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ARTICLE INFO ABSTRACT
Keywords: We consider nonlinear solvers for the incompressible, steady (or at a fixed time step for
Navier Stokes equations unsteady) Navier-Stokes equations in the setting where partial measurement data of the solution

Picard iteration
Newton iteration
Continuous data assimilation

is available. The measurement data is incorporated/assimilated into the solution through a
nudging term addition to the Picard iteration that penalized the difference between the coarse
mesh interpolants of the true solution and solver solution, analogous to how continuous data
assimilation (CDA) is implemented for time dependent PDEs. This was considered in the paper
(Li et al. 2023), and we extend the methodology by improving the analysis to be in the L? norm
instead of a weighted H' norm where the weight depended on the coarse mesh width, and to
the case of noisy measurement data. For noisy measurement data, we prove that the CDA-Picard
method is stable and convergent, up to the size of the noise. Numerical tests illustrate the results,
and show that a very good strategy when using noisy data is to use CDA-Picard to generate an
initial guess for the classical Newton iteration.

1. Introduction

We consider herein nonlinear solvers for the Navier—Stokes equations (NSE), which are widely used for modeling incompressible
fluid flow. In particular, we study the steady state NSE, which are given on a domain 2 c R?,d = 2,3 by

—vAu+u-Vu+Vp=f in Q,
V.u=0 inQ, 1.1
u=0 on 0Q,

where u is the fluid velocity, p is the pressure, v is the kinematic viscosity, and f is an external forcing term. The Reynolds number
Re := % is a parameter that describes how complex a flow is; higher Re is associated with more complex physics and non-unique

steady solutions. While our study is restricted to the steady system (1.1) with homogeneous Dirichlet boundary conditions, the
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results are extendable to solving the time dependent NSE at a fixed time step in a time stepping scheme as well as nonhomogeneous
mixed Dirichlet/Neumann boundary conditions.

Probably the most common nonlinear iteration for solving (1.1) is the Picard iteration, which is given by (suppressing the
boundary conditions)

VAU U Vi + Vo =1,
V-u =0.

The Picard iteration is globally convergent under a smallness condition on the Reynolds number/problem parameters a :=
Mv72||flly-1 < 1, where M is a domain-size dependent constant arising from Sobolev/Ladyzhenskaya inequalities [1-3]. The
constant « is an upper bound on Picard’s H! linear convergence rate [2] and is believed reasonably sharp. Moreover, a < 1 also
implies that steady NSE solutions are unique.

In [4], the CDA-Picard iteration was proposed, in order to improve convergence in the setting where solution data is available,
e.g. from measurements or observed data. The CDA-Picard algorithm takes the form

—VAugyy + g Vi + Vo + plg (e —u) = f,
Vot =0,

where y > 0 is a (user-defined) nudging parameter, and I;; is an appropriate coarse mesh interpolant (defined precisely in Section 2).
We note as is typical in CDA, the true solution « remains unknown, but I (u) is known from given or observed solution data. The
general idea is that, if one knows the solution at some points in space, then one should be able to improve convergence and robustness
of a solver. Indeed, in [4], it is proven analytically and illustrated numerically how CDA can accelerate convergence and enlarge
the convergence basin for Picard.

The use of CDA above is based on the Azouani, Olson, and Titi algorithm from 2014 [5], and as noted in [4] its intent is for
time dependent problems. It has been used on a wide variety of problems including Navier-Stokes equations and turbulence [5-7],
Benard convection [8], a planetary geostrophic model [9], the Cahn-Hilliard equation [10], and many others. CDA has gained
immense interest since its development and recent research includes sensitivity analyses [11], numerical analyses [10,12-20],
efficient nudging methods [14], effects of noisy data [21], and using it for parameter recovery [22,23]. To our knowledge, the
CDA-Picard method from [4] is the first time CDA was used to improve efficiency and robustness of nonlinear solvers for steady
PDEs.

The purpose of this paper is to extend the study of CDA-Picard in two ways. First, we provide an improved convergence analysis
for CDA-Picard based on the L? norm, instead of the weighted H' norm that depends on the coarse mesh width H used in the
original analysis from [4]. Second, we extend the study of CDA-Picard to the more realistic case of noisy data, both analytically
and numerically. We prove that for the case of noisy data, CDA-Picard is stable and convergent provided enough measurement
data is known. However, the convergence is only for the L? residual (which is the same as the difference in successive iterates if
one considers CDA-Picard as a fixed point iteration, i.e. [ty — uell 2 = l8picara(e) — ill12), as the L? error ||u,,, — u,|| is found
to scale with the size of the noise in the data. Our analysis holds for any Reynolds number and forcing, i.e. it is valid in the case
of non-unique steady NSE solutions, but the amount of required measurement data increases as Re and other problem parameters
increase. However, we note that proofs for larger Re require different techniques and not surprisingly have slightly worse scalings.
In addition to the analysis, we give results of numerical tests on two challenging test problems which illustrate the analytical results.
Finally, we show numerically that a very effective solution method when given noisy data is to run CDA-Picard until its residual is
sufficiently small (so that its error is as small as possible, which is on the order of the noise level), and then use its final iterate as
the initial guess to usual Newton; we call this method CDA-Picard + Newton.

