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ARTICLE INFO ABSTRACT

Keywords: We consider local balances of momentum and angular momentum for the incompressible
Navier-Stokes Navier-Stokes equations. First, we formulate new weak forms of the physical balances (con-
Finite element methods servation laws) of these quantities, and prove they are equivalent to the usual conservation

Local conservation laws
EMAC

law formulations. We then show that continuous Galerkin discretizations of the Navier-Stokes
equations using the EMAC form of the nonlinearity preserve discrete analogues of the weak form
conservation laws, both in the Eulerian formulation and the Lagrangian formulation (which are
not equivalent after discretizations). Numerical tests illustrate the new theory.

1. Introduction

We are interested in conservation properties of continuous Galerkin discretizations of the incompressible Navier-Stokes equations
(NSE), which are given by
0—u+(u-V)u—diva=0 .
ot in Q. (@D)]
divu=0

Here, o is the Cauchy stress tensor, and we restrict to the case of a Newtonian fluid with ¢ = 2vD(u) — pI, where D(u) = %(Vu+ VTu)
is a rate of deformation tensor.

It is well known that the smooth solution to (1) obeys an array of conservation laws, including the conservation of momentum,
energy, vorticity, etc., which can be expressed in terms of proper balances for material volumes of fluid. The development of
numerical methods that provide discrete counterparts for possibly many of these conservation laws is a long-standing challenge
for the computational fluid dynamics community. This challenge has been addressed by numerous authors and from various
perspectives; for example, see [1-9] and references therein. Many of these studies have considered the global conservation properties
of numerical methods, i.e., balances of physical quantities across the entire computational domain. While properly calibrating these
global integral statistics is necessary for a method to be long-time accurate, it is difficult to see how this alone can guarantee the
quality of a numerical solution.

The proper local balances of momentum, energy, vorticity, etc. represent a significantly stronger requirement for a numerical
solution. Note that “element-wise conservation” is a common argument used to motivate the application of discontinuous Galerkin
or finite volume discretization techniques (see, for instance, [10,11]). At the same time, there is a widespread belief that continuous
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(velocity H'-conforming) Galerkin methods inevitably violate local conservation laws; however, see [12,13] for a different
viewpoint.

Another obstacle in achieving proper discrete counterparts of both local and global conservation laws for u is the fact that
continuous Galerkin discretizations of (1) (e.g., conforming finite element methods) typically enforce the divergence-free constraint
only weakly [8]. The purpose of this paper is to demonstrate that a continuous Galerkin solution, which is only weakly divergence-
free, for (1) does satisfy properly formulated local conservation laws for momentum and angular momentum when one applies the
so-called EMAC (Energy, Momentum, and Angular Momentum Conserving) formulation of the NSE.

The EMAC formulation of the discrete NSE was originally developed in [8]. It re-writes the inertia terms as

u - Vu = 2D(uy)u, + (divuy,)uy,

along with an altered pressure p, representing p — %lulz. The motivation for EMAC was that Galerkin schemes using it can be
shown to conserve global energy, momentum and angular momentum balances when divu, # 0, while schemes using the common
nonlinearity formulations such as convective (CONV: u,, - Vu,,), skew-symmetric (SKEW: u,, - Vu, + %(div u;)u,,) and rotational (ROT:
(Vxuy,)xu,) do not preserve some or all of these quantities. Perhaps not surprisingly, the use of EMAC has become popular for large
scale fluid computations in a wide variety of applications and is shown to give better accuracy especially over longer time intervals
e.g. [8,14-23] and is built into Alya which is a massively parallel multiphysics unstructured finite element code [24]. In addition
to the better discrete physics of EMAC discussed above, it was proven in [22] that schemes using EMAC are more long time stable
because the Gronwall constant can be shown to be independent of (explicit) dependence on the Reynolds number (Re), and in [25]
the uniform in Re error estimate was derived for the EMAC error; such results are not known for skew-symmetric, convective, or
rotation forms for commonly used velocity—pressure finite elements such as Taylor-Hood elements.

The purpose of this paper is to provide more theoretical justification that EMAC is superior compared to other discrete
nonlinearity formulations, by proving that continuous Galerkin discretizations using EMAC admit an exact local balance of
momentum and angular momentum. There are very few results for local conservation properties of continuous finite element
methods, with [12,13] being two fundamental works in this direction. The paper [13] showed that for NSE, typical Galerkin schemes
are not generally conservative, although this can be ‘fixed’ by multiscale formulation and adding a residual term. One observation
made in this paper is that although local balances written in different forms — standard Eulerian, Lagrangian, or weak Eulerian
and Lagrangian forms introduced here — represent the same conservation laws of fluid momentum and angular momentum, after
discretization each form can be different. By considering the weak forms, which we refer to as diffuse-volume forms, of conservation
laws, we can demonstrate that EMAC continuous Galerkin discretizations exactly preserve properly formulated local momentum
and angular momentum balances. Furthermore, the discrete balances established here serve as direct analogies to the balances at
the partial differential equation (PDE) level, obviating the need for a multiscale approach and additional residual terms to establish
this connection. We note also that from the proof construction, it is not possible for SKEW, CONV or ROT to preserve these local
balances of momentum and angular momentum in the same manner that EMAC does, since they do not preserve them globally.

