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Abstract

Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented reso-
lution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the
transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses,
or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and
analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss com-
mon challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve
reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this
fast-developing field of research.
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Best practices in plant single-cell/nucleus omics

Introduction: plant-specific challenges for
single-cell approaches

Plant molecular and developmental biologists are fully
embracing single-cell applications. Specifically, single-cell
RNA-sequencing (scRNA-seq) and single-nucleus RNA-
sequencing (snRNA-seq) are gaining a lot of traction while
spatial transcriptomics is emerging as a promising comple-
mentary technology (Fig. 1). Despite an increase in the use
and publication of plant single-cell experimentation
(Fig. 1A), it is fair to say that the plant field has, so far, not
settled on common strategies, protocols, or analysis meth-
ods. Given the high complexity of the different technologies
and sample types (Fig. 1, B and C), we feel it is important to
provide a best-practice workflow and guidelines that will
help in establishing a collectively accepted quality cutoff.
These guidelines will aid in the evaluation of experimental
approaches and computational analyses of single-cell tran-
scriptomic data, while also offering solutions to commonly
observed challenges, thereby improving the reproducibility
and comparability of experiments in the broader field of
plant research. The present coauthors collectively accept
these guidelines and commit to applying them to their re-
search. We also highlight examples where consensus has
not yet been achieved between coauthors, which will need
to be resolved when both the technologies and the field de-
velop further. As one example, single-cell multiomics and
spatial transcriptomics are, in our opinion, not established
enough in the plant field to propose any sort of definitive
rules at this moment in time.

To date, we have identified the following 8 main challenges
in the field of plant single-cell/nucleus (sc/sn) transcrip-
tomics: (i) deciding on the best single-cell methods to answer
a specific biological question; (ii) understanding experimen-
tal variability; (iii) biases in protocols and platforms; (iv) de-
ciding on a sequencing strategy; (v) generating expression
matrices and defining high-quality cells; (vi) constructing
cell clusters and mapping them to cell types; (vii) trajectory
inference methods and applications; and (viii) documenting
and publishing data sets (Fig. 2). Each of these challenges is
discussed in detail in the following sections.

Challenge 1: selecting the best approach to
answer a specific biological question

Before considering the best experimental approach to obtain
single-cell transcriptomic data, it is important to evaluate the
potential benefits of accessing single-cell resolution over bulk
RNA-sequencing (bulk RNA-seq). This assessment depends
on the biological system considered and the biological ques-
tions to answer. sc/snRNA-seq provides a snapshot of the
transcriptome of each cell within an organism, offering a
high spatiotemporal resolution of the dynamic gene regula-
tion involved in plant development, cell differentiation, or
responses to biotic and abiotic stresses. Single-cell transcrip-
tomics can also offer the required resolution to study
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cell-type-specific responses during cellular evolution and
adaptation mechanisms among plant species (Guillotin
et al. 2023). We thus advocate using sc/sn transcriptomic
technologies over bulk RNA-seq when working with a cellu-
larly complex sample or to capture dynamic transcriptomic
responses to stimuli. In other cases, the question at hand
might be more easily addressed using bulk RNA-seq or tar-
geted gene expression experiments.