The paper is organized as follows. Section 2 gives preliminaries, sets notation for the paper, and gives background on CDA-Picard.
Section 3 gives the improved analysis for CDA-Picard using the L? norm instead of the weighted H'! norm, and Section 4 analyzes
CDA-Picard for the case of noisy data. Here we analyze stability, residual convergence, and error, both for smaller Re and larger
Re. Section 5 contains numerical results which illustrate the theory and also test CDA-Picard + Newton. Finally, conclusions are
drawn in Section 6.

2. Preliminaries
The domain 2 will be an open connected set in R? (d = 2 or 3) that is a convex polygon or has smooth boundary. We use (-, -)

to denote the L? inner product that induces the L? norm || - ||, and all other norms will have appropriate subscripts.
We denote the natural NSE function spaces for the velocity and pressure by

Q:={velXQ): / vdx = 0}, 2.1)
Q
X :={veH'(2):v=0 on R} (2.2)
We use (-, -) to denote the duality between H~! and X, and use ||-||_; to denote the dual norm || -|| ;1. The divergence free subspace

of X is denoted by
Vi={veX:(V-v,9=0VqeQ}.

Recall the Poincare inequality holds on X: there exists a constant Cp dependent only on the domain satisfying ||¢|| < Cp||Ve||
for all ¢ € X.
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2.1. Steady NSE preliminaries

The weak form of the NSE (1.1) is: Given f € H~!, find (u, p) € X x Q such that

v(Vu, Vo) + b (w,u,v) + (p, V - v) = (f,v) Vv € X, 2.3)
(V-u,g)=0 Yg€0, '
where
b(u,w,v) = ((u-Vyw,v) Yu,w,v € X.
Since the pair (X, Q) satisfies the inf-sup condition:
. (¢, V-v)
inf sup ——= > >0, 2.4)
420 ey 1Volllall
we can instead consider the equivalent system [2]: Given f € H~!, find u € V satisfying
v (Vu, Vo) + b (u,u,v) = (f,v) Yo€EV. (2.5)

It is important to note that b(u, v,v) = 0 for all u,v € X. The following inequalities hold for b [1,24]: there exists a constant M
dependent only on the domain £ such that

1 1
b(u, w, v) < M ||ul|2[|Vul| 2 [[ Vel [ Voll, (2.6

b(u, w, v) < M||Vull[|Vwl[[|Vol|. 2.7)

Although this paper considers analysis in V, in discretizations using (X,,Q,) C (X, Q) but where V - X, ¢ Q,, the analysis of
this paper will not immediately transfer to such discretizations due to the trilinear term. A fix for this is to instead use the classical
skew-symmetric form of the trilinear term,

b*(u, v, w) = b(u, v, w) + %((V - u)v, W)

and also grad-div stabilization. These modifications will allow all of our results to extend to the case of mixed finite elements whose
velocities are only discretely divergence free. All of our computations use divergence-free Scott-Vogelius elements where V-X, C O,
does hold.

Recall the classical well-posedness result for Eq. (2.5) [1,24]:

Lemma 2.1. Let a = Mv~2||f||_,. For any f € H™' and v > 0, solutions to (2.5) exist and satisfy
IVall < v £ 11y 2.8
Furthermore, if a < 1, the solution is unique.

The restriction a < 1 is usually referred to as the small data condition for steady NSE, but we refer to it herein as a smallness
condition since we use the term ‘data’ to mean observations or measurements (and not the PDE parameters).
We will assume throughout this work that NSE solutions we consider satisfy

IVull, =: K, < oo, 2.9)

and also that f is sufficiently regular to allow K, to be finite.

2.2. Picard and Newton iterations
Herein we will mostly study the Picard iteration and variations of it, but Newton will also be used in the numerical tests. These
iterations can be written in their V-formulations as follows: Find u,,, € V satisfying for all v € V' that

a (U1, 0) + b (g, upyy,0) = (f,0) (Picard), (2.10)
a (g1, 0) + b (g, gy, 0) + b (g, upv) = (f, 0) + b (g, 4y, v)  (Newton). (2.11)

We recall some basic results about the Picard iteration (2.10) from [2].

Lemma 2.2. The Picard method (2.10) is unconditionally stable. Furthermore, if « < 1 then the sequence {u,} generated by Picard
converges to the NSE solution u as k — oo with an a-linear rate.



B. Garcia-Archilla et al. Computer Methods in Applied Mechanics and Engineering 424 (2024) 116903
2.3. CDA and CDA-Picard

We now give CDA preliminaries and define CDA-Picard. Denote by 7, (£2) a coarse mesh of £ used to represent an interpolant
of the true solution using measurements or observables. We assume that I;; satisfies the usual properties as other CDA applications:
there exists a constant C; independent of H satisfying

MIyv—-vll <C H|Vo|| Yve X, (2.12)
Mgl <Cllvl Yo e X. (2.13)

Some examples of such interpolation operators include Bernardi-Girault [25], Scott-Zhang [26], and the 12 projection onto
piecewise constants [27].
The CDA-Picard iteration is given in its V-formulations by

a(ugyy,0) + b (ug,upy . 0) + uU gy — Tgu, Igv) = (f,v) (CDA-Picard). (2.14)

The term uly(u;,; —u) is a CDA nudging (penalty) driving the Step k + 1 solution u,; toward to the observations, and u > 0 is
a relaxation parameter that emphasizes the observations’ accuracy. We note that CDA-Picard uses a type of variational crime on
the nudging term, by using I in the second argument of the nudging terms. While this is consistent if I, is an L? projection, in
general it is not consistent but using 7 additionally on the test function is key to allowing for less restrictions on parameters and
no upper bound on x [14,15,28].
Convergence of CDA-Picard is proven in [4] in terms of the following weighted H'! norm.
1

2
_ 2 1 2
lloll,. = <||Vv|| + Yy [loll > . (2.15)

I

The result is given next. It shows that convergence is guaranteed for any a provided enough data is available, and that the
convergence rate O(H'/2a) is improved by including data measurements.