The rest of the paper is arranged as follows. Section 2 recalls local conservation laws of momentum and angular momentum.
The laws can be equivalently formulated in Eulerian and Lagrangian forms. Section 3 introduces a different way to formulate local
conservation laws, which is given the name diffuse-volume form of the conservation laws due to some similarity with diffuse-
interface or phase-field methods in fluid mechanics. We show that this is another equivalent way to formulate the local balances. Here
we also distinguish between diffuse-volume Eulerian and Lagrangian forms. Section 4 demonstrates how the continuous Galerkin
method for the NSE in EMAC form satisfies discrete counterparts of the (local) diffuse-volume Eulerian and Lagrangian conservation
laws. Section 5 offers a few illustrative numerical examples.

2. Eulerian and Lagrangian forms of momentum and angular momentum conservation
To formulate local conservation laws satisfied by a smooth solution to (1), we fix some ¢ and let o C 2 be a fixed subdomain

of Q with sufficiently smooth boundary dw. We shall assume that £ is bounded. For this volume w, the balance of momentum and
angular momentum take the form:

d
Moment. — / udx = 2v/ D(u)nds - / pnds —/ u(u-n)ds, (2)
dt w o ] Jw
d
Ang. Moment. — / uxxdx = 2v [ (Dn)xxds — / pnXx)ds — (uxx)(u-n)ds. 3)
dt 2] Jdw Jw Jw
—_———— — — —_—— —— ——
momentum momentum change due moment. change due the flux of
rate of change to friction on dw to pressure on dw momentum through dw

Hereafter n is the outward normal vector on dw.

Local balances (2)-(3) can be interpreted as Eulerian form of the conservation laws, in contrast to the Lagrangian form formulated
for a material volume below.

We now let Q, C 2 be a material volume of the fluid. For the material volume, the conservation laws for momentum and angular
momentum take the form:

Momentum : i/ udx = 2v/ D(u)nds—/ pnds, (C))
dt Jg, 09, 09,

2
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Angular Momentum 4 / uxxdx = 2v/ Du)n) X xds — / pn X x)ds. 5)
dt Jgq, 0%, 00,

Of course, for smooth solutions to (1) the Eulerian and Lagrangian forms are just two different formulations of the same
fundamental laws of continuum mechanics. They both follow from (1), and conversely, together with mass conservation they imply
(1). This equivalence of (1) to the validity of local conservation laws (specifically, those concerning mass and momentum) is textbook
material. The standard tools used to verify this equivalence include the divergence theorem, the freedom to choose fluid volumes
Q, or w, and the Reynolds’ transport theorem to handle the Lagrangian form, which states

d [ef .
= Qrfdx—/gt(5+d1v(fu)>dx,

for a smooth scalar function f.

Continuous Galerkin methods like the H!-conforming finite element method (FEM) employ finite dimensional subspaces of
Sobolev spaces to project (1) and typically do not offer enough flexibility to verify a direct analogue of (2)-(3) or (4)—(5). Below
we reformulate local conservation laws in a form more convenient for continuous Galerkin methods.

3. Weak form of the conservation laws

The purpose of this section is to derive the conservation laws (2)—(3) and (4)-(5) in a form more appropriate for a variational
formulation. Let w C Q2 be an arbitrary subdomain of £ with sufficiently smooth dw. Denote by ¢ an arbitrary smooth function such
that @ = supp(¢), and set

Yo

Vol
for x such that V¢(x) # 0, and let ii(x) be an arbitrary vector of unit length if V¢(x) = 0. Note that i(x) = n(x) for x € dw. To obtain
the weak form of the laws, we multiply the first equation in (1) by ¢e; for momentum conservation and by ¢e; x x for angular
momentum conservation. Doing this for i = 1, ..., d, integrating over w and by parts leads after straightforward computations to the
following weak form of the conservation laws:

Moment. %/qf)udx =2v/D(u)ﬁ|V¢|dx—/pﬁ|V¢|dx—/u(u-ﬁ)|V¢|dx, 6)
Ang. Moment. %/¢u><xdx=2v/(D(u)ﬂ)><x|V¢| dx—/p(ﬂxx)|V¢|dx—/(uxx)(u~ﬁ)|V¢|dx. %)

We note that for all calculations to make sense it is sufficient to assume ¢ € W1°(Q).
Given the freedom in choosing ® and ¢ one can show that (2)-(3) and (6)-(7) are equivalent if u is sufficiently smooth and
divergence free. We formulate it as a proposition.

Proposition 1. Assume u and p are smooth and divu = 0, then (2) (or (3)) holds for any subdomain w C Q iff (6) (or (7)) holds for
any ¢ € W>(Q) with supp(¢p) C Q.