scRNA-seq versus snRNA-seq

A thorough understanding of the different strategies and
types of protocols (Fig. 1C) is essential before one can
make an educated decision on which technology will best an-
swer a specific biological question. A first example of an im-
portant choice is whether to profile the transcriptome from
isolated nuclei or cells. When doing scRNA-seq, the most
popular choice to obtain single cells from a plant organ re-
quires the enzymatic digestion of cell walls and the gener-
ation of so-called protoplasts. There are a number of
disadvantages of using protoplasts such as some tissues
(e.g. sclerenchyma) and species (e.g. sorghum; Guillotin
et al. 2023) are recalcitrant to cell wall digestion; enzymatic
digestion affects the transcriptional status of the plant cells
and could bias the outcome of experiments (Birnbaum
et al. 2005); and the large size of protoplasts reduces their
capture efficiency with most of the currently available com-
mercialized single-cell platforms. Nucleus isolation followed
by snRNA-seq gained traction in plant single-cell transcrip-
tomics as well. However, the recovered data content per nu-
cleus (e.g. Unique Molecular Identifier (UMI) or genes) is up
to 10 (for UMIs) and 3 times (for genes) lower compared to
scRNA-seq (Farmer et al. 2021; Guillotin et al. 2023).
Furthermore, even though the transcriptome coverage is
similarly efficient between scRNA-seq and snRNA-seq (e.g.
89% of all Arabidopsis expressed genes were captured in
snRNA-seq data; Farmer et al. 2021; Guillotin et al. 2023), a nu-
clear transcriptome and a cellular transcriptome are not
equivalent (Lee and Bailey-Serres 2019; Reynoso et al. 2019).
For example, differences in abundance and composition be-
tween transcripts obtained from nuclear versus polyA RNA
under hypoxia point toward nuclear transcript retention or
enrichment as part of the stress response (Lee and
Bailey-Serres 2019; Reynoso et al. 2019). Furthermore, the half-
life of the transcripts (estimations range between 12 min and
more than 24 h in Arabidopsis cells; Narsai et al. 2007) sug-
gests that the cellular transcriptome is the result of the accu-
mulation of the transcript synthesis over time, while the
nuclear transcriptome is considered to accommodate faster
to changes in gene activity. These differences are important
to consider when selecting and later interpreting a single-
cellular transcriptome versus a nuclear-based transcriptome
and should be determined by the experimental system or bio-
logical question. Therefore, when studying, e.g. early stress re-
sponses of plant cells, a snRNA-seq could achieve higher
resolution of rapid transcriptomic changes, while scRNA-seq
might be more informative when understanding the biology
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Figure 1. Overview of plant single-cell and single-nucleus experiments. A) Number of publications describing sc/snRNA-seq data in the plant field
per year from 2019 until 2022. B) Distribution of species used in these papers (n: 46). C) Overview of the different sc/sn technologies and their usage
in the plant field. Example references used: a. (Farmer et al. 2021; Cervantes-Pérez et al. 2022; Conde et al. 2022; Neumann et al. 2022; Sun et al. 2022;
Guillotin et al. 2023; Li et al. 2023; Liu et al. 2023); b. (Tian et al. 2020; Marand et al. 2021); c¢. (Wendrich et al. 2020; Graeff et al. 2021; Lopez-Anido et al.
2021; Ortiz-Ramirez et al. 2021; Wang, Huan, et al. 2021; Apelt et al. 2022; Otero et al. 2022; Kim et al. 2023); d. (Denyer et al. 2019; Jean-Baptiste et al.
2019; Ryu et al. 2019; Shulse et al. 2019; Turco et al. 2019; Zhang et al. 2019; Satterlee et al. 2020; Bezrutczyk et al. 2021; Chen et al. 2021; Gala et al.
2021; Kim et al. 2021; Liu et al. 2021; Ma et al. 2021; Yang et al. 2021; Zhang, Chen, et al. 2021; Zhang, Chen, and Wang 2021; Li et al. 2022; Shahan et al.
2022; Tao et al. 2022); e. (Kao et al. 2021; Picard et al. 2021; Sunaga-Franze et al. 2021; Abramson et al. 2022; Li et al. 2023); f. none; g. (Efroni et al. 2016;
Lopez-Anido et al. 2021; Roszak et al. 2021; Serrano-Ron et al. 2021; Omary et al. 2022); h. (Zong et al. 2022); and i. (Nelms and Walbot 2019; Song

et al. 2020; Xie et al. 2022).

of a cell type or when studying cells that are enucleated at
some stages of development (e.g. sieve element cells in the
phloem cell lineage; Miyashima et al. 2019).

