→

j1≤j2

(
Hi(xj1 ; M)

αi
M;x;j1;j2−−−−−−→ Hi(xj2 ; M)

)
∼= Hi

(x)R(M)

by [8, Theorem 3.5.6].

Denote by αi
M ;x;j;∞ the map

Hi(xj ; M)
αi

M;x;j;∞
−−−−−−→ Hi

(x)A(M).

Observe that η ∈ Ker(αi
M ;x;j;∞) if and only if there exists some k ≥ 0 such that η ∈

Ker(αi
M ;x;j;j+k). If η ∈ Ker(αi

M ;x;j;∞) we let

εi
xj (η) = min{k | η ∈ Ker(αi

M ;x;j;j+k)}.

Definition 3.2. Let R be a ring, x = x1, . . . , xd a sequence of elements in R, and M

an R-module. The ith local cohomology bound of M with respect to the sequence of 

elements x is

lcbi(x; M) = sup{εi
xj (η) | η ∈ Ker(αi

M ;x;j;∞) for some j} ∈ N ∪ {∞}.

Observe that if M is an R-module and x is a sequence of elements, then lcbi(x; M) =

N < ∞ simply means that if η ∈ Hi(xj ; M) represents the 0-element in the direct limit

lim
−−→

j1≤j2

(
Hi(xj1 ; M)

αi
M;x;j1;j2−−−−−−→ Hi(xj2 ; M)

)
∼= Hi

(x)R(M)

then αi
M ;x;j;j+N (η) is the 0-element of the Koszul cohomology group Hi(xj+N ; M). 

Therefore finite local cohomology bounds correspond to a uniform bound of annihilation 

of zero elements in a choice of direct limit system defining a local cohomology module. 

It would be interesting to understand when local cohomology bounds are finite.

3.3. Basic properties of local cohomology bounds

Our study of local cohomology bounds begins with two useful observations.

Lemma 3.3. Let R be a commutative Noetherian ring, M an R-module, and x =

x1, . . . , xd a sequence of elements, then lcbi(x
j ; M) ≤ lcbi(x; M). Furthermore, 

lcbi(x; M) ≤ jm for some integers j, m if and only if lcbi(x
j ; M) ≤ m where xj is 

the sequence of elements xj
1, . . . , xj

d.

Proof. One only has to observe that αi
M ;xj ;k,k+m = αi

M ;x;jk,jk+jm. �
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If x1, . . . , xd is a sequence of elements in a ring R and if x1M = 0 for some R-module 

M then the short exact sequence of Koszul cocomplexes

0 → K•(x2, . . . , xd; M)(−1) → K•(x1, x2, . . . , xd; M) → K•(x2, . . . , xd; M) → 0

is split and therefore Hi(x1, x2, . . . , xd; M) ∼= Hi(x2, . . . , xd; M) ⊕ Hi−1(x2, . . . , xd; M). 

The content of the following lemma is a description of the behavior of the maps 

αi
M ;x1,x2,...,xd;j,j+k with respect to these isomorphisms of Koszul cohomologies.

Lemma 3.4. Let R be a commutative Noetherian ring, M an R-module, and x1, x2, . . . , xd

a sequence of elements such that x1M = 0. If i, j, k ∈ N then

Hi(xj
1, xj

2, . . . , xj
d; M) ∼= Hi(xj

2, . . . , xj
d; M) ⊕ Hi−1(xj

2, . . . , xj
d; M)

and the map αM ;x1,x2,...,xd;j,j+k is the direct sum of αi
M ;x2,...,xd;j,j+k and the 0-map.

Proof. Let (F •, ∂•) be the Koszul cocomplex K•(xj
2, . . . , xj

d; R) and let (G•, δ•) be the 

Koszul cocomplex K•(xj
1; R). Let

(L•, γ•) = K•(xj
1, xj

2, . . . , xj
d; R) ∼= K•(xj

1; R) ⊗ K•(xj
2, . . . , xj

d; R).

Then Li ∼= (G0 ⊗ F i) ⊕ (G1 ⊗ F i−1) ∼= F i ⊕ F i−1. We abuse notation and let ·xj
1 denote 

the multiplication map on F i. The map γi can be thought of as

γi =

(
∂i 0

±xj
1 ∂i−1

)
: F i ⊕ F i−1 → F i+1 ⊕ F i.

In particular, if we apply − ⊗R M the map · ± xj
1 ⊗ M is the 0-map and therefore 

the ith map of the Koszul cocomplex Ki(xj
1, xj

2, . . . , xj
d; M) is the direct sum of maps 

(∂i ⊗ M) ⊕ (∂i−1 ⊗ M). In particular

Hi(xj
1, xj

2, . . . , xj
d; M) ∼= Hi(xj

2, . . . , xj
d; M) ⊕ Hi−1(xj

2, . . . , xj
d; M).

To see that αM ;x1,x2,...,xd;j,j+k is the direct sum of αi
M ;x2,...,xd;j,j+k and the 0-map is 

similar to above argument but uses the fact that

α̃•
M ;x1,x2,...,xd;j;j+k = α̃•

R;x2,...,xd;j;j+k ⊗ α̃•
R;x1;j;j+k ⊗ M

and α̃1
R;x1;j;j+k ⊗ M = 0. �

A particularly useful corollary of Lemma 3.4 is the following:



I. Aberbach et al. / Advances in Mathematics 441 (2024) 109559 15

Corollary 3.5. Let R be a commutative Noetherian ring and M an R-module. Suppose 

x1, . . . , xd is a sequence of elements, 1 ≤ i ≤ d, and (x1, . . . , xd−i)M = 0. If j, k ∈ N

then

α�
M ;x1,...,xd;j,j+k : H�(xj

1, . . . , xj
d; M) → H�(xj+k

1 , . . . , xj+k
d ; M)

is the 0-map for all � ≥ i + 1. In particular, lcb�(x1, . . . , xd; M) = 1 for all � ≥ i + 1.

Proof. By multiple applications of Lemma 3.4 it is enough to observe that

H�(xj
d−i+1, . . . , xj

d; M) = 0.

