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1. Introduction

Suppose R is a Noetherian ring of prime characteristic p > 0 and let R° be the set of
elements which avoid all minimal primes of R. Let I C R be an ideal of R and denote
by IP°) the expansion of I along the eth iterate of the Frobenius endomorphism. The
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tight closure of I is the ideal I* consisting of elements x € R such that there exists an
element ¢ € R° with the property that cxz?” € Il for all e > 0. Unlike integral closure
of ideals, the tight closure of an ideal does not commute with localization, [5]. Brenner’s
and Monsky’s counterexample to the localization problem leaves open the intriguing
problem if the property of tight closure being a trivial operation on ideals commutes
with localization.

Continue to let R be a Noetherian ring of prime characteristic p > 0. The ring R is
called weakly F-regular if every ideal is tight closed, that is I = I* for every ideal I.?
A ring is called F'-regular if every localization of R is weakly F-regular. Let F¢R denote
the restriction of scalars of R along the eth iterate Frobenius endomorphism F°: R — R.
We say that R is strongly F-regular if for each ¢ € R° there exists e € N such that the
R-linear map R — F¢R defined by 1 — Ffc is pure. Every strongly F-regular ring is
weakly F-regular and the property of being strongly F-regular passes to localization. It
is conjectured that all three notions of F-regularity agree.

Conjecture 1.1 (The weak implies strong conjecture). If R is an excellent weakly F -
reqular ring of prime characteristic p > 0 then R is strongly F-regular.

Williams proved Conjecture 1.1 for the class of 3-dimensional rings, [31]. Every ex-
cellent 4-dimensional F-regular ring is strongly F-regular by pairing [1, Corollary 4.4]
with [4, Corollary K]. The purpose of this article is to extend the results of [1] to rings
of arbitrary dimension. In particular, if the results of the prime characteristic minimal
model program in dimension 3 established in [4] are valid in all dimensions, then the
classes of excellent F-regular and excellent strongly F-regular rings are equivalent.

A prime characteristic ring R is weakly F-regular if and only if Ry, is weakly F-
regular for every maximal ideal m € Spec(R). Moreover, an excellent local ring is weakly
F-regular if and only if its completion is weakly F-regular. Every local weakly F-regular
ring is a Cohen-Macaulay normal domain. We therefore restrict our attention to the class
of local Cohen-Macaulay normal domains which admit a canonical module.

Theorem A. Let (R, m, k) be an excellent Cohen-Macaulay normal domain of prime char-

acteristic p > 0, of Krull dimension d, and I C R an anti-canonical ideal.®> Suppose that
there exists an m € N such that 1™ is principal when localized at each height 2 prime’

and for each 1 < j < d — 2 there exists an ideal a; of height d — j + 1 such that

2 A defining property of tight closure theory is that every regular ring is weakly F-regular.

3 An ideal I C R is an anti-canonical ideal if it represents the inverse of the canonical divisor in the class
group of R. Equivalently, there exists a canonical ideal J C R, with components disjoint from that of I, so
that I N J is a principal ideal.

4 Every excellent normal ring which is F-rational in codimension 2 admits an m > 1 with this property.
Indeed, F-rational rings have pseudo-rational singularities, excellent pseudo-rational singularities are ra-
tional in codimension 2, and 2-dimensional excellent local rational singularities have torsion class group,
[26,20,19].
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for every e € N. If R is weakly F-regular then R is strongly F-regular.

Remark 1.2. The Matlis dual of the local cohomology module HZ (R/I(?)) is the com-
pletion of Ext}i{j (R/It™P%) ], a module which is not supported in codimension d — j if
j < d—2. Hence H,(R/I(™?")) is annihilated by an ideal of height d—j+1. The criterion
of Theorem A is therefore reasonable as it is natural to anticipate that the annihilators
of H},(R/I(™¥")) are of linear comparisons as e — 0c.

Remark 1.3. Let (R, m, k) be as in Theorem A and assume that R is Cohen-Macaulay.
Suppose that Eg(k) is an injective hull of the residue field. Let 0% (k) and O*E’jf( ) denote
the tight closure and finitistic tight closure respectively of the 0-submodule of Eg(k),
see Section 3 for definitions. Then OEJZ(k) = O}‘;R(k) under the hypotheses of Theorem A,
see Theorem 4.10. Therefore the test ideal and big test ideal of R agree by [14, Propo-
sition 8.23] and [3, Theorem 3.2], cf. [22, Theorem 7.1 and Theorem 7.2]. By definition,
the test ideal of R is the unit ideal if and only if R is weakly F-regular and the big test
ideal of R is the unit ideal if and only if R is strongly F-regular. Therefore Theorem A
is a consequence of Theorem 4.10.

Conjecture 1.1 is valid for rings R which are standard graded over a field, [21]. It
would be interesting to know if such rings satisfy the hypotheses of Theorem A. With-
out the standard graded assumption, most established cases of Conjecture 1.1 require
an assumption on R that is akin to being Gorenstein. Hochster and Huneke proved
Conjecture 1.1 for the class of Gorenstein rings, [15]. Building upon Williams’ proof of
Conjecture 1.1 for the class of 3-dimensional rings, [31], MacCrimmon proved the weak
implies strong conjecture for rings which are Q-Gorenstein on the punctured spectrum,
[9]. Singh announced that Conjecture 1.1 is valid for rings whose anti-canonical algebra®
is Noetherian. Singh’s result was never published, but has since been recaptured by oth-
ers, [10]. Takagi established the validity of Conjecture 1.1 for rings that are numerically
Q-Gorenstein, as shown in [29, Main Theorem]. Furthermore, Takagi demonstrated the
equality of test ideals under the numerically Q-Gorenstein hypothesis, a hypothesis that
is weaker to being Q-Gorenstein. If the anti-canonical algebra of R is Noetherian, then the
condition of numerically Q-Gorenstein is equivalent to Q-Gorenstein, [29, Lemma 3.5].

Singularities of prime characteristic rings are related to KLT singularities of the com-
plex minimal model program through the process of reduction to prime characteristic,
[12,28]. Theorems of the complex minimal model program establish that if R is essentially
of finite type over C with at worst KLT singularities, then the symbolic Rees algebras
associated to ideals of pure height 1 are Noetherian. It is therefore natural to conjecture

5 Suppose that R is a normal domain and I C R is an anti-canonical ideal. The anti-canonical algebra of
R is the symbolic Rees algebra R @ I & IPg... , an algebra unique up to R-algebra isomorphism.
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the same in strongly F-regular rings and that the hypotheses of Singh’s Theorem are
vacuous.

Conjecture 1.4. If R is an excellent strongly F-reqular ring of prime characteristic p > 0
and I C R an ideal of pure height 1. Then the symbolic Rees algebra of I is Noetherian.

Progress around Conjecture 1.4 is quite limited. An elementary and (mostly) algebraic
proof of Conjecture 1.4 for the class of 2-dimensional F-regular rings can be derived
from [23, Corollary 3.2]. Recent progress of the minimal model program establishes
Conjecture 1.4 for the class of 3-dimensional F-regular rings, see [4, Corollary K] and [1,
Proof of Corollary 4.5] for necessary details.

In light of Conjecture 1.4, it would be desirable to remove the assumption that the
anti-canonical algebra of R is Noetherian in Singh’s Theorem and replace it with the
milder hypothesis that the anti-canonical algebra is assumed to be Noetherian at non-
closed points of Spec(R). Such a step puts forth a much needed inductive program to
establish Conjecture 1.4, or at the very least establish that the class of F-regular and
strongly F'-regular rings agree. This is what we accomplish and is the main contribution
of this article.

Theorem B. Let (R,m, k) be an excellent weakly F-regular ring of prime characteristic
p > 0, of Krull dimension d, and I C R an anti-canonical ideal. Suppose that the anti-
canonical algebra of R is Noetherian on the punctured spectrum. There exists m € N so
that I™) s principal when localized at each height 2 prime and for each 1 < j < d — 2
there exists an ideal a; of height d — j 4+ 1 such that

. R
P [TV )
a; H (I(mpe)> =0

for every e € N. In particular, the ring R is strongly F-reqular by Theorem A.