Proof. We know that (2) and divu = 0 imply (1) by standard arguments, given that w can be taken as an arbitrary subdomain of
Q and for any . Similarly, the fact that (6) holds for any ¢ € C(£2) leads to

/ (a—“ +(u- Vyu—2vdivD@) + Vp)¢dx =0, Vpel@),

which implies (1) due to the density of smooth compactly supported functions in L2(2). In turn, both (2) and (6) are quick
consequences of (1). Thus (2) implies (6) and vice versa.

The same arguments can be applied to show the equivalence of (3) and (7). The only difference is that the equivalence of (3) is
established not to the momentum equation in (1), but to the vector product of this equation with x, and also for (7). [

In addition to the above equivalence result, it is easy to see that each individual term in (2)-(3) can be approximated arbitrarily
well by the corresponding term in (6)—(7). Indeed, fix any w C 2 with smooth dw and for sufficiently small ¢ > 0 define
e ldist(x, dw), x € O, (0w) N w,
¢, =11 X €Ew\ O,(0w), (8)
0 2\ .

We have ¢, € W1*(2) and one easily checks, letting i = —V¢, /| V¢, |, that

%/q&sudx—» %/uds, /D(u)ﬁ|V¢é|dx—>/ D(u)nds, for e — 0, 9)
[} [} ® ow

and smooth u. Similarly, the limit values of other terms in (6)-(7) will be their counterparts in (2)—(3). Therefore, (6)-(7) can be
also interpreted as the diffuse-volume version of conservation laws. Egs. (6)—-(7) imply (2)-(3) term by term without the divau = 0
assumption or Egs. (1) being invoked.
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Local conservation laws in the Lagrangian form are written for the time-dependent material volume £,. Denote by €, the fluid
volume at a given initial moment ¢ = ¢, and assume £, C Q2 for ¢ € [ty,1,] for some t; > t,. The evolution of €, is defined by the
Lagrangian mapping @, : 2, — 2,, i.e. y = @,(x) solves the Cauchy problem

yr=uty), tenl, ylt)=x. (10)

To properly reflect this domain evolution in a weak form of (4)-(5), we want ¢ to be time dependent and such that supp(¢) = £2,.
To this end, consider a smooth function ¢° such that supp(¢®) = ©2,. We define ¢ = qbootbt_l. The constructed ¢ is smooth (since u
is smooth so is the solution to the Cauchy problem (10)), supp(¢) = £,, and it satisfies the transport equation
L] _ . 0
S @ V=0 inQ 1€l bl =e". 1)
Applying the Reynolds’ transport theorem and using (1) and (11) one computes the following weak Lagrangian form of the local
balances:

Moment. 4 pudx = 2\// D(u)ﬁ|v¢|dx—/ pii|V| dx, (12)
dl QI QI Q!
Angl. Moment. %/ puxxdx = 2v/ (D(u)ﬁ)xx|V¢|dx—/ P X X)| V| dx. (13)
‘Ql ‘Ql Q[

By the same arguments as we use to prove Proposition 1 we prove the following proposition.

Proposition 2. Assume u and p are smooth and divu = 0. Then (4) (or (5)) holds for any material volume £, such that Q, C 2 for
t € [ty, 1,1 iff (12) (or (13)) holds for any ¢ satisfying (11) with ¢° € W‘*“(Q,O), such that supp(¢”) = Q-

Similar to the Eulerian case, it is easy to see that each individual term in (4)-(5) can be approximated arbitrarily well by the
corresponding term in (12)-(13). This time ¢, is constructed as ¢, = ¢*o®, ! with ¢? defined by the formula in (8) with w replaced
by @, . It holds ¢, € W'*(2 x [1o,1,]) and one verifies, letting i = —V¢, /| V.|, that

i/ pudx — 4 uds, / D)a| Ve, | dx —>/ D(u)nds, for e - 0, (14)
dt Jo, dt Jgq, 2 00,

and smooth u. The limit values of other terms in (12)-(13) will be their counterparts in (4)—(5). Therefore, (12)—(13) can be also
interpreted as the diffuse-volume version of local conservation laws in the Lagrangian form.

In summary, Egs. (6)—(7) are equivalent formulations of the fundamental (local) conservation laws in the Eulerian formulation,
while (12)-(13) are equivalent formulations of the fundamental (local) conservation laws in the Lagrangian formulation. We will
study the ability of a discretization method to match (6)-(7) and (12)—(13) instead of (2)—(3) and (4)—(5).

4. EMAC Galerkin formulation is locally conservative

As an example of a continuous Galerkin method, we consider a conforming finite element method: Denote by V, C Hé (2)? and
0, C Lé(.Q) velocity and pressure finite element spaces with respect to a tessellation 7, of £ into elements (simplexes or more
general polygons or polyhedra). We also need the following auxiliary spaces of continuous finite elements of degree m + 1 and m,
with m > 1:

Vi={veHy(Q): veP, (VT €T,},

~ . (15)
Vi={veHy2): veP,(T) VTET,}

We only assume that the velocity space contains all piecewise polynomial continuous functions of degree m + 1, i.e.
V)t v, 16)

We do not have any further assumptions on finite element spaces, and in particular, both LBB stable and stabilized finite elements
are admitted.