This is clearly the case since xj
d−i+1, . . . , xj

d is a list of i elements and we are examining 

an � ≥ i + 1 Koszul cohomology of M with respect to this sequence. �

Suppose 0 → M1 → M2 → M3 → 0 is a short exact sequence of R-modules. The 

next two properties of local cohomology bounds we record allow us to compare the local 

cohomology bounds of the modules appearing in the short exact sequence. Proposition 3.6

allows us to effectively compare the local cohomology bounds of two of the terms in the 

sequence provided a subset of the elements in the sequence of elements defining Koszul 

cohomology annihilates the third. Proposition 3.7 compares the local cohomology bounds 

of two of the terms in the short exact whenever the sequence of elements defining Koszul 

cohomology is a regular sequence on the third module.

Proposition 3.6. Let R be a commutative Noetherian ring and

0 → M1 → M2 → M3 → 0

a short exact sequence of R-modules. Let x = x1, . . . , xd be a sequence of elements of R.

(1) If (x1, . . . , xd−j)M1 = 0 then for all � ≥ j + 1

lcb�(x; M2) ≤ lcb�(x; M3) + 1.

(2) If (x1, . . . , xd−j)M2 = 0 then for all � ≥ j + 1

lcb�(x; M3) ≤ lcb�+1(x; M1) + 1.

(3) If (x1, . . . , xd−j)M3 = 0 then for all � ≥ j + 2

lcb�(x; M1) ≤ lcb�(x; M2) + 1.
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Proof. For each integer j ∈ N let xj denote the sequence of elements xj
1, xj

2, . . . , xj
d. For 

(1) we consider the following commutative diagram, whose middle row is exact:

H�(xj ; M2) H�(xj ; M3)

H�(xj+k; M1) H�(xj+k; M2) H�(xj+k; M3)

H�(xj+k+1; M1) H�(xj+k+1; M2)

α�
M2;x;j;j+k α�

M3;x;j;j+k

α�
M1;x;j+k;j+k+1 α�

M2;x;j+k;j+k+1

By Corollary 3.5 the map α�
M1;x;j+k;j+k+1 is the 0-map for all � ≥ j+1. A straightforward 

diagram chase of the above diagram, which follows an element η ∈ Ker(α�
M2;x;j;j+k′) for 

some k′, shows that η ∈ Ker(α�
M2;x;j;j+k+1) whenever k ≥ lcb�(x; M3). In particular, 

lcb�(x; M2) ≤ lcb�(x; M3) + 1.

Statements (2) and (3) follow in a similar manner and the details are left to the 

reader. �

Proposition 3.7. Let R be a commutative Noetherian ring, 0 → M1 → M2 → M3 → 0 a 

short exact sequence of R-modules, and x = x1, . . . , xd a sequence of elements in R.

(1) If x is a regular sequence on M1 then lcbi(x; M2) = lcbi(x; M3) for all i ≤ d − 1.

(2) If x is a regular sequence on M2 then lcbi(x; M3) = lcbi+1(x; M1) for all i ≤ d − 1.

(3) If x is a regular sequence on M3 then lcbi(x; M1) = lcbi(x; M2) for all i ≤ d.

Proof. The proofs of the three statements are very similar to one another and we only 

provide the details of (1).

Proof of (1): For i < d we have Hi(xj ; M1) = 0 and therefore if i ≤ d − 2 there are 

commutative diagrams

Hi(xj ; M2) Hi(xj ; M3)

Hi(xj+k; M2) Hi(xj+k; M3)

∼=

αi
M2;x;j;j+k αi

M3;x;j;j+k

∼=

whose horizontal arrows are isomorphisms. It readily follows that lcbi(x; M2) =

lcbi(x; M3) whenever i ≤ d − 2. Because x is a regular sequence on M1 we have that the 

maps αd
M1,x,j,j+k are injective. Conside the following commutative diagrams whose rows 

are exact:

0 Hd−1(xj ; M2) Hd−1(xj ; M3) Hd(xj ; M1)

0 Hd−1(xj+k; M2) Hd−1(xj+k; M3) Hd(xj+k; M1)

πj

αd−1
M2;x;j;j+k

δj

αd−1
M3;x;j;j+k αd

M1;x;j;j+k

πj+k δj+k
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If η ∈ Ker(αd−1
M2;x;j,j+k) then πj(η) ∈ Ker(αd−1

M3;x;j,j+k). The maps πj+k are injective. 

Therefore αd−1
M2;x;j,j+k(η) = 0 whenever k ≥ lcbd−1(x; M3) and hence lcbd−1(x; M2) ≤

lcbd−1(x; M3).

To show that lcbd−1(x; M2) ≥ lcbd−1(x; M3) consider an element η ∈ Ker(αd−1
M3;x;j;j+k). 

Then δj(η) ∈ Ker(αd
M1;x;j;j+k). But the maps αd

M1;x;j;j+k are injective and therefore 

δj(η) = 0. In particular, η = πj(η′) for some η′ ∈ Hd−1(xj ; M2). The maps πj+k are 

all injective. Therefore η′ ∈ Ker(αd−1
M1;x;j;j+k) and it follows that αd−1

M2;x;j;j+k(η) = 0

whenever k ≥ lcbd−1(x; M2). Therefore lcbd−1(x; M2) ≥ lcbd−1(x; M3) and hence 

lcbd−1(x; M2) = lcbd−1(x; M3). This completes the proof of (1). �

4. Equality of test ideals

Theorem A is a consequence of Theorem 4.2 and Theorem 4.9. Theorem 4.2 is an 

explicit relationship between local cohomology bounds and equality of test ideals. Theo-

rem 4.9, when paired with Proposition 4.8, provides the needed local cohomology bounds 

described in Theorem 4.9 whenever we are able to linearly compare the annihilators of 

Hi
m(R/I(n)) as n → ∞ and I ∼= ω

(−m)
R is a multiple of an anti-canonical ideal.

