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ABSTRACT: To achieve high quality omics results, systematic
variability in mass spectrometry (MS) data must be adequately
addressed. Effective data normalization is essential for minimizing
this variability. The abundance of approaches and the data-
dependent nature of normalization have led some researchers to
develop open-source academic software for choosing the best
approach. While these tools are certainly beneficial to the
community, none of them meet all of the needs of all users,
particularly users who want to test new strategies that are not
available in these products. Herein, we present a simple and
straightforward workflow that facilitates the identification of
optimal normalization strategies using straightforward evaluation
metrics, employing both supervised and unsupervised machine
learning. The workflow offers a “DIY” aspect, where the performance of any normalization strategy can be evaluated for any type of
MS data. As a demonstration of its utility, we apply this workflow on two distinct datasets, an ESI-MS dataset of extracted lipids from
latent fingerprints and a cancer spheroid dataset of metabolites ionized by MALDI-MSI, for which we identified the best-performing
normalization strategies.

■ INTRODUCTION
An important step in achieving high-quality omics results is
data preprocessing. Data preprocessing aims to enhance the
biologically relevant signals, while minimizing the impact of
unwanted variation or bias. Some essential preprocessing steps
include filtering, peak detection, peak picking, alignment, and
normalization. The complexity of the MS data makes the
manual processing of raw data tedious. This challenge has
spurred the development of processing pipelines like
MetaboAnalyst, MZmine 3, and XCMS, which have stream-
lined the processing of raw MS data.1−3 The value of these
tools is underscored by their widespread popularity, with tools
like MetaboAnalyst garnering over 500,000 users globally.4

While these tools effectively cover most steps of data
preprocessing, a key limitation lies in their limited scope in
data normalization.
Normalization is critical to the data processing pipeline as it

minimizes unwanted systematic or technical variation, which
can be introduced to samples via sample preparation and
handling or through data acquisition. Normalization is
particularly important when biological variation is small as
these systematic biases often obscure the more valuable signal
variations. Common approaches for normalizing MS data
involve linear or global scaling approaches, which involve
scaling to a normalization factor.5 These approaches are
commonly incorporated into processing pipeline tools. While
XCMS does not provide options for data normalization,

MetaboAnalyst and MZmine 3 offer users over six normal-
ization algorithms, most of which encompass these scaling
approaches, with strategies like normalizing to the average
intensity, a reference feature, or the total raw signal.1,2

While global scaling approaches can improve omics analyses,
other normalization methods also exist, and choosing the
optimal approach is best done empirically. For example,
Valikangas and co-workers evaluated the effect of 11 different
normalization methods on four different types of proteomic
datasets.6 They identified variance stabilization normalization
as the best method for normalizing proteomic data. Another
study, by Benedetti and co-workers, evaluated the performance
of seven normalization methods on glycan data, for which they
identified the combination of probabilistic quotient normal-
ization and a log transformation to be the best-performing
approach.7 These studies highlight the data-dependent nature
of normalization; there is no one-size-fits-all approach that is
optimal for all types of datasets. The choice of normalization
strategy is even further complicated by the many approaches
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available and the potential for their different combinations.
Given the abundance of normalization approaches, how can
mass spectrometrists choose the optimal strategy to implement
in their dataset?
Several software tools and packages aim to address this issue

by providing users with an evaluation of the normalization
performance. Tools like NormalyzerDE8 evaluate strategies
using p-value histograms and receiver operating characteristic
curves, while tools like NOREVA9,10 and MetaX11 implement
measures of intragroup variation and an assessment of intensity
distributions and PCA scores. Like the processing pipelines,
these normalization assessment tools remain limited to the
strategies incorporated in them. MetaX11 only evaluates seven
strategies, while NormalyzerDE8 and NOREVA9 offer 13 and
over 20 strategies, respectively. NOREVA, the most
comprehensive of the three, also enables users to evaluate
different combinations of these strategies. Use of these tools
results in a report, where normalization effectiveness can be
assessed using 7+ distinct graphs and plots for each strategy.
These tools may streamline the process of identifying the

