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A B S T R A C T

We consider local balances of momentum and angular momentum for the incompressible
Navier–Stokes equations. First, we formulate new weak forms of the physical balances (con-
servation laws) of these quantities, and prove they are equivalent to the usual conservation
law formulations. We then show that continuous Galerkin discretizations of the Navier–Stokes
equations using the EMAC form of the nonlinearity preserve discrete analogues of the weak form
conservation laws, both in the Eulerian formulation and the Lagrangian formulation (which are
not equivalent after discretizations). Numerical tests illustrate the new theory.

1. Introduction

We are interested in conservation properties of continuous Galerkin discretizations of the incompressible Navier–Stokes equations
NSE), which are given by

⎧

⎪

⎨

⎪

⎩

𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮 − div𝝈 = 0

div𝐮 = 0
in 𝛺. (1)

Here, 𝝈 is the Cauchy stress tensor, and we restrict to the case of a Newtonian fluid with 𝝈 = 2𝜈𝐃(𝐮)−𝑝𝐈, where 𝐃(𝐮) = 1
2 (∇𝐮+∇𝑇 𝐮)

s a rate of deformation tensor.
It is well known that the smooth solution to (1) obeys an array of conservation laws, including the conservation of momentum,

nergy, vorticity, etc., which can be expressed in terms of proper balances for material volumes of fluid. The development of
umerical methods that provide discrete counterparts for possibly many of these conservation laws is a long-standing challenge
or the computational fluid dynamics community. This challenge has been addressed by numerous authors and from various
erspectives; for example, see [1–9] and references therein. Many of these studies have considered the global conservation properties
f numerical methods, i.e., balances of physical quantities across the entire computational domain. While properly calibrating these
lobal integral statistics is necessary for a method to be long-time accurate, it is difficult to see how this alone can guarantee the
uality of a numerical solution.
The proper local balances of momentum, energy, vorticity, etc. represent a significantly stronger requirement for a numerical

olution. Note that ‘‘element-wise conservation’’ is a common argument used to motivate the application of discontinuous Galerkin
r finite volume discretization techniques (see, for instance, [10,11]). At the same time, there is a widespread belief that continuous

∗ Corresponding author.
E-mail addresses: maolshanskiy@uh.edu (M.A. Olshanskii), rebholz@clemson.edu (L.G. Rebholz).
vailable online 7 November 2023
045-7825/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.cma.2023.116583
eceived 11 September 2023; Received in revised form 20 October 2023; Accepted 30 October 2023

https://www.elsevier.com/locate/cma
http://www.elsevier.com/locate/cma
mailto:maolshanskiy@uh.edu
mailto:rebholz@clemson.edu
https://doi.org/10.1016/j.cma.2023.116583
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116583&domain=pdf
https://doi.org/10.1016/j.cma.2023.116583


Computer Methods in Applied Mechanics and Engineering 418 (2024) 116583M.A. Olshanskii and L.G. Rebholz

c
o
f
s

a

(
s
e
t
b
t
r

n
m
m
a
m
a
d
l
a
t
t
b

T

H

(velocity 𝐻1-conforming) Galerkin methods inevitably violate local conservation laws; however, see [12,13] for a different
viewpoint.

Another obstacle in achieving proper discrete counterparts of both local and global conservation laws for 𝐮 is the fact that
ontinuous Galerkin discretizations of (1) (e.g., conforming finite element methods) typically enforce the divergence-free constraint
nly weakly [8]. The purpose of this paper is to demonstrate that a continuous Galerkin solution, which is only weakly divergence-
ree, for (1) does satisfy properly formulated local conservation laws for momentum and angular momentum when one applies the
o-called EMAC (Energy, Momentum, and Angular Momentum Conserving) formulation of the NSE.
The EMAC formulation of the discrete NSE was originally developed in [8]. It re-writes the inertia terms as

𝐮 ⋅ ∇𝐮 → 2𝐃(𝐮ℎ)𝐮ℎ + (div 𝐮ℎ)𝐮ℎ,

long with an altered pressure 𝑝ℎ representing 𝑝 − 1
2 |𝐮|

2. The motivation for EMAC was that Galerkin schemes using it can be
shown to conserve global energy, momentum and angular momentum balances when div𝐮ℎ ≠ 0, while schemes using the common
nonlinearity formulations such as convective (CONV: 𝐮ℎ ⋅∇𝐮ℎ), skew-symmetric (SKEW: 𝐮ℎ ⋅∇𝐮ℎ +

1
2 (div𝐮ℎ)𝐮ℎ) and rotational (ROT:

∇×𝐮ℎ)×𝐮ℎ) do not preserve some or all of these quantities. Perhaps not surprisingly, the use of EMAC has become popular for large
cale fluid computations in a wide variety of applications and is shown to give better accuracy especially over longer time intervals
.g. [8,14–23] and is built into Alya which is a massively parallel multiphysics unstructured finite element code [24]. In addition
o the better discrete physics of EMAC discussed above, it was proven in [22] that schemes using EMAC are more long time stable
ecause the Gronwall constant can be shown to be independent of (explicit) dependence on the Reynolds number (𝑅𝑒), and in [25]
he uniform in 𝑅𝑒 error estimate was derived for the EMAC error; such results are not known for skew-symmetric, convective, or
otation forms for commonly used velocity–pressure finite elements such as Taylor–Hood elements.
The purpose of this paper is to provide more theoretical justification that EMAC is superior compared to other discrete

onlinearity formulations, by proving that continuous Galerkin discretizations using EMAC admit an exact local balance of
omentum and angular momentum. There are very few results for local conservation properties of continuous finite element
ethods, with [12,13] being two fundamental works in this direction. The paper [13] showed that for NSE, typical Galerkin schemes
re not generally conservative, although this can be ‘fixed’ by multiscale formulation and adding a residual term. One observation
ade in this paper is that although local balances written in different forms – standard Eulerian, Lagrangian, or weak Eulerian
nd Lagrangian forms introduced here – represent the same conservation laws of fluid momentum and angular momentum, after
iscretization each form can be different. By considering the weak forms, which we refer to as diffuse-volume forms, of conservation
aws, we can demonstrate that EMAC continuous Galerkin discretizations exactly preserve properly formulated local momentum
nd angular momentum balances. Furthermore, the discrete balances established here serve as direct analogies to the balances at
he partial differential equation (PDE) level, obviating the need for a multiscale approach and additional residual terms to establish
his connection. We note also that from the proof construction, it is not possible for SKEW, CONV or ROT to preserve these local
alances of momentum and angular momentum in the same manner that EMAC does, since they do not preserve them globally.
The rest of the paper is arranged as follows. Section 2 recalls local conservation laws of momentum and angular momentum.

he laws can be equivalently formulated in Eulerian and Lagrangian forms. Section 3 introduces a different way to formulate local
conservation laws, which is given the name diffuse-volume form of the conservation laws due to some similarity with diffuse-
interface or phase-field methods in fluid mechanics. We show that this is another equivalent way to formulate the local balances. Here
we also distinguish between diffuse-volume Eulerian and Lagrangian forms. Section 4 demonstrates how the continuous Galerkin
method for the NSE in EMAC form satisfies discrete counterparts of the (local) diffuse-volume Eulerian and Lagrangian conservation
laws. Section 5 offers a few illustrative numerical examples.