Remark 1. Let 7;, be a triangulation of £ and m > 1 be a polynomial degree. The following examples of LBB stable FE pairs satisfy
the assumption: generalized Taylor-Hood P,.,; — P,,, P,y — P3¢ (for d = 2), Ppy1 = Pdse (for d =3, m > 1), phubble _ pdise (for d = 3
with face bubbles), generalized conforming Crouzeix-Raviart P*°Pl® — pdisc, Scott-Vogelius P, — P3* (SV element is LBB stable
subject to further assumptions on 7, [26]), as well as LBB unstable equal order P, — P, elements.

We use (f,g) := /Q f - gdx notation for both scalar and vector functions f, g. The EMAC Galerkin formulation of (1) with u =0
on 0Q reads: Find uy, : (0,T) » V, and pj, : (0,T) — Q;, N LA(R)

0
(ﬂ,vh) +2(D(uy)uy, vp,) + ((divuy)ay,, v,) + 2v(D,), D(v,) + (P, divv,) =0 Vv, €V,

ot a7

(divuy,q,) =0 Vg, €0y,
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where p, approximates the EMAC pressure p = p — %lulz. The EMAC formulation is equivalent to other commonly used discrete
formulations if divu, = 0 pointwise. However, (divu,, g,) = 0 does not imply divu, = 0 except in special settings. As a consequence,
the discrete solution depends on the form of nonlinear terms used (i.e. EMAC, SKEW, CONV, ROT, etc.).

Next, we demonstrate that the solution of (17) satisfies discrete counterparts of local conservation laws in both Eulerian and
Lagrangian forms.

4.1. Local conservation in Eulerian form

Unlike for the continuous problem, for the discrete case the counterparts of conservation laws in Eulerian and Lagrangian forms
do not follow one from another and we have to consider them separately. We start with the Eulerian form.

Conservation of local linear momentum. Consider arbitrary ¢, € V},, ¢;,|50 = 0. Then ¢,e; € V,, for i = 1,...,d, is a legitimate test
function in (17). Letting v, = ¢,e; in (17) we compute for the nonlinear term

2(D(up)uy, gre;) = (uy, - Vuy, ¢pe;) + (Pre;) - Vuy,uy)

=—(uy, - V(¢pe),u,) — ((divuy)u,, ¢,e;) — %(div(qﬁhei)uh,uh)

= —(uy - Ve uy - €) = (divuy)uy, dhe) — 5 (€; - Vb, [y ). (18)
Substituting this in the first equation from (17) with v, = ¢,e; we obtain
Ju ~
(a—ths ¢he,-> —(u, - Vo, uy-€)— %(e,- -V, |Uh|2) + 2v(D(uy,), D(¢e;)) — (Pp, div(gye;)) = 0,
and after simple re-arrangements,
d ~
T (Uh €, ¢h> —(u, - Vo, uy-¢)+2v(DW,) V. ) — (b + %|“h|27ei -Ve,) =0. (19
Let n;, := —V¢,/|V,| for |V¢,| # 0 (and arbitrary unit vector otherwise) and define

w;, =supp(¢,) and p, =p, + %luhlz,
then from Eq. (19) for i =1,...,d we get,

4 ¢huhdx=2v/ D(uh)nh|V¢h|dx—/
@p

T phnh|V¢h|dx—/ uy,(uy, - ny)| Ve, | dx, (20)
wp @p

@p

for any ¢, € V,,. This is the discrete analogue of the local momentum conservation in (6).
Conservation of local angular momentum. Consider arbitrary ¢, € V,,. Then xx¢,e; € V,, fori = 1,...,d is a legitimate test function.
Letting v, = x X ¢,¢; in (17) we compute for the nonlinear term

2(Dy)uy, x X ¢pre;) = (uy, - Vu,, X X ¢ppe;) + (X X ¢ppe;) - Vuy,uy)
=—(uy, - V(XX ¢ppe;),up) — (divuy)u,, x X ¢pe;) — %(div(x X ppeu,, uy)
=—(uy, - Vo, (u, Xx) - ;) — ((divuy)u,, X X ¢e;) — %(x X Ve, eiluhlz). 21)

Substituting this in the first equation from (17) with v, = x X ¢, e; we obtain

(a“h v Lxx V 2
7,X><¢he,~>—(uh~ ¢y, (uy, Xx)-ei)—i(xx bp.e;luy|?)
+2v(D(uy,), DX X ¢,e,)) — (B, div(x X ¢e;)) = 0. (22)

Simple re-arrangements give

4 (XX, e, ) = @y - Vb (0 X 30+ € + 20D@IV X X €) = (B + 5wy Ples, Veby X 30 = 0,

dt

From the above equality for i =1, ...,d we get
— Ppuy, XXdx = 2v/ D(u,)n,) xXx |V, |dx —/ pr(my, XxX)|Vep, | dx —/ (uy, Xx)(uy, - ny)|Vey,|dx (23)
dt @p ®h @p @p

for any ¢, € V,. This is the discrete analogue of the local angular momentum conservation from (7).