Biological replicates in single-cell transcriptomics

As for all scientific observations, generating robust sc/sn data
sets requires performance evaluation across multiple, inde-
pendent biological replicates. We hereby note that a biologic-
al replicate relies on the independent growth, harvesting and
processing of various plant samples. Any separation after
protoplast or nucleus isolation cannot be classified as bio-
logical replicates and can only be reported as technical repli-
cates. No standardized metrics are available within the
community to evaluate reproducibility between replicates.
We propose that a correlation coefficient of the average
gene expressions among all cells would be an informative as-
say. Alternatively, one could compare the frequency of cell
types or cell clusters across replicates. As such, we advise

analyzing cell cluster-specific differentially expressed genes
and annotating each replicate separately, before merging the
replicates and applying batch effect correction. Other para-
meters, e.g. Average Silhouette Width and Adjusted Rand
Index, have been used to quantify cell-type purity assessments
after batch effect correction and can also be informative to
evaluate replicate robustness (Tran et al. 2020).

From a statistical point of view, independent biological
replicates are unconditionally advised to increase the signifi-
cance of biological data sets (Heumos et al. 2023). However,
in many cases, replicates in sc/snRNA-seq experiments are
currently performed to increase the total number of cells
or nuclei analyzed, while the replicate information and a
comparison between replicates are not necessarily incorpo-
rated in the actual statistical analysis. A statistical compari-
son among biological replicates is thus strongly advised
to ensure high data quality and to prevent cluster formation
based on replicate-specific artifacts. As such, biological
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Figure 2. Challenges in plant single-cell and single-nucleus transcrip-
tomics. Overview of the different steps of performing sc/snRNA-seq
in plant samples and summary of how the most important challenges
discussed here influence this flowchart.

replicates are imperative to add certainty on the reproduci-
bility of the experiment. However, merely adding biological
replicates does not remove transcriptional artifacts intro-
duced during sample preparation in each of the replicates.
One example is the effect of the enzymatic digestion needed
to generate protoplasts or the procedures to extract nuclei
on the transcriptome. Therefore, performing replicates by
themselves does not provide sufficient confidence in the
data to draw biological conclusions. To achieve confident
biological interpretation, extensive downstream experimen-
tal validation is always required in the form of e.g. reporter
lines, in situ hybridization, or spatial transcriptomics.

Challenge 2: experimental variability during
sample preparation

While the potential of sc/snRNA-seq for plant research is evi-
dent, its applicability depends largely on establishing reliable
cell and nucleus isolation protocols. These protocols must sup-
port the generation of high-quality, high-yield nuclear and vi-
able cellular suspensions within a short amount of time and
must be compatible with downstream procedures (e.g. limited
usage of PCR inhibitors like CaCl,). The efficiency of protoplast
generation from tomato roots for example was increased by op-
timizing the pH of the enzyme-containing buffer and, in part,
also by using hand sections instead of intact tissues (Omary
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et al. 2022). Preincubation in t-cysteine and sorbitol for roots
of maize, sorghum, and Setaria improves enzymatic cell wall di-
gestion and protoplast generation (Ortiz-Ramirez et al. 2018,
2021), while r-arginine positively influenced the survival rate
of maize meristem protoplasts (Satterlee et al. 2020). In contrast,
nuclei can be isolated from fresh (Farmer et al. 2021; Picard et al.
2021; Cervantes-Pérez et al. 2022; Conde et al. 2022; Sun et al.
2022; Liu et al. 2023), frozen (Sunaga-Franze et al. 20271;
Abramson et al. 2022; Neumann et al. 2022; Li et al. 2023), or
fixed (Kao et al. 2021) starting material, offering flexibility in
terms of sample handling and preparation, while simultaneous-
ly securing dynamic transcriptional changes upon their rapid
fixation. While nucleus isolation seems more straightforward
to conduct than protoplast isolation, the assessment of nucleus
quality prior to snRNA-seq library construction remains a diffi-
cult task. The leaking and clumping of isolated nuclei should be
seen as a sign of breakage of the nuclear membrane leading to
RNA leakage and the generation of low-quality libraries.