best approach, yet they have limitations. For example, many
users view the task of learning to use a new program, just for
the single task of normalizing data, as an undesirable barrier;
this barrier is larger for academic software, which is typically
not well documented or supported. Furthermore, the tools’
requirement that users upload their research data also restricts
their usage; many cannot or do not want to share their
unpublished data. Finally, both NormalyzerDE and NOREVA
output pages of graphs for each normalization strategy, leaving
users often scratching their heads, not knowing what metrics,
of the very many provided, they should most attend to.
We address the needs of users who prefer to assess

normalization methods themselves but need some guidance
on how to proceed. We outline a straightforward workflow for
the identification of the best-performing normalization strategy
for MS datasets, using two key performance evaluation metrics.
Specifically, normalization performance is (1) visually assessed
by comparing raw and normalized principal components
analysis (PCA) plots and (2) quantitatively assessed by
comparing supervised classification accuracies and area under
the receiver operating curve (AUC) values before and after
normalization. By integrating both PCA and supervised
classification into the workflow, we provide users with a clear
and comprehensive toolbox that captures the unique yet
complementary advantages of the two metrics. PCA, as an
unsupervised technique, helps identify broad patterns within a
dataset. By showing where the most significant variations in the
data lie, users can quickly detect issues such as batch effects or
better understand the dominant sources of biological variation.
This can facilitate the identification of which normalization
strategies are better suited for their data. Supervised
classification emphasizes the data’s ability to partition between
specific categories or groups. This is particularly important for
studies where prediction accuracy is important, such as
biomarker studies. In identifying reliable biomarkers, it is
especially important to optimize AUC, as it is generally
considered a more useful metric than accuracy, particularly
when the classes are imbalanced. By leveraging these two
criteria in tandem, users benefit from their complementary
relationship: PCA offers a broad understanding of the data,
while supervised classification offers granular insights. Togeth-
er, these metrics offer an easily interpretable understanding of
how normalization impacts the data. These chosen metrics not

only capture the impact of normalization but are also user-
friendly and accessible to all users, regardless of their level of
expertise with data science or machine learning.
This workflow is iterative and can accommodate any number

of normalization approaches. Furthermore, we provide users
with a way to choose the “best” approach; it is identified by
comparing the PCA and supervised classification results of all
the normalization strategies tested. We demonstrate the utility
of this workflow and identify optimal normalization strategies
for two datasets: a latent fingerprint dataset of lipids acquired
using electrospray ionization mass spectrometry (ESI-MS),
and a cancer spheroid dataset containing metabolites ionized
by matrix-assisted laser desorption ionization mass spectrom-
etry imaging (MALDI-MSI). While our demonstration focuses
on lipidomic and metabolomic data, the workflow can be
extended to other omics fields, like proteomics and glycomics,
and quantitative MS experiments provided the MS data can be
matrix-formatted and batch information is available.
The value of this workflow lies in its simplicity. With a basic

understanding of R, the outlined workflow can be imple-
mented and applied to all types of MS datasets for the
straightforward evaluation of normalization performance. With
this methodology, users can try both old and new normal-
ization strategies, ensuring their adaptability as new research
unveils novel ways to normalize MS data. Ultimately, the
protocol is easily amenable to scientists’ needs, offering a
simple workflow to identify the best-performing normalization
strategies using only two key metrics.

■ METHODS
Latent Fingerprint Sample Collection and Prepara-

tion. An ESI-MS dataset of latent fingerprints that had been
collected for a separate project12 was used for the studies
herein. Briefly, groomed fingerprints were generated by one
participant first touching facial regions with a high sebum
content (cheek, neck, and forehead) and then depositing a
fingerprint onto a piece of aluminum foil. Samples were either
prepared right away or allowed to oxidize for 24 h, creating two
distinct sample types. Each sample was desalted by liquid−
liquid extraction and stored at −20 °C until analysis.

ESI-MS. The MS data of 202 samples were acquired in
seven different batches over the course of 1 year using direct
infusion on an Orbitrap Fusion Tribrid mass spectrometer
(Thermoscientific, San Jose, CA). No two batches were
acquired in the same week. Mass spectra were acquired using
the negative ion mode, with a spray voltage of 2.3 kV, a
resolution of 60k, and a mass range of m/z 150 to 600. The
ESI-MS conditions have been previously described.12 After
data acquisition, raw spectral files (.RAW) were converted to
.MS1 files using RawConverter (Scripps, Version 1.2.0.0) with
the default settings. The data were extracted into a matrix of
samples and features of binned intensities using LevR.12 The
following settings for LevR were used: 25% empty cells
allowed, number of lines in header is 20, lower m/z of 150,
higher m/z of 600, and 0.0125 Da bin width.