Remark 2. Conservation laws (20) and (23) are local or element-wise in the sense that ®, can be as small as the support of a
nodal basis function from V), or 17,,, respectively. At the finite element level, they are no longer equivalent to standard element-wise
conservation laws, such as the balances (2)—(3), where w and u are replaced by w, and u,,. In particular, the argument in (9) and
(14) is not valid at the finite element level; one cannot push ¢ to be smaller than A, which suggests an O(h) discrepancy between
the two formulations.

If convergence of u, and p, to the true smooth solution u and p is known, then an estimate of how accurate the finite element
counterparts of (2)—(3) can be obtained through it. We are not pursuing such an estimate in this paper. Instead, the goal here is to
formulate a priori conservation laws for u, and p,. This goal can be fulfilled by employing the weak forms of the conservation laws.
The same remark remains largely valid for the element-wise balances in the Lagrangian form.
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4.2. Local conservation in Lagrangian form

After discretization, there is no obvious equivalence between the Eulerian and Lagrangian forms of the local balances.
Nevertheless, one can show that EMAC form also obeys a discrete counterpart of the linear momentum local conservation in the
Lagrangian form. However, we need additional assumption on V, space. Namely, we assume that the velocity space consists of
piecewise polynomial continuous functions of degree m + 1:

V) =V, (24)
Conservation of local linear momentum. Consider ¢2 €V, and ¢, : [ty,7;] = V}, solving
(2
ot
which is the projection of the transport Eq. (11) on the finite dimensional space V), with u replaced by u,.

Letting v, = ¢,¢; in (17), we repeat the same calculations as for the Eulerian case and arrive at (19). Since ¢, is time dependent,
after re-arrangements (19) gives

,uh) +(u, -V u,)=0 Vv, €V, (25)

d 20 ~
E(“” ~ei,¢h) - (u,, -e;, 6_th> —(uy, - Voo uy, - €) + 2v(D() Ve, ) — (B, + %|uh|2,e,. -V¢,) = 0.

Thanks to the assumption (24) and Eq. (25), the second and third terms add to zero.
Let n;, :=—-V¢,/|Ve,| for |[V¢,| # 0 (and arbitrary unit vector otherwise) and define

Q,() =supp(¢p,) and p, =p, + %Iuhlz,

then from Eq. (19) for i =1,...,d we get,

d

— ¢puy, dx = 2v/ D(u,)n, |V, |dx — / Py, |V, | dx, (26)
dt J o, Q1) Q

0 (1)
for any ¢, € V,,. This is the discrete analogue of the local momentum conservation in (12).
Conservation of local angular momentum. Consider q.’)?Z €V, and ¢, : [ty,7;] = V), solving

od,

(5

Letting v, = x X ¢,€; in (17) we repeat the same calculations as for the Eulerian case and arrive at (22). Since ¢, is time
dependent, after re-arrangements (22) gives

,vh) +(uy, Vo) =0 Yu,€EV,

d 0
E(uh ><x,¢he,~) - (a—th,(uh xx)-ei) —(uy, - Vo, (u, Xx)-e;)

+2v(D,) Ve, x X €;) — (P, + %luh |2)e,-, Vo, xx)=0.

Denote by I,,(u;, X x) a piecewise polynomial of degree m interpolating u, x x, i.e. I,,(u, Xx) € I7h3. Then I,,(u, X x) - ¢; € ¥, holds.
Therefore,

oy, _(d¢, .
(7,(% XX) - e,.) (- ey (0 x3)- €) = (= (X x = Ly (0 X)) e ) =2 R,
where % = % +u, - V¢, Let n;, := =V, /|Ve,| for |V¢,| # 0 (and arbitrary unit vector otherwise) and define
() = supp(,) and p; = B, + 3 |u,l,
then from Eq. (19) for i =1,...,d we get,
4 bpuy, xxdx=2v/ (D(uh)nh)XX|V¢h|dx—/ pr(my, XX)|Ve,|dx+ R (27)
ar Ja,m 240 240

for any ¢, € I7h. This is the discrete analogue of the local momentum conservation in (13) up to the residual term R = R| +--- + R,. If
we assume that u,, approximates a (smooth) solution to the NSE with order O(h"), » > m+1, in some norm ||- ||, then ||R||, = O(h"*1)
once % is bounded in the dual norm to ||-||,. According to (24) the optimal approximation order for u, would be O(h"+?) in L?>(L?)
norm.