4.1. Local cohomology bounds and equality of test ideals

The content of the following lemma can be pieced together by work of the first author 

in [2]. We refer the reader to [24, Lemma 6.7] for a direct presentation of the lemma.6

Lemma 4.1. Suppose that (R, m, k) is a Cohen-Macaulay local normal domain of dimen-

sion d, and J ⊆ R an ideal of pure height 1. Let x1, . . . , xd ∈ R be a system of parameters 

for R, assume that x1 ∈ J , and fix e ∈ N.

(1) If x2J ⊆ a2R for some a2 ∈ J , then for any non-negative integers N2, . . . , Nd with 

N2 ≥ 2, we have that

((J (pe), xN2pe

2 , xN3pe

3 , . . . , xNdpe

d ) : x
(N2−1)pe

2 )

= ((J [pe], xN2pe

2 , xN3pe

3 , . . . , xNdpe

d ) : x
(N2−1)pe

2 )

= ((J [pe], x2pe

2 , xN3pe

3 , . . . , xNdpe

d ) : xpe

2 ).

(2) Suppose xm
3 J (m) ⊆ a3R ⊆ J (m) for some m ∈ N, then for any non-negative integers 

N2, . . . , Nd with N3 ≥ 2, we have that

((J (pe), xN2pe

2 , xN3pe

3 . . . , xNdpe

d ) : x
(N3−1)pe

3 )

⊆ ((J (pe), xN2pe

2 , x2pe

3 , . . . , xNdpe

d ) : xm
1 xpe

3 ).

6 In [24, Lemma 6.7] there is an assumption that R is complete. The lemma claims equality among certain 
colon ideals, and equality of ideals can be checked after completion as R → R̂ is faithfully flat.
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Theorem 4.2. Let (R, m, k) be a local normal Cohen-Macaulay domain of Krull dimension 

d and of prime characteristic p > 0. Assume that R has a test element. Let J1 ⊆ R be 

a choice of canonical ideal. Suppose x1, . . . , xd is a system of parameters of R, x1 ∈ J1, 

and suppose that the following conditions are met:

• There exists element a2 ∈ J1 and a3 ∈ J
(m)
1 such that x2J1 ⊆ a2R and xm

3 J
(m)
1 ⊆

a3R7;

• For each e ∈ N there exists an integer � such that

lcbd−1(x�
2, x�

3, x4, . . . , xd; R/J
(mpe+1)
1 ) ≤ pe + 1.

Then 0∗fg
ER(k) = 0∗

ER(k).

Proof. Identify ER(k) as

ER(k) ∼= lim
−−→

(
R

(xt−1
1 J1, xt

2, . . . , xt
d)

·x1x2···xd−−−−−−→
R

(xt
1J1, xt+1

2 , . . . , xt+1
d )

)
.

Suppose that η = [r + (xt−1
1 J1, xt

2, . . . , xt
d)] ∈ 0∗

ER(k). Equivalently, there exists a c ∈ R◦

such that for all e ∈ N

0 = cηpe

= [crpe

+ (xt−1
1 J1, xt

2, . . . , xt
d)[pe]] ∈ F e(ER(k))

∼= lim
−−→

(
R

(xt−1
1 J1, xt

2, . . . , xt
d)[pe]

)
.

Let J = xt−1
1 J1 and consider the local cohomology module

Hd−1
m

(
R

J [pe]

)
= lim

−−→

(
R

J [pe] + (xt
2, . . . , xt

d)

·x2···xd−−−−−→
R

J [pe] + (xt+1
2 , . . . , xt+1

d )

)
.

Claim 4.3. Let

αpe

= [rpe

+ (xtpe

2 , . . . , xtpe

d )] ∈ Hd−1
m

(
R

J [pe]

)
,

then cαpe

= [crpe

+ (xt
2, . . . , xt

d)[pe]] is the 0-element of Hd−1
m (R/J [pe]).

7 This property is automatic if RP is Q-Gorenstein for each height 2 prime ideal P ∈ Spec(R). Recall 
that a local normal Cohen-Macaulay domain R with canonical ideal J ⊆ R is Q-Gorenstein if there exists a 
m ≥ 1 such that J(m) is a principal ideal. If W1 is the complement of the union of the minimal components 
of J1, then J1RW1

is principally generated by an element a2 ∈ J1, hence x2 can be chosen with the 
property x2J1 ⊆ (a2) ⊆ J1. If W2 is then the complement of the union of the minimal components of 
(J1, x2) then RW2

is a semi-local domain. Hence we can choose an m so that J(m)RW2
is principally 

generated by an element a3 ∈ J
(m)
1 by [18, Theorem 60]. There then exists parameter element x3 so that 

x3J(m) ⊆ (a3) ⊆ J(m). We opt to use the containment xm
3 J(m) ⊆ (a3) ⊆ J(m) to ease computational 

complexity of the proof.
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Proof of Claim. The element [crpe

+ (xt−1
1 J1, xt

2, . . . , xt
d)[pe]] is the 0-element of

lim
−−→

(
R

(xt−1
1 J1, xt

2, . . . , xt
d)[pe]

)
.

Therefore there exists an s ∈ N such that

crpe

(x1x2 · · · xd)spe

∈ (xt+s−1
1 J1, xt+s

2 , . . . , xt+s
d )[pe]

= (x
(t+s−1)pe

1 J
[pe]
1 , x

(t+s)pe

2 , . . . , x
(t+s)pe

d ).

So there exists an element j1 ∈ J
[pe]
1 such that

crpe

(x1x2 · · · xd)spe

− x
(t+s−1)pe

1 j1 ∈ (x
(t+2)pe

2 , . . . , x
(t+s)pe

d ).

The sequence x1, x2, . . . , xd is a regular sequence and so

crpe

(x2 · · · xd)spe

− x
(t−1)pe

1 j1 ∈ (x
(t+s)pe

2 , . . . , x
(t+s)pe

d ).