Cell Culture and Growth of Spheroids. The human
colon carcinoma line HT-29 was obtained from the American
Type Culture Collection (ATCC, Manassas, VA). HT-29 cells
were grown in McCoy’s 5A cell-culture medium (Life
Technologies, Grand Island, NY) supplemented with 10%
fetal-bovine serum (FBS; Hyclone Laboratories, Logan, UT),
1% L-glutamine (Life Technologies, Grand Island, NY), and
1% penicillin/streptomycin/amphotericin B (Corning, Mana-
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ssas, VA). Mycoplasma testing of the cell line was completed
by utilizing a Mycostrip mycoplasma detection kit (Invitrogen,
San Diego, CA). Spheroids were prepared in an agarose-coated
96-well plate as previously described.13−15 Cells were seeded
into each well at a density of 7,000 cells per well in 200 μL of
media and centrifuged at 1,000g for 10 min prior to incubation
at 37 °C and 5% CO2. After an initiation period of 4 days, 50%
of the culture volume was replaced with fresh medium every 2
days thereafter. On day 12 of culture, the spheroids reached a
diameter of approximately 1 mm, and half of the 96-well plate
was harvested for embedding. On day 13, the second half of
the spheroids were harvested.
Sample Preparation for MALDI-MSI Analysis. After

growth day 12 or 13, medium was aspirated, and spheroids, ten
from each day, were washed twice with 1× PBS and embedded
following previously published protocols.16 Briefly, spheroids
were transferred into the base of gelatin arrays (20% w/v
gelatin), and excess PBS was removed. Warm gelatin was
placed on top of the spheroids and flash frozen at −80 °C until
sectioning. Spheroids were sectioned at 12 μm thick sections
using a cryostat at −30 °C and thaw mounted onto indium tin
oxide coated glass slides (Delta Technologies, Loveland, CO).
Samples were coated with 9-aminoacridine (9AA) at a
concentration of 5 mg/mL in 75% acetonitrile using an
HTX Imaging M5 TM-Sprayer (Chapel Hill, NC). Matrix was
applied at 60 °C for 8 passes over the samples. The flow rate of
matrix was 0.12 mL/min at a velocity of 1,200 mm/min, track
spacing of 2 mm, pressure of 10 psi, gas flow rate of 2 L/min,
nozzle height of 40 mm, and a drying time of 2 s between each
pass. Samples were analyzed immediately after application of
the MALDI matrix.

MALDI MSI. MALDI-MSI spectra were acquired using an
UltrafleXtreme MALDI-TOF-TOF mass spectrometer (Bruker
Daltonics, Bremen, Germany) equipped with a smartbeam II
Nd:YAG 355 nm laser. Mass spectra were acquired using the
reflectron in negative ion mode with a mass range set to
acquire between m/z 200−1,000. The laser spot size was set to
“small”, at a frequency of 2,000 Hz with the raster distance set
to 25 μm along the x and y axes. To obtain optimal signal
intensity, each pixel accumulated was set to 500 shots. External
calibration was completed using a red phosphorus standard
mixture. Images were initially processed with flexImaging 4.1
software (Bruker Daltonics, Bremen, Germany) to convert to
a.imzML using a bin size of 32,000 data points.
Data from the 20 different spheroid images were extracted

into a single matrix of samples and features following the data
extraction protocol we published previously.17 Each column in
the extracted matrix contains data from a single pixel in one
spheroid (the samples), and each row represents one of the
32,000 bins of data along the m/z axis, the features. Prior to
normalization studies, data were additionally minimally
processed, removing pixels whose total ion current (TIC)
was less than 200 counts, which corresponds to 1.8% of the
maximum TIC for any pixel. This step results in a total of 9156
pixels from 20 different spheroids. Also, the features (bins)
were downselected using the following criteria: For each
feature, at least 10% of the pixels in the dataset had to have an
intensity of greater than 0.12. This threshold represents 0.1%
of the overall maximum intensity in the matrix (for any feature
or sample.) This feature-reduction step removes bins that are
low-abundance and not likely to be useful in classification
without introducing bias. After this feature down-selection

Figure 1.Workflow overview for identifying optimal MS normalization strategies. Raw MS data are processed into a matrix of features and samples,
to which normalization strategies can be applied. The resulting normalized matrices are then passed as inputs to unsupervised and supervised
classification, where the performance of each approach is evaluated. The metrics of PCA sample clustering and supervised classification outcomes
guide the selection of the best approach.