2. Eulerian and Lagrangian forms of momentum and angular momentum conservation

To formulate local conservation laws satisfied by a smooth solution to (1), we fix some 𝑡 and let 𝜔 ⊂ 𝛺 be a fixed subdomain
of 𝛺 with sufficiently smooth boundary 𝜕𝜔. We shall assume that 𝛺 is bounded. For this volume 𝜔, the balance of momentum and
angular momentum take the form:

Moment. 𝑑
𝑑𝑡 ∫𝜔

𝐮 𝑑𝑥 = 2𝜈 ∫𝜕𝜔
𝐃(𝐮)𝐧 𝑑𝑠 − ∫𝜕𝜔

𝑝𝐧 𝑑𝑠 −∫𝜕𝜔
𝐮(𝐮 ⋅ 𝐧) 𝑑𝑠, (2)

Ang. Moment. 𝑑
𝑑𝑡 ∫𝜔

𝐮 × 𝐱 𝑑𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

momentum
rate of change

= 2𝜈 ∫𝜕𝜔
(𝐃(𝐮)𝐧) × 𝐱 𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
momentum change due

to friction on 𝜕𝜔

− ∫𝜕𝜔
𝑝(𝐧 × 𝐱) 𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
moment. change due
to pressure on 𝜕𝜔

− ∫𝜕𝜔
(𝐮 × 𝐱)(𝐮 ⋅ 𝐧) 𝑑𝑠.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
the flux of

momentum through 𝜕𝜔

(3)

ereafter 𝐧 is the outward normal vector on 𝜕𝜔.
Local balances (2)–(3) can be interpreted as Eulerian form of the conservation laws, in contrast to the Lagrangian form formulated

for a material volume below.
We now let 𝛺𝑡 ⊂ 𝛺 be a material volume of the fluid. For the material volume, the conservation laws for momentum and angular

momentum take the form:

Momentum ∶ 𝑑 𝐮 𝑑𝑥 = 2𝜈 𝐃(𝐮)𝐧 𝑑𝑠 − 𝑝𝐧 𝑑𝑠, (4)
2

𝑑𝑡 ∫𝛺𝑡 ∫𝜕𝛺𝑡 ∫𝜕𝛺𝑡
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Angular Momentum 𝑑
𝑑𝑡 ∫𝛺𝑡

𝐮 × 𝐱 𝑑𝑥 = 2𝜈 ∫𝜕𝛺𝑡
(𝐃(𝐮)𝐧) × 𝐱 𝑑𝑠 − ∫𝜕𝛺𝑡

𝑝(𝐧 × 𝐱) 𝑑𝑠. (5)

Of course, for smooth solutions to (1) the Eulerian and Lagrangian forms are just two different formulations of the same
undamental laws of continuum mechanics. They both follow from (1), and conversely, together with mass conservation they imply
1). This equivalence of (1) to the validity of local conservation laws (specifically, those concerning mass and momentum) is textbook
aterial. The standard tools used to verify this equivalence include the divergence theorem, the freedom to choose fluid volumes
𝑡 or 𝜔, and the Reynolds’ transport theorem to handle the Lagrangian form, which states

𝑑
𝑑𝑡 ∫𝛺𝑡

𝑓 𝑑𝑥 = ∫𝛺𝑡

( 𝜕𝑓
𝜕𝑡

+ div(𝑓𝐮)
)

𝑑𝑥,

for a smooth scalar function 𝑓 .
Continuous Galerkin methods like the 𝐻1-conforming finite element method (FEM) employ finite dimensional subspaces of

Sobolev spaces to project (1) and typically do not offer enough flexibility to verify a direct analogue of (2)–(3) or (4)–(5). Below
we reformulate local conservation laws in a form more convenient for continuous Galerkin methods.

3. Weak form of the conservation laws

The purpose of this section is to derive the conservation laws (2)–(3) and (4)–(5) in a form more appropriate for a variational
formulation. Let 𝜔 ⊂ 𝛺 be an arbitrary subdomain of 𝛺 with sufficiently smooth 𝜕𝜔. Denote by 𝜙 an arbitrary smooth function such
hat 𝜔 = supp(𝜙), and set

𝐧̃ ∶= −
∇𝜙
|∇𝜙|

or 𝐱 such that ∇𝜙(𝐱) ≠ 0, and let 𝐧̃(𝐱) be an arbitrary vector of unit length if ∇𝜙(𝐱) = 0. Note that 𝐧̃(𝐱) = 𝐧(𝐱) for 𝐱 ∈ 𝜕𝜔. To obtain
the weak form of the laws, we multiply the first equation in (1) by 𝜙𝐞𝑖 for momentum conservation and by 𝜙𝐞𝑖 × 𝐱 for angular
omentum conservation. Doing this for 𝑖 = 1,… , 𝑑, integrating over 𝜔 and by parts leads after straightforward computations to the
ollowing weak form of the conservation laws:

Moment. 𝑑
𝑑𝑡 ∫𝜔

𝜙𝐮 𝑑𝑥 = 2𝜈 ∫𝜔
𝐃(𝐮)𝐧̃|∇𝜙| 𝑑𝑥 − ∫𝜔

𝑝𝐧̃|∇𝜙| 𝑑𝑥 − ∫𝜔
𝐮(𝐮 ⋅ 𝐧̃)|∇𝜙| 𝑑𝑥, (6)

Ang. Moment. 𝑑
𝑑𝑡 ∫𝜔

𝜙𝐮 × 𝐱 𝑑𝑥 = 2𝜈 ∫𝜔
(𝐃(𝐮)𝐧̃) × 𝐱 |∇𝜙| 𝑑𝑥 − ∫𝜔

𝑝(𝐧̃ × 𝐱)|∇𝜙| 𝑑𝑥 − ∫𝜔
(𝐮 × 𝐱)(𝐮 ⋅ 𝐧̃)|∇𝜙| 𝑑𝑥. (7)

We note that for all calculations to make sense it is sufficient to assume 𝜙 ∈ 𝑊 1,∞(𝛺).
Given the freedom in choosing 𝜔 and 𝜙 one can show that (2)–(3) and (6)–(7) are equivalent if 𝐮 is sufficiently smooth and

ivergence free. We formulate it as a proposition.

roposition 1. Assume 𝐮 and 𝑝 are smooth and div𝐮 = 0, then (2) (or (3)) holds for any subdomain 𝜔 ⊂ 𝛺 iff (6) (or (7)) holds for
ny 𝜙 ∈ 𝑊 1,∞(𝛺) with supp(𝜙) ⊂ 𝛺.

roof. We know that (2) and div𝐮 = 0 imply (1) by standard arguments, given that 𝜔 can be taken as an arbitrary subdomain of
and for any 𝑡. Similarly, the fact that (6) holds for any 𝜙 ∈

.
𝐶(𝛺) leads to

∫𝛺

( 𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ ∇)𝐮 − 2𝜈 div𝐃(𝐮) + ∇𝑝
)

𝜙𝑑𝑥 = 0, ∀𝜙 ∈
.
𝐶(𝛺),

hich implies (1) due to the density of smooth compactly supported functions in 𝐿2(𝛺). In turn, both (2) and (6) are quick
consequences of (1). Thus (2) implies (6) and vice versa.

The same arguments can be applied to show the equivalence of (3) and (7). The only difference is that the equivalence of (3) is
stablished not to the momentum equation in (1), but to the vector product of this equation with 𝐱, and also for (7). □

In addition to the above equivalence result, it is easy to see that each individual term in (2)–(3) can be approximated arbitrarily
ell by the corresponding term in (6)–(7). Indeed, fix any 𝜔 ⊂ 𝛺 with smooth 𝜕𝜔 and for sufficiently small 𝜀 > 0 define

𝜙𝜀 =

⎧

⎪

⎨

⎪

⎩

𝜀−1dist(𝐱, 𝜕𝜔), 𝐱 ∈ 𝜀(𝜕𝜔) ∩ 𝜔,
1 𝐱 ∈ 𝜔 ⧵ 𝜀(𝜕𝜔),
0 𝛺 ⧵ 𝜔.