Overall, careful workflow optimization should include the
following:

1) Visual assessment of tissue digestion or nucleus release
through e.g. the observation of protoplasts/nuclei pro-
duced from all desired cell types, via cell wall digestion
of fluorescently tagged cells of a particular cell type (if
available) as a proxy or via gene expression quantifica-
tion of cell-type markers in a pilot experiment.

2) Rapid and nondestructive sample cleanup strategies
including washing steps (e.g. centrifugation and filtra-
tion), fluorescence (and image-based) activated cell/
nucleus sorting (FACS/FANS), or microfluidic cell en-
richment devices can increase the population of viable
cells and the purity of cellular/nuclear suspensions. A
careful analysis of nucleus shape will help to identify
problems with RNA leakage.

3) Careful analysis of cell sizes for protoplasts since most
commercial platforms have a cell size restriction that
might introduce a bias in cell capturing and a prefer-
ence for incorporating smaller over larger cells (see
Challenge 3).

4) Quantification of cell viability by manual cell counting
(upon staining with trypan blue or fluorescein diace-
tate) or with the help of automated cell counters.

The procedure of cell wall digestion itself (Birnbaum et al.
2005)—as well as external factors introduced during sample
collection and generation (e.g. growth and harvesting condi-
tions, enzyme concentration and activity, and temperature
and timing)—affects cell viability, cell wall digestion effi-
ciency, cell-type representation, and the transcriptional pro-
files of cells. One of the most promising developments for
reducing experimental biases is the inclusion of a fixation
step. Until now, scRNA-seq-compatible cell fixation protocols
have mainly been described in mammalian research (Attar
et al. 2018; Wohnhaas et al. 2019; Phan et al. 2021; Wang,
Yu, and Wu 2021), but its application could drastically boost
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the plant single-cell field by massively reducing the effects of
external factors during sample processing, including the gen-
eration of protoplasts. Indeed, protoplast isolation efficiency
increased when plant tissues were fixed and digested at opti-
mal enzyme activity temperature (Marchant et al. 2022).
However, concerns about tissue fixation on protoplast shape
(Marchant et al. 2022) and the sequencing results have been
reported, motivated in particular by the reduction of cDNA
yields and biases toward 3’-end enrichment (Wang, Yu, and
Wu 2021). Despite these limitations, the potential gains for
the field could be major, warranting dedicated investments
in tissue fixation approaches.

Challenge 3: biases and specificities of
commercial platforms for plant single-cell
transcriptomic samples

The most popular commercial platforms and scRNA-seq
protocols used for plant samples rely on microfluidic droplet-
based cell compartmentalization or nanowell-based cell
separation (Fig. 1C). Techniques that can be performed by
manual handling, such as combinatorial barcoding (Cao
et al. 2017; Rosenberg et al. 2018), are rapidly expanding in
the animal field but have yet to be shown in use for plant
samples. The choice of the sample processing method or
platform must be taken carefully to allow uniform cell size
capture rate, resolvability, and, if necessary, a sample multi-
plexing option or flexibility toward cell capturing and lysis
steps. Droplet-based platforms allow fast cell/nucleus pro-
cessing but offer limited flexibility regarding the cell prepar-
ation workflow. Also, the level of pressure imposed on the
sample when creating the emulsion could cause the bursting
of cells into the droplet-based platform. Well-based methods
like SMART-Seq2 (Lopez-Anido et al. 2021) and platforms
used with plant samples, such as BD Rhapsody (Zong et al.
2022) or iCELL8 (Sunaga-Franze et al. 2021), require longer
cell processing protocols but offer more flexibility during
the sample processing. However, the compatibility of com-
mercial platforms to handle the size and fragility of plant pro-
toplasts is not necessarily evaluated. Plant cell sizes typically
lie in the range of 10 to 80 ym, with even larger values ob-
served for endoreduplicated cells, which is far above the re-
commended cell size maxima from current technology
providers (~40 ym). Furthermore, cell size heterogeneity
can create cell capture biases, because droplet-based techni-
ques favor smaller cells, while the well sizes in nanowell tech-
niques must be fine-tuned to reduce the possibilities of
doublets from smaller cells while still allowing capture and
processing of larger cells. The consequences could be high
multiplet rates and/or imbalanced cell-type/stage represen-
tation. Careful optimization of the maximum cell loading
capacity, loading speed, cell compartmentalization time,
and the number of washing steps is necessary depending
on the platform of choice. Identification of cell type or stage
capture rates, however, requires in vivo experimental
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validation by quantification of cell types or tracing of devel-
opmental cell stages. This validation has been done by com-
paring cell numbers per cell type between scRNA-seq data
and cell counting via imaging (Wendrich et al. 2020), but it
could also be achieved by spiking in a fixed ratio of cell types
using transgenic marker lines.