Journal of the American Society for Mass Spectrometry pubs.acs.org/jasms Article

https://doi.org/10.1021/jasms.3c00295
J. Am. Soc. Mass Spectrom. 2023, 34, 2775−2784

2777

https://pubs.acs.org/doi/10.1021/jasms.3c00295?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.3c00295?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.3c00295?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.3c00295?fig=fig1&ref=pdf
pubs.acs.org/jasms?ref=pdf
https://doi.org/10.1021/jasms.3c00295?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


step, the total number of features in the matrix is reduced from
32,000 to 7209.
Data Processing and Analysis. All data analysis was

performed in RStudio, R version 4.2.2. Missing values in the
MALDI data matrix were imputed by using average intensities.
For normalization, the following packages were installed:
Biocmanager, limma,18 and sva.19 The source code for
EigenMS20 normalization was downloaded from eigenms.sour-
ceforge.net. The WaveICA21 strategy was installed through
github using the devtools package. PCA was performed using
factoextra (Version 1.0.7). Supervised classification of un-
normalized and normalized matrices were performed using the
Aristotle Classifier22 and XGBoost23 (R package, xgboost,
Version 1.6.0.1). The code for the version of the Aristotle
Classifier used can be found in the Supporting Information of
ref 22. A classification accuracy score for each strategy was
determined for both classifiers by comparing the predictions of
the classifier with the actual values. The AUC value of the
receiver operating characteristic (ROC) curve for each
classifier and DeLong test p-values were determined using
the R package, pROC. Example code, along with the two input
matrices, can be found in the Supporting Information.
Hyperparameters. For classification by XGBoost, default

hyper parameters were used: booster = “gbtree”, objective =

“binary:logistic”, eta = 0.3, gamma = 0, max_depth = 6,
min_child_weight = 1, subsample = 1, colsample_bytree = 1.
No parameters were optimized to avoid overtraining. The
evaluation metric used was “auc”, computed by measuring the
area under the ROC curve. The XGBoost model was trained
using 90% of the data, while the other 10% was used to test the
model’s performance. For classification using the Aristotle
Classifier, the “X” variable, denoting training group size, was
set to 6 for both datasets. The length of the classification time
increases as the “Repeats” variable (K) increases. Due to the
differences in size of the two datasets, two different K values
were used: K was set to 1000 for the smaller ESI-MS dataset
and 300 for the larger MALDI-MSI dataset.

■ RESULTS AND DISCUSSION
Overview and Workflow. Reliable analysis of mass-

spectrometry-based omics data is dependent on effective data
normalization, and the overall goal of this research is to
demonstrate a simplified method for identifying the best
strategy for normalizing MS data. An overview of the workflow
is presented in Figure 1. In this workflow, the raw MS data are
converted into a peak table format, or a matrix of samples and
features. This matrix can then be applied to several different

Table 1. Normalization Strategies Applied to the ESI-MS and MALDI MSI Datasets

Normalization Strategy Type of Strategy
ESI-MS
Dataset

MALDI-MSI
Dataseta

Log transformation Transformation to reduce data skewness + +
Scale by Relative Abundance Scaling technique normalizing to ion abundance + +
removeBatchEffect Batch effect removal algorithm + +
ComBat Batch effect removal algorithm + +
Relative Abundance +
removeBatchEffect

Scaling and batch effect removal + +

Relative Abundance + ComBat Scaling and batch effect removal + +
Quantiles Normalization Nonlinear technique that ensures the distributions across samples have the same quantiles + +
Quantiles + removeBatchEffect Nonlinear normalization and batch effect removal + +
Quantiles + ComBat Nonlinear normalization and batch effect removal + +
Cyclic Loess Nonlinear technique that iteratively applies the loess regression to the MA plot of the data + +
Cyclic Loess + removeBatchEffect Nonlinear normalization and batch effect removal + +
VSN Nonlinear technique that stabilizes the variance across different intensity levels + +
EigenMS Nonlinear technique that combines singular value decomposition and ANOVA to

minimize systematic variation
+ −

WaveICA Batch effect removal using the wavelet transform method with independent component
analysis

+ −

aEigenMS and WaveICA were not used on the MALDI-MSI dataset due to either an extensive execution time or irrelevance to MALDI data.