(8)

e have 𝜙𝜀 ∈ 𝑊 1,∞(𝛺) and one easily checks, letting 𝐧̃ = −∇𝜙𝜀∕|∇𝜙𝜀|, that

𝑑
𝑑𝑡 ∫𝜔

𝜙𝜀𝐮 𝑑𝑥 →
𝑑
𝑑𝑡 ∫𝜔

𝐮 𝑑𝑠, ∫𝜔
𝐃(𝐮)𝐧̃|∇𝜙𝜀| 𝑑𝑥 → ∫𝜕𝜔

𝐃(𝐮)𝐧 𝑑𝑠, for 𝜀 → 0, (9)

and smooth 𝐮. Similarly, the limit values of other terms in (6)–(7) will be their counterparts in (2)–(3). Therefore, (6)–(7) can be
also interpreted as the diffuse-volume version of conservation laws. Eqs. (6)–(7) imply (2)–(3) term by term without the div𝐮 = 0
3

assumption or Eqs. (1) being invoked.
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Local conservation laws in the Lagrangian form are written for the time-dependent material volume 𝛺𝑡. Denote by 𝛺0 the fluid
olume at a given initial moment 𝑡 = 𝑡0 and assume 𝛺𝑡 ⊂ 𝛺 for 𝑡 ∈ [𝑡0, 𝑡1] for some 𝑡1 > 𝑡0. The evolution of 𝛺𝑡 is defined by the
Lagrangian mapping 𝛷𝑡 ∶ 𝛺0 → 𝛺𝑡, i.e. 𝐲 = 𝛷𝑡(𝐱) solves the Cauchy problem

𝐲𝑡 = 𝐮(𝑡, 𝐲), 𝑡 ∈ (𝑡0, 𝑡1], 𝐲(𝑡0) = 𝐱. (10)

To properly reflect this domain evolution in a weak form of (4)–(5), we want 𝜙 to be time dependent and such that supp(𝜙) = 𝛺𝑡.
To this end, consider a smooth function 𝜙0 such that supp(𝜙0) = 𝛺0. We define 𝜙 = 𝜙0◦𝛷−1

𝑡 . The constructed 𝜙 is smooth (since 𝐮
is smooth so is the solution to the Cauchy problem (10)), supp(𝜙) = 𝛺𝑡, and it satisfies the transport equation

𝜕𝜙
𝜕𝑡

+ (𝐮 ⋅ ∇)𝜙 = 0 in 𝛺, 𝑡 ∈ (𝑡0, 𝑡1], 𝜙(𝑡0) = 𝜙0. (11)

Applying the Reynolds’ transport theorem and using (1) and (11) one computes the following weak Lagrangian form of the local
balances:

Moment. 𝑑
𝑑𝑡 ∫𝛺𝑡

𝜙𝐮 𝑑𝑥 = 2𝜈 ∫𝛺𝑡
𝐃(𝐮)𝐧̃|∇𝜙| 𝑑𝑥 − ∫𝛺𝑡

𝑝𝐧̃|∇𝜙| 𝑑𝑥, (12)

Angl. Moment. 𝑑
𝑑𝑡 ∫𝛺𝑡

𝜙𝐮 × 𝐱 𝑑𝑥 = 2𝜈 ∫𝛺𝑡
(𝐃(𝐮)𝐧̃) × 𝐱|∇𝜙| 𝑑𝑥 − ∫𝛺𝑡

𝑝(𝐧̃ × 𝐱)|∇𝜙| 𝑑𝑥. (13)

By the same arguments as we use to prove Proposition 1 we prove the following proposition.

Proposition 2. Assume 𝐮 and 𝑝 are smooth and div𝐮 = 0. Then (4) (or (5)) holds for any material volume 𝛺𝑡 such that 𝛺𝑡 ⊂ 𝛺 for
𝑡 ∈ [𝑡0, 𝑡1] iff (12) (or (13)) holds for any 𝜙 satisfying (11) with 𝜙0 ∈ 𝑊 1,∞(𝛺𝑡0 ), such that supp(𝜙

0) = 𝛺𝑡0 .

Similar to the Eulerian case, it is easy to see that each individual term in (4)–(5) can be approximated arbitrarily well by the
corresponding term in (12)–(13). This time 𝜙𝜀 is constructed as 𝜙𝜀 = 𝜙0

𝜀◦𝛷
−1
𝑡 with 𝜙0

𝜀 defined by the formula in (8) with 𝜔 replaced
by 𝛺𝑡0 . It holds 𝜙𝜀 ∈ 𝑊 1,∞(𝛺 × [𝑡0, 𝑡1]) and one verifies, letting 𝐧̃ = −∇𝜙𝜀∕|∇𝜙𝜀|, that

𝑑
𝑑𝑡 ∫𝛺𝑡

𝜙𝜀𝐮 𝑑𝑥 →
𝑑
𝑑𝑡 ∫𝛺𝑡

𝐮 𝑑𝑠, ∫𝛺𝑡
𝐃(𝐮)𝐧̃|∇𝜙𝜀| 𝑑𝑥 → ∫𝜕𝛺𝑡

𝐃(𝐮)𝐧 𝑑𝑠, for 𝜀→ 0, (14)

and smooth 𝐮. The limit values of other terms in (12)–(13) will be their counterparts in (4)–(5). Therefore, (12)–(13) can be also
interpreted as the diffuse-volume version of local conservation laws in the Lagrangian form.

In summary, Eqs. (6)–(7) are equivalent formulations of the fundamental (local) conservation laws in the Eulerian formulation,
while (12)–(13) are equivalent formulations of the fundamental (local) conservation laws in the Lagrangian formulation. We will
study the ability of a discretization method to match (6)–(7) and (12)–(13) instead of (2)–(3) and (4)–(5).

4. EMAC Galerkin formulation is locally conservative

As an example of a continuous Galerkin method, we consider a conforming finite element method: Denote by 𝐕ℎ ⊂ 𝐻1
0 (𝛺)𝑑 and

𝑄ℎ ⊂ 𝐿2
0(𝛺) velocity and pressure finite element spaces with respect to a tessellation ℎ of 𝛺 into elements (simplexes or more

general polygons or polyhedra). We also need the following auxiliary spaces of continuous finite elements of degree 𝑚 + 1 and 𝑚,
with 𝑚 ≥ 1:

𝑉ℎ = {𝑣 ∈ 𝐻1
0 (𝛺) ∶ 𝑣 ∈ P𝑚+1(𝑇 ) ∀ 𝑇 ∈ ℎ},

𝑉ℎ = {𝑣 ∈ 𝐻1
0 (𝛺) ∶ 𝑣 ∈ P𝑚(𝑇 ) ∀ 𝑇 ∈ ℎ}.

(15)

We only assume that the velocity space contains all piecewise polynomial continuous functions of degree 𝑚 + 1, i.e.

(𝑉ℎ)𝑑 ⊂ 𝐕ℎ. (16)

We do not have any further assumptions on finite element spaces, and in particular, both LBB stable and stabilized finite elements
are admitted.

Remark 1. Let ℎ be a triangulation of 𝛺 and 𝑚 ≥ 1 be a polynomial degree. The following examples of LBB stable FE pairs satisfy
the assumption: generalized Taylor–Hood 𝑃𝑚+1 −𝑃𝑚, 𝑃𝑚+1 −𝑃 disc

𝑚−1 (for 𝑑 = 2), 𝑃𝑚+1 −𝑃 disc
𝑚−2 (for 𝑑 = 3, 𝑚 > 1), 𝑃 bubble

𝑚+1 −𝑃 disc
𝑚−1 (for 𝑑 = 3

ith face bubbles), generalized conforming Crouzeix–Raviart 𝑃 bubble
𝑚+1 − 𝑃 disc

𝑚 , Scott-Vogelius 𝑃𝑚+1 − 𝑃 disc
𝑚 (SV element is LBB stable

ubject to further assumptions on ℎ [26]), as well as LBB unstable equal order 𝑃𝑚+1 − 𝑃𝑚+1 elements.

We use (𝑓, 𝑔) ∶= ∫𝛺 𝑓 ⋅ 𝑔 𝑑𝑥 notation for both scalar and vector functions 𝑓, 𝑔. The EMAC Galerkin formulation of (1) with 𝐮 = 𝟎
n 𝜕𝛺 reads: Find 𝐮ℎ ∶ (0, 𝑇 ) → 𝐕ℎ and 𝑝ℎ ∶ (0, 𝑇 ) → 𝑄ℎ ∩ 𝐿2

0(𝛺)

⎧

⎪

⎨

⎪

( 𝜕𝐮ℎ
𝜕𝑡

, 𝐯ℎ
)

+ 2(𝐃(𝐮ℎ)𝐮ℎ, 𝐯ℎ) + ((div 𝐮ℎ)𝐮ℎ, 𝐯ℎ) + 2𝜈(𝐃(𝐮ℎ),𝐃(𝐯ℎ)) + (𝑝ℎ, div 𝐯ℎ) = 0 ∀ 𝐯ℎ ∈ 𝐕ℎ,

(div𝐮 , 𝑞 ) = 0 ∀ 𝑞 ∈ 𝑄 ,
(17)
4

⎩

ℎ ℎ ℎ ℎ



Computer Methods in Applied Mechanics and Engineering 418 (2024) 116583M.A. Olshanskii and L.G. Rebholz

S

L

t

f

L

S

f

R
n
c
(
t

c
f
T

where 𝑝ℎ approximates the EMAC pressure 𝑝 = 𝑝 − 1
2 |𝐮|

2. The EMAC formulation is equivalent to other commonly used discrete
formulations if div𝐮ℎ = 0 pointwise. However, (div𝐮ℎ, 𝑞ℎ) = 0 does not imply div𝐮ℎ = 0 except in special settings. As a consequence,
the discrete solution depends on the form of nonlinear terms used (i.e. EMAC, SKEW, CONV, ROT, etc.).