Hence

crpe

(x2 · · · xd)spe

∈ (x
(t−1)pe

1 J
[pe]
1 , x

(t+s)pe

2 , . . . , x
(t+s)pe

d ) = (J [pe], x
(t+s)pe

2 , . . . , x
(t+s)pe

d ),

which proves the claim. �

Choose e0 ∈ N≥1 so that pe ≥ mpe−e0 + 1 for all e � 0. If e � 0 then

J [pe] ⊆ J (pe) ⊆ J (mpe−e0 +1).

Fix e � 0 and consider the local cohomology module

Hd−1
m

(
R

J (mpe−e0 +1)

)
∼= lim

−−→

(
R

(J (mpe−e0 +1), xt
2, . . . , xt

d)

)
.

Let α̃pe

denote the image of αpe

in Hd−1
m (R/J (mpe−e0 +1)) induced by the projection 

R/J [pe] → R/J (mpe−e0 +1). By Claim 4.3

0 = cα̃pe

= [crpe

+ (xtpe

2 , . . . , xtpe

d )] ∈ Hd−1
m

(
R

J (mpe−e0 +1)

)

∼= lim
−−→

(
R

J (mpe−e0 +1) + (xt
2, . . . , xt

d)

)
.

There are short exact sequences
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0 →
R

J
(mpe−e0 +1)
1

·x
(t−1)(mpe−e0 +1)
1−−−−−−−−−−−−→

R

J (mpe−e0 +1)
→

R

x
(t−1)(mpe−e0 +1)
1 R

→ 0.

Let � be a choice of integer, which depends on e −e0, as in the statement of the theorem. 

The sequence x�
2, x�

3, x4, . . . , xd is a regular sequence on R/x
(t−1)(mpe−e0 +1)
1 R. By (3) of 

Proposition 3.7 we have that

lcbd−1(x�
2, x�

3, x4, . . . , xd; R/J
(mpe−e0 +1)
1 ) = lcbd−1(x�

2, x�
3, x4, . . . , xd; R/J (mpe−e0 +1)),

and so by assumption

lcbd−1(x�
2, x�

3, x4, . . . , xd; R/J (mpe−e0 +1)) ≤ pe−e0 + 1 ≤ pe.

Recall that

0 = [crpe

+ (xtpe

2 , . . . , xtpe

d )] = [crpe

(xt
2xt

3)(�−1)pe

+ (xt�pe

2 , xt�pe

3 , xtpe

4 . . . , xtpe

d )]

as an element of Hd−1
m (R/J (mpe−e0 +1)). By Lemma 3.3,

lcbd−1(xt�
2 , xt�

3 , xt
4, . . . , xt

d; R/J (mpe−e0 +1)) ≤ lcbd−1(x�
2, x�

3, x4, . . . , xd; R/J (mpe−e0 +1))

≤ pe,

so

c(rxt
4 · · · xt

d)pe

(xt
2xt

3)�pe

∈ (J (mpe−e0 +1), x
t(�+1)pe

2 , x
t(�+1)pe

3 , x2tpe

4 , . . . , x2tpe

d ). (4.1)

Notice that xtpe0

1 ∈ J (pe0 ) and so

xtpe0

1 J (mpe−e0 +1) ⊆ xtpe0

1 J (pe−e0 ) ⊆ J (pe).

We therefore multiply the containment (4.1) by xtpe0

1 and obtain that

cxtpe0

1 (rxt
4 · · · xt

d)pe

(xt
2xt

3)�pe

∈ (J (pe), x
t(�+1)pe

2 , x
t(�+1)pe

3 , x2tpe

4 , . . . , x2tpe

d ).

Therefore

cxtpe0

1 (rxt
4 · · · xt

d)pe

(xt
2)�pe

∈ (J (pe), (xt
2)(�+1)pe

, (xt
3)(�+1)pe

, x2tpe

4 , . . . , x2tpe

d ) : xt�pe

3 .

We utilize the assumption that xm
3 J

(m)
1 ⊆ a2R ⊆ J

(m)
1 to conclude that;

xm
3 J (m) = xm

3 (xt−1
1 J1)(m) = x

(t−1)m
1 xm

3 J
(m)
1 ⊆ x

(t−1)m
1 a2R ⊆ x

(t−1)m
1 J

(m)
1 ⊆ J (m).

Therefore xtm
3 J (m) ⊆ x

(t−1)m
1 a2R ⊆ J (m) and we apply (2) of Lemma 4.1 with respect 

to xt
3 and N3 = � + 1 to conclude that
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cxtpe0

1 (rxt
4 · · · xt

d)pe

(xt
2)�pe

∈ (J (pe), (xt
2)(�+1)pe

, x2tpe

3 , x2tpe

4 , . . . , x2tpe

d ) : xtm
1 xtpe

3 .

Equivalently,

cx
t(m+pe0 )
1 (rxt

3xt
4 · · · xt

d)pe

(xt
2)�pe

∈ (J (pe), (xt
2)(�+1)pe

, x2tpe

3 , x2tpe

4 , . . . , x2tpe

d ).

Similarly, we are able to apply (1) of Lemma 4.1 with respect to the element xt
2 and 

obtain that

cx
t(m+pe0 )
1 (rxt

2xt
3xt

4 · · · xt
d)pe

∈ (J [pe], x2tpe

2 , x2tpe

3 , x2tpe

4 , . . . , x2tpe

d )

= (J, x2t
2 , x2t

3 , . . . , x2t
d )[pe].

The element cx
t(m+pe0 )
1 does not depend on e and therefore

rxt
2xt

3xt
4 · · · xt

d ∈ (J, x2t
2 , x2t

3 , . . . , x2t
d )∗.

In particular,

η = [r + (xt−1
1 J1, xt

2, . . . , xt
d)] = [rxt

2xt
3xt

4 · · · xt
d + (J, x2t

2 , . . . , x2t
d )] ∈ 0∗fg

ER(k)

as claimed. �

4.2. S2-ification, higher Ext-modules, and local cohomology

We begin with two lemmas that experts may already be aware of.

Lemma 4.4. Let (S, m, k) be a Cohen-Macaulay local domain and M a finitely generated 

S-module such that ht(AnnS(M)) = h. Then Exth
S(M, S) is an (S2)-module over its 

support.