Remark 1.5. The implications of the techniques employed in this article regarding the
agreement between the test ideal and big test ideal of R are not explicitly clear when
only considering the assumption that the anti-canonical algebra is Noetherian on the
punctured spectrum. Our approach requires not only Noetherianity of the anti-canonical
algebra of R on the punctured spectrum, but also the additional condition of Cohen-
Macaulayness on the punctured spectrum. We observe that this condition holds true
if R is weakly F-regular, see the proof of Corollary 2.7. To establish the equality of
test ideals solely based on the assumption that the anti-canonical algebra is Noetherian
on the punctured spectrum, one would need to appropriately modify the outcomes and
methodologies presented in Section 2 to accommodate algebras that may not be Cohen-
Macaulay.
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2. Annihilators of local cohomology

This section is devoted to proving Theorem B. Let (R,m, k) be an excellent local
normal domain of Krull dimension d > 3 and I C R an ideal of pure height 1. Let
W = R\ Upemin(r) I’ and for each n € N let I™ = "Ry N R denote the nth symbolic
power of the ideal I. To study the annihilators of HZ (R/I™) we will approximate the
ideals (™) by ideals of the form (yi,...,yn)" where h is “small,” y1,...,yn € I, and J
denotes the integral closure of an ideal J C R.

Let J C R be an ideal and n € N. There are short exact sequences

Jn-1 R R
O—>—_—)—_—>——>0,
Jn Jn Jnfl

and so there are exact sequences of local cohomology modules

i () o (i) s HI (i) .
Jn Jn Jn—l

Our aim is to establish uniform annihilators of the local cohomology modules H: (J7~1/

Jn) that are independent of n. For the sake of convenience, we adopt the following
notation:

o R[Jt] =P, J"t" is the Rees algebra of J;

e R[Jt,t71 :7@1161\1 J™t" is the extended Rees algebra of J, i.e. R[Jt,t71] agrees
with the Rees algebra R[Jt] in positive degree and contains copies of R in negative
degree;

o R is the integral closure of the Rees algebra R[Jt] in Rt]; R is N-graded and the
nth graded piece of R is J";

o R[t7!] is the integral closure of the extended Rees algebra R[Jt,t~!] in R[t, ¢t~ 1]. If
n > 0 then the nth graded piece of R[t~!] is J”. The algebra R[t!] contains copies
of R in negative degrees.

If + € R then xH} (J?—1/J") =0 for all n € N if and only if
cHL(RIETY/ ' R[ETY]) = 0.

The Faltings Annihilator Theorem, later generalized by Brodmann, provides a criterion
to establish such annihilation properties.

Theorem 2.1 ([7, Theorem 9.5.1]). Let S be a Noetherian ring which is the homomorphic
image of a regular ring, M a finitely generated S-module, and let a,b C R be ideals. Then

min{i € N | AC : a“ H.(M) = 0} = min{depth(Mp) + height((b + P)/P) | P ¢ V(a)}.



[ I. Aberbach et al. / Advances in Mathematics 441 (2024) 109559

Our first step towards proving Theorem B is the following lemma.

Lemma 2.2. Let (R, m, k) be an excellent local normal domain of Krull dimension d and
J C R an ideal generated by at most h elements. Suppose that the associated graded
algebra €D,,> Jn/Jl @R R, is Cohen-Macaulay. Then there exists a constant C so
that

aCHL(T7 [T =0
for every0 <i<d—h—1andn € N.
Proof. Without loss of generality, we may pass to the completion of R and assume that R
is the homomorphic image of a regular local ring. Let S = R[t™!] and G = S/t1S. The
lemma is equivalent to the assertion that there exists a constant C' so that ¢ HE ¢(G) = 0

for every 1 < i < d—h—1. By Theorem 2.1, it suffices to show that if P € Spec(S)\V (zS5)
then

>d—h.

P
depth(Gp) + height (mS; )
If P ¢ V(xS) then Gp is Cohen-Macaulay. Therefore

depth(Gp) = dim(Gp) = heightg(P) — 1.

Then, because S is catenary,

mS + P

depth(Gp) + height ( ) = heightg(P) — 1 + dim(S/P) — dim(S/mS + P)
= heightg(P) — 1 + d + 1 — heightg(P)
— dim(S/mS + P)
=d —dim(S/mS + P).

Recall that S is the integral closure of R[t~1] in R[t,t~1]. It follows that S/mS is a finite
extension of the fiber cone of J, an R/m-algebra of Krull dimension at most h. Therefore

dim(S/mS + P) < dim(S/mS) = h
and so depth(Gp) + height (25F£) > d — h as needed. O
Corollary 2.3. Let (R, m, k) be an excellent local normal domain of Krull dimension d and

J C R an ideal generated by at most h elements. Suppose that the ring @ J*/J" 1@z R,
is Cohen-Macaulay. Then there exists a constant C' so that
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2" HE (R/J7) = 0
for every0 <i<d—h—1andn € N.

Proof. For every i > 0 and for every n € N there are exact sequences of local cohomology
modules

Hyy (") J"FT) = Hy (R/JHT) — Hy (R/T™).

By Lemma 2.2, if i < d — h — 1, then there exists a constant C' so that ¢ annihilates

the left most module of the above exact sequences for all n > 0. By induction, 2¢™

annihilates H: (R/J") for every n € N. 0O

Remark 2.4. If we are only interested in annihilation properties of H} (J"/J"*1), then
many of the assumptions of Lemma 2.2 and Corollary 2.3 are not necessary. One only
needs to assume that R is an excellent normal domain and J is generated by at most d—2
elements to conclude that there exists a constant C' so that m® annihilates H} (J7/Jn+T)
for every n € N. Indeed, height(mS + P/P) > 1 for all P € Spec(S) \ V(mS). Thus, to
show

depth(Gp) + height(mS + P/P) > 2

for every P € Spec(S)\ V(mS), it suffices to show that height(mS + P/P) > 2 whenever
depth(Gp) = 0. If depth(Gp) = 0 then P € Spec(9) is an associated prime of t~1S. The
ring S is normal and ¢~! is a nonzerodivisor. Therefore every associated prime of 1.5
is minimal and so dim(Gp) = 0. One can now proceed as in the proof of Lemma 2.2 to
show that height(mS + P/P) > 2.

Lemma 2.5. Let (R,m, k) be an excellent Noetherian local normal domain with infinite
residue field, I C R an ideal, Py,..., P, € Spec(R) a finite collection of non-comparable
prime ideals, and W = R\ \J'_, Pi. Suppose that Crp,(IRp,) < h for every 1 <i <t.
Then there exist elements y1,...,yn € I and x € W with the following properties:

(1) ( Ly ,yn)Rw C IRw is a reduction of IRy ;
(2) 2"I™ C (y1,...,yn)"™ for alln € N.

Proof. Recall the following: Suppose (9, n, ¢) is a local ring and J C I are ideals. Then J
is reduction of I if and only if S[Jt]|®@g ¢ — S[It]®s ¢ is finite, see [27, Proposition 8.2.4].
In particular, if J’ C I is an ideal such that J’ = J + nl and J is a reduction of I then
J' is a reduction of I.

To prove the lemma start by choosing elements y1,;,...,yn: € I so that (y14,...,
yn,i)Rp, forms a reduction of the ideal IRp,. Choose elements r; € (N;x;FP;) \ P; and
set y; = >.7;y;4. Then (y1,...,yn)Rp, forms a reduction of IRp, for each 1 < i <t
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by the above discussion. Therefore (y1,...,yn)Rw forms a reduction of IRy by [27,
Propositions 8.1.1.].

Let J = (y1,-.-,yn). Then JRy = IRy and so there exists an element x € W such
that I C J, in particular zI C J. Raising the containment to the nth power we find
that 2”I™ C Jn for every n € N. We claim that z™I™ C Jm". Let r € I™, then there
exists a t € N and an equation

a4+t ar +a =0

such that a; € I for each 1 < j < t. Multiplying by 2™ we find that there is an
equation

(z"r)t 4+ 2"ay (") 4 2T Vg, a™a, = 0.
The elements 27 a; belong to J77 and therefore z"r € J7 = Jn. 0O

Theorem 2.6. Let (R, m, k) be an excellent local Cohen-Macaulay normal domain of Krull
dimension d > 3 and I C R an ideal of pure height 1 with the following properties:

e I"Rp = I Rp for every P € Spec(R) \ {m} and every n € N;
o If P € Spec(R) \ {m} and G = R[t ]/t 'R[t™] is the associated graded ring of 1
then Gp is Cohen-Macaulay.