Next, we demonstrate that the solution of (17) satisfies discrete counterparts of local conservation laws in both Eulerian and
Lagrangian forms.

4.1. Local conservation in Eulerian form

Unlike for the continuous problem, for the discrete case the counterparts of conservation laws in Eulerian and Lagrangian forms
do not follow one from another and we have to consider them separately. We start with the Eulerian form.

Conservation of local linear momentum. Consider arbitrary 𝜙ℎ ∈ 𝑉ℎ, 𝜙ℎ|𝜕𝛺 = 0. Then 𝜙ℎ𝐞𝑖 ∈ 𝐕ℎ, for 𝑖 = 1,… , 𝑑, is a legitimate test
function in (17). Letting 𝐯ℎ = 𝜙ℎ𝐞𝑖 in (17) we compute for the nonlinear term

2(𝐃(𝐮ℎ)𝐮ℎ, 𝜙ℎ𝐞𝑖) = (𝐮ℎ ⋅ ∇𝐮ℎ, 𝜙ℎ𝐞𝑖) + ((𝜙ℎ𝐞𝑖) ⋅ ∇𝐮ℎ,𝐮ℎ)
= −(𝐮ℎ ⋅ ∇(𝜙ℎ𝐞𝑖),𝐮ℎ) − ((div 𝐮ℎ)𝐮ℎ, 𝜙ℎ𝐞𝑖) −

1
2 (div(𝜙ℎ𝐞𝑖)𝐮ℎ,𝐮ℎ)

= −(𝐮ℎ ⋅ ∇𝜙ℎ,𝐮ℎ ⋅ 𝐞𝑖) − ((div𝐮ℎ)𝐮ℎ, 𝜙ℎ𝐞𝑖) −
1
2 (𝐞𝑖 ⋅ ∇𝜙ℎ, |𝐮ℎ|

2). (18)

ubstituting this in the first equation from (17) with 𝐯ℎ = 𝜙ℎ𝐞𝑖 we obtain
( 𝜕𝐮ℎ
𝜕𝑡

, 𝜙ℎ𝐞𝑖
)

− (𝐮ℎ ⋅ ∇𝜙ℎ,𝐮ℎ ⋅ 𝐞𝑖) −
1
2 (𝐞𝑖 ⋅ ∇𝜙ℎ, |𝐮ℎ|

2) + 2𝜈(𝐃(𝐮ℎ),𝐃(𝜙ℎ𝐞𝑖)) − (𝑝ℎ, div(𝜙ℎ𝐞𝑖)) = 0,

and after simple re-arrangements,
𝑑
𝑑𝑡

(

𝐮ℎ ⋅ 𝐞𝑖, 𝜙ℎ
)

− (𝐮ℎ ⋅ ∇𝜙ℎ,𝐮ℎ ⋅ 𝐞𝑖) + 2𝜈(𝐃(𝐮ℎ)∇𝜙ℎ, 𝐞𝑖) − (𝑝ℎ +
1
2 |𝐮ℎ|

2, 𝐞𝑖 ⋅ ∇𝜙ℎ) = 0. (19)

et 𝐧ℎ ∶= −∇𝜙ℎ∕|∇𝜙ℎ| for |∇𝜙ℎ| ≠ 0 (and arbitrary unit vector otherwise) and define

𝜔ℎ = supp(𝜙ℎ) and 𝑝ℎ = 𝑝ℎ +
1
2 |𝐮ℎ|

2,

hen from Eq. (19) for 𝑖 = 1,… , 𝑑 we get,
𝑑
𝑑𝑡 ∫𝜔ℎ

𝜙ℎ𝐮ℎ 𝑑𝑥 = 2𝜈 ∫𝜔ℎ
𝐃(𝐮ℎ)𝐧ℎ|∇𝜙ℎ| 𝑑𝑥 − ∫𝜔ℎ

𝑝ℎ𝐧ℎ|∇𝜙ℎ| 𝑑𝑥 − ∫𝜔ℎ
𝐮ℎ(𝐮ℎ ⋅ 𝐧ℎ)|∇𝜙ℎ| 𝑑𝑥, (20)

or any 𝜙ℎ ∈ 𝑉ℎ. This is the discrete analogue of the local momentum conservation in (6).
Conservation of local angular momentum. Consider arbitrary 𝜙ℎ ∈ 𝑉ℎ. Then 𝐱×𝜙ℎ𝐞𝑖 ∈ 𝐕ℎ for 𝑖 = 1,… , 𝑑 is a legitimate test function.

etting 𝐯ℎ = 𝐱 × 𝜙ℎ𝐞𝑖 in (17) we compute for the nonlinear term

2(𝐃(𝐮ℎ)𝐮ℎ, 𝐱 × 𝜙ℎ𝐞𝑖) = (𝐮ℎ ⋅ ∇𝐮ℎ, 𝐱 × 𝜙ℎ𝐞𝑖) + ((𝐱 × 𝜙ℎ𝐞𝑖) ⋅ ∇𝐮ℎ,𝐮ℎ)
= −(𝐮ℎ ⋅ ∇(𝐱 × 𝜙ℎ𝐞𝑖),𝐮ℎ) − ((div 𝐮ℎ)𝐮ℎ, 𝐱 × 𝜙ℎ𝐞𝑖) −

1
2 (div(𝐱 × 𝜙ℎ𝐞𝑖)𝐮ℎ,𝐮ℎ)

= −(𝐮ℎ ⋅ ∇𝜙ℎ, (𝐮ℎ × 𝐱) ⋅ 𝐞𝑖) − ((div 𝐮ℎ)𝐮ℎ, 𝐱 × 𝜙ℎ𝐞𝑖) −
1
2 (𝐱 × ∇𝜙ℎ, 𝐞𝑖|𝐮ℎ|2). (21)

ubstituting this in the first equation from (17) with 𝐯ℎ = 𝐱 × 𝜙ℎ𝐞𝑖 we obtain
( 𝜕𝐮ℎ
𝜕𝑡

, 𝐱 × 𝜙ℎ𝐞𝑖
)

− (𝐮ℎ ⋅ ∇𝜙ℎ, (𝐮ℎ × 𝐱) ⋅ 𝐞𝑖) −
1
2 (𝐱 × ∇𝜙ℎ, 𝐞𝑖|𝐮ℎ|2)

+ 2𝜈(𝐃(𝐮ℎ),𝐃(𝐱 × 𝜙ℎ𝐞𝑖)) − (𝑝ℎ, div(𝐱 × 𝜙ℎ𝐞𝑖)) = 0. (22)

Simple re-arrangements give
𝑑
𝑑𝑡

(

𝐮ℎ × 𝐱, 𝜙ℎ𝐞𝑖
)

− (𝐮ℎ ⋅ ∇𝜙ℎ, (𝐮ℎ × 𝐱) ⋅ 𝐞𝑖) + 2𝜈(𝐃(𝐮ℎ)∇𝜙ℎ, 𝐱 × 𝐞𝑖) − ((𝑝ℎ +
1
2 |𝐮ℎ|

2)𝐞𝑖,∇𝜙ℎ × 𝐱) = 0.