Furthermore, a detailed plant-specific benchmark study
comparing the commercially available platforms and kits is
urgently needed to evaluate the benefits and pitfalls when ap-
plied to plant samples. Similar benchmark studies using hu-
man and mouse cell lines allowed practicality and financial
comparisons of common methods, while also comparing
cell capture rates and technical bias across cells with distinct
cell properties (Mereu et al. 2020). Ideally, a benchmark study
should cover numerous species and tissue combinations to al-
low the establishment of quality standards independent of
the species or tissue used. A plant-specific benchmark study
mightin addition also focus on comparing the ability to recre-
ate developmental or spatial cell states, because most plant
single-cell samples offer a chance to also capture and compare
developmental cell trajectories. Given the sensitive nature of
protoplasts, it would also be important to address the effect
of total sample processing durations, as well as the abundance
of ambient RNA due to for example protoplast bursting.

Challenge 4: establishing an efficient
sequencing strategy

Full-length versus 3’- or 5’-end transcript sequencing
Two approaches for library preparation are currently used in
single-cell methodology, namely full-length transcript cover-
age and 3'- or 5’-end transcript coverage. While most re-
ported plant single-cell transcriptomic data sets today
(Fig. 1C) were generated using 3’end transcript coverage,
full-length transcript sequencing (used for example in
Lopez-Anido et al. 2021) bares huge application potential
in plant research, as it can help in improving transcriptome
and epitranscriptome resources (reviewed in Shen et al.
2023) and in providing cell-type-selective isoform usage
(shown for example during neuronal maturation in mouse
embryos; Lebrigand et al. 2020).

Cell number and sequencing depth

Although cDNA amount and profile after library preparation
are used as a proxy for the overall quality of the sc/
snRNA-seq library, sequencing followed by analysis currently
remains the only way to fully estimate its quality and bio-
logical value. Two major issues that require careful consider-
ation during the experimental planning and sample
optimization are the number of cells/nuclei needed for opti-
mal coverage of the cell type(s) of interest and the aimed se-
quencing depth per cell/nucleus. The number of cells/nuclei
in published cell atlases is moving from thousands to hun-
dreds of thousands. Increasing numbers is indeed beneficial
for predicting novel marker genes, because it allows better
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Table 1. Necessary reported information to allow evaluation and repetition of a plant sc/sn experiment

Details

Recommendations

Biological material

Sample preparation

Libraries

Sequence results

Raw data

Processed data

Validation

Species

Accession

Genotype

Tissue type

Detailed growth conditions
Harvest conditions
Isolation protocol

Tissue dissection

Fixation

Cell/nucleus enrichment
Total sample preparation time

Estimated cell/nucleus number loaded

Instrument/method/kit
Cell viability test

Library construction
Amplification method
End bias
Instrument/method
Library layout/paired-end
N° sequenced reads