Table 2. R Requirements for Normalization

Strategy R Package/Source Normalize Function Input Requirements

Log transformation - log2(Mat) Feature x sample matrix
Scale by Relative
Abundance

- sweep(Mat, 2, scalingfactor_vec, “/”) Feature x sample matrix

removeBatchEffect BiocManager, limma removeBatchEffect(logMat, batch = batch_vec) Input needs to be a log-trans-
formed feature x sample matrix.

ComBat24 BiocManager, sva ComBat(Mat, batch) Feature x sample matrix
Quantiles BiocManager, limma normalizeQuantiles(Mat) Feature x sample matrix
Cyclic Loess BiocManager, limma normalizeCyclicLoess(Mat) Input needs to be a log-trans-

formed feature x sample matrix.
VSN BiocManager, limma, vsn normalizeVSN(Mat) Feature x sample matrix.
EigenMS20 EigenMS.R source code (downloaded through

eigenms.sourceforge.net)
>m_ints_eig1 = eig_norm1(m = m_logInts, treatment =
grps, prot.info = m_prot.info)
> eig_norm2(rv = m_ints_eig1)

Input needs to be a log-trans-
formed feature x sample matrix.

WaveICA21 Install using devtools: > devtools::install_github(“-
dengkuistat/WaveICA”, host = “https://api.
github.com”)

WaveICA(Mat, batch) Input sample x feature matrix
needs to be ordered by injection
order.
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normalization strategies, where normalization performance is
evaluated by comparing the PCA and supervised classification
outcomes of the raw and normalized matrices. In this
workflow, XGBoost and the Aristotle Classifier were chosen
due to their superior performance in the supervised
classification of proteomic data.22 By evaluating the perform-
ance of all tested strategies against these two metrics, the best-
performing strategy can be identified.

The workflow is applied to two distinct datasets, a latent
fingerprint dataset of lipids acquired using ESI-MS and a
cancer spheroid dataset of metabolites ionized using MALDI-
MSI, to evaluate the performance of 12+ different approaches.
These approaches include a log transformation, quantiles
normalization,18 ComBat,24 removeBatchEffect,18 scale by
relative abundance, EigenMS,20 WaveICA,21 CyclicLoess,18

variance stabilization normalization (VSN),18 as well as some

Figure 2. PCA plots for latent fingerprint samples (a) before and (b−o) after normalization. Colors indicate different batches, where batches are
defined as the set of samples run on the mass spectrometer in 1 day. For each batch, 95% confidence ellipses are shown.
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combinations of these strategies. Batch effect removal
algorithms were paired with both scaling and nonlinear
techniques, ensuring not to combine two batch-removal
algorithms to prevent overfitting. Table 1 shows the normal-
ization strategies applied to each dataset as well as a brief
description of the strategies employed.
While any normalization method could be tested using this

workflow, we additionally provide researchers with a list of
effective strategies, instructions for downloading the R package
to apply the strategies, and some expert tips on unique
requirements for each one when they are present. See Table 2,
which provides nine different strategies that can be applied, the
exact function for normalization for each strategy, the data
formatting requirements for each normalization method, and
the package from where it originates. It is important to note
whether the strategy used has specific requirements (such as a
log transformation) for the input matrix. In each case,
performing the normalize function will generate a normalized
matrix.
Normalization of a Latent Fingerprint Dataset of

Lipids Acquired Using ESI-MS. Metric 1: Sample
Clustering in Unsupervised Classification. In PCA, samples
cluster based on the greatest source of variance in the dataset.
If samples cluster by sample type (such as healthy vs diseased),
then the first two principal components likely capture this
biological variance. If, however, samples cluster by batch, or
the set of samples run on the mass spectrometer in 1 day, then
the first two principal components likely capture batch effects.
By comparing the PCA plots before and after normalization,
the effect of normalization can be visualized. For samples
where batch effects are evident, effective strategies will result in
PCA plots in which batch effects are minimized; there will be a
greater overlap between clusters of different batches. For
samples that cluster by sample type, effective strategies result in
PCA plots where clusters of different sample types are better
separated.
Figure 2 shows the results of unsupervised classification by