From the above equality for 𝑖 = 1,… , 𝑑 we get
𝑑
𝑑𝑡 ∫𝜔ℎ

𝜙ℎ𝐮ℎ × 𝐱 𝑑𝑥 = 2𝜈 ∫𝜔ℎ
(𝐃(𝐮ℎ)𝐧ℎ) × 𝐱 |∇𝜙ℎ| 𝑑𝑥 − ∫𝜔ℎ

𝑝ℎ(𝐧ℎ × 𝐱)|∇𝜙ℎ| 𝑑𝑥 − ∫𝜔ℎ
(𝐮ℎ × 𝐱)(𝐮ℎ ⋅ 𝐧ℎ)|∇𝜙ℎ| 𝑑𝑥 (23)

or any 𝜙ℎ ∈ 𝑉ℎ. This is the discrete analogue of the local angular momentum conservation from (7).

emark 2. Conservation laws (20) and (23) are local or element-wise in the sense that 𝜔ℎ can be as small as the support of a
odal basis function from 𝑉ℎ or 𝑉ℎ, respectively. At the finite element level, they are no longer equivalent to standard element-wise
onservation laws, such as the balances (2)–(3), where 𝜔 and 𝐮 are replaced by 𝜔ℎ and 𝐮ℎ. In particular, the argument in (9) and
14) is not valid at the finite element level; one cannot push 𝜖 to be smaller than ℎ, which suggests an 𝑂(ℎ) discrepancy between
he two formulations.
If convergence of 𝐮ℎ and 𝑝ℎ to the true smooth solution 𝐮 and 𝑝 is known, then an estimate of how accurate the finite element

ounterparts of (2)–(3) can be obtained through it. We are not pursuing such an estimate in this paper. Instead, the goal here is to
ormulate a priori conservation laws for 𝐮ℎ and 𝑝ℎ. This goal can be fulfilled by employing the weak forms of the conservation laws.
5

he same remark remains largely valid for the element-wise balances in the Lagrangian form.
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4.2. Local conservation in Lagrangian form

After discretization, there is no obvious equivalence between the Eulerian and Lagrangian forms of the local balances.
evertheless, one can show that EMAC form also obeys a discrete counterpart of the linear momentum local conservation in the
agrangian form. However, we need additional assumption on 𝑉ℎ space. Namely, we assume that the velocity space consists of
iecewise polynomial continuous functions of degree 𝑚 + 1:

(𝑉ℎ)𝑑 = 𝐕ℎ. (24)

Conservation of local linear momentum. Consider 𝜙0
ℎ ∈ 𝑉ℎ and 𝜙ℎ ∶ [𝑡0, 𝑡1] → 𝑉ℎ solving

( 𝜕𝜙ℎ
𝜕𝑡

, 𝑣ℎ
)

+ (𝐮ℎ ⋅ ∇𝜙ℎ, 𝑣ℎ) = 0 ∀ 𝑣ℎ ∈ 𝑉ℎ, (25)

which is the projection of the transport Eq. (11) on the finite dimensional space 𝑉ℎ with 𝐮 replaced by 𝐮ℎ.
Letting 𝐯ℎ = 𝜙ℎ𝐞𝑖 in (17), we repeat the same calculations as for the Eulerian case and arrive at (19). Since 𝜙ℎ is time dependent,

after re-arrangements (19) gives

𝑑
𝑑𝑡

(

𝐮ℎ ⋅ 𝐞𝑖, 𝜙ℎ
)

−
(

𝐮ℎ ⋅ 𝐞𝑖,
𝜕𝜙ℎ
𝜕𝑡

)

− (𝐮ℎ ⋅ ∇𝜙ℎ,𝐮ℎ ⋅ 𝐞𝑖) + 2𝜈(𝐃(𝐮ℎ)∇𝜙ℎ, 𝐞𝑖) − (𝑝ℎ +
1
2 |𝐮ℎ|

2, 𝐞𝑖 ⋅ ∇𝜙ℎ) = 0.

hanks to the assumption (24) and Eq. (25), the second and third terms add to zero.
Let 𝐧ℎ ∶= −∇𝜙ℎ∕|∇𝜙ℎ| for |∇𝜙ℎ| ≠ 0 (and arbitrary unit vector otherwise) and define

𝛺ℎ(𝑡) = supp(𝜙ℎ) and 𝑝ℎ = 𝑝ℎ +
1
2 |𝐮ℎ|

2,

then from Eq. (19) for 𝑖 = 1,… , 𝑑 we get,

𝑑
𝑑𝑡 ∫𝛺ℎ(𝑡)

𝜙ℎ𝐮ℎ 𝑑𝑥 = 2𝜈 ∫𝛺ℎ(𝑡)
𝐃(𝐮ℎ)𝐧ℎ|∇𝜙ℎ| 𝑑𝑥 − ∫𝛺ℎ(𝑡)

𝑝ℎ𝐧ℎ|∇𝜙ℎ| 𝑑𝑥, (26)

or any 𝜙ℎ ∈ 𝑉ℎ. This is the discrete analogue of the local momentum conservation in (12).
Conservation of local angular momentum. Consider 𝜙0

ℎ ∈ 𝑉ℎ and 𝜙ℎ ∶ [𝑡0, 𝑡1] → 𝑉ℎ solving
( 𝜕𝜙ℎ
𝜕𝑡

, 𝑣ℎ
)

+ (𝐮ℎ ⋅ ∇𝜙ℎ, 𝑣ℎ) = 0 ∀ 𝑣ℎ ∈ 𝑉ℎ.

Letting 𝐯ℎ = 𝐱 × 𝜙ℎ𝐞𝑖 in (17) we repeat the same calculations as for the Eulerian case and arrive at (22). Since 𝜙ℎ is time
dependent, after re-arrangements (22) gives

𝑑
𝑑𝑡

(

𝐮ℎ × 𝐱, 𝜙ℎ𝐞𝑖
)

−
( 𝜕𝜙ℎ
𝜕𝑡

, (𝐮ℎ × 𝐱) ⋅ 𝐞𝑖
)

− (𝐮ℎ ⋅ ∇𝜙ℎ, (𝐮ℎ × 𝐱) ⋅ 𝐞𝑖)

+ 2𝜈(𝐃(𝐮ℎ)∇𝜙ℎ, 𝐱 × 𝐞𝑖) − ((𝑝ℎ +
1
2 |𝐮ℎ|

2)𝐞𝑖,∇𝜙ℎ × 𝐱) = 0.

enote by 𝐼𝑚(𝐮ℎ × 𝐱) a piecewise polynomial of degree 𝑚 interpolating 𝐮ℎ × 𝐱, i.e. 𝐼𝑚(𝐮ℎ × 𝐱) ∈ 𝑉 3
ℎ . Then 𝐼𝑚(𝐮ℎ × 𝐱) ⋅ 𝐞𝑖 ∈ 𝑉ℎ holds.

herefore,
( 𝜕𝜙ℎ
𝜕𝑡

, (𝐮ℎ × 𝐱) ⋅ 𝐞𝑖
)

+ (𝐮ℎ ⋅ ∇𝜙ℎ, (𝐮ℎ × 𝐱) ⋅ 𝐞𝑖) =
(

𝑑𝜙ℎ
𝑑𝑡

, (𝐮ℎ × 𝐱 − 𝐼𝑚(𝐮ℎ × 𝐱)) ⋅ 𝐞𝑖
)

=∶ 𝑅𝑖,

here 𝑑𝜙ℎ
𝑑𝑡 = 𝜕𝜙ℎ

𝜕𝑡 + 𝐮ℎ ⋅ ∇𝜙ℎ. Let 𝐧ℎ ∶= −∇𝜙ℎ∕|∇𝜙ℎ| for |∇𝜙ℎ| ≠ 0 (and arbitrary unit vector otherwise) and define

𝛺ℎ(𝑡) = supp(𝜙ℎ) and 𝑝ℎ = 𝑝ℎ +
1
2 |𝐮ℎ|

2,

then from Eq. (19) for 𝑖 = 1,… , 𝑑 we get,

𝑑
𝑑𝑡 ∫𝛺ℎ(𝑡)

𝜙ℎ𝐮ℎ × 𝐱 𝑑𝑥 = 2𝜈 ∫𝛺ℎ(𝑡)
(𝐃(𝐮ℎ)𝐧ℎ) × 𝐱 |∇𝜙ℎ| 𝑑𝑥 − ∫𝛺ℎ(𝑡)

𝑝ℎ(𝐧ℎ × 𝐱)|∇𝜙ℎ| 𝑑𝑥 + 𝑅 (27)

or any 𝜙ℎ ∈ 𝑉ℎ. This is the discrete analogue of the local momentum conservation in (13) up to the residual term 𝑅 = 𝑅1+⋯+𝑅𝑑 . If
we assume that 𝐮ℎ approximates a (smooth) solution to the NSE with order 𝑂(ℎ𝑟), 𝑟 ≥ 𝑚+1, in some norm ‖ ⋅‖∗ then ‖𝑅‖∗ = 𝑂(ℎ𝑚+1)
once 𝑑𝜙ℎ

𝑑𝑡 is bounded in the dual norm to ‖⋅‖∗. According to (24) the optimal approximation order for 𝐮ℎ would be 𝑂(ℎ𝑚+2) in 𝐿2(𝐿2)
norm.