Proof. Let (F•, ∂•) be the minimal free resolution of M , let (−)∗ denote HomS(−, S), 

and consider the dual complex (F ∗
• , ∂∗

•). Because ht(AnnS(M)) = h we have that the 

following complex is exact:

0 → F ∗
0

∂∗

1−→ F ∗
1 → . . . → F ∗

h−1

∂∗

h−→ F ∗
h → Coker(∂∗

h) → 0.

In particular, depth(Coker(∂∗
h)) = d − h. Moreover, there is a short exact sequence

0 → Exth
S(M, S) → Coker(∂∗

h) → Im(∂∗
h+1) → 0.

The module Im(∂∗
h+1) is torsion-free and therefore has depth at least 1. If d − h ≥ 2

then Exth
S(M, S) has depth at least 2. If d − h = 1 then the depth of Exth

S(M, S) is 1. If 

d − h = 0 then M is 0-dimensional. Therefore if ht(AnnS(M)) = h then Exth
S(M, S) is 

an (S2)-module over its support. �
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Continue to consider the ring S, the module M , and the resolution (F•, ∂•) as above. 

Suppose further S is a regular local ring and hence every finitely generated S-module 

has a finite free resolution. Consider the minimal free resolution (G•, δ•) of Exth
S(M, S). 

If depth(M) = d − h is maximal, then Exth
S(M, S) = Coker(∂∗

h) and therefore (G•, δ•)

is the complex

0 → F ∗
0

∂∗

1−→ F ∗
1 → . . . → F ∗

h−1

∂∗

h−→ F ∗
h → 0.

In particular, if depth(M) = d −h then Exth
S(Exth

S(M, S), S) ∼= M . Suppose depth(M) <

d − h and let (F ∗
• , ∂∗

•)tr be the complex obtained by truncating (F ∗
• , ∂∗

•) at the hth 

spot. That is (F ∗
• , ∂∗

•)tr is the minimal free resolution of Coker(∂∗
h). Then the natural 

inclusion Exth
S(M, S) ⊆ Coker(∂∗

h) lifts to a map of complexes (G•, δ•) → (F ∗
• , ∂∗

•)tr and 

therefore there is an induced natural map M → Exth
S(Exth

S(M, S), S). The map M →

Exth
S(Exth

S(M, S), S) is an isomorphism whenever M is a (maximal) Cohen-Macaulay 

module over its support.

Lemma 4.5. Let (R, m, k) be a complete local normal domain of Krull dimension d ≥

1 and J ⊆ R a pure height 1 ideal. Suppose (S, n, k) is a regular local ring mapping 

onto R, R ∼= S/P , and ht(P ) = h. Then for every integer i the kernel of the natural 

map R/J i → Exth+1
S (Exth+1

S (R/J i, S), S) is J (i)/J i. In particular, for every integer i

there is a natural inclusion R/J (i) ⊆ Exth+1
S (Exth+1

S (R/J i, S), S). Moreover, the natural 

inclusion R/J (i) ⊆ Exth+1
S (Exth+1

S (R/J i, S), S) is an isomorphism whenever localized at 

prime ideal p ∈ V (J) such that (R/J (i))p is Cohen-Macaulay.

Proof. Let Li ⊆ R be the ideal of R, containing J i, so that Li/J i is the kernel of 

R/J i → Exth+1
S (Exth+1

S (R/J i, S), S). Then R/Li ⊆ Exth+1
S (Exth+1

S (R/J i, S), S). If P is 

a prime component of J then RP /J iRP is 0-dimensional and therefore Cohen-Macaulay. 

By the above the discussion, the map under analysis is an isomorphism in the Cohen-

Macaulay locus, and therefore

RP /J iRP = RP /J (i)RP = RP /LiP = Exth+1
SP

(Exth+1
SP

(RP /J (i)RP , SP ), SP )

at prime P which are minimal components of J .

If P is a prime of R of height 1 which is not a component of J , then RP /J iRP = 0

and the identifications above remain true. Therefore the height 1 components of the ideal 

of Li are precisely the height 1 components of J i, i.e. J (i). To conclude that Li = J (i)

it remains to show that the ideal Li does not have embedded components. The module 

Exth+1
S (Exth+1

S (R/J i, S), S) is an (S2) R/J i-module and R/Li is a submodule. Therefore 

R/Li is an (S1)-module and hence Li cannot have an embedded component.

We have proven the first claim of the lemma that for each i ∈ N there is a natural 

inclusion R/J (i) ⊆ Exth+1
S (Exth+1

S (R/J i, S), S). It remains to check that this inclusion 

is an isomorphism whenever localized at prime ideal p ∈ V (J) such that (R/J (i))p is 

Cohen-Macaulay. Indeed, R/J i → R/J (i) induces an isomorphism
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Exth+1
S (R/J (i), S)

∼=
−→ Exth+1

S (R/J i, S)

as J (i)/J i is not supported at any height h + 1 component of S. Therefore the inclusion 

R/J (i) ⊆ Exth+1
S (Exth+1

S (R/J i, S), S) is the same as

R/J (i) → Exth+1
S (Exth+1

S (R/J (i), S), S)

and this map is an isomorphism in the Cohen-Macaulay locus by the discussion preceding 

the lemma. �

We record a corollary of Lemma 4.5 for future reference.

Corollary 4.6. Let (R, m, k) be a complete local normal domain, Q-Gorenstein in codi-

mension 2, and J1 � R a choice of canonical ideal. Let m ∈ N be an integer such 

that J
(m)
1 is principal in codimension 2. Suppose (S, n, k) is a regular local ring map-

ping onto R, R ∼= S/P , and ht(P ) = h. Then for every integer i the natural inclusion 

R/J
(mi+1)
1 → Exth+1

S (Exth+1
S (R/Jmi+1

1 , S), S) is an isomorphism whenever localized at 

a prime ideal of R of height 2 or less.