Then there exists a system of parameters x1,To,...,xq such that for every 3 <t < d;
(..., 2" HL(R/I™) =0

for every0 < j<d—(t—1) and n € N.

Proof. The ideal I is locally principal at its height 1 components because R is normal.

Therefore I* C I, Our assumptions inform us that I /I is 0-dimensional for every
integer n. Therefore for every integer ¢ > 1

Hy, (R/T") = Hy (R/T™).

Start by choosing z1 € I. Then clearly 27 € I™ and therefore 27 annihilates HE (R/I™)
for all integers ¢ and n. If W7 is the complement of the union of the minimal primes of
x1R then IRy, is a principal ideal. By Lemma 2.5 there exists an element y € I and
x € W) so that 21" C y™R for every n € N. There are short exact sequences

Tn_) R_>R
y*R y"R I

0—
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and so HL(R/T7) = HLT'(I"/y*R) if j < d — 3 and there is an injective map
HY2(R/T7) — H31(T" /y"R). Therefore 2™ annihilates Hi,(R/T") for every j < d —2
and we take zo = x.

If W5 is the complement of the union of the minimal primes of (x1,z2) then IR,
has analytic spread at most 1, see [11, Proof of Theorem 1.5]. The ring Ry, is normal,
every principal ideal in a normal ring is integrally closed, and therefore I Ryy, is a prin-
cipal ideal. We therefore proceed as before to find an element x3 so that % annihilates
HL(R/T) for every j < d — 2 as needed.

Inductively, suppose that we have found parameter elements z1,...,z;, with ¢ > 3,
so that if 3 <t < then

(xf ..., x?)H&(R/I_") =0

for every 0 < j < d— (¢t — 1). It is important that ¢ > 3 in the inductive step of the
proof. If ¢+ = 2 then it is not the case that (7, ) annihilates Hi,(R/T") for every
0<j<d-(2—1)=d-1. Indeed, the annihilator of the top local cohomology module
HZIY(R/I") is the height 1 ideal I and (z7,2%) € I™. If i = d then we are done.
Suppose that i < d — 1. Our aim is to find a parameter element x;y; so that

o HY(R/T™) = 0

for every j < d —1i.

Let W be the complement of the union of the minimal primes of the parameter ideal
(z1,...,2;). Then I"Ry = I™ Ry, for all integers n and so the localization of IRy at
a maximal ideal of Ry is an ideal of analytic spread at most ¢ — 1, see [11, Proof of
Theorem 1.5]. By Lemma 2.5 there exist elements y1,...,y;—1 € I and 2, € W so that

(1) (y1,---,Yi—1)Rw € IRw is a reduction of I Ryy;
(2) ($;+1)nf_” C(y1,...,9i—1)" for all n € N.

Let J = (y1,...,¥i—1) and consider the short exact sequences

OAI:%£%£%0.
JrvoooJrIn

The element (2], ;)™ annihilates the left-most module in the above short exact sequence
and there are exact sequences of local cohomology modules

} R (R . In
m(50) - (gr) » e (55)

The element (2], ;)" annihilates the right-most module. By our hypothesis that the asso-
ciated graded ring of I is Cohen-Macaulay on the punctured spectrum of R, Corollary 2.3
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implies that there exists a constant C so that (/)" annihilates HL(R/J™) for every
j <d—(i—1)—1=d—i. Therefore (2}, ,)°™*V) annihilates Hp(R/I") for every
j < d —i. Therefore x;,1 = (x§+1)20 has the desired annihilation properties. O

Theorem B is a consequence of the following theorem.

Corollary 2.7. Let (R,m,k) be an excellent local Cohen-Macaulay normal domain of
prime characteristic p > 0 and Krull dimension d > 3. Suppose that R is a splinter
on the punctured spectrum of R and that the anti-canonical algebra of R is Noetherian
on the punctured spectrum. Then there exists an ideal I C R of pure height 1 and pa-
rameters x1,...,xq with the following properties:

(1) I= wgm) for some m > 1;
(2) For each 1 <j <d-—2, the ideal aj := (z1,...,24—j11) is such that

o HI (R/TP)) =0

for each e € N.

Proof. Start by choosing an ideal I C R of pure height 1 so that I = w& Y s an anti-
canonical ideal. We are assuming that the anti-canonical algebra is Noetherian on the
punctured spectrum. Therefore if P € Spec(R) \ {m} then there exists an integer m
such that the symbolic Rees algebra of 1™ Rp is standard graded. The set of prime
ideals U Ass(R/I™"™) is a finite set by [6], see also [17]. By prime avoidance there exists
an s € R\ P which is contained in each non-minimal member of U Ass(R/I"™™). Then
Itmn R, = 1™ R for every n € N. The space Spec(R\ {m} is quasi-compact. Therefore
there exists finitely many open sets D(s1), ..., D(S¢) covering Spec(R\ {m} and integers
m;, 1 <1 < s, so that for all n € N I(mi)"Rsi = I(mi")Rsi. If m is a common multiple
of m1,...,ms and then the symbolic Rees algebra of I(™ is standard graded on the
punctured spectrum, i.e. I[™"Rp = I Rp for all n € N and P € Spec(R) \ {m}.
We replace I by (™). By Theorem 2.6, it suffices to show that R is Cohen-Macaulay
and that if G = Gry(R) is the associated graded ring of I then Gp is a Cohen-Macaulay
algebra for all P € Spec(R) \ {m}.

For each non-maximal prime P the localized ring Rp is strongly F-regular by [10,
Corollary 5.9], see also [30, Theorem 0.1]. Therefore the localized (symbolic) Rees alge-
bras R[It] ® Rp are Cohen-Macaulay for all P € Spec(R) \ {m}, see [10, Lemma 6.1].
We may now conclude that Gp is a Cohen-Macaulay algebra for all P € Spec(R) \ {m}
by [16, Proposition 1.1]. O
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3. Tight closure, local cohomology, and local cohomology bounds
3.1. Tight closure

Let R be a ring of prime characteristic p > 0 and let R° be the complement of the
union of the minimal primes of R. The eth Frobenius functor, or the eth Peskine-Szpiro
functor, is the functor F¢ : Mod(R) — Mod(R) obtained by extending scalars along the
eth iterate of the Frobenius endomorphism. If N C M are R-modules and m € M, then
m is in the tight closure of N relative to M if there exists a ¢ € R° such that for all
e > 0 the element m is in the kernel of the following composition of maps:

M — M/N — F¢(M/N) =% F¢(M/N).

In particular, if we consider an inclusion of R-modules of the form I C R then F¢(R/I) =
R/I""] where TPl = (#?° | r € I), and an element 7 € R is in the tight closure of I
relative to R if there exists a ¢ € R° such that er?” € IP"] for all e > 0. The tight closure
of the module N relative to the module M is denoted Nj;. In the case that M = R and
N =1 is an ideal then we denote the tight closure of I relative to R as I*. We say that
N is tightly closed in M if N = Nj,. If an ideal is tightly closed in R then we simply say
that the ideal is tightly closed. The finitistic tight closure of N C M is denoted N;\kfg
and is the union of (NN M’)%,, where M’ runs over all finitely generated submodules of
M.

The notions of weak F-regularity and strong F-regularity can be compared by study-
ing the finitistic tight closure and tight closure of the zero submodule of the injective hull
of a local ring by [14, Proposition 8.23] and [25, Proposition 7.1.2]. Suppose that (R, m, k)
is complete local and Er(k) is the injective hull of the residue field. The finitistic test
ideal of R is 7¢4(R) = ;g Anng(I*/I) and agrees with AnnR(OEf;’(k)). The (big) test
ideal of R is 7(R) = ycaremoa(ry Annr(Ny/N) and agrees with Anng(0%, ;). The
ring R is weakly F-regular if and only if 7¢,(R) = R and R is strongly F-regular if
and only if 7(R) = R. Thus to prove the conjectured equivalence of weak and strong
F-regularity it is enough to show O*ER(k) = O*Ef Rg(k) under hypotheses satisfied by rings
which are weakly F-regular.