5. Numerical tests

We now give numerical examples to illustrate the theory above. For these tests, the full Navier-Stokes discretization uses BDF
temporal discretizations (and Crank-Nicolson for the initial time steps) and (V,,, Q,,) is the P, — P Taylor-Hood elements on a mesh
T,- The schemes used to compute solutions are (at time step n): Find (uZ, P;:‘) € (V,, Q,) satisfying

d n
<<%> ,v,,> + 2D V,) = (B V - vy) + 20D, vy) = £(E),
T/ bark

6
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(V-ul.qy) =0,

for all (v,,qy) € (V. Q). The BDF notation for the time derivative term used above is defined as follows. For a sequence {f"},_ ;...
of scalar or vector quantities (where n denotes a time level, and 4t is denoting a time step size), we use the shortcut notations for
discrete time derivatives:

<ﬂ>n ~ %fn_3fn—]+%fn—2_%fn—3

dt Joars At ’
df n _ 3fn_4fn71+fn72
dt Joaer 24t ’

ﬂ n _ fn_fn—l
dt /41 A

For our computations below, k = 2 or 3 for the NSE schemes and k = 1 or 2 for the discrete transport equations. The nonlinear
problem at each time step is resolved with Newton’s method, and typically it takes just 2 or 3 iterations to resolve.

With temporal discretizations, the precise definitions of the discrete local balances will change accordingly, and we derive these
now before proceeding to the tests. Denote by w, the approximation of a subdomain w whose boundary consists of element edges
from the mesh. Define the functions ¢, € V}, and v, € V,, nodally by

1 if x; is a node on P,(z},) in the interior of w,,

¢h(xj) = { /

0 otherwise, (28)

1 if x; is a node on P;(z;,) in the interior of w,
N = j 1(Th h
Vi) { 0 otherwise. (29

In our implementations we apply BDF formulas for the temporal discretization for the momentum and transport equations.

5.0.1. Discrete local conservation in Eulerian form

We consider first the discrete Eulerian form of local conservation of momentum and angular momentum. Choosing ¢, by (28)
and repeating the arguments above that derived (20) but using the BDFk temporal discretization, we get the following (fully) discrete
local momentum balance

d(/wh dpu, dx) '

- :2\//&)’1 D(uZ)nh|V¢h|dx—/wh pZnh|V¢h|dx—/ ujy () - n,)| V| dx,

@p
bdfk
with n, = —=V¢,,/|V¢,|. Similarly, for discrete local angular momentum conservation we obtain
n

d(/w,, wpuy X xdx)

T =2v [ (D@up)n,) Xx |Vy,|dx - /m Py, XX)| V| dx — (up x x)(uj; - ny)| V| dx,
h

(o wp

bdfk
where y;, is defined by (29), and n, = —Vy,,/|Vy,,|.
In our tests, we will show plots of discrete local Eulerian momentum error
n
d(/wh dpuy dx)
e = — —2\//(” D(uj)n,|Ve,ldx + /w pZnh|V¢h|dx+/ u (up - n,)|Ve,| dx,
h h

@p
bdfk

and discrete local Eulerian angular momentum error

d(fwh vy, xxdx) ’

= = —2\// D@y)n,) X x |V | dx +/ Py, X X)| V| dx + (uy X x)(uj - n,)| V| dx.
wp @p

),
bdfk

5.0.2. Discrete local conservation in Lagrangian form

Discrete local conservation in Lagrangian form is somewhat more complicated compared to the Eulerian case due to the ¢,
function becoming time dependent in the momentum and angular momentum balances, as well as the transport equations involved
in these balances being hyperbolic. As our tests are for illustrative purposes of certain theoretical properties, we approximate the
transport equations in the following way for the purpose of ease in computations, even though other approaches to solving the
transport equation may be better in practice.

Consider d)(;l €V, to be defined by (28), and then define eV, (n=1,2,3, ...) via

d n
((%) _,vh)+(u;-v¢;,uh)=o YV, €V, (30)
bdfj

where j = 1 or 2 in our numerical tests (and if j = 2 then the first time step is backward Euler).
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Fig. 1. Initial velocity for the Gresho problem is shown above, as speed contours.

Rederiving the discrete local Lagrangian momentum balance (26) but now using BDFk (k = 2 or 3) time stepping for
Navier-Stokes together with (30), we obtain the balance

du, \" de, \"
/(¢h <d—t"> +<d—t”> ) dx=2v/D(u;)n;|v¢2|dx—/p',;n;|v¢;|dx,
Q bdfk bdfj Q Q

and thus define the discrete local Lagrangian momentum error by

du;, \" de, \"
erzom:/ <¢;;<d_lh> +<d—t"> ) dx-<2v/D(u;;)nzwqb;mx-/p;n;|v¢;|dx).
Q bdfk bdfj Q Q

Note that if the transport equations are solved in a different way, then these definitions of discrete Lagrangian momentum and
angular momentum balances need modified accordingly. For example if an explicit method is used, then the local balance will be
defined with some terms at time " and others and time ¢"~!.