PCA before and after normalization. In this dataset, the PCA
for the unnormalized matrix shows distinct sample clustering
by batch (Figure 2a). As batch effects are captured within the

first two principal components, the best approaches for this
method likely deal with batch variation in their algorithm and
will subsequently minimize the percentage of variability
captured by these two principal components. The performance
of the 14 normalization approaches can thus be categorized
based on how well they reduce PCA clustering by batch.
Four methods exacerbate batch effects: log transformation,

scale by relative abundance, quantile normalization, and VSN
(Figure 2b−e). As samples are more tightly clustered by batch,
these are considered poor-performing strategies. For one
method, WaveICA, normalization has no impact on alleviating
batch effects (Figure 2f). EigenMS, Cyclic Loess, and all
algorithms that explicitly deal with batch effects perform well
for this metric, resulting in PCA plots in which there is an
increased overlap between samples of different batches (Figure
2g−o). These batch effect removal algorithms include
removeBatchEffect and ComBat, as well as all their variants.

Metric 2: Supervised Classification Outcomes. An effective
normalization strategy would minimize batch effects and
enhance the ability to detect the target biological variable,
thereby improving the classification accuracy and AUC values.
Severe deterioration of supervised classification outcomes
observed after normalization may be suggestive of removing
“too much” from the data. The normalization method may
have removed some biological variation, thus contributing to
inferior outcomes. Note that the classification, as performed
herein, follows established principals that avoid artificially
inflated accuracy.25

The performance of the 14 normalization strategies were
evaluated and categorized based on differences between raw
and normalized classification outcomes. Table 3 shows the
classification accuracies and AUC values for unnormalized and
normalized data using XGBoost23 and the Aristotle Classifier.22

The statistically significant difference between the unnormal-
ized and normalized AUC values calculated using DeLong’s
test is also shown.
For classification by XGBoost, the best-performing strategies

had the greatest improvements in classification accuracy and
noticeably better AUC values. These include removeBatch-
Effect, EigenMS, and Cyclic Loess normalization. EigenMS

Table 3. Supervised Classification Outcomes for ESI-MS Dataseta

XGBoost Aristotle Classifier

Approach Accuracy (%) AUC DeLong P-Value Accuracy (%) AUC DeLong P-value Performance

Unnormalized 82.18 0.9069 - 62.87 0.6455 - -
removeBatchEffect 88.61 0.9378 0.0392 78.71 0.8426 1.74 × 10−08 Good
EigenMS 86.14 0.9391 0.0558 88.61 0.9454 1.73 × 10−12 Good
Cyclic Loess 86.63 0.9363 0.0563 82.67 0.8801 6.94 × 10−08 Good
Cyclic Loess + removeBatchEffect 85.64 0.9375 0.0622 81.68 0.9094 4.29 × 10−10 Good
ComBat 82.67 0.9316 0.1084 79.21 0.8399 9.19 × 10−07 Good
Quantiles + ComBat 84.65 0.9175 0.4980 82.67 0.8954 3.72 × 10−09 Good
Relative Abundance + removeBatchEffect 85.15 0.9275 0.2117 77.23 0.8433 8.45 × 10−06 Good
Relative Abundance 79.70 0.8816 0.1574 76.73 0.8103 0.0002 Mediocre
Relative Abundance + ComBat 85.15 0.8968 0.5941 77.72 0.8255 2.99 × 10−05 Mediocre
Quantiles 82.18 0.8927 0.3987 78.71 0.8533 3.44 × 10−06 Mediocre
Quantiles + removeBatchEffect 83.66 0.8979 0.6237 81.19 0.8572 2.13 × 10−06 Mediocre
Log Transformation 82.67 0.9165 0.2040 65.35 0.6417 0.7987 Mediocre
WaveICA 80.69 0.8885 0.5109 51.49 0.4963 0.0039 Poor
VSN 73.27 0.8399 0.0002 54.46 0.5634 0.0079 Poor

aApproaches with accuracies and AUC values superior to the unnormalized data for both classifiers are identified as “good” strategies, while
approaches that outperform only one classifier are indicated as “mediocre”. Approaches displaying lower accuracies and AUC values for both
classifiers are marked as “poor”.
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had the greatest AUC, with a value of 0.9391. The worst-
performing method was VSN, with a significant deterioration
in AUC and the worst accuracy. All other methods resulted in
insignificant changes in the AUC and similar accuracies relative
to the unnormalized data.
Upon classification with the Aristotle Classifier, VSN and

WaveICA are identified as the worst-performing methods due
to significant deterioration in both AUC values and accuracy.
The log transformation performed similarly to that of the
unnormalized data. All other methods result in a significant
improvement in classification outcomes, with an approximate
15−26% improvement in classification accuracy and an
increase of ∼0.16−0.30 in normalized AUC values. The best-

performing strategy for this classifier is EigenMS, with the
highest classification accuracy and AUC value.