Proof. If p is prime ideal of height 2 or less then Rp is Cohen-Macaulay and hence 

Rp/J1Rp is Gorenstein of dimension at most 1. The Corollary follows by Lemma 4.5 as 

J
(mi+1)
1 Rp

∼= J1Rp is a canonical ideal whenever p is a prime of R of height 2 or less. �

The next proposition and theorem provide the linear bound of top local cohomology 

bounds of the family of R-modules 
{

R/J
(mpe+1)
1

}
described in Theorem 4.2 whenever 

there exists an ideal I ⊆ R of pure height 1 and parameters x1, . . . , xd with the following 

properties:

(1) I ∼= ω
(−h)
R for some h ≥ 1 and I is principal in codimension 2;

(2) For each 1 ≤ j ≤ d − 2, the ideal aj := (x1, . . . , xd−j+1) is such that

a
[pe]
j Hj

m(R/I(pe)) = 0

for each e ∈ N.

We first provide a lemma. In the following lemma we let (−)∨ denote the Matlis dual 

functor.

Lemma 4.7. Let (R, m, k) be a local normal Cohen-Macaulay domain of Krull dimension 

d and Q-Gorenstein in codimension 2. Assume that R has a test element. Let J1 ⊆ R

be a choice of canonical ideal and m ∈ N such that J
(m)
1 is principal in codimension 2. 

Suppose S is a regular local ring of Krull dimension d + h mapping onto R, R ∼= S/P , 
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and ht(P ) = h. Suppose that I1 ⊆ R is an ideal of pure height 1 with components disjoint 

from those of J1, I1 ∩ J1 = x1R is principal. Then

Hj−1
m

(
R

I
(mi)
1

)
∼=

(
Extd+h−j

S

(
Exth+1

S

(
R

J
(mi+1)
1

, S

)
, S

))∨

for all j ≤ d − 2.

Proof. If j ≤ 0 then Hj−1
m

(
R

I
(mi)
1

)
= Extd+h−j

S

(
Exth+1

S

(
R

J
(mi+1)
1

, S
)

, S
)

= 0. In partic-

ular, we may assume that d ≥ 3. There are isomorphisms

Exth+1
S

(
R

J
(mi+1)
1

, S

)
∼= ω

R/J
(mi+1)
1

∼= Ext1
R

(
R

J
(mi+1)
1

, J1

)
. (4.2)

Consider the short exact sequences

0 → J
(mi+1)
1 → R →

R

J
(mi+1)
1

→ 0.

The ring R is Cohen-Macaulay. Therefore Ext1
R (R, J1) = 0 and there is a resulting short 

exact sequence

0 → J1 → HomR(J
(mi+1)
1 , J1) → Ext1

R

(
R

J
(mi+1)
1

, J1

)
→ 0. (4.3)

But I1∩J1 is principal, I1 and J1 have disjoint components, therefore J1
∼= I

(mi)
1 ∩J

(mi+1)
1

and so

HomR(J
(mi+1)
1 , J1) ∼= HomR(J

(mi+1)
1 , I

(mi)
1 ∩ J

(mi+1)
1 ) ∼= I

(mi)
1 . (4.4)

The ideal J1 is a maximal Cohen-Macaulay R-module and so Ext≥h+1
S (J1, S) = 0. There-

fore by (4.2), (4.3), and (4.4), if j ≤ d − 2 then

Extd+h−j
S

(
Exth+1

S

(
R

J
(mi+1)
1

, S

)
, S

)
∼= Extd+h−j

S

(
I

(mi)
1 , S

)
.

Consider the short exact sequence

0 → I
(mi)
1 → R →

R

I
(mi)
1

→ 0.

Then
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Extd+h−j
S

(
I

(mi)
1 , S

)
∼= Ext

d+h−(j−1)
S

(
R

I
(mi)
1

, S

)
.

An application of Matlis duality now completes the proof as

(
Ext

d+h−(j−1)
S

(
R

I
(mi)
1

, S

))∨

∼= Hj−1
m

(
R

I
(mi)
1

)
. �

Proposition 4.8. Let (R, m, k) be a local normal Cohen-Macaulay domain of Krull dimen-

sion d and Q-Gorenstein in codimension 2. Let p > 0 be a natural number. Let J1 ⊆ R

be a choice of canonical ideal and m ∈ N such that J
(m)
1 is principal in codimension 2. 

Suppose S is a regular local ring mapping onto R, R ∼= S/P , and ht(P ) = h. Suppose 

that I1 ⊆ R is an ideal of pure height 1 with components disjoint from those of J1, 

I1 ∩ J1 = x1R is principal, and parameters x1, x2 . . . , xd with the property that for each 

1 ≤ j ≤ d − 2, the parameter ideal (x2, . . . , xd−j+1) is such that

(xpe

2 , . . . , xpe

d−j+1)Hj
m(R/I

(mpe)
1 ) = 0

for each e ∈ N. Then for all e ∈ N

lcbd−1(xd−3
2 , xd−3

3 , . . . , xd−3
d ; Exth+1

S (Exth+1
S (R/J

(mpe+1)
1 , S), S)) ≤ pe.

Proof. Let (F•, ∂•) be the minimal free S-resolution of Exth+1
S (R/J

(mpe+1)
1 , S). Denote 

by (−)∗ the functor HomS(−, S) and consider the dualized complex (F ∗
• , ∂∗

•). For every 

j ≥ 1 there are short exact sequences

0 → Exth+j
S (Exth+1

S (R/J
(mpe+1)
1 , S), S) → Coker(∂∗

h+j) → Im(∂∗
h+j+1) → 0

and

0 → Im(∂∗
h+j+1) → F ∗

h+j+1 → Coker(∂∗
h+j+1) → 0.

Let Je denote the preimage of J
(mpe+1)
1 in S, an ideal of height h + 1. The S-module 

Coker(∂∗
h+1) has projective dimension h + 1 and the ideal Je annihilates the submod-

ule Exth+1
S (Exth+1

S (R/J
(mpe+1)
1 , S), S). By prime avoidance, and abuse of notation, we 

may lift x = x2, . . . , xd to elements of S and assume that x is a regular sequence on 

Coker(∂∗
h+1) and the free S-modules F ∗

i .