Reference genome

Annotation version

Mapping method (incl. software,
customized settings)

Mapping efficiency

Sequencing saturation
Estimation of ambient RNA

Imputation method and settings
N° captured cells/nuclei
N° high quality cells/nuclei

Filter criteria: % mitochondrial reads/cell

or nucleus

Filter criteria: % chloroplast reads/cell or

nucleus

Filter criteria:

Minimum N° UMI/cell or nucleus

N° total detected transcripts
Doublet rate

Replicate comparisons

Batch correction method for merging
(incl. reasoning for batch correction)

Additional processing

Method of automatic annotation of

clusters

Method of manual annotation (markers,

gene function info)

e.g. Arabidopsis thaliana, Zea mays

e.g. Col-0

e.g. WT or mutant background

e.g. root, leaf, stem, and seed

e.g. temperature, light conditions, and medium

e.g. age of plants, time of day, and amount harvested

Short description of the way the sample was isolated

e.g. razor blades, needles, and tissue homogenizer

Short description of the way the sample was fixed if this was done

e.g. sucrose gradient, FACS (incl. model, nozzle size, and temperature)

For cells: <90 min for Arabidopsis roots (from material harvest to cell loading)*
*Duration may increase depending on starting material and time needed for
optimal tissue digestion
For nuclei: 30 to 60 min (depending whether a nucleus enrichment step is included)

An estimation of the amount of cells or nuclei loaded, based on the cell/nucleus
concentration and volume that was loaded

e.g. 10x Genomics 3’ v3.1, BD Rhapsody WTA

For cells: trypan blue, fluorescein diacetate, calcein, propidium iodide,
4',6-diamidino-2-phenylindol
For nuclei: not applicable

Protocol and revision/version that was followed, e.g. CG000204 Rev D for 3’ v3.1

e.g. number of PCR cycles used for cDNA amplification

e.g. 3’-end mainly; excess of rRNA or TSO sequences

e.g. NovaSeq, NextSeq, ONT, and DNBSEQ

Consider to use standardized library structures (Booeshaghi et al. 2023)

20,000 to 50,000/cell for RNA or more
20,000 to 40,000/nucleus for RNA or more

Link to Ensembl Plant fasta file, JGI, NCBI, PLAZA

If custom annotation, also include.gtf/.gff/.gff3 files

e.g. STAR (cellranger)

>85% for Arabidopsis*
*Value may be lower in other species
>50%
Fraction of reads in cells > 60% for scRNA-seq
Fraction of reads in cells > 50% for snRNA-seq
If relevant
e.g. 60% of estimated number
e.g. 20% of estimated number
<10% for scRNA-seq*
close to 0% for snRNA-seq*
*value may deviate depending on biological context
<5% to 10% for scRNA-seq*
close to 0% for snRNA-seq*
*values may be higher depending on biological context
>1000 for scRNA-seq>400 for snRNA-seq

Dependent on the species but e.g. 60% of total number of transcripts in the
annotated genome

Estimates according to 10X Genomics user guide based on number of loaded cells/
nuclei

Provide coefficient correlation of the most variable genes or cluster-specific genes
between independent replicates or compare pseudo-bulk from sc/snRNA-seq
versus bulk RNA-seq

e.g. Seurat, Harmony

e.g. removal of protoplast-induced genes, cell cycle regression, noise (ambient RNA)
removal, cluster membership bias between replicates, removal of low quality clusters
e.g. Label transfer, spatial transcriptomics

e.g. Marker genes, orthologous, correlation with bulk RNA-seq and microarray data;
Index of Cell Identity calculation

(continued)
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Table 1. (continued)

Grones et al.

Details

Recommendations

Verification in planta (e.g. number of
markers used for validation)

Analysis scripts & codes (GitHub)

Excel Tables DEG for each cluster

Objects/count matrix in repository
(which one, where?)