To explore the tight closure of the zero submodule of Er(k) we exploit the structure
of Er(k) as a direct limit of O-dimensional Gorenstein quotients of R described in [13].
Suppose (R, m, k) is a complete local Cohen-Macaulay domain of Krull dimension d and
J1 € R a canonical ideal. Let 0 # x1 € Jy, x2,...,24 € R a parameter sequence, and for
each t € N let [, = («!'Jy, 2%, ..., 2%). The sequences of ideals {I,} form a decreasing
sequence of irreducible m-primary ideals cofinal with {m!}. Moreover, the direct limit
system lim R/I; Uy R/Iy is isomorphic to Eg(k). The following lemma uses this
description of the injective hull of the residue field to describe any potential difference
between the modules OER(k) and OTE’Z(,C). We refer the reader to the discussion at the
beginning of [2, Section 2| for details.
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Lemma 3.1. Let (R, m, k) be a complete Cohen-Macaulay local ring of prime characteristic
p > 0 and of Krull dimension d. Let J; C R be a choice of canonical ideal and 1, ..., xq
a system of parameters such that x1 € J. Make the following identification of Er(k):

R - R
FEr(k) = lim -
R( ) A»((xtl—ljl’xé’...xfi) (xijlvxg—i_l’.'.xf;_l))

Ifn=1[r+ @ "J,ab,-2t)] € Eg(k) then
(1) ne O*Efs(k) if and only if there exists a ¢ € R° and s € N such that for all e € N
c(r(@my - wq)° )P € (@M, 25" 7x2+t)[pe};

(2) ne O*ER(k) if and only if there exists a ¢ € R° such that for all e € N there exists
an s = s(e) such that

c(r(zimy - 2q)®)P" € (51, a5t ,:cff't)[pe}.
3.2. Local cohomology bounds

We will relate the modules Oy;g(k) and 0% (k) in Lemma 3.1 through the language of
local cohomology bounds. To this end, suppose that M is a module over a ring R and
x = x1,...,2q a sequence of elements. For each j € N let 2/ = z},...,27, and for each

pair of integers ji < jo let &3, ., .., be the map of Kosul cocomplexes

0 M M 0
l — \L _zq'th
22 '
0 M—sM 0

Let &3y..5,.5, be the following product:

— O e PP o ..
AMsasgisge = YRiwigiige ® ORiza3j1352 ® ® Rz asj1352 ® M.
e .
Then aj, . j1:j» 1S @ map of Koszul cocomplexes

~ e
XM ;551572

K* (25 M) K* (a7 M).

Let ah;g j1:j, denote the induced map of Koszul cohomologies

i

H1(£]17M) aM;@;u:jz Hl(Q”,M)
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Then

lim (Hi(zjl;M) izia, Hi(fz;M)> = H{yp(M)

J1<J2
by [8, Theorem 3.5.6].

Denote by oﬂM;&;j;oo the map

H' (&7 M) =52 Hiy) o (M),

Observe that n € Ker(aj\/[@;jm) if and only if there exists some k > 0 such that n €
Ker(alyj4n)- If 1 € Ker(ayy,,..) we let

e;j (n) =min{k | n € Ker(aﬁ\/[;l;j;j+k)}.
Definition 3.2. Let R be a ring, x = x1,...,x4 a sequence of elements in R, and M

an R-module. The ith local cohomology bound of M with respect to the sequence of
elements z is

leb; (z; M) = sup{e;j (n)|ne Ker(afw;%jm) for some j} € N U {c0}.

Observe that if M is an R-module and z is a sequence of elements, then lcb;(z; M) =
N < oo simply means that if n € H(z7; M) represents the 0-element in the direct limit
iy (2 00) L ) 2 B ()

J1x]2

then afw;z;j;ﬁ]\,(n) is the 0-element of the Koszul cohomology group H®(z/+V;M).
Therefore finite local cohomology bounds correspond to a uniform bound of annihilation
of zero elements in a choice of direct limit system defining a local cohomology module.
It would be interesting to understand when local cohomology bounds are finite.

3.8. Basic properties of local cohomology bounds

Our study of local cohomology bounds begins with two useful observations.
Lemma 3.3. Let R be a commutative Noetherian ring, M an R-module, and x =
T1,...,2q G sequence of elements, then lcbi(gj;M) < lebi(z; M). Furthermore,
Icb;(z; M) < jm for some integers j,m if and only if lcb;(z7; M) < m where 27 is

the sequence of elements x7, ..., x).

. . ) — At
Proof. One only has to observe that X foi ke ktm = YMiaijhyjk+ime O
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If x1,..., x4 is a sequence of elements in a ring R and if 1M = 0 for some R-module
M then the short exact sequence of Koszul cocomplexes

0— K*(x2,...,xa; M)(=1) = K*(x1,22,...,24; M) = K*(x2,...,24; M) — 0

is split and therefore H'(x1,xa,...,2q; M) = H(za,...,2q; M) ® H" " (xg, ..., 2q; M).
The content of the following lemma is a description of the behavior of the maps
on;Il’xz vvvvv va:j.j+k With respect to these isomorphisms of Koszul cohomologies.

Lemma 3.4. Let R be a commutative Noetherian ring, M an R-module, and x1,xs, ..., x4
a sequence of elements such that x1M = 0. If i,j,k € N then

i (ed ed J. i (ed J. i—1 (.7 J.
H'(xq,x5,...,x; M) = H'(xy,...,x);, M)® H' ™ (x3,...,2,;, M)
and the map anr.qy ao,....x0:5,j+k 08 the direct sum of a?V[;Izpu,IdU,j‘i’k and the 0-map.

Proof. Let (F*,0*) be the Koszul cocomplex K*®(23, ... ,:Eil; R) and let (G*,4°®) be the
Koszul cocomplex K*(z7; R). Let

(L*9%) = K*(of ol B) = KO (o ) @ KO (2 ) ).

Then L' = (G°® F') & (G' @ Fi~1) = Fi @ Fi~!. We abuse notation and let -z7 denote
the multiplication map on F?. The map 7' can be thought of as

. o° 0 ) 1 . )
1 — . . . F’L FZ F’L+1 FZ.
7 (:I::cjl 81_1) @ - ©

In particular, if we apply — ® g M the map - £+ le ® M 1is the 0-map and therefore
the ith map of the Koszul cocomplex K*(x],23,...,2%; M) is the direct sum of maps
(0'® M) @ (0" ® M). In particular

Hi(a;{,x%,...,xfl;M) %Hi(xg,...,:cg;M)@Hifl(a:%,...,xé;M).

To see that anre, z,,....0q:5,j+k 15 the direct sum of O‘Z}\/I;m,...,zd;j,ﬁk and the 0-map is
similar to above argument but uses the fact that

~o _ ~e ~e
Mgy @2, wasjijth — CRiwa,zaigii+k © CRizygij+k © M
~1 _
and G4k @M =0. O

A particularly useful corollary of Lemma 3.4 is the following;:
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Corollary 3.5. Let R be a commutative Noetherian ring and M an R-module. Suppose
Z1,...,2q 18 a sequence of elements, 1 < i < d, and (x1,...,2q—;)M = 0. If j,k € N
then

¢ L0, j 0/, j+k j+k
Ny owgiirk - Ho (@, M) — HY (@177, 2™ M)
is the 0-map for all ¢ > i+ 1. In particular, Icbe(z1, ..., xq; M) =1 for all £ > i+ 1.
Proof. By multiple applications of Lemma 3.4 it is enough to observe that

Hz(xﬂ_i+1,...7xﬂ;M) =0.

This is clearly the case since xi_i flreee ,xfl is a list of 7 elements and we are examining
an £ > i+ 1 Koszul cohomology of M with respect to this sequence. 0O

Suppose 0 — M; — My — M3 — 0 is a short exact sequence of R-modules. The
next two properties of local cohomology bounds we record allow us to compare the local
cohomology bounds of the modules appearing in the short exact sequence. Proposition 3.6
allows us to effectively compare the local cohomology bounds of two of the terms in the
sequence provided a subset of the elements in the sequence of elements defining Koszul
cohomology annihilates the third. Proposition 3.7 compares the local cohomology bounds
of two of the terms in the short exact whenever the sequence of elements defining Koszul
cohomology is a regular sequence on the third module.