The module Exth+1
S (R/J

(mpe+1)
1 , S) is an (S2)-module over its support, see Lemma 4.4. 

In particular,

Exth+d
S (Exth+1

S (R/J
(mpe+1)
1 , S), S) = Exth+d−1

S (Exth+1
S (R/J

(mpe+1)
1 , S), S) = 0

and



26 I. Aberbach et al. / Advances in Mathematics 441 (2024) 109559

Coker(∂∗
h+d−2) ∼= Exth+d−2

S (Exth+1
S (R/J

(mpe+1)
1 , S), S).

Consider the short exact sequence

0 → Im(∂∗
h+d−2) → F ∗

h+d−2 → Exth+d−2
S (Exth+1

S (R/J
(mpe+1)
1 , S), S) → 0.

By our assumptions and by Lemma 4.7,

(xpe

2 , xpe

3 , . . . , xpe

d ) Exth+d−2
S (Exth+1

S (R/J
(mpe+1)
1 , S), S) = 0

for every e ∈ N. By (2) of Proposition 3.7

lcb2(Im(∂∗
h+d−2)) = lcb1(Exth+d−2

S (Exth+1
S (R/J

(mpe+1)
1 , S), S)).

As xpe

annihilates Exth+d−2
S (Exth+1

S (R/J
(mpe+1)
1 , S), S)),

lcb1(Exth+d−2
S (Exth+1

S (R/J
(mpe+1)
1 , S), S)) ≤ pe

by Lemma 3.3 and Corollary 3.5.

Next, we consider the short exact sequence

0 → Exth+d−3
S (Exth+1

S (R/J
(mpe+1)
1 , S), S) → Coker(∂∗

h+d−3) → Im(∂∗
h+d−2) → 0.

We established lcb2(x; Im(∂∗
h+d−2)) ≤ pe. By assumption and Lemma 4.7

(xpe

2 , . . . , xpe

d−1) Exth+d−3
S (Exth+1

S (R/J
(mpe+1)
1 , S), S) = 0

for every e ∈ N. By (1) of Proposition 3.6 and Lemma 3.3 we have

lcb2(x; Coker(∂∗
h+d−3)) ≤ pe + pe = 2pe.

Next consider the short exact sequence

0 → Im(∂∗
h+d−3) → F ∗

h+d−3 → Coker(∂∗
h+d−3) → 0.

By (2) of Proposition 3.7 and knowing that lcb2(x; Coker(∂∗
h+d−3)) ≤ 2pe we see that

lcb3(x; Im(∂∗
h+d−3)) ≤ 2pe.

Inductively, we find that

lcbj(x; Im(∂∗
h+d−j)) ≤ (j − 1)pe

and
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lcbj(x; Coker(∂∗
h+d−j−1)) ≤ jpe

for each 2 ≤ j ≤ d − 2. Now consider the short exact sequence

0 → Exth+2
S (Exth+1

S (R/J
(mpe+1)
1 , S), S) → Coker(∂∗

h+2) → Im(∂∗
h+3) → 0.

By induction, lcbd−3(Im(∂∗
h+3)) ≤ (d − 4)pe, therefore by (1) of Proposition 3.6

lcbd−3(Coker(∂∗
h+2)) ≤ (d − 3)pe.

Now consider the short exact sequence

0 → Im(∂∗
h+2) → F ∗

h+2 → Coker(∂∗
h+2) → 0.

Apply (2) of Proposition 3.7 to conclude lcbd−2(Im(∂∗
h+2)) ≤ (d − 3)pe. Now consider 

one last short exact sequence:

0 → Exth+1
S (Exth+1

S (R/J
(mpe+1)
1 , S), S) → Coker(∂∗

h+2) → Im(∂∗
h+2) → 0.

We now utilize that x is a regular sequence on Coker(∂∗
h+2) and utilize (2) of Proposi-

tion 3.7 to conclude that

lcbd−1(Exth+1
S (Exth+1

S (R/J
(mpe+1)
1 , S), S)) = lcbd−2(Im(∂∗

h+2)) ≤ (d − 3)pe.

By Lemma 3.3 the parameter sequence xd−3 = xd−3
2 , . . . , xd−3

d on R/J1 satisfies

lcbd−1(xd−1; Exth+1
S (Exth+1

S (R/J
(mpe+1)
1 , S), S))) ≤ pe

for each e ∈ N. �

Theorem 4.9. Let (R, m, k) be a local normal Cohen-Macaulay domain of Krull dimension 

d ≥ 4 and Q-Gorenstein in codimension 2. Let p > 0 be a natural number. Let J1 ⊆ R

be a choice of canonical ideal and m ∈ N such that J
(m)
1 is principal in codimension 2. 

Suppose S is a regular local ring mapping onto R, R ∼= S/P , and ht(P ) = h. Suppose 

that I1 ⊆ R is an ideal of pure height 1 with components disjoint from those of J1, 

I1 ∩ J1 = x1R is principal, and parameters x1, x2 . . . , xd with the following properties:

(1) J1Rx2
and J

(m)
1 Rx3

are principal in their respective localizations;

(2) For every 1 ≤ j ≤ d − 2, the parameter ideal (x1, . . . , xd−j+1) is such that

(x2, . . . , xd−j+1)pe

Hj
m(R/I

(mpe)
1 ) = 0

for each e ∈ N.
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Then the following hold:

(1) For each e ∈ N there exists � ∈ N such that

lcbd−1(x
�(d−1)
2 , x

�(d−1)
3 , xd−1

4 , . . . , xd−1
d ; R/J

(mpe+1)
1 ) ≤ pe + 1;

(2) For each e ∈ N there exists � ∈ N such that

lcbd−1(x
�(d−1)
2 , x

�(d−1)
3 , xd−1

4 , . . . , xd−1
d ; R/Jmpe+1

1 ) ≤ pe + 2.