5. Numerical tests

We now give numerical examples to illustrate the theory above. For these tests, the full Navier–Stokes discretization uses BDF
temporal discretizations (and Crank–Nicolson for the initial time steps) and (𝐕ℎ, 𝑄ℎ) is the 𝑃2−𝑃1 Taylor–Hood elements on a mesh
ℎ. The schemes used to compute solutions are (at time step 𝑛): Find (𝐮𝑛ℎ, 𝑃

𝑛
ℎ ) ∈ (𝐕ℎ, 𝑄ℎ) satisfying

((

𝑑𝐮ℎ
)𝑛

, 𝐯ℎ
)

+ 2(𝐃(𝐮𝑛ℎ)𝐮
𝑛
ℎ, 𝐯ℎ) − (𝑝𝑛ℎ,∇ ⋅ 𝐯ℎ) + 2𝜈(𝐃(𝐮𝑛ℎ), 𝐯ℎ) = 𝐟 (𝐭𝐧),
6

𝑑𝑡 bdfk
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(∇ ⋅ 𝐮𝑛ℎ, 𝑞ℎ) = 0,

or all (𝐯ℎ, 𝑞ℎ) ∈ (𝐕ℎ, 𝑄ℎ). The BDF notation for the time derivative term used above is defined as follows. For a sequence {𝑓 𝑛}𝑛=0,1,…
f scalar or vector quantities (where 𝑛 denotes a time level, and 𝛥𝑡 is denoting a time step size), we use the shortcut notations for
iscrete time derivatives:

(

𝑑𝑓
𝑑𝑡

)𝑛

bdf3
=

11
6 𝑓

𝑛 − 3𝑓 𝑛−1 + 3
2𝑓

𝑛−2 − 1
3𝑓

𝑛−3

𝛥𝑡
,

(

𝑑𝑓
𝑑𝑡

)𝑛

bdf2
=

3𝑓 𝑛 − 4𝑓 𝑛−1 + 𝑓 𝑛−2

2𝛥𝑡
,

(

𝑑𝑓
𝑑𝑡

)𝑛

bdf1
=
𝑓 𝑛 − 𝑓 𝑛−1

𝛥𝑡
.

or our computations below, k = 2 or 3 for the NSE schemes and k = 1 or 2 for the discrete transport equations. The nonlinear
problem at each time step is resolved with Newton’s method, and typically it takes just 2 or 3 iterations to resolve.

With temporal discretizations, the precise definitions of the discrete local balances will change accordingly, and we derive these
now before proceeding to the tests. Denote by 𝜔ℎ the approximation of a subdomain 𝜔 whose boundary consists of element edges
from the mesh. Define the functions 𝜙ℎ ∈ 𝑉ℎ and 𝜓ℎ ∈ 𝑉ℎ nodally by

𝜙ℎ(𝑥𝑗 ) =
{

1 if 𝑥𝑗 is a node on 𝑃2(𝜏ℎ) in the interior of 𝜔ℎ
0 otherwise, (28)

𝜓ℎ(𝑥𝑗 ) =
{

1 if 𝑥𝑗 is a node on 𝑃1(𝜏ℎ) in the interior of 𝜔ℎ
0 otherwise. (29)

In our implementations we apply BDF formulas for the temporal discretization for the momentum and transport equations.

5.0.1. Discrete local conservation in Eulerian form
We consider first the discrete Eulerian form of local conservation of momentum and angular momentum. Choosing 𝜙ℎ by (28)

and repeating the arguments above that derived (20) but using the BDFk temporal discretization, we get the following (fully) discrete
local momentum balance

⎛

⎜

⎜

⎜

⎝

𝑑
(

∫𝜔ℎ 𝜙ℎ𝐮ℎ 𝑑𝑥
)

𝑑𝑡

⎞

⎟

⎟

⎟

⎠

𝑛

bdfk

= 2𝜈 ∫𝜔ℎ
𝐃(𝐮𝑛ℎ)𝐧ℎ|∇𝜙ℎ| 𝑑𝑥 − ∫𝜔ℎ

𝑝𝑛ℎ𝐧ℎ|∇𝜙ℎ| 𝑑𝑥 − ∫𝜔ℎ
𝐮𝑛ℎ(𝐮

𝑛
ℎ ⋅ 𝐧ℎ)|∇𝜙ℎ| 𝑑𝑥,

ith 𝐧ℎ = −∇𝜙ℎ∕|∇𝜙ℎ|. Similarly, for discrete local angular momentum conservation we obtain

⎛

⎜

⎜

⎜

⎝

𝑑
(

∫𝜔ℎ 𝜓ℎ𝐮ℎ × 𝐱 𝑑𝑥
)

𝑑𝑡

⎞

⎟

⎟

⎟

⎠

𝑛

bdfk

= 2𝜈 ∫𝜔ℎ
(𝐃(𝐮𝑛ℎ)𝐧ℎ) × 𝐱 |∇𝜓ℎ| 𝑑𝑥 − ∫𝜔ℎ

𝑝𝑛ℎ(𝐧ℎ × 𝐱)|∇𝜓ℎ| 𝑑𝑥 − ∫𝜔ℎ
(𝐮𝑛ℎ × 𝐱)(𝐮𝑛ℎ ⋅ 𝐧ℎ)|∇𝜓ℎ| 𝑑𝑥,

here 𝜓ℎ is defined by (29), and 𝐧ℎ = −∇𝜓ℎ∕|∇𝜓ℎ|.
In our tests, we will show plots of discrete local Eulerian momentum error

𝑒𝑚𝑜𝑚𝐸 =

⎛

⎜

⎜

⎜

⎝

𝑑
(

∫𝜔ℎ 𝜙ℎ𝐮ℎ 𝑑𝑥
)

𝑑𝑡

⎞

⎟

⎟

⎟

⎠

𝑛

bdfk

− 2𝜈 ∫𝜔ℎ
𝐃(𝐮𝑛ℎ)𝐧ℎ|∇𝜙ℎ| 𝑑𝑥 + ∫𝜔ℎ

𝑝𝑛ℎ𝐧ℎ|∇𝜙ℎ| 𝑑𝑥 + ∫𝜔ℎ
𝐮𝑛ℎ(𝐮

𝑛
ℎ ⋅ 𝐧ℎ)|∇𝜙ℎ| 𝑑𝑥,

nd discrete local Eulerian angular momentum error

𝑒𝑎𝑚𝐸 =

⎛

⎜

⎜

⎜

⎝

𝑑
(

∫𝜔ℎ 𝜓ℎ𝐮ℎ × 𝐱 𝑑𝑥
)

𝑑𝑡

⎞

⎟

⎟

⎟

⎠

𝑛

bdfk

− 2𝜈 ∫𝜔ℎ
(𝐃(𝐮𝑛ℎ)𝐧ℎ) × 𝐱 |∇𝜓ℎ| 𝑑𝑥 + ∫𝜔ℎ

𝑝𝑛ℎ(𝐧ℎ × 𝐱)|∇𝜓ℎ| 𝑑𝑥 + ∫𝜔ℎ
(𝐮𝑛ℎ × 𝐱)(𝐮𝑛ℎ ⋅ 𝐧ℎ)|∇𝜓ℎ| 𝑑𝑥.