For angular momentum, we proceed similarly as for momentum to find a fully discrete analogue to (27). Let w}f be defined by
(29) and find y}' € V, n HY(Q) for n=1,2,3,... by

dy, \" _
((d—l”) ,uh)+(u',;-vw;;,uh)=o Vv, €V, N HL(Q),
bdfj

and using backward Euler for the first time step if j = 2. Following similar steps as the theory above, the discrete Lagrangian local
angular momentum error is then given by

du, \" d "
eom = (/ <y/; <d_t"> + (%) _u;> X xdx — 2v/(1)(u;;)n;;)><x|vu/;|dx+/p;(n;; Xx)|Vy/Z|dx>.
Q bdfk bdfj Q2 Q

5.0.3. Discrete local conservation in traditional strong form

To illustrate the non-equivalence at the discrete level of the traditional strong local conservation and the proposed weak
formulations, we consider also the momentum and angular momentum error from using the discrete solutions (uy, p,) in Eulerian
conservation laws (2) and (3), and approximating the time derivative of the velocity with the BDF approximation used in that
simulation. Hence we define errors in discrete traditional strong Eulerian local conservation by

duy, \"
e[";zg:/ <d_t"> dx—<2v/ D(u!)nds — / p;nds—/ u;(u;m)ds),
@ bdfk o ow dw

d n
e = /w <%> XXdx— <2v (D(u;’!)n)xxds—/owp;’l(nxx)ds— om(u;'l X x)(uj, ~n)ds> .

bdfk ow

and

We note we could also consider errors of conservation in discrete traditional strong Lagrangian form. Doing this, however, is a
difficult computational task in most finite element codes, and so we omit this comparison.
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Fig. 3. Shown above is error in discrete local Eulerian (left), Lagrangian (center), and traditional strong Eulerian (right) momentum and angular momentum
conservation versus time in the (viscous) Gresho problem.

5.1. Gresho problem

For our first test we use a slight variation of the classical Gresho problem on @ = (-0.5,0.5)?, which consists of a velocity and
pressure

T
[—Sy SX] for r <2,
2 2. T
u= [%+5y7"—5x] for 2 <r<.4
T

[0 O] for r > 4,

12,572 + C, forr< .2,
p=112.5r2—20r +4log(r) +C, for 2<r< 4,

0 for r > 4,

where r = y/x2 + 2 and

C, = —12.5(4)* +20(.4)* — 41log(.4),
C, = C, —20(.2) + 4log(.2).

This velocity is plotted in Fig. 1 and is an exact solution of the unforced steady Euler equations, and hence an accurate solver should
preserve the initial condition in time. It is shown in [8,22] that a NSE solver with EMAC nonlinearity and using Crank-Nicolson
time stepping together with Taylor-Hood finite element spatial discretization will preserve pointwise global energy, momentum and
angular momentum for this problem while other common nonlinearity formulations such as SKEW, ROT and CONV will not preserve
these physical balance laws and moreover will be less accurate in the sense of L*(£2) error.

We alter this problem very slightly by changing the viscosity to v = 10~!° so as not to solve the Euler equations but instead the
NSE. We note this change of viscosity will (very slightly) change the true solution in time, however this is of no consequence as our
interest herein is not the solution but the local conservation of momentum and angular momentum. We choose o to be the circle
of radius 0.05 centered at (0.2,0.09), as shown in Fig. 2 at left. Fig. 2 also shows the mesh 7, used for the computations below as
well as the mesh zoomed in near w; the mesh is a Delaunay triangulation constructed from having 65 nodes on each domain edge
and 30 nodes on dw. We define w;, to be the approximation of ® whose boundary consists of triangle edges from the mesh.
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01—

Fig. 5. Shown above are the t = 1,2,3,4,5 solution plots of the Re = 100 simulations of flow past a cylinder, as speed contours.

Computations are done using end time T = 1, time step size A4 = 0.01, no external forcing, initial condition “(/)1 is the nodal
interpolant of the true solution, and we show errors in discrete Eulerian, Lagrangian and traditional strong Eulerian conservation
in Fig. 3 as absolute values of errors versus time. Notation ef°"[i] is used for the ith component of the linear momentum. We
observe these quantities are conserved pointwise for Eulerian, and are stable in time, just as the theory above predicts. Discrete
local Lagrangian momentum is also preserved pointwise, although Lagrangian angular momentum is not preserved pointwise but
instead has values as large as O(10~%), which is consistent with the O(h?) residual our theory above predicts. Discrete traditional
strong Eulerian momentum and angular momentum are conserved up to about O(10~%) or so, which is consistent with the spatial
discretization error being O(h?) in the gradient of the velocity.

5.2. 2D flow past a cylinder

For our next test we consider the classical 2D channel flow past a cylinder problem originally from [27], but with updated
benchmark data and descriptions in [28,29] and references therein. The domain is the rectangle [0,2.2]x[0,0.41] as shown in Fig. 4,
with a cylinder centered at (0.2,0.2) with radius 0.05. We take no external forcing, set v = 0.001 (which corresponds to Reynolds
number 100, using the mean inflow velocity of 1), and set inflow/outflow profiles to be

6
0.412
uy(0,7.1) = up(2.2,y.1) = 0.

u (0,y,0) =u;(22,y,1) = (041 —y),

The flow starts from rest, and solution plots at times t = 1,2,3,4,5 from our computations described below are shown in Fig. 5, as
speed contours. By t = 4, the flow has reached a periodic in time state with the repeating Van Karman vortex street.