Overall Assessment of Performance. To identify which
strategy or set of strategies are optimal for this dataset, the
results of supervised and unsupervised classification were
combined. Three methods (VSN, log transformation, and
WaveICA) are poor strategies for the dataset due to increased
PCA clustering by batch and poor classification outcomes.
Scale by relative abundance, quantiles normalization, ComBat,
and all variants of removeBatchEffect and ComBat are
considered moderately good strategies. While they perform
well in supervised classification by the Aristotle Classifier, these
methods either result in increased PCA batch clustering or

Figure 3. PCA plots for the cancer spheroid dataset (a) before and (b−m) after normalization. Colors indicate different sample types (spheroids
harvested on day 12 or day 13).
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insignificant differences in XGBoost classification, indicating
that normalization is suboptimal. Ultimately, due to significant
improvements in supervised classification and evident reduc-
tions in PCA clustering by batch, EigenMS, removeBatch-
Effect, and Cyclic Loess are identified as the best-performing
methods for normalizing MS data of extracted lipids acquired
from latent fingerprint samples.
Normalization of a Cancer Spheroid Dataset of

Metabolites Ionized by MALDI-MSI. As a second
demonstration of the normalization assessment strategy, the
same workflow was applied to a cancer spheroid MALDI-MSI
dataset. EigenMS and WaveICA normalization were omitted
from this demonstration due to either an extensive execution
time or the lack of relevance for MALDI data; only 12
normalization methods were evaluated. In this dataset, the
biological variable is spheroid age, with the spheroids being
harvested after either Day 12 or Day 13. A total of ten
spheroids at each time point were collected, leading to a total
of ten different batches for each spheroid age.
Metric 1: Sample Clustering in Unsupervised Classifica-

tion. The results of the unsupervised classification are shown in
Figure 3. PCA of the unnormalized data reveals distinct sample
clustering by biological conditions rather than by batch (Figure
3a). Effective normalization methods would thus see an
enhanced separation of the clusters by biological condition, or
sample type. The poorest-performing method was ComBat
normalization, where the normalized plot mirrors the un-
normalized data (Figure 3b). For the remaining 11 methods an
evident separation of clusters is observed, indicating good
performance for this metric (Figure 3c−m). The dramatic
difference before and after normalization underscores the
importance of effective data normalization procedures. The
potential biological implications of these findings are
significant. Without effective data normalization, there is a
risk of misinterpreting the biological phenomena under study.
Such misinterpretations could lead researchers to draw
inaccurate conclusions, which may subsequently influence the
direction of further research or even clinical decision-making.
Metric 2: Supervised Classification Outcomes. The results

of supervised classification by XGBoost and the Aristotle
Classifier are listed in Table 4. For classification by the
Aristotle Classifier, all approaches except removeBatchEffect,
result in significant improvements in normalized AUC values

and classification accuracy. Interestingly, removeBatchEffect is
the sole strategy with a significant improvement in normalized
AUC and classification accuracy for XGBoost classification. All
other methods have AUC values lower than the unnormalized
data. Some of these methods (log transformation, quantile +
removeBatchEffect, relative abundance + ComBat, relative
abundance + removeBatchEffect, and VSN), however, have
improvements in classification accuracy. As these methods
have accuracies superior to the unnormalized data across both
classifiers, they are categorized as good-performing methods.
The remaining seven methods are identified as “mediocre”
methods due to inferior classification performance for at least
one classifier.

Overall Assessment of Performance. By combining the
findings from these two metrics, we find that ComBat and
removeBatchEffect underperform for normalizing the cancer
spheroid dataset due to inferior performance in at least one
metric. The other ten methods result in distinct clusters based
on spheroid age, which demonstrate good performance for the
PCA metric. While these methods also perform well for the
second metric, one strategy outperforms the rest. The best-
performing strategy for normalizing this cancer spheroid
dataset is Quantiles + removeBatchEffect due to significant
improvements in supervised classification outcomes via the
Aristotle Classifier. Overall, these findings demonstrate that
better-performing normalization methods lead to improved
classification outcomes.