On-line tool/browser URL

Cell-level metadata table

additional comments from the authors

Data availability

Additional

e.g. Spatial transcriptomics; RNA in situ hybridization; promoter fusions

If relevant
e.g. Lists for each cell type/developmental stage from FindMarkers (Seurat)
e.g. use NCBI GEO to store count matrices and Seurat object

List the URL if relevant
Include cell-type annotations for each cell barcode
e.g. annotation/counting of rRNA, allow for rRNA estimation, consideration of

intronic reads

A downloadable empty version for use in publications can be found as Supplementary Table S1. If numerical values deviate from the recommended numbers provided below, an
explanation should be provided. The numerical values in this table are derived from available studies in plants, most of which originated from Arabidopsis.

coverage of rare populations and lowly expressed genes. This
higher coverage in turn helps to outweigh the bias of differ-
ential expression analysis tools toward highly expressed genes
(Squair et al. 2021) and data set-specific noise (Fischer and
Gillis 2021). However, at what point does a cell atlas fully cap-
ture the cellular diversity of its samples? The meristematic re-
gion of an Arabidopsis root has about 3,000 to 4,000 cells,
meaning that a data set of 100,000 cells sufficiently covers
each cell about 20 to 30 times, assuming that all cells are
equally represented in the data set. Alternatively, when a spe-
cific cell type is isolated from a tissue by upstream cell sort-
ing, an atlas of 2,000 cells could already be saturating. As a
rule of thumb, when the cell-type composition of the tissue
of interest is known, the minimum number of cells that need
to be analyzed can be estimated from the probability to ro-
bustly capture the rarest cell type(s) (e.g. https://satijalab.
org/howmanycells/). For example, to obtain at least 10 quies-
cent center cells (estimated to represent 0.1% of all cells
within the Arabidopsis root meristem according to
Cartwright et al. 2009; Shahan et al. 2022) with 95% confi-
dence, one would need to profile 15K to 20K cells.

Additionally, the required sequencing depth must be
adapted depending on the biological question, the tissue com-
plexity, and the sample quality. However, it is recommended
that optimal coverage is given with 1 read/cell/gene (Zhang
et al. 2020). Alternatively, sequencing can be staged by first ini-
tiating a shallow sequencing of the library (e.g. up to 10,000
reads/cell) before deeper sequencing (e.g. aiming for 50,000
reads/cell). Such shallow sequencing allows evaluating the per-
formance of cell cluster analysis and annotation and is sufficient
to capture the entire cell-type heterogeneity of the sample
(Zhang et al. 2020). Another common suggestion for a prelim-
inary sample quality control is to analyze the expression of a
gene subset related to a biological question (Zhang et al.
2020). Sequencing even less for testing the quality of the library
is possible but will affect the retrieval of cell types with a lower
number of transcripts, which might be lost within the back-
ground of empty droplets if the sequencing is too shallow.
The desired final read depth will depend on the goal of the ex-
periment but should ensure sequencing enough cells at a se-
quencing depth that captures individual events robustly (e.g.
50% sequencing saturation; Table 1).