Proposition 3.6. Let R be a commutative Noetherian ring and
04)M14)M2*>M3*>0
a short exact sequence of R-modules. Let x = x1,...,xq be a sequence of elements of R.
(1) If (x1,...,2q—5)My =0 then for all £ > j+1
ICbg(z; Mg) S lcbg(g; Mg) + 1.
(2) If (x1,...,24—j)M> = 0 then for all{ > j+1
leby(z; M3) < lcbpyq(x; M) + 1.

(3) If (x1,...,2q—;)Ms =0 then for all £ > j +2

leby(z; My) < lcby(z; Ma) + 1.
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Proof. For each integer j € N let 2/ denote the sequence of elements x{, x%, . 7mfl. For
(1) we consider the following commutative diagram, whose middle row is exact:

HY(27; My) ——— H%(a%; M3)

14 L
laMz:z;j;J’-%—k laMs;ﬁ;j;j-%—k

He(gj"'k;Ml) —_— He(gj"'k;Mg) — Hz(gj"'k;Mg)
b i
My;zsj+k;i+k+1 Mosz;j+k;j+k+1

HZ(§j+k+1;M1) N Hé(ngrkJrl;MQ)

By Corollary 3.5 the map afwl zjtkj+kt1 1S the O-map for all £ > j+1. A straightforward
diagram chase of the above diagram, which follows an element 1 € Ker(af\b&; it ) for
some k', shows that n € Ker(af\/h@;j;j+k+1) whenever k > lcby(z; M3). In particular,
leby(z; Ma) < lcby(z; M3) + 1.

Statements (2) and (3) follow in a similar manner and the details are left to the
reader. O

Proposition 3.7. Let R be a commutative Noetherian ring, 0 — My — My — M3 — 0 a
short exact sequence of R-modules, and x = x1,...,24 a sequence of elements in R.

(1) If z is a reqular sequence on My then lcb;(z; Ma) = leby(z; Ms) for alli < d — 1.
(2) If z is a regular sequence on Ms then lcb;(z; Ms) = lcbipq(x; My) for alli < d—1.
(3) If z is a reqular sequence on My then lcb;(z; My) = leb;(z; M) for all i < d.

Proof. The proofs of the three statements are very similar to one another and we only
provide the details of (1).

Proof of (1): For i < d we have H*(z7; M) = 0 and therefore if i < d — 2 there are
commutative diagrams

H(27; M) —=— H'(a/; Ms)
J{all‘\/fz;g;j;jJrk J{ag\/fa;i;j;jJrk

Hi(a7HF; My) —=— Hi(zI+%; My)

whose horizontal arrows are isomorphisms. It readily follows that lcb,;(z; M) =
leb; (x; M3) whenever ¢ < d — 2. Because z is a regular sequence on M; we have that the
maps af; . j.j+x are injective. Conside the following commutative diagrams whose rows
are exact:

0 ——— H* (2l My) —— H(a7; M3) LN H(27; My)

d—1 ad—l ad
Mosz;j;j+k Mgsz3j:5+k My;z;5:5+k

0 —— HI¥ (2 My) REALN H (gIk M) SILLN He(z7%k: M)
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d—1 d—1
If n € Ker(ay, . j,1x) then m5(n) € Ker(ahy, .k

Therefore a‘]iw;{’l;j’j+k(77) = 0 whenever k > lcbg_1(z; M3) and hence lebg_1(z; M3) <
lcbg_1 (z; Ms).

To show that lcbg_1 (z; M2) > lebg—1(z; M3) consider an element 7 € Ker(a‘li\/fsl;g;j;j+k).
Then 0;(n) € Ker(ajl\/h@j;j_%). But the maps O‘ﬁ/h;z;j;j—s-k are injective and therefore

). The maps 7,1 are injective.

§;(n) = 0. In particular, n = m;(n’) for some ' € H4"(a7; Ms). The maps ;. are
all injective. Therefore n' € Ker(arfw_l;j;j +5) and it follows that aj'l\/f;@;j;j%(??) =0
whenever k > lcby_1(x; Ms). Therefore lcbg_q(z; My) > lcbg—q(z; M3) and hence

lebg—1(z; Ma) = lebg—1(z; M3). This completes the proof of (1). O
4. Equality of test ideals

Theorem A is a consequence of Theorem 4.2 and Theorem 4.9. Theorem 4.2 is an
explicit relationship between local cohomology bounds and equality of test ideals. Theo-
rem 4.9, when paired with Proposition 4.8, provides the needed local cohomology bounds
described in Theorem 4.9 whenever we are able to linearly compare the annihilators of
Hi(R/I™) as n — oo and [ = wh™ s a multiple of an anti-canonical ideal.

4.1. Local cohomology bounds and equality of test ideals

The content of the following lemma can be pieced together by work of the first author
6

in [2]. We refer the reader to [24, Lemma 6.7] for a direct presentation of the lemma.
Lemma 4.1. Suppose that (R, m, k) is a Cohen-Macaulay local normal domain of dimen-
sion d, and J C R an ideal of pure height 1. Let x1,...,xq € R be a system of parameters
for R, assume that x1 € J, and fir e € N.

(1) If zoJ C asR for some ag € J, then for any non-negative integers No, ..., Ny with
Ny > 2, we have that

ey Nap® Nsp® Nap® Np—1)p®
((J(p)>x22pa$33pa~~->xddp):x;2 )p)
] Np® Nsp® Nap® Ny—1)p°
:((J[p}7x22p’xgsp,”.,xddp):xé2 )P)
et Bpe  Nope Ne ‘
= ((JPLa3? Japs? )P cah ).

(2) Suppose x;ﬁ”J(m) CasR C J™ for some m € N, then for any non-negative integers
Ny, ..., Ng with N3 > 2, we have that

Nop®  Nap® Nap® N3—1)p°
((J@°) gher® g lar® g lNap®y . g (Ns= 1"y

C ((J(pe),xévzpﬁ,xgpc,...,xﬁlvdpﬁ) camal).

6 In [24, Lemma 6.7] there is an assumption that R is complete. The lemma claims equality among certain
colon ideals, and equality of ideals can be checked after completion as R — R is faithfully flat.
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Theorem 4.2. Let (R, m, k) be a local normal Cohen-Macaulay domain of Krull dimension
d and of prime characteristic p > 0. Assume that R has a test element. Let J; C R be
a choice of canonical ideal. Suppose x1,...,xq is a system of parameters of R, x1 € J1,
and suppose that the following conditions are met:

o There exists element as € J1 and ag € Jl(m) such that x9J1 C asR and {Egljl(m) -
asR’;

e For each e € N there exists an integer ¢ such that
Icbg_1 (25, 25, x4, ..., 24 R/Jl(mpe+1)) <p°+1
Then 03 % ) = Ogp i)
Proof. Identify Er(k) as

R ) R
Er(k) = lim S )
r(k) ’ <(m§_1J1,x§,...,xtd) (mﬁJl,mgﬂ,...,xffl)

Suppose that n = [r + (¢t gy, 2b, . .. ,zh)] e OER(,C). Equivalently, there exists a ¢ € R°
such that for all e € N

0=cn? =[er? + (871, ab, ..., 2P| € Fe(ER(K))

Nlim( 1t >
o\ (@, L ah) Pl )

Let J = actflJl and consider the local cohomology module

el (LI R al e u :
mo \JT) T S\ T T (2,2 JeT 4 (2l

Claim 4.3. Let

e e € e R
P _ [P tp tp d—1
o =[P (2 ..., 2] ) € Hy (J[pe])’

then ca?” = [er?” + (ab,...,24) P is the 0-element of HEY(R/JIP).