Impact of the Classifier. Classification outcomes depend
on the relationship between the data and the classifier. Some
datasets may be better suited for classification by certain tools
than others. For instance, when classifying the unnormalized
ESI-MS dataset of extracted lipids, XGBoost outperformed the
Aristotle Classifier, achieving accuracies of 82.18% compared
to the Aristotle Classifier’s 62.87% (Table 3). Thus, to achieve
good classification outcomes, it may be necessary to evaluate
the performance of different supervised classification tools on
unnormalized data. Classifiers with good outcomes can
subsequently be incorporated into this workflow, potentially
replacing XGBoost or the Aristotle Classifier.
Additionally, the performance of a particular normalization

strategy appears to depend on the classifier employed due to
differences in how the classifiers function. This is evident when
comparing the effects of cyclic loess normalization on the

Table 4. Supervised Classification Outcomes for MALDI-MSI Dataseta

XGBoost Aristotle Classifier

Approach Accuracy (%) AUC DeLong P-Value Accuracy (%) AUC DeLong P-value Performance

Unnormalized 95.65 0.9969 - 92.02 0.9897 - -
Log Transformation 96.66 0.9969 0.9366 94.22 0.9936 8.07 × 10−34 Good
Quantiles + removeBatchEffect 95.66 0.9933 1.04−08 98.98 0.9997 7.61 × 10−53 Good
Relative Abundance + ComBat 96.16 0.9941 5.52 × 10−07 97.32 0.9981 8.39 × 10−38 Good
Relative Abundance + removeBatchEffect 96.16 0.9952 0.0005 97.24 0.9983 3.04 × 10−40 Good
VSN 96.12 0.9941 5.73 × 10−08 97.20 0.9990 4.40 × 10−53 Good
Quantiles + ComBat 95.48 0.9919 1.37 × 10−13 98.21 0.9995 4.20 × 10−51 Mediocre
Cyclic Loess + removeBatchEffect 94.01 0.9895 4.47 × 10−22 95.38 0.9916 0.0230 Mediocre
Relative Abundance 93.20 0.9901 1.37 × 10−17 97.52 0.9988 1.08 × 10−51 Mediocre
ComBat 93.87 0.9825 9.47 × 10−40 95.64 0.9946 1.62 × 10−21 Mediocre
Quantiles 87.73 0.9769 7.24 × 10−54 95.80 0.9990 1.34 × 10−50 Mediocre
Cyclic Loess 85.56 0.9670 9.71 × 10−81 97.7 0.9986 5.15 × 10−52 Mediocre
removeBatchEffect 97.82 0.9980 0.0033 84.74 0.9522 6.70 × 10−108 Mediocre

aApproaches with accuracies superior to the unnormalized data for both classifiers are identified as “good” strategies, while approaches that had
accuracies inferior to the unnormalized data for at least one classifier are indicated as “mediocre.”
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MALDI-MSI dataset. While cyclic loess normalization led to
an increase in classification accuracy using the Aristotle
Classifier, a deterioration in accuracy was seen for XGBoost
classification (Table 4). These results highlight the importance
of evaluating the classifier and the normalization strategy in
tandem. As different normalization strategies impact the overall
performance of the classifiers differently, evaluating the
performance of a strategy across multiple classifiers can
provide deeper insights.

■ CONCLUSION
We provide a simple and straightforward workflow to facilitate
the identification of the best-performing normalization
strategies for MS datasets, using supervised and unsupervised
machine learning tools. We demonstrate the utility of the
workflow by identifying a set of well-performing approaches for
normalizing a latent fingerprint dataset of lipids acquired by
ESI-MS and a cancer spheroid dataset of metabolites ionized
by MALDI-MSI. Using only two key evaluation metrics, this
workflow provides researchers the ability to try any existing or
emerging normalization strategies on any type of omics data,
enabling a simple and unbiased evaluation of normalization
performance. With the application of this workflow, optimal
approaches can be chosen, ensuring that systematic variability
is adequately addressed, thereby increasing the accuracy and
reliability of the downstream analysis.
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