Theorem 2.1 (Convergence of CDA-Picard [4]). Let u be a steady NSE solution and suppose I (u) is known. If \/EC, Ha? < 1 and

u> then for any initial guess u, the CDA-Picard iteration (2.14) converges to u linearly with rate (at least) \/EC THa:

v __
4CIH??

llu = e ll, <V V2C; Hallu = ugl,. (2.16)

3. An improved analysis for the CDA-Picard iteration

We give below a new convergence analysis for CDA-Picard under the assumption that the data measurements are accurate
(the next section considers the case of noisy measurement data). While the result from Theorem 2.1 shows that data improves
convergence, the *-norm is not an ideal norm to use because it is a weighted H'! norm where the weight depends on H. So decreasing
H will improve the contraction ratio, but at the same time the norm is closer to the L? norm and further from the H'! norm. Hence
it would be better to show this kind of convergence result in a norm not dependent on H, and below we give a new convergence
results for CDA-Picard in the L? norm.

Theorem 3.1 (L? Convergence of CDA-Picard). Let u be a steady NSE solution and suppose I (u) is known. Set y := KL min { # u },
1 1

V172 .
and suppose u > 2K, and H < TR Then it holds

V2
s = ull < == llug = ull. (3.1
VY
Since y > 2, CDA-Picard converges linearly in L? and the convergence is faster whenever H decreases and y increases.

Remark 3.1. In the finite element setting where subspace (X,,Q,) C (X, Q) but where V - X, ¢ O, (e.g. Taylor-Hood elements),
the trilinear term b(u, v, w) needs to be modified by a consistent skew-symmetrization (e.g. adding %((V - u)v,w)) for stability or
convergence results to hold. Provided grad-div stabilization is also used, the result above will still hold with just slight modifications.
In this case, one reaches the bound (3.1) with norm || - || instead of || - || where ||v||5 = (||u||2 +||V- vllz)l/z. Our numerical tests
use divergence-free Scott-Vogelius elements where V - X, ¢ Q,, does hold.

Proof. Denoting by ¢, = u — u; and arguing as in [4] it is easy to get
VIVt + ull T eI = —bley s e ).

The nonlinear term treatment is a key difference from the analysis of [4], and begins with Hélder’s inequality with L? — L® — L2
followed by Young’s inequality and (2.9),

2 2
VIVer i I7 + ull e 17 < llegllIVullollegy
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< SVl e I+ 3 19ull eI
< SKilleglP + 3 Kyleg
Denoting L = %Kl and arguing as in [15] we can write
Lllegy I < 2LIH pregy 17 +2LIU = Ippep .
Since by assumption y — 2L > u/2 (which gives u > 4L), we get the bound
WIVernt I? + Sl e ll? = 2LI = Ie |1 < %Kl llexll?,
thanks to (2.9). Arguing again as in [15], applying (2.12) and using the assumption on H we find
VIVers I = 2LIT = I I 2 vIIVers I = 2LCTHA (Ve I 2 31 Ve I
Combining these estimates now yields
VIVerytI? + ull Ly e 17 < K, lleg®.
The bound (2.12) gives us

v 2 2 2 2 2
m”(l —Ierill” + ulllger I S vIiVer II” + ulllger II” < Killegll™,
T

and from the definition of y and taking into account
M mext P+ 1T = Tiegal = Zlleee I

we conclude that
EllexsrI? < llegll”.

Reducing implies
2
Nty —ull < ——=lug —ull,

which is the stated estimate. [l

4. CDA-Picard with noisy data

We consider now the case where the data used for nudging has noise (error) denoted by e. That is, instead of knowing u(x;) at
all the measurement points, we instead know u(x;) + ¢;. Hence we will write I ;¢ to denote the coarse mesh interpolant constructed
from {¢;} ,]i - Typically, these errors can be considered random, and may result for example from errors in the measurement process.
In practice one may even know the relative size or distribution of the errors.

We denote by ¢ € V' any divergence-free function such that Iy e(x;) = ¢;, and assume that

V@ + el < (1 +6)||Vull. 4.1

Remark 4.1. We assume the solution and noise is such that § < O(1). While e could scale with H~! in a worst case analysis, the
analysis below considers fixed H and thus our assumption on § reduces to assuming that the signal to noise ratio is small. A more
in depth study of this assumption, including from a probabilistic approach, could be a topic of future research.