7 This property is automatic if Rp is Q-Gorenstein for each height 2 prime ideal P € Spec(R). Recall
that a local normal Cohen-Macaulay domain R with canonical ideal J C R is Q-Gorenstein if there exists a
m > 1 such that J) s a principal ideal. If W7 is the complement of the union of the minimal components
of Ji, then JyRw, is principally generated by an element az € Ji, hence z2 can be chosen with the
property zoJ1 C (a2) C Ji. If W5 is then the complement of the union of the minimal components of
(J1,z2) then Ry, is a semi-local domain. Hence we can choose an m so that J(m)RW,I is principally
generated by an element asz € Jim) by [18, Theorem 60]. There then exists parameter element z3 so that
z3J(™) C (a3) C J(™)  We opt to use the containment :ch”J(m) C (a3) C J(™) to ease computational
complexity of the proof.
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Proof of Claim. The element [cr?” + (2} Jy, 2b, ..., 24)P]] is the 0-element of

lim( 1 )
N\ (2 gy, 2, el )

Therefore there exists an s € N such that

er? (xy@y - xq)P € (b ekt ,a:f;'s)[p ]
_ (A (t+s=1)p° 7[p°] _ (t+s)p° (t+s)p°
= (z; JiE Nz e Ty ).

So there exists an element j; € J{p °] such that

e sp€ t+s—1)p° . t+2)p°© t+s)p®
er? (xixe - - xq)*? —xg ) jle(xg ) ,...,xfl ) ).
The sequence z1, o, ...,xq is a regular sequence and so
e e t—1)p° . t+5)p° t+5)p°

er? (xg- - xq)P —xg ) jle(a:é ,...,a:l(j ).

Hence
° ° (t=1)p° [p°]  (t+s)p° (t+s)p%y _ ] (t+s)p° (t+s)p°

er? (xg--2q)P € (13 Ji L xy e Ty ) = (JP 2 e Ty ),

which proves the claim. O
Choose ey € N>; so that p® > mp®~° 41 for all e > 0. If e > 0 then
Jel c g@) ¢ glmptme0+1)
Fix e > 0 and consider the local cohomology module

R R
d—1 ~ 1
Hi (J(mp”o+1>> = lim <(J<mp”0+1>,xg, .. ,x@)) '

Let @ denote the image of o in HI~'(R/J("P" “*+1)) induced by the projection
R/JWPl — R/ JmP" 41 By Claim 4.3

(=3 e € € R
— ~aP° — tp tp d—1
O—CO[p = [CT‘p +($2 ,...,xd )] EHm (W)

= 2B Jompeeor) + (2b,...,2%) )

There are short exact sequences
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R .xgt—l)(mp6*60+1) R R 0
- Jl(mpe—ﬁo—i-l) J(mpe—eo+1) - $§t_1)(mpe_eo+1)R - U

Let £ be a choice of integer, which depends on e — eg, as in the statement of the theorem.
The sequence x4, 75, 4, ..., 24 is a regular sequence on R/xgt_l)(mp ‘R, By (3) of
Proposition 3.7 we have that

Icby_ 1 (x5, 25, 24, . .., 245 R/Jl(mPkEOH)) = Icbg_y(ah, 25, x4, ..., xq; R/ TP,
and so by assumption
lcbd_l(:cg,xf;,u, e, X R/J(mpe_coﬂ)) <pfTe 41 <pc.
Recall that
0=[er? + (xépc, . ,xtdpe)] = [erP" (abat)EDP" 4 (xggpc7m§£pﬁ,xipc . ,lepc)]

as an element of HEY(R/JP" 1)), By Lemma 3.3,

Icbg_y (a8, 2t 2l .. 2l R/ TP HY) <lebg (ah, 2, 24, .. ., 2g; R/ JPT D)
<,
SO
t E\D® (bt \Ep© eeo41) t(e+1)p° _t(¢+1)p°  2tp° 2tp®
c(ral - ah)P" (xhah) P € (JOmPTHD g X3 oyt ayt ) (40)
Notice that 27 € J**) and so
mﬁpeo Jmpe 041 mﬁpco JPT0) ¢ )
We therefore multiply the containment (4.1) by xtlp “ and obtain that
cmipeo (rat - 2P (xbal)?" e (J*), mé(éﬂ)p‘,xg(zﬂ)p‘, mitpe, . ,xitpe).
Therefore
tp©0 t t\p°© (..t \€p°© e t\(¢+1)p® t\(+1)p® |, 2tp© 2tp© tlp®
cry’ (roy - xg)? (v3)" € (J(p )a(l”z)( +lp a(xB)( +lp o a---;xdp )rag? .

We utilize the assumption that xé"Jl(m) CasR C Jl(m) to conclude that;
g Jm = g (2t =g = zgt‘l)mxganm) C :c(lt_l)magR C x(lt_l)mJl(m) c Jm,

Therefore xémJ(m) - xﬁt’l)’"@R C J™) and we apply (2) of Lemma 4.1 with respect
to x4 and N3 = £+ 1 to conclude that
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C‘Tﬁpﬁo (T.’IJZ e £UYZl)pe (th)epe € (J(pe)v (xé)(f-l-l)pe ’ x?’ytpe ’ xitpe’ cee ,xitpe) : wtlmxgpe'
Equivalently,
ey (" (bl )P ()P € (JO0, () O S G ).

Similarly, we are able to apply (1) of Lemma 4.1 with respect to the element zf and
obtain that

et (bt o at)P” e (JIP7) 2200 g2 2 ,xztpe)
= (J, a3t 22, 2P
The element cxtl(m+p ) does not depend on e and therefore
rababtal - oxh e (J a3t 23t 23"
In particular,
n=[r+ (@ T, ah, o xh)] = [rabalal 2l 4+ (J23 . 23] € O*Ef:(k)

as claimed. O
4.2. So-ification, higher FExt-modules, and local cohomology

We begin with two lemmas that experts may already be aware of.

Lemma 4.4. Let (S,m, k) be a Cohen-Macaulay local domain and M a finitely generated
S-module such that ht(Anng(M)) = h. Then Exti(M,S) is an (Sy)-module over its
support.

Proof. Let (F,,0,) be the minimal free resolution of M, let (—)* denote Homg(—, S),
and consider the dual complex (F},d7). Because ht(Anng(M)) = h we have that the
following complex is exact:

0= B A mr s P B Coker(9)) — 0.
In particular, depth(Coker(95)) = d — h. Moreover, there is a short exact sequence
0 — Ext(M,S) — Coker(d}) — Im(d;,,) — 0.

The module Im(9;; ;) is torsion-free and therefore has depth at least 1. If d — h > 2
then Ext’(M, S) has depth at least 2. If d — h = 1 then the depth of Ext’s(M, S) is 1. If
d — h =0 then M is 0-dimensional. Therefore if ht(Anng(M)) = h then Ex‘cg(]\l7 S) is
an (Sz)-module over its support. O
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Continue to consider the ring .S, the module M, and the resolution (F,,d,) as above.
Suppose further S is a regular local ring and hence every finitely generated S-module
has a finite free resolution. Consider the minimal free resolution (G, d,) of Ext’ (M, S).
If depth(M) = d — h is maximal, then Ext%(M, S) = Coker(8) and therefore (G, d,)
is the complex

w O o
0—Fy —F —...>F_, — Fy—0.

In particular, if depth(M) = d—h then Ext’(Ext® (M, S), S) = M. Suppose depth(M) <
d — h and let (F},0}): be the complex obtained by truncating (F},d7) at the hth
spot. That is (Fy,0})«r is the minimal free resolution of Coker(9}). Then the natural
inclusion Extf(M, S) C Coker(d;) lifts to a map of complexes (G, ds) — (Fi,%)s and
therefore there is an induced natural map M — Extf(Extf(M,S),S). The map M —
Extl(Ext (M, S),S) is an isomorphism whenever M is a (maximal) Cohen-Macaulay
module over its support.

Lemma 4.5. Let (R, m, k) be a complete local normal domain of Krull dimension d >
1 and J C R a pure height 1 ideal. Suppose (S,n, k) is a regular local ring mapping
onto R, R =2 S/P, and ht(P) = h. Then for every integer i the kernel of the natural
map R/J" — Extt (Extit (R/J',S),S) is JO/Ji. In particular, for every integer i
there is a natural inclusion R/J® C Ext™ (Extt™ (R/J, ), S). Moreover, the natural
inclusion R/J@ C Extt™ (Extt™ (R/J',S), S) is an isomorphism whenever localized at
prime ideal p € V(J) such that (R/J™), is Cohen-Macaulay.