We define a subdomain w to be a circle radius 0.05 centered at (0.35,0.16), and w,, to be its approximation by the mesh. A plot of
w is shown in Fig. 4. We use a mesh that provides approximately 64 K velocity degrees of freedom (dof) and 7 K pressure dof when
discretized with Taylor-Hood elements. We compute using BDF3 time stepping to T = 5 using time step size 4¢r = 0.01, and start
the flow from rest, u, = 0. Errors in discrete local Eulerian momentum and angular momentum conservation are shown in Fig. 6

10
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Fig. 6. Shown above is error in discrete local Eulerian (left) and discrete traditional strong local Eulerian (right) momentum and angular momentum conservation
versus time in the 2D channel flow past a cylinder test.

and we once again observe pointwise local conservation. Traditional strong Eulerian momentum and angular momentum errors are
also shown, and we observe those to be O(10~>), which is consistent with the discretization error. We do not consider Lagrangian
discrete local conservation for this test, since there is an outflow and conservation is therefore not expected except for very short
times as the transported quantity will exit the domain through the outflow. We note also that all results from this test are very
similar if BDF2 is used instead of BDF3.

5.3. Kelvin—-Helmbholtz flow

For our last test we consider a test problem from [30] for simulating 2D Kelvin-Helmholtz instability. The domain is the unit
square, with periodic boundary conditions at x = 0, 1, representing an infinite extension in the horizontal direction. At y =0, 1, we
enforce for t > 0 a no slip condition, which differs from [30] as they use a no penetration and free slip condition. However, as these
boundaries are far from the physical behavior of interest, there is little effect on the qualitative behavior of the solution. The initial
condition is set by

21
uy(x, ) =< Hoo tanh()( 8 ) >+Cn< W (x,y) >

_axlll(x’ »)
where §, = % is the initial vorticity thickness, u,, = 1 is a reference velocity, c, is a noise/scaling factor taken to be 10~3, and

_ 2
w(x,y) = uy exp (—%) (cos(8xx) + cos(20xx)) .

0

The Reynolds number is defined by Re = Slen %, and v is defined by selecting Re. We use Re = 100 for our test.
1

We compute solutions for EMAC discretized with Taylor-Hood elements on a & = 5 uniform mesh, together with BDF2 time
stepping and a time step size of Ar = 0.01. Solutions are computed up to T = 5, with plots of vorticity contours shown in Fig. 7
matching those in [30] qualitatively well.

The subdomain w is defined to be the square [é, i] X [é, i]. For this domain on this mesh, we have that w;, = . Plots of discrete
Eulerian momentum and angular momentum are shown in Fig. 8 at the top, and we observe that these quantities are conserved
exactly, just as the theory above predicts. For discrete Lagrangian momentum and angular momentum, we solve the transport
equation using backward Euler (BDF1), and plots of momentum and angular momentum are shown in Fig. 8 at bottom. We observe
exact local conservation of discrete Lagrangian momentum, and conservation of discrete Lagrangian angular momentum consistent
with the discretization error, as predicted above.

6. Future directions

We have shown that continuous Galerkin discretizations of the Navier-Stokes equations using EMAC nonlinearity form admit
(appropriately defined) exact local balances/conservation laws of momentum and angular momentum. These discrete local balances
are constructed as weak forms of the momentum and angular momentum conservation laws, and are equivalent to the usual
conservation law definitions before discretization. In the discrete case, however, these weak formulations are not equivalent to
the usual conservation law definitions and even their Eulerian and Lagrangian constructions are not equivalent. That the discrete
schemes admit any exact local balances at all is quite rare, and we note that such an analysis is not possible for such common Navier—
Stokes nonlinearity formulations such as convective, skew-symmetric or rotational. We remark that the ‘conservative’ formulation

11
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Fig. 7. Shown above are the absolute vorticity contours of the solution velocity at =0, 0.5, 1, 2, 3, 4, 4.5 and 5 (left to right, top to bottom).
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Fig. 8. Shown above is error in discrete local Eulerian (left) and Lagrangian (right) momentum and angular momentum conservation versus time in the
Kelvin—Helmholtz problem.
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of nonlinear terms (referred to as CONS, utilizing div(uhuf)) also maintains the same conservation properties for momenta as EMAC.
However, CONS fails to achieve a proper global energy balance, when divu, # 0, unlike EMAC. This deficiency leads to unstable
finite element schemes using CONS; see examples of CONS underperformance in [8,21].

Future directions for this work could include an extension of these ideas to other conservation laws of Navier-Stokes such as
energy, helicity, enstrophy in 2D, vorticity, and others. It is currently unclear to the authors how to construct appropriate local
balances for these quantities for the continuous Galerkin method.
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