.0.2. Discrete local conservation in Lagrangian form
Discrete local conservation in Lagrangian form is somewhat more complicated compared to the Eulerian case due to the 𝜙ℎ

unction becoming time dependent in the momentum and angular momentum balances, as well as the transport equations involved
n these balances being hyperbolic. As our tests are for illustrative purposes of certain theoretical properties, we approximate the
ransport equations in the following way for the purpose of ease in computations, even though other approaches to solving the
ransport equation may be better in practice.
Consider 𝜙0

ℎ ∈ 𝑉ℎ to be defined by (28), and then define 𝜙𝑛ℎ ∈ 𝑉ℎ (n=1,2,3, . . . ) via
(

(

𝑑𝜙ℎ
𝑑𝑡

)𝑛

bdf j
, 𝑣ℎ

)

+ (𝐮𝑛ℎ ⋅ ∇𝜙
𝑛
ℎ, 𝑣ℎ) = 0 ∀ 𝑣ℎ ∈ 𝑉ℎ, (30)

here 𝑗 = 1 or 2 in our numerical tests (and if 𝑗 = 2 then the first time step is backward Euler).
7
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Fig. 1. Initial velocity for the Gresho problem is shown above, as speed contours.

Rederiving the discrete local Lagrangian momentum balance (26) but now using BDFk (𝑘 = 2 or 3) time stepping for
Navier–Stokes together with (30), we obtain the balance

∫𝛺

(

𝜙ℎ

(

𝑑𝐮ℎ
𝑑𝑡

)𝑛

bdfk
+
(

𝑑𝜙ℎ
𝑑𝑡

)𝑛

bdf j
𝐮𝑛ℎ

)

𝑑𝑥 = 2𝜈 ∫𝛺
𝐃(𝐮𝑛ℎ)𝐧

𝑛
ℎ|∇𝜙

𝑛
ℎ| 𝑑𝑥 − ∫𝛺

𝑝𝑛ℎ𝐧
𝑛
ℎ|∇𝜙

𝑛
ℎ| 𝑑𝑥,

nd thus define the discrete local Lagrangian momentum error by

𝑒𝑚𝑜𝑚𝐿 = ∫𝛺

(

𝜙𝑛ℎ

(

𝑑𝐮ℎ
𝑑𝑡

)𝑛

bdfk
+
(

𝑑𝜙ℎ
𝑑𝑡

)𝑛

bdf j
𝐮𝑛ℎ

)

𝑑𝑥 −
(

2𝜈 ∫𝛺
𝐃(𝐮𝑛ℎ)𝐧

𝑛
ℎ|∇𝜙

𝑛
ℎ| 𝑑𝑥 − ∫𝛺

𝑝𝑛ℎ𝐧
𝑛
ℎ|∇𝜙

𝑛
ℎ| 𝑑𝑥

)

.

ote that if the transport equations are solved in a different way, then these definitions of discrete Lagrangian momentum and
ngular momentum balances need modified accordingly. For example if an explicit method is used, then the local balance will be
efined with some terms at time 𝑡𝑛 and others and time 𝑡𝑛−1.

For angular momentum, we proceed similarly as for momentum to find a fully discrete analogue to (27). Let 𝜓0
ℎ be defined by

(29) and find 𝜓𝑛ℎ ∈ 𝑉ℎ ∩𝐻1
0 (𝛺) for 𝑛 = 1, 2, 3,… by

(

(

𝑑𝜓ℎ
𝑑𝑡

)𝑛

bdf j
, 𝑣ℎ

)

+ (𝐮𝑛ℎ ⋅ ∇𝜓
𝑛
ℎ , 𝑣ℎ) = 0 ∀ 𝑣ℎ ∈ 𝑉ℎ ∩𝐻1

0 (𝛺),

nd using backward Euler for the first time step if 𝑗 = 2. Following similar steps as the theory above, the discrete Lagrangian local
ngular momentum error is then given by

𝑒𝑎𝑚𝐿 =
(

∫𝛺

(

𝜓𝑛ℎ

(

𝑑𝐮ℎ
𝑑𝑡

)𝑛

bdfk
+
(

𝑑𝜓ℎ
𝑑𝑡

)𝑛

bdf j
𝐮𝑛ℎ

)

× 𝐱 𝑑𝑥 − 2𝜈 ∫𝛺
(𝐃(𝐮𝑛ℎ)𝐧

𝑛
ℎ) × 𝐱 |∇𝜓𝑛ℎ| 𝑑𝑥 + ∫𝛺

𝑝𝑛ℎ(𝐧
𝑛
ℎ × 𝐱)|∇𝜓𝑛ℎ| 𝑑𝑥

)

.

.0.3. Discrete local conservation in traditional strong form

To illustrate the non-equivalence at the discrete level of the traditional strong local conservation and the proposed weak
ormulations, we consider also the momentum and angular momentum error from using the discrete solutions (𝐮ℎ, 𝑝ℎ) in Eulerian
onservation laws (2) and (3), and approximating the time derivative of the velocity with the BDF approximation used in that
simulation. Hence we define errors in discrete traditional strong Eulerian local conservation by

𝑒𝑚𝑜𝑚𝑡𝑟𝑎𝑑 = ∫𝜔

(

𝑑𝐮ℎ
𝑑𝑡

)𝑛

bdfk
𝑑𝑥 −

(

2𝜈 ∫𝜕𝜔
𝐃(𝐮𝑛ℎ)𝐧 𝑑𝑠 − ∫𝜕𝜔

𝑝𝑛ℎ𝐧 𝑑𝑠 − ∫𝜕𝜔
𝐮𝑛ℎ(𝐮

𝑛
ℎ ⋅ 𝐧) 𝑑𝑠

)

,

and

𝑒𝑎𝑚𝑡𝑟𝑎𝑑 = ∫𝜔

(

𝑑𝐮ℎ
𝑑𝑡

)𝑛

bdfk
× 𝐱 𝑑𝑥 −

(

2𝜈 ∫𝜕𝜔
(𝐃(𝐮𝑛ℎ)𝐧) × 𝐱 𝑑𝑠 − ∫𝜕𝜔

𝑝𝑛ℎ(𝐧 × 𝐱) 𝑑𝑠 − ∫𝜕𝜔
(𝐮𝑛ℎ × 𝐱)(𝐮𝑛ℎ ⋅ 𝐧) 𝑑𝑠

)

.

We note we could also consider errors of conservation in discrete traditional strong Lagrangian form. Doing this, however, is a
8

ifficult computational task in most finite element codes, and so we omit this comparison.
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p

Fig. 2. Shown above is the domain and 𝜔 (left), the mesh (center), and the mesh zoomed in near 𝜔 for the Gresho problem.

Fig. 3. Shown above is error in discrete local Eulerian (left), Lagrangian (center), and traditional strong Eulerian (right) momentum and angular momentum
conservation versus time in the (viscous) Gresho problem.

5.1. Gresho problem

For our first test we use a slight variation of the classical Gresho problem on 𝛺 = (−0.5, 0.5)2, which consists of a velocity and
ressure

𝐮 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

−5𝑦 5𝑥
]𝑇

for 𝑟 < 2,
[

2𝑦
𝑟 + 5𝑦 2𝑥

𝑟 − 5𝑥
]𝑇

for .2 ≤ 𝑟 ≤ .4,
[

0 0
]𝑇

for 𝑟 > .4,

𝑝 =

⎧

⎪

⎨

⎪

⎩

12.5𝑟2 + 𝐶1 for 𝑟 < .2,
12.5𝑟2 − 20𝑟 + 4 log(𝑟) + 𝐶2 for .2 ≤ 𝑟 ≤ .4,
0 for 𝑟 > .4,

where 𝑟 =
√

𝑥2 + 𝑦2 and

𝐶2 = −12.5(.4)2 + 20(.4)2 − 4 log(.4),

𝐶1 = 𝐶2 − 20(.2) + 4 log(.2).

This velocity is plotted in Fig. 1 and is an exact solution of the unforced steady Euler equations, and hence an accurate solver should
preserve the initial condition in time. It is shown in [8,22] that a NSE solver with EMAC nonlinearity and using Crank–Nicolson
time stepping together with Taylor-Hood finite element spatial discretization will preserve pointwise global energy, momentum and
angular momentum for this problem while other common nonlinearity formulations such as SKEW, ROT and CONV will not preserve
these physical balance laws and moreover will be less accurate in the sense of 𝐿2(𝛺) error.