Proof. Let L; C R be the ideal of R, containing J?, so that L;/J* is the kernel of
R/J' — Extt (Extt™ (R/J,S),S). Then R/L; C Extt™ (Extt™ (R/J',S),S). If Pis
a prime component of J then Rp/.J i Rp is 0-dimensional and therefore Cohen-Macaulay.
By the above the discussion, the map under analysis is an isomorphism in the Cohen-
Macaulay locus, and therefore

Rp/J'Rp=Rp/JYRp = Rp/L;p = Ext§ (Ext ! (Rp /T Rp, Sp), Sp)

at prime P which are minimal components of J.

If P is a prime of R of height 1 which is not a component of J, then Rp/J'Rp = 0
and the identifications above remain true. Therefore the height 1 components of the ideal
of L; are precisely the height 1 components of J?, i.e. J@. To conclude that L; = J®
it remains to show that the ideal L; does not have embedded components. The module
Extt™ (Extt™ (R/J?, S), S) is an (S2) R/J*-module and R/L; is a submodule. Therefore
R/L; is an (S1)-module and hence L; cannot have an embedded component.

We have proven the first claim of the lemma that for each ¢ € N there is a natural
inclusion R/J® C Extt™ (Exti™(R/J?, S),S). It remains to check that this inclusion
is an isomorphism whenever localized at prime ideal p € V(J) such that (R/J®), is
Cohen-Macaulay. Indeed, R/J* — R/J (1) induces an isomorphism
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ExtttH(R/JD,S) S5 Extl R/ T, 9)

as J®) /J* is not supported at any height h + 1 component of S. Therefore the inclusion
R/J® C Ext"T(Exti™ (R/J?,S),S) is the same as

R/J(l) — Extg+1(Eth+1(R/J(i)7 S)’ S)

and this map is an isomorphism in the Cohen-Macaulay locus by the discussion preceding
the lemma. 0O

We record a corollary of Lemma 4.5 for future reference.

Corollary 4.6. Let (R,m, k) be a complete local normal domain, Q-Gorenstein in codi-
mension 2, and J; C R a choice of canonical ideal. Let m € N be an integer such
that Jl(m) is principal in codimension 2. Suppose (S,n, k) is a regular local ring map-
ping onto R, R = S/P, and ht(P) = h. Then for every integer i the natural inclusion
R/J(rerl — Extt™ (ExtiT (R/ I S),S) is an isomorphism whenever localized at
a prime ideal of R of height 2 or less.

Proof. If p is prime ideal of height 2 or less then R, is Cohen-Macaulay and hence
R,/ J1Ry is Gorenstein of dimension at most 1. The Corollary follows by Lemma 4.5 as
JlmH_l)Rp = J1 R, is a canonical ideal whenever p is a prime of R of height 2 or less. O

The next proposition and theorem provide the linear bound of top local cohomology
bounds of the family of R-modules < R/ Jl(mP U1 described in Theorem 4.2 whenever
there exists an ideal I C R of pure height 1 and parameters x1, . .., x4 with the following
properties:

(1) I~ o.)g{h) for some h > 1 and [ is principal in codimension 2;
(2) For each 1 < j < d— 2, the ideal a; := (21, ...,Z4—j4+1) is such that

o’ HI (R/TP)) =0
for each e € N.

We first provide a lemma. In the following lemma we let (—)V denote the Matlis dual
functor.

Lemma 4.7. Let (R, m, k) be a local normal Cohen-Macaulay domain of Krull dimension
d and Q-Gorenstein in codimension 2. Assume that R has a test element. Let J; C R
be a choice of canonical ideal and m € N such that Jl(m) is principal in codimension 2.
Suppose S is a regular local ring of Krull dimension d + h mapping onto R, R = S/P,
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and ht(P) = h. Suppose that I C R is an ideal of pure height 1 with components disjoint
from those of J1, Iy N J; = x1 R is principal. Then

\Y%
, R i R
-1 ~ d+h h+1
H{% W = EXtS J EXtS m,s ,S
Il Jl

forall j <d-—2.

Proof. If 7 < 0 then Hi ™t (1(5“) = Ext?‘h_j (EthJrl (%,5) ,S) = 0. In partic-
1 1

ular, we may assume that d > 3. There are isomorphisms

R R

h+1 ~ ~ 1

EXtS <J(mz+1)’S> :wR/meiJrl) = EXtR <W7J1> . (42)
1 1

Consider the short exact sequences

mi R
O—>Jf +1)—>R—>W—>O.
1

The ring R is Cohen-Macaulay. Therefore Ext},—i (R, J1) = 0 and there is a resulting short
exact sequence

" R
0—>J1 —)HOHIR(Jl(mH_ ),Jl) —)EXt}% (W,J1> — 0. (43)
1
But I1NJ; is principal, I; and J; have disjoint components, therefore J; = Il(mi)ﬂJl(miH)

and so
Homp(J™™ | J1) & Homp (J{™ Y, 100 A glimithy o (mo), (4.4)

The ideal J; is a maximal Cohen-Macaulay R-module and so Ex‘cgh"’1 (J1,8) = 0. There-
fore by (4.2), (4.3), and (4.4), if j < d — 2 then

s R —q mi
EthJrh J <EXt]§+1 <W7S> 7S> = Ethf+h J (I£ )75) .
1

Consider the short exact sequence

O—>Il(mi)—>R—>%—>0.
Ilml

Then
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i mi _(i— R
Ext&th— (11( ),S) ~ Extg Y _S].
Il(mz)

An application of Matlis duality now completes the proof as

\%
d+h—(i-1) [ R ~ i [ R
(EXtS (I(’”i) 5 S)) = Htjn <W> . O
1 1

Proposition 4.8. Let (R, m, k) be a local normal Cohen-Macaulay domain of Krull dimen-

sion d and Q-Gorenstein in codimension 2. Let p > 0 be a natural number. Let J, C R

be a choice of canonical ideal and m € N such that Jl(m) is principal in codimension 2.

Suppose S is a regular local ring mapping onto R, R = S/P, and ht(P) = h. Suppose
that Iy C R is an ideal of pure height 1 with components disjoint from those of Jy,
I, N Jy = z1 R is principal, and parameters x1,xs ...,xq with the property that for each
1 <j <d-—2, the parameter ideal (x2,...,T4—j+1) is such that

(@5l DHR(R/L™)) = 0
for each e € N. Then for all e € N

lcbd,l(a:gf?’, x§73, ol m373; ExtgH(ExtgH(R/Jl(mpeH), S),S)) < p°.

Proof. Let (F,,ds) be the minimal free S-resolution of Ext}SlH(R/mepeH), S). Denote
by (—)* the functor Homg(—, S) and consider the dualized complex (Fy,d7). For every
j > 1 there are short exact sequences

0 — Exts™ (Ext (R/JI™ | 8), ) — Coker(8) ;) — (95, ;41) = 0
and
0 — Im(9h4j11) = Fyjy1 — Coker(9;,;11) — 0.

Let J. denote the preimage of Jl(mpeH) in S, an ideal of height h + 1. The S-module
Coker(d, ;) has projective dimension h + 1 and the ideal J. annihilates the submod-
ule Extg+1(Extg+1(R/J1(mpe+l), S),S). By prime avoidance, and abuse of notation, we
may lift x = zo,..., x4 to elements of S and assume that x is a regular sequence on
Coker(dy ;) and the free S-modules F;".