Proof. For each e ∈ N let Ce be the cokernel of

R/Jmpe+1 → Exth+1
S (Exth+1

S (R/Jmpe+1
1 , S), S) ∼= Exth+1

S (Exth+1
S (R/J

(mpe+1)
1 , S), S)

and consider the short exact sequences

0 → R/J
(mpe+1)
1 → Exth+1

S (Exth+1
S (R/Jmpe+1

1 , S), S) → Ce → 0,

see Lemma 4.5 for details.

By Lemma 4.5 the module Ce is 0 when either x2 or x3 is inverted. Hence for each 

e ∈ N there exists an integer � such that (x�
2, x�

3)Ce = 0. Because d ≥ 4 we have that 

d − 1 ≥ 3 and (3) of Proposition 3.6 implies

lcbd−1(x
�(d−1)
2 , x

�(d−1)
3 , xd−1

4 , . . . , xd−1
d ; R/J

(mpe+1)
1 )

≤ lcbd−1(x
�(d−1)
2 , x

�(d−1)
3 , xd−1

4 , . . . , xd−1
d ; Exth+1

S (Exth+1
S (R/Jmpe+1

1 , S, S)) + 1.

Statement (1) follows by Proposition 4.8.

To prove (2) let Ke = J
(mpe+1)
1 /Jmpe+1

1 and consider the short exact sequences

0 → Ke → R/Jmpe+1
1 → R/J

(mpe+1)
1 → 0.

The module Ke is 0 when either x2 or x3 are inverted. Hence for each e ∈ N there exists 

an integer � such that (x�
2, x�

3)Ke = 0. By (1) of Proposition 3.6 we have that

lcbd−1(x�
2, x�

3, x4, . . . , xd; R/Jmpe+1
1 ) ≤ lcbd−1(x�

2, x�
3, x4, . . . , xd; R/J

(mpe+1)
1 ) + 1

≤ pe + 2. �

Theorem A is a consequence of the following theorem.

Theorem 4.10. Let (R, m, k) be an excellent local Cohen-Macaulay normal domain of 

prime characteristic p > 0, of Krull dimension d ≥ 4, I1 ⊆ R an anti-canonical ideal, 

and ER(k) an injective hull of the residue field. Suppose further that there exists an 
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m ∈ N so that I
(m)
1 is principal in codimension 2 and for each 1 ≤ j ≤ d − 2 there exists 

an ideal aj of height d − j + 1 such that

a
pe

j Hj
m

(
R

I
(mpe)
1

)
= 0

for every e ∈ N. Then 0∗fg
ER(k) = 0∗

ER(k).

Proof. Our strategy is to employ Theorem 4.9 and then Theorem 4.2 to conclude 

0∗fg
ER(k) = 0∗

ER(k). But first, we change the ideals aj , if necessary, so that there are inclu-

sions ad−2 ⊆ ad−3 ⊆ · · · ⊆ a1 and so that there exists parameter elements xm
1 , x2, x3 ∈ aj

for all 1 ≤ j ≤ d − 2 with the property that x1R = I1 ∩ J1 for some canonical ideal J1

and the ideals I1Rx2
and I

(m)
1 Rx3

are principal in their respective localizations.

The ideal aj ∩ aj−1 ∩ · · · ∩ a1 has height at least d − j + 1. We can replace the ideal 

aj with aj ∩ aj−1 ∩ · · · ∩ a1 and may assume that

ad−2 ⊆ ad−3 ⊆ · · · ⊆ a1.

Start by choosing x1 ∈ I1 a generic generator so that x1R = I1 ∩J1 and the ideals I1 and 

J1 have disjoint components. Clearly xmpe

1 annihilates Hj
m(R/I

(mpe)
1 ) for every e ∈ N. 

The ideal I1 is principal in codimension 1, the ideal I
(m)
1 is principal in codimension 2. 

Therefore there exists part of a system of parameters x2, x3 of R/x1R so that I1Rx2

and I
(m)
1 Rx3

are principal in their respective localizations. Moreover, we can replace x2

and x3 by suitable powers and can assume that there exist elements a, b ∈ I1 so that 

x2I1 ⊆ aR ⊆ I1 and x3I
(m)
1 ⊆ bR ⊆ I

(m)
1 . Therefore xmpe

2 I
(mpe)
1 ⊆ ampe

R ⊆ I
(mpe)
1 and 

xpe

3 I
(mpe)
1 ⊆ bpe

R ⊆ I
(mpe)
1 . Consider the short exact sequences

0 →
I

(mpe)
1

ampeR
→

R

ampeR
→

R

I
(mpe)
1

→ 0

and

0 →
I

(mpe)
1

bpeR
→

R

bmpeR
→

R

I
(mpe)
1

→ 0.

The elements xmpe

2 and xpe

3 annihilate I
(mpe)
1 /ampe

R and I
(mpe)
1 /bpe

R respectively. Ex-

amining the resulting long exact sequences of local cohomology informs us that xmpe

2 and 

xpe

3 annihilate Hj
m(R/I

(mpe)
1 ) for every 1 ≤ j ≤ d −2. Replace the element x2 by xm

2 . Then 

(xpe

2 , xpe

3 ) annihilates Hj
m(R/I

(mpe)
1 ) for every 1 ≤ j ≤ d − 2. For each e ∈ N the ideal 

((aj +(xm
1 , x2, x3))4pe

is generated by elements which live in either ape

j or (xm
1 , x2, x3)[pe]

and therefore annihilate Hj
m(R/I

(mpe)
1 ). We replace aj by the ideal (aj + (xm

1 , x2, x3))4.
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The ideal aj has height at least d −j +1 and xm
1 , x2, x3 ∈ aj . We can extend xm

1 , x2, x3

to a parameter sequence xm
1 , x2, x3, . . . , xd−j+1 in aj ⊆ aj−1 ⊆ · · · ⊆ a1. By Theorem 4.9, 

for each e ∈ N there exists an � so that

lcbd−1(x
�(d−1)
2 , x

�(d−1)
3 , xd−1

d , . . . , xd−1
d ; R/J

(mi+1)
1 ) ≤ pe + 1.

Therefore 0∗fg
ER(k) = 0∗

ER(k) by Theorem 4.2. �
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