We alter this problem very slightly by changing the viscosity to 𝜈 = 10−10 so as not to solve the Euler equations but instead the
NSE. We note this change of viscosity will (very slightly) change the true solution in time, however this is of no consequence as our
interest herein is not the solution but the local conservation of momentum and angular momentum. We choose 𝜔 to be the circle
of radius 0.05 centered at (0.2, 0.09), as shown in Fig. 2 at left. Fig. 2 also shows the mesh 𝜏ℎ used for the computations below as
well as the mesh zoomed in near 𝜔; the mesh is a Delaunay triangulation constructed from having 65 nodes on each domain edge
9

and 30 nodes on 𝜕𝜔. We define 𝜔ℎ to be the approximation of 𝜔 whose boundary consists of triangle edges from the mesh.
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Fig. 4. The domain for the channel flow past a cylinder numerical experiment.

Fig. 5. Shown above are the t = 1,2,3,4,5 solution plots of the Re = 100 simulations of flow past a cylinder, as speed contours.

Computations are done using end time 𝑇 = 1, time step size 𝛥𝑡 = 0.01, no external forcing, initial condition 𝐮0ℎ is the nodal
nterpolant of the true solution, and we show errors in discrete Eulerian, Lagrangian and traditional strong Eulerian conservation
n Fig. 3 as absolute values of errors versus time. Notation emom

E [𝑖] is used for the 𝑖th component of the linear momentum. We
bserve these quantities are conserved pointwise for Eulerian, and are stable in time, just as the theory above predicts. Discrete
ocal Lagrangian momentum is also preserved pointwise, although Lagrangian angular momentum is not preserved pointwise but
nstead has values as large as 𝑂(10−4), which is consistent with the 𝑂(ℎ2) residual our theory above predicts. Discrete traditional
trong Eulerian momentum and angular momentum are conserved up to about 𝑂(10−3) or so, which is consistent with the spatial
iscretization error being 𝑂(ℎ2) in the gradient of the velocity.

.2. 2D flow past a cylinder

For our next test we consider the classical 2D channel flow past a cylinder problem originally from [27], but with updated
enchmark data and descriptions in [28,29] and references therein. The domain is the rectangle [0, 2.2]×[0, 0.41] as shown in Fig. 4,
with a cylinder centered at (0.2, 0.2) with radius 0.05. We take no external forcing, set 𝜈 = 0.001 (which corresponds to Reynolds
number 100, using the mean inflow velocity of 1), and set inflow/outflow profiles to be

𝑢1(0, 𝑦, 𝑡) = 𝑢1(2.2, 𝑦, 𝑡) =
6

0.412
𝑦(0.41 − 𝑦),

𝑢2(0, 𝑦, 𝑡) = 𝑢2(2.2, 𝑦, 𝑡) = 0.

The flow starts from rest, and solution plots at times t = 1,2,3,4,5 from our computations described below are shown in Fig. 5, as
speed contours. By t = 4, the flow has reached a periodic in time state with the repeating Van Karman vortex street.

We define a subdomain 𝜔 to be a circle radius 0.05 centered at (0.35, 0.16), and 𝜔ℎ to be its approximation by the mesh. A plot of
𝜔 is shown in Fig. 4. We use a mesh that provides approximately 64 K velocity degrees of freedom (dof) and 7 K pressure dof when
discretized with Taylor-Hood elements. We compute using BDF3 time stepping to 𝑇 = 5 using time step size 𝛥𝑡 = 0.01, and start
10

the flow from rest, 𝐮0 = 𝟎. Errors in discrete local Eulerian momentum and angular momentum conservation are shown in Fig. 6
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Fig. 6. Shown above is error in discrete local Eulerian (left) and discrete traditional strong local Eulerian (right) momentum and angular momentum conservation
versus time in the 2D channel flow past a cylinder test.

and we once again observe pointwise local conservation. Traditional strong Eulerian momentum and angular momentum errors are
also shown, and we observe those to be 𝑂(10−5), which is consistent with the discretization error. We do not consider Lagrangian
discrete local conservation for this test, since there is an outflow and conservation is therefore not expected except for very short
times as the transported quantity will exit the domain through the outflow. We note also that all results from this test are very
similar if BDF2 is used instead of BDF3.

5.3. Kelvin–Helmholtz flow

For our last test we consider a test problem from [30] for simulating 2D Kelvin–Helmholtz instability. The domain is the unit
square, with periodic boundary conditions at 𝑥 = 0, 1, representing an infinite extension in the horizontal direction. At 𝑦 = 0, 1, we
enforce for 𝑡 > 0 a no slip condition, which differs from [30] as they use a no penetration and free slip condition. However, as these
boundaries are far from the physical behavior of interest, there is little effect on the qualitative behavior of the solution. The initial
condition is set by

𝐮0(𝑥, 𝑦) =
(

𝑢∞ tanh
(

2𝑦−1
𝛿0

)

0

)

+ 𝑐𝑛

(

𝜕𝑦𝜓(𝑥, 𝑦)
−𝜕𝑥𝜓(𝑥, 𝑦)

)

,

where 𝛿0 =
1
28 is the initial vorticity thickness, 𝑢∞ = 1 is a reference velocity, 𝑐𝑛 is a noise/scaling factor taken to be 10−3, and

𝜓(𝑥, 𝑦) = 𝑢∞ exp

(

−
(𝑦 − 0.5)2

𝛿20

)

(cos(8𝜋𝑥) + cos(20𝜋𝑥)) .

The Reynolds number is defined by 𝑅𝑒 = 𝛿0𝑢∞
𝜈 = 1

28𝜈 , and 𝜈 is defined by selecting 𝑅𝑒. We use 𝑅𝑒 = 100 for our test.
We compute solutions for EMAC discretized with Taylor-Hood elements on a ℎ = 1

128 uniform mesh, together with BDF2 time
stepping and a time step size of 𝛥𝑡 = 0.01. Solutions are computed up to 𝑇 = 5, with plots of vorticity contours shown in Fig. 7
matching those in [30] qualitatively well.

The subdomain 𝜔 is defined to be the square [ 18 ,
1
4 ] × [ 18 ,

1
4 ]. For this domain on this mesh, we have that 𝜔ℎ = 𝜔. Plots of discrete

Eulerian momentum and angular momentum are shown in Fig. 8 at the top, and we observe that these quantities are conserved
exactly, just as the theory above predicts. For discrete Lagrangian momentum and angular momentum, we solve the transport
equation using backward Euler (BDF1), and plots of momentum and angular momentum are shown in Fig. 8 at bottom. We observe
exact local conservation of discrete Lagrangian momentum, and conservation of discrete Lagrangian angular momentum consistent
with the discretization error, as predicted above.

6. Future directions

We have shown that continuous Galerkin discretizations of the Navier–Stokes equations using EMAC nonlinearity form admit
(appropriately defined) exact local balances/conservation laws of momentum and angular momentum. These discrete local balances
are constructed as weak forms of the momentum and angular momentum conservation laws, and are equivalent to the usual
conservation law definitions before discretization. In the discrete case, however, these weak formulations are not equivalent to
the usual conservation law definitions and even their Eulerian and Lagrangian constructions are not equivalent. That the discrete
schemes admit any exact local balances at all is quite rare, and we note that such an analysis is not possible for such common Navier–
Stokes nonlinearity formulations such as convective, skew-symmetric or rotational. We remark that the ‘conservative’ formulation
11
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Fig. 7. Shown above are the absolute vorticity contours of the solution velocity at 𝑡 = 0, 0.5, 1, 2, 3, 4, 4.5 and 5 (left to right, top to bottom).

Fig. 8. Shown above is error in discrete local Eulerian (left) and Lagrangian (right) momentum and angular momentum conservation versus time in the
Kelvin–Helmholtz problem.
12
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of nonlinear terms (referred to as CONS, utilizing div(𝐮ℎ𝐮𝑇ℎ )) also maintains the same conservation properties for momenta as EMAC.
However, CONS fails to achieve a proper global energy balance, when div𝐮ℎ ≠ 0, unlike EMAC. This deficiency leads to unstable
finite element schemes using CONS; see examples of CONS underperformance in [8,21].

Future directions for this work could include an extension of these ideas to other conservation laws of Navier–Stokes such as
energy, helicity, enstrophy in 2D, vorticity, and others. It is currently unclear to the authors how to construct appropriate local
balances for these quantities for the continuous Galerkin method.
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