It will be useful in our analysis to define
as=1+8)a=1+Mv2|fI_, (4.2)
and
Cs =2V1+(1+6)>. (4.3)
Algorithm 4.2 (CDA-Picard For Noisy Data). The CDA-Picard iteration with noise is defined by: find u,,, € V such that

V(Vitgy 1, V0) + bty g2 0) + u(T ey — Ig(u+ €), Iv) = (f,0) Yo e V. (4.4)
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4.1. Stability
Let us denote by

~ _ . \ E
A= mm{ 4C?H2’ 2 } (4.5)

We now prove two stability results. The first is for any data, while the second one is sharper but requires a smallness condition of
the PDE parameters (not the measurement data).

Lemma 4.1 (Stability Result 1). For any v> 0, a > 0 and u > 0 and 1 defined in (4.5) the k + 1 iterate satisfies the bound

\% ~ — _

IVt P + Al 12 < VL2, + 20CRCRV2IAIE, + 20l el (4.6)
Furthermore, if u < chﬁ, then

Nusr I <267 VHIFI2, +4C2CEV2I £ + 4l T el 4.7)

Proof. Taking v = u,,; in (4.4) vanishes the nonlinear term and leaves

VIVt 1P+ pll g I = (Fotee) + 0 o, Ly ) + p( e, g y).

Using the definition of the H~! norm on the forcing term and Cauchy-Schwarz on the other right hand side terms, followed by
applying Young’s inequality on all of them, we obtain

VIVt 17 + il gy 1P < VHIFIZ )+ 26l T gull® + 2pll el

Breaking up the viscous term on the left hand side into two pieces, using property (2.12) of I; on this and property (2.13) on the
second right hand side term and then Poincaré, we get that

v 2 v 2 2 1y p2 22 2 2
S IV 117+ S iy = Tt 17+ w17 < v HIFIZ, + 2uCTCRlIVUll® + 2ull T el

2CIH
With the definition of 1 (4.5) we get from the triangle inequality a lower bound on the left hand side which provides the bound
IVa P + Al 1P < VA2, +26CRCRV IS I, + 20l el

thanks to the bound on u from (2.8).
]

The bound (4.7) can be deduced from (4.6) by dropping the first left hand side term, reducing the min term to £, multiplying

both sides by % and reducing. W
The following stability bound assumes the PDE parameters and noise are sufficiently small, and shows that the stability bound

is almost the same as the steady NSE solution bound (2.8), up to an O(1) constant factor.

Lemma 4.2 (Stability Result 2). Let a5 and Cy be as in (4.2), (4.3) with a5 < % Then for k sufficiently large,
IV Il < 207 VI + A +8)2 = Cov £l

Proof. Set i =u+e¢, and choose v =u;; — in (4.4) to get
2 (IVategt I = VAR + 1V gy = DIP) + #l gy Gy = DI = (F oty = ) + bt g1, )
B k+1 k+1 HI g Uy = U Ukt ko Uk+1- 45
using the skew-symmetric property of b. Using the assumed bound on 4 (4.1), (2.7) and (2.8), we obtain

v ~ A
S IV 1P+ S 1V gy = DI+l gy = D

v
2
Vv N A~ N
5 IVall® + 1A Iy IV @y = DI+ MV [ Vg VA

IA

vl +6)2 vl v o _

S I+ 02+ SV Gy = @I + MV (L 8 Vi Vi
vl +6)? vl v N

< T”f”il + T||f||3l + §||V(Mk+1 = D) + vas | Vg 1 Vit I,

with the last step thanks to the definition of as (4.2). This reduces to
VIV 1+ 20l g gy = DI < VTFIZ (4 3+ 8)7) + 2vas | Vg || Vitgey Il
Next, drop the second term on the left hand size, and then apply Young’s inequality to the last right hand side term via

v 2 2 2
2vas || Vel Vit i I < 5 1Vt 117 + 2ves [ Vil
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to obtain the bound
§||Vuk+1||2 VIR A+ 1+ 6)7) + 2vad || Vag |1
This reduces to
Vetger I* < 2021 F112, (1 4+ (14 8)7) + 4o [| Vi || (4.8)

Elementary real analysis tells us that if a,,, < ba, + ¢, where a;(i =0, 1,...,n+ 1), b,c¢ > 0, then a,,, < b"+'a, + c%. We can apply
this result to (4.8), yielding
1 - (4a2)

2
4a6

Vit 11 < @) Vg l* + 2021 £ 112, (1 + (1 + 6))

Since a5 < %, then for k sufficiently large, we obtain

Va1l < 2v7! AN VI+1+6)2%

This completes the proof. Wl
4.2. Convergence of the CDA-Picard with noisy data iteration residuals

We now discuss convergence of the CDA-Picard iteration with noisy data. We are able to essentially mimic the proofs of CDA-
Picard for accurate data, to prove that the residuals of the method for noisy data converges. Note that we can write u;, | —u; =
8picara(Ur) — Uy Where g, is the solution operator of the linear problem (4.4) at step k (the stability bounds above are sufficient to
show g,;cq,q is well defined), and hence the residuals of the iteration can be measured with the difference in successive iterates. Of
course, since there is noise in the data, the limit solution of this iteration will not be particularly meaningful. Still, if one is going
to run an iteration, then it is helpful to know what is the expected behavior of that iteration.