The module Ext/s* (R/Jl(mPeH), S) is an (S2)-module over its support, see Lemma 4.4.
In particular,

Ext 4 (Ext T (R/ I 9), ) = BxtiH 4 Bxtl T (R/JMPTY 9), ) = 0

and
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Coker(9} , o) = Extlt 42 (Extlt (R 9), 5).
Consider the short exact sequence
0= Im(0} 4 g0) = Fifyg_o — ExtlT 2 (Extit (R/ I S), 8) — 0.
By our assumptions and by Lemma 4.7,
(28, a8, ... 2l ) Exti 2 (Exti (R | 8), 8) = 0
for every e € N. By (2) of Proposition 3.7
leby (Im(8 , o)) = leby (Ext =2 (Ext L (R/ ™| §), 9)).
As zP° annihilates Extg+d_2(Extg+1(R/Jl(mPeH), S),9)),
leby (Ext =2 (ExtiH (R | 8, 8)) < p°

by Lemma 3.3 and Corollary 3.5.
Next, we consider the short exact sequence

0 — Exti a3 (Extt R/ | 9), ) = Coker () y_3) = Im (o) — 0.
We established lcby (z; Im(05, 4_5)) < p°. By assumption and Lemma 4.7
(25, b ) Exth 3 (Extit (R 5),8) =0
for every e € N. By (1) of Proposition 3.6 and Lemma 3.3 we have
lcbg (5 Coker (0 4 4_3)) < p° 4+ p° = 2p°.
Next consider the short exact sequence
0 — Im(0;,4_3) = Fyiq_3 — Coker(d;, 4_3) — 0.
By (2) of Proposition 3.7 and knowing that lcby(x; Coker(9;;  ;_3)) < 2p°® we see that
lebs(z; Im(9, 1 4-3)) < 2p°.
Inductively, we find that
lebj (2 Im(8h 44 5)) < (7 — 1)p°

and
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lebj (; Coker(82+d,j71)) <Jp°
for each 2 < j < d — 2. Now consider the short exact sequence
0 — ExtiT2(Ext R/ I 8), ) = Coker(d)5) — Im (8} 5) — 0.
By induction, lcbg—3(Im(05, 3)) < (d — 4)p°, therefore by (1) of Proposition 3.6
lcbg_3(Coker (9}, 5)) < (d — 3)p°.
Now consider the short exact sequence
0 — Im(9y, ) — Fj o — Coker(d;,,) — 0.

Apply (2) of Proposition 3.7 to conclude lcby_2(Im(95,,)) < (d — 3)p°. Now consider
one last short exact sequence:

0 — Ext T (Ext R/ I 8), ) — Coker(d)5) = Im (3} 5) — 0.

We now utilize that z is a regular sequence on Coker(9;;_,) and utilize (2) of Proposi-
tion 3.7 to conclude that

lebg_1 (Exti (Extit (R/J™PHY |8, 8)) = leby_o(Im(8] 1)) < (d — 3)p°.
By Lemma 3.3 the parameter sequence z¢—3 = acg_?’, e ,xg_?’ on R/Jy satisfies
lebg1 (z4 1 Ext?H (ExtH (R/JIPTHY | 9), 9))) < p°
foreachee N. O
Theorem 4.9. Let (R, m, k) be a local normal Cohen-Macaulay domain of Krull dimension

d > 4 and Q-Gorenstein in codimension 2. Let p > 0 be a natural number. Let J, C R
be a choice of canonical ideal and m € N such that Jl(m) is principal in codimension 2.
Suppose S is a regular local ring mapping onto R, R = S/P, and ht(P) = h. Suppose
that Iy C R is an ideal of pure height 1 with components disjoint from those of Jy,

I, N Jy = x1R is principal, and parameters x1,Ts ..., xq with the following properties:

(1) J1R,, and Jl(m)Rm3 are principal in their respective localizations;
(2) For every 1 < j <d-—2, the parameter ideal (z1,...,Tq—;41) is such that

(22, - wa—jer)” HL(R/IT™)) =0

for each e € N.
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Then the following hold:
(1) For each e € N there exists ¢ € N such that
lcbd,l(xg(dfl), xg(dfl),xifl, I R/Jl(mpeﬂ)) <pt 41
(2) For each e € N there exists £ € N such that
lcbd_l(xg(d_l),xg(d_l), R R/Jlmpeﬂ) <p®+2.
Proof. For each e € N let C, be the cokernel of
R/J™ T o Exti BExt T (R/JMP L 9), ) = Extit (Bxt T (R/JMPTTY 9), 9)
and consider the short exact sequences
0 — R/JI™PHY s ExtiH (BxtH (R/JPH | S), 8) = €. — 0,
see Lemma 4.5 for details.
By Lemma 4.5 the module C, is 0 when either x5 or x3 is inverted. Hence for each
e € N there exists an integer £ such that (x5, 2%)C. = 0. Because d > 4 we have that

d—1> 3 and (3) of Proposition 3.6 implies

lcbd_l(xg(d_l), a:g(d_l), xff_l, e a:g_l; R/Jl(mpeﬂ))

< lcbd_l(xg(d_l),xg(d_l),xz_l, e ,xg_l;Ext}SLH(EX‘cgﬂ(R/J{npeH, S,9)) + 1.

Statement (1) follows by Proposition 4.8.
To prove (2) let K, = Jl(mp =y J"P" 1 and consider the short exact sequences

0 K. — R/J™ T 5 gygime™h g,

The module K, is 0 when either x5 or x3 are inverted. Hence for each e € N there exists
an integer £ such that (x5, 24)K. = 0. By (1) of Proposition 3.6 we have that

Ichg_1(2h, 25, 24, ..., wq; R)J ) < lebg_y (24, 24, 24, . . ., a3 R/Jl(mpeﬂ)) +1

<p°+2. O
Theorem A is a consequence of the following theorem.
Theorem 4.10. Let (R,m, k) be an excellent local Cohen-Macaulay normal domain of

prime characteristic p > 0, of Krull dimension d > 4, Iy C R an anti-canonical ideal,
and Egr(k) an injective hull of the residue field. Suppose further that there exists an
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m € N so that I{m) is principal in codimension 2 and for each 1 < j < d—2 there exists
an ideal a; of height d — j + 1 such that

e . R
u? Hgi (W) =0
1

for every e € N. Then ng(k) = O*ER(k)'

Proof. Our strategy is to employ Theorem 4.9 and then Theorem 4.2 to conclude
OfE{f(k) = OER(k). But first, we change the ideals a;, if necessary, so that there are inclu-
sions aq—2 C ag—3 C --- C a; and so that there exists parameter elements z1*, z2, z3 € a;
for all 1 < j < d — 2 with the property that 1R = I; N J; for some canonical ideal J;
and the ideals I} R, and [ {m)Rzg are principal in their respective localizations.

The ideal a; Naj_; N---Nay has height at least d — j + 1. We can replace the ideal

a; with a; Na;_; N---Na; and may assume that
ag—2 Cag3C---Cag.

Start by choosing z1 € I a generic generator so that z; R = I; NJ; and the ideals I; and
J1 have disjoint components. Clearly 27" annihilates H3 (R/I™") for every e € N.
The ideal I; is principal in codimension 1, the ideal I fm) is principal in codimension 2.
Therefore there exists part of a system of parameters xo,z3 of R/x1R so that I1R,,
and 1 1(m)RI3 are principal in their respective localizations. Moreover, we can replace xo
and x3 by suitable powers and can assume that there exist elements a,b € I; so that
zol; C aR C I; and ngl(m) CbR C Il(m). Therefore x;npelfmpe) Ca™ R C Il(mpe) and
x§€ Il(mp VD RC Il(mp ). Consider the short exact sequences

0 L — — -0
am™P*R " amP°R ]{mpe)
and
(mp®©)
0— 4L R i 0.

R bR )

The elements 2] and 2% annihilate I\"™"") /a™" R and I\"™"") /bP" R respectively. Ex-
amining the resulting long exact sequences of local cohomology informs us that x5 " and
xge annihilate H&(R/Il(mpe)) for every 1 < j < d—2. Replace the element x5 by z5*. Then
(2", 2%") annihilates H (R/I\™")) for every 1 < j < d — 2. For each ¢ € N the ideal
((aj + (27, 29, x3))*" is generated by elements which live in either a?e or (z7, xy, x3)P]
and therefore annihilate H, (R/Il(mpﬁ)). We replace a; by the ideal (a; + (27, 22, x3))%.
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The ideal a; has height at least d—j+1 and z7*, 22, v3 € a;. We can extend z7*, x2, 3
to a parameter sequence 7", 22,23, ...,Tq—j+1 ina; C a;_1 € --- C a;. By Theorem 4.9,
for each e € N there exists an ¢ so that

lcbd_l(xg(d_l), :rg(d_l), xg_l, R xg_l; R/Jl(mi+1)) <p°+1

Therefore Ozf:(k) = 0%, () by Theorem 4.2. O
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