We first prove a convergence result for the residual, under a smallness condition on the PDE parameters, but for any H > 0 or
u > 0. Then we prove a general convergence result with no smallness assumptions on PDE parameters, but with A small enough
and u large enough. Since these results follow very similarly to the convergence results for the case of no noise from [4] (once two
successive iterations are subtracted, the noise term drops), we omit the proofs here but move them to the appendix for interested
readers.

Theorem 4.3 (Convergence of the Residuals for Small PDE Parameters and Noise but Any H or u). Suppose as < % Then for sufficiently
large k and any H and u, we have the bound

[IVypy —ull £ Csal| V@ —u_ Il

Remark 4.4. For PDE parameters and noise sufficiently small so that Csza = 24/1 + (1 +6)2a < 1, the iteration will converge
(asymptotically) linearly.

We now state a result for residual convergence for any data and noise size, but with H small enough and x large enough. Recall
the definition of 1 in (4.5).

Theorem 4.5 (Convergence of the Residuals for General PDE Parameters and Noise, Provided H Is Small Enough and u Is Large Enough).
Suppose u is chosen so that y > m and that H is small enough so that p = 2CIC§a2H < 1. Then
1

\% ~ \% A~
7 IV @yr — ul* + Allugyy — uell* <2C,C2a*H (anuk —up DI + Ay, =y, ||2) .

Remark 4.6. This result is similar to the case of convergence when no noise is present, and the noise effect is seen in the Cs term.
This result implies that smaller H and larger u will help the iteration converge to a limit solution. However, the limit solution will
likely be inaccurate if the noise level is high.

4.3. Error analysis of the CDA-Picard with noisy data iteration

We now consider error analysis of the CDA Picard iteration with noisy data. Even though we have proved above that the iteration
itself will converge (under appropriate assumptions on the data, noise, and CDA parameters), it is not expected that the limit solution
will be accurate. Hence we consider here the error itself, and find two results, which both show the error is bounded by the size
of the noise. We denote the error at step k by e, := u, — u, where u is the NSE solution from which the measurement data were
obtained.

Our first result shows that with enough measurement points and sufficiently small PDE parameters, an L? error estimate can be
proven that depends on the size of the error but is independent of .
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Theorem 4.7 (Error at Step k). Let 0 < r < 1. Pick parameters u and H such that 4”" <u< # and H < . Then for k
1

sufficiently large, the error in step k of the iteration satisfies

[ 4
llegll < :”IHGH- (4.9)

Remark 4.8. Note that for case of no noise in observations (i.e. formally ¢ = 0), this will reduce to the same scenario as Theorem 3.1,
and the result (4.9) aligns with Theorem 3.1 in sense that both ¢, — 0 as k gets large.

Proof. We begin by subtracting the scheme from the NSE (the solution u from which the measurements were taken), and then
testing with e, , to obtain

VIVer 1P + ulll e 1? = =bleg u,epyr) — uI e, Ipepy). (4.10)
Bounding the last right hand side term with Cauchy-Schwarz and Young, we get that
U H
—u e Ipere)) < S pell + 5o 12,
and so
2, H 2 _ H 2
vIIVer I” + §||IH91<+1 [I* = —bleg,u, epy1) + §||IH€|| . (4.11)

Proceeding similar to above, we can lower bound the left side via
2, H 2_V 2, Y 2, H 2
viVer Il + §||IH€k+1|| = —||V€k+1 "+ —||Vek+1|| + 5||1H9k+l||

v 2, H 2
—||Ve +— e —Iye + = | Iye R
2|| Il e llewsr = ITrreperll 2|| el

thanks to the property (2.12). Setting

A = min “ v
4 402H2

we use the triangle inequality to get the bound
U v
VIVl + S eenll® 2 S 1Ver lI” + Alle I

Using this in (4.11) and then bounding the right hand side of (4.11) using (2.6), as well as bounding ||Vu| with (2.8) and the
definition of « to get

S 1Vep 12+ Alley 12 < =bey e ) + 1 el
< Mllecll21Vee 21 Vull Ve | + Sl el
< valleg] Vel Vey | + Sl el
< Vet I? +velleg Vel + ST ell”
Applying Cauchy-Schwarz on the middle right hand side term and reducing yields for any B > 0 that
2 Ve I + Al > < v 2 Ve | + 2 ||ek||2 Slyel?
<r <v—||Vek||2 £ kuz) + Slipell,

where 0 < r < 1. Setting B = % and noting the assumptions on y and H from the theorem statement imply that

4
va 12
—— < A=min
r2 { 4’ CzH2 }
and thus since r < 1
v v H
ZIVe I+ Alec I < r (1l + Allecl?) + S 1 mel?

v U
< (S0Ver P+ dlles I7) + L+ 0 S el

IN

v
< (VeI + Al ) + 5 el

2(1
Thus for k sufficiently large such that

P (Z Ve + e ) <

Iyel?,
< 53— Mael
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and using the assumption that u < # and dropping the positive term illVek al%

H 2 )M v 2 2 H 2
£ = = = < —
7 llecal mm{ rbreE }nekn Alel? < 7= el

which reduces to

[ 4
legll < mlllnell, (4.12)

finishing the proof. W

The theorem above proved an error bound under (essentially) a smallness condition on the PDE parameters. The theorem below
proves an error bound for any data, and does not require the NSE solution be unique. However, we do require a single NSE solution
is used for measurement data. We denote

T . " ﬁ
A :=min { CIZHZ’ 7 } (4.13)

in the theorem.

Theorem 4.9 (Error at Step k For General PDE Parameters). Let u be a steady NSE solution and I (u) be its interpolant on X . Pick
- 1/2
parameters y and H such that 1> 2, H < —= ! and p > 4K ]2 Then it holds that

VoK, ¢’
2\* 2u
2 2 2
e <| = [ + —— || I yell”. (4.14)
llexll </1> lleoll A_ZHH Il
. ) Va2
Moreover, if u < ﬁ (equivalently H < m 7 o ) then
2\* 4u
llexll* < <:) lleoll* + —— T zell*. (4.15)
k 3 0 a—antu
. . 2 \ /2 . .
Remark 4.10. Hence we observe linear convergence of the error in the L? norm up to ATﬂz> [[1gell, provided y is large enough

and H is small enough to satisfy the assumptions. Compared to Theorem 4.7, the improvement of this theorem is that there is no

restriction on PDE parameters Re, f, and M. The tradeoff is that the term representing the noise is scaled by y, which depends on
1/2

as in Theorem 4.7, or equivalently H small enough, H < ,:/li/gc/, , we get (4.15)

v
CIH?’
in which the constant % is bounded as y — .

IVull3., see (4.14). However, assuming y <

Remark 4.11. The inequality (4.14) gives similar result compared to the CDA convergence results with noise in [29][Theorem
4.1, 4.5], in which the solution error is scaled by the parameter . If we assume either sufficiently small H or small «, then the
estimates (4.12) and (4.15) above are able to remove this scaling.

Proof. We begin the proof the same was as for the proof of Theorem 4.7 and thus begin with the error equation

VIIVer s I> + plll e I? = —blegs s ery) = w e, Tpepsy)-

Applying Young’s inequality on the last right hand side term (just as in Theorem 4.7, but now estimating the nonlinear term using
Holder’s inequality with L2 — L® — L?) gives using (2.9)

2 H 2 H 2
viiVer i +5||1Hek+1ll < IIekIIIIVulloollek+1I|+EIIIHSII

IN

1 2 2, 1 2, H 2
§||Vu||0°||€k+1|| +§“ek” +§||IH€||

IN

K lewar P + Slecl + S Tell.
with the last step thanks to Young’s inequality. Denoting L := %Klz and arguing as in [15] we can write
Lllexsill? < 2LIH yregy IIP +2LIUT = Ieg . (4.16)
Since u > 4K12 is assumed, we have that ;4 > 8L and so u/2 — 2L > u/4 and thus
MIVextlP + E el = 2LIU = e P < el + 5 1 el
Now using (2.12) and the assumption on H we get that

14
VIVeri I = 2LIC = Iipeill® 2 VIIVey I = 2LCTH? Ve I 2 S Ver I,
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which combines with the previous inequality to yield
viiVery ||2 + g”IHekH ||2 < ||ek||2 + /4||1H€||2-

Applying (2.12) again to lower bound the left hand side (similar to in the proofs above) gives us that
VP HI = Ipe P+ S e I < vIVe P + Sl eI

< lleel® + ullZgel.
Next, using the definition of 1 and (4.16) (after dividing both sides by 2L) yields

el < lleel + el

so that

2 2u
gy — ull* < jlluk —ull*+ 7||In€||2-

Denoting r = % < 1, (by assumption of the theorem) we can step the iteration backward and obtain the bound

Nty = ull® < ¥ lug —ull® + (4 +r 4 -+ O pr|| Lyell?

Hr 2
L grell
r

k+1
2 2, 2H 2
= uy — ul|* + —— |1 gell”.
(A) llug — ull A_2”H Il

This proves (4.14). In case u < cfvm then 1 = u/2 which gives (4.15). W

< I'k+1||M0—M||2+ :

IA

5. Numerical experiments

In this section we illustrate the above theory and the effectiveness of the proposed method on the 2D driven cavity at Re=3000
and 10,000, and the 3D driven cavity at Re=200 and 1000. CDA-Picard L? error is shown in all tests to converge to approximately
the level of the signal to noise ratio while its L? residual (the difference between iterates) converges linearly to 0. In addition, we
propose and test the strategy of using CDA-Picard with noisy data to create an initial guess for usual Newton. This is shown to be
a very effective solver for these test problems.

5.1. 2D driven cavity with varying signal to noise ratio

For our first test we consider the CDA-Picard method for the NSE applied to the benchmark 2D driven cavity problem on
2 = (0,1)%. Boundary conditions are zero on the sides and bottom, and on the top we enforce u = (1,0)” which models a lid
moving horizontally with unit velocity. No external forcing is used in this problem (f = 0) and the viscosity v will be chosen as
the inverse of the Reynolds number, and we test with Re=3000, and 10000 (the first of which is believed to satisfy the smallness
condition « < 1 and the second of which does not [3]).

Computations are performed using (P, Pl‘“s") Scott-Vogelius elements on a barycenter refinement (also named the Alfeld split
in the Guzman-Neilan vernacular) of a uniform é triangulation that has southwest-northeast diagonals. It is known from [30] that
this element choice is inf-sup stable on this type of structured mesh. This discretization provides 98,818 total velocity degrees of
freedom (dof) and 73,728 pressure dof. For all of these tests, an initial iterate of u, = 0 is chosen. Plots of the NSE solutions found
on this discretization for these problems are shown in Fig. 1, and they agree well with existing literature [31,32].

We obtain noisy data measurements by first computing the NSE solution directly on the given discretization for each Re (using
the AA-Picard method from [3]). Measurement points are taken to be the vertices of the mesh that are closest to the midpoints of
an N X N uniform square grid of 2, where N=10 for Re=3000 and N=20 for Re=10,000. Signal to noise ratios (snr) were chosen
to be 0.001,0.01 and 0.05, and for each snr, random numbers were generated at each measurement point that come from a normal
distribution with mean 0 and standard deviation snr X u,,,, (4,,, is the max velocity of the true solution, which is 1 for this test
problem). These noisy measurement data points were then used with CDA-Picard. For Re=3000, 100 total measurement points were
used and for Re=10,000, 400 total measurement points were used (100 was not enough to yield convergence for Re=10,000).

Convergence results for Re = 3000 are shown in Fig. 2 for each choice of snr, and for both small and large nudging parameters
(1 = 1and u = 10,000). We observe that in all cases, the L? residuals converge approximately linearly, with little difference between
large and small x and with the total number of iterations to convergence increasing slightly as the snr increases. The L? error plots,
as expected, only converged up to approximately the level of the snr.

Results for Re = 10000 are shown in Fig. 3. The L? error again converges approximately to the level of the snr. The convergence
of the L? residual shows somewhat different behavior than the Re = 3000 case. While as expected residual convergence is slower
with higher Re, we observe better residual convergence for snr = 0.01 than for 0.001, which is not expected. We also observe for
snr = 0.05 that the larger nudging parameter gives somewhat worse behavior. Of course, the interest in the L? residual is only useful
in how it is associated with error.
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~ Re = 10,000

Fig. 1. The plot above shows streamlines of the solution of the 2D driven cavity problem at Re = 3,000 (left) and 10,000 (right).
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Fig. 2. Shown above are the error and residual plots for Re=3000 driven cavity tests with varying snr.
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Fig. 3. Shown above are the error and residual plots for Re=10,000 driven cavity tests with varying snr.

We also noticed that it is practical to set the convergence tolerance of CDA-Picard algorithm as 10~2 x snr, since after this
threshold further CDA-Picard iterations does not help reducing the error anymore. This aligns well with our theory that the CDA-
Picard converges to a limit with distance proportional to snr away from the true solution. We only need to set the tolerance up
to this solution precision, and using a scalar such as 102 to multiply snr ensures that all relevant information in observations has
been thoroughly captured during iterations. In addition, it can be better to use a smaller y (mainly depending on observation data
H and the Reynolds number) in the CDA-Picard algorithm to avoid negative effects of the observation noise, especially when the

noise is large. Such phenomena appears particularly in the third plot of Figs. 2 and 3. This fact also aligns well with our theory
(inequality (4.14) in Theorem 4.9).

5.2. 3D driven cavity with varying signal to noise ratio

Our next test for CDA-Picard with noisy data uses the 3D lid-driven cavity benchmark problem. This problem is the 3D analogue
of the test problem above: the domain is the unit cube, there is no forcing, homogeneous Dirichlet boundary conditions are enforced
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X X y

Fig. 5. Shown above is the method used to split a rectangular box into 6 tetrahedra.

on the walls and at the top of the box u = (1, 0, 0) represents the moving lid. The viscosity will be chosen as the inverse of the Reynolds
number, and we will use Re=200 and 1000. The tests will use u, = 0 for the initial condition for the iterations.

The mesh is constructed using Chebychev points on [0,1] to first construct a M x M X M grid of rectangular boxes (we use
M=11 for Re=200 and M=13 for Re=1000). Each box is then split into 6 tetrahedra in the manner of Fig. 5, and then each of these
tetrahedra is split into 4 tetrahedra with a barycenter refinement (Alfeld split). This mesh is equipped with (P, Pzd is¢) Scott-Vogelius
elements, and this provides for approximately 796K total dof for the Re=200 tests and 1.3 million total dof for the Re=1000 tests.
We note this velocity—pressure pair is known to be LBB stable on such a mesh construction from [33]. Solution plots found with
this discretization matched those from the literature [34], and we show midspliceplanes of the Re=1000 solution in Fig. 4.

The measurement data is constructed similar to the 2D case above. Measurement points are taken to be the tetrahedra vertices
closest to the centers of a uniform grid of N X N X N cubes. Measurement data is taken to be the true solution (found using AA-Picard
method of [3]) with noise added at each component from random numbers with normal distribution having mean 0 and standard
deviation snr. We again take snr to be 0.001,0.01 and 0.05 for these tests. These tests used N=4 (64 total measurement points)
for Re=200 and N=9 (729 total measurement points) for Re=1000; for the latter case, N=8 was not sufficiently large to yield
convergence (recall the theory above requires H sufficiently small). The nudging parameter y=1 was used, and we note that results
from larger nudging parameters gave very similar results.

For Re=200, convergence of the L? residuals and L? errors for snr = 0.001,0.01 and 0.05 are shown in Fig. 6, and for Re=1000
they are shown in Fig. 7. We observe approximately linear convergence of the L? residual down to the set tolerance of 1078 in all
cases, and also in all cases we observe the L? error to converge only to the level of the snr. Note that the Re=1000 tests converge
faster than the case of Re = 200 but this is likely because many more measurement points were used (729 compared to 64).

5.3. Newton with CDA-Picard generated initial guess

For our last test, we consider using CDA-Picard with noisy data for the purpose of generating an initial guess for the (usual)
Newton iteration. From the tests and analysis above, we observe that CDA-Picard’s L? residual will converge (provided enough
measurement data), however the L? error will only converge up to approximately the level of the signal to noise ratio. Also observed
from the tests above, the L? residual and error are close to each other in value, until the L? error bottoms out near the snr while the
L? residual continues to converge linearly. While noisy data will create a lower bound on the error for CDA-Picard iterates that is
on the order of the signal to noise ratio, these iterates may be sufficiently close to the root that it can allow for Newton to converge
if they are used as initial guesses. Indeed, we find below that this strategy can be quite effective.
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Fig. 6. Shown above are the error and residual plots for Re=200 3D driven cavity tests with varying snr.
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Fig. 7. Shown above are the error and residual plots for Re=1000 3D driven cavity tests with varying snr.
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Fig. 8. Shown above are L? error vs iteration number, for the 2D driven cavity at Re=10,000 (left) and the 3D driven cavity at Re=1000 (right) for Newton,
Picard, and CDA-Picard + Newton.

We now test this idea for the 2D driven cavity at Re=10,000 and 3D driven cavity with Re=1000 problems tested above, with
the same discretizations and parameters. We note that both Newton and Picard iterations fail for these problems if an initial guess
of uy = 0 is used. We run CDA-Picard with noisy data (and varying snr) until the L? residual falls below 1072, and then use the
final iterate as the initial guess for the Newton iteration. We refer to this method as CDA-Picard + Newton below. We note that we
also tested a 1073 tolerance and got the same results, but 10~! was not sufficiently accurate for Newton to converge. We also note
that 4 = 1 was the nudging parameter, but results using u = 10000 gave very similar results.

Convergence results are shown in Fig. 8 as L? error vs iteration count for CDA-Picard + Newton for varying snr, usual Newton
and usual Picard. The usual Newton, usual Picard, and CDA-Picard all use u, = 0 as the initial guess. We observe that usual Picard
fails to converge for both tests, although it remains stable (as expected [2]). The usual Newton iteration also fails and the iterates
get very large; in the 2D case direct solvers are used and the iteration is able to continue but in 3D the linear solvers fail after
the size of the iterate grows above 10* (we use method of [35,36]). For CDA-Picard + Newton, however, convergence is achieved
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provided the snr is not too large. For the 2D problem, convergence is achieved with snr = 0.001 and 0.01, but the method fails to
converge with snr = 0.05. For the 3D problem, convergence is achieved for snr = 0.05 and 0.1 but not for 0.2. Hence as expected, in
both cases there is a level of noise which is too high to provide a good enough initial guess for Newton to converge. Overall, these
results show CDA-Picard + Newton is quite effective, provided the noise level is not too large.

6. Conclusions and future directions

We have extended the CDA-Picard methodology in this paper. We have improved the analysis by providing convergence results
in more appropriate norms than the original analysis provides, and also extended the methodology and analysis to the more realistic
case of noisy data. Our analytical and numerical results show that the L? error scales with the relative size of the noise. For large
relative noise levels, however, we showed that using the CDA-Picard iteration to generate initial guesses for the usual Newton
iteration can be very effective.

For future work, we plan to consider applications of CDA-Picard to multiphysics problems related to the NSE. Additionally, we
plan to look for methods to reduce the amount of data required by the method, in particular in the 3D case.
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Appendix

Proof of Theorem 4.3. Subtracting the iteration at Step k + 1 from Step k, and testing with u;,; — u; gives

VIV yy = udl? + ull g gy = wll* < =bluy — ey g gy — 1), (A1)
thanks to b(uy_y,uyyq — g,y —uy) = 0. Using (2.7) and Young’s inequality, we obtain

VIV iy = wl + ulld gy = u)l? < MV @y = e DIV 1V @y = )l

Using Lemma 4.2 (for sufficiently large k) on the first right hand side term and dropping the second (positive) left hand side term,
we get the stated bound

V(g —upll < Csall V@ —ue_pll. - W

Proof of Theorem 4.5. Starting from (A.1) and using (2.6) and Young’s inequality, we obtain
VIV Gty = wIP + ullT gy gy = w)l? < MUV Gty = DI i, = w121V 1V iy = w0

Proceeding as in Lemma 4.1 to lower bound the left hand side and using Lemma 4.2 (for sufficiently large k) on the first right hand
side term along with Young’s inequality gives

v 2,3 2 2.2
Z”V(ukJrl —u)ll” + Allugegy —well” < C(; va© | V(g — ue_ )y — gy |-
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Applying Young’s inequality again to the right hand side gives

4. 4
Céva

v ~ v
IV = I + Aty =l < p2 IV — DI + llug = w117
Clva*
v 2 5 2
<p Z”V(uk —upll” + > oty — wgey |l
P

Using the stated choice of p and assumption that it is less than 1, we obtain the stated result,

12 ~ )Y ~
IV =)l + Al = > <26, CRa>H (19 = I+ Al =g o 17) . W
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