When assessing the most cost-effective sc/snRNA-seq
technologies, should one profile many cells/nuclei but have
shallow sequencing or should one profile fewer cells/nuclei
but with deeper sequencing? In many cases, the ideal
scenario will be something in-between assuming that
the researchers are working on high-quality cells/nuclei.
Nevertheless, a choice toward either a higher number of
cells/nuclei or higher sequencing depth can be made de-
pending on the biological question, the quality of the bio-
logical entities used for the analysis, and the relative
abundance of each cell type composing the organ. If the
aim is to generate an atlas potentially uncovering rare cell
types, a better strategy would be to profile many cells/nuclei
with a lower sequencing saturation. However, a minimal
depth in sequencing (Table 1) upon maximizing cell/nucleus
quality is still necessary to ensure that low-abundance tran-
scripts that define rare cell types are captured and to saturate
the transcriptome of the sample. Validation of high-
throughput technologies in the plant field that enable to ac-
cess the transcriptomes of hundreds of thousands and even
up to 1 million cells or nuclei, combined with the ongoing ex-
pansion of sequencing capabilities and the decrease in se-
quencing costs, could help to overcome this dilemma. If
the goal is to do functional gene discovery and generate
gene regulatory networks for example (Ferrari et al. 2022),
a high sequencing saturation per cell/nucleus favors the dis-
covery of low-abundance gene transcripts. To achieve this
goal, one can select a subset of genes related to the biological
question and adjust the sequencing depth until at least 1
read/cell for each of those genes is reached (Zhang et al.
2020). In all cases, we recommend optimizing cell and nu-
cleus isolation methods to ensure the capture of the largest
number of transcripts from each biological entity.

Challenge 5: generating an expression matrix
from high-quality cells/nuclei

Once mRNA sequence reads are obtained, reads are mapped
to the genome and ultimately to genes and cells of origin using
a reference genome and UMI and cellular barcode informa-
tion. Standard data analysis workflows further include quality
control filtering, quantification of gene expression in each cell,
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Figure 3. Workflow for sc/snRNA-seq data analysis.

clustering, and visualization of cells based on transcriptomic
similarity (Fig. 3). While the recommendations below are gi-
ven with the intention to standardize sample quality para-
meters within the field (see recommendations in Table 1),
we want to highlight that a sn/scRNA-seq experiment (with
a read depth of 30K reads/nucleus or cell) should typically re-
sult in the capture of 1,000 expressed genes/nucleus or 3,000
expressed genes/cell, respectively. Furthermore, utilizing uni-
versal preprocessing pipelines for single-cell genomic data
(e.g. Booeshaghi et al. 2023) can help in streamlining cell qual-
ity filtering and enhance data reproducibility in the future.

Read mapping

Plant genomes in general and crop genomes in particular are
poorly annotated compared to e.g. human or mouse gen-
omes. Moreover, due to frequent whole-genome duplica-
tions (Fox et al. 2020), many plants are polyploid and thus
contain multiple similar copies of each gene. Structural anno-
tations of genes are especially important for most droplet-
based technologies using a 3’ capturing strategy to properly
map the sequencing reads and to quantify transcript abun-
dance. The distribution of the mapped reads on the genome
can give an indication about the quality of the annotations.
Poor mapping efficiency consequently causes gene loss,
which can be dramatic especially for popular 3'-based single-
cell technologies. Even for Arabidopsis scRNA-seq data sets,
mapping rates vary but should be e.g. >85% (Table 1). A
high percentage of reads mapping to intergenic regions
(e.g. >20%) can be an indication either that not all genes
are annotated or that the annotated 3’ UTR regions should
be longer. As a note, it is important to mention that the se-
quencing reads generated upon conducting a snRNA-seq ex-
periment should be mapped against the exonic and intronic
sequences of the annotated transcripts, a reflection of the
capture of spliced and unspliced transcripts.

Normalization of counts and
identification and scaling of

Integration of multiple samples
and their contribution to clusters
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Removal of low-quality cells/nuclei

After read mapping, low-quality cells/nuclei (e.g. cells/nuclei
with low number of UMIs and genes) need to be filtered out
(see numerical recommendations in Table 1). Impairments in
applying low-quality cell filtering may increase the noise in
the data set and reduce the accuracy in downstream analysis,
including cell clustering or erroneous identification of cell
types (Fig. 4, A and B). General filter parameters will depend
on the application and sample type (i.e. cells versus nuclei).
For plants, it is good practice to exclude cells with high mito-
chondrial (e.g. >10%) and chloroplast (e.g. >5% to 10%)
reads (Table 1). Such cases may indicate cells under stress be-
cause of perturbations during the sample preparation. These
values might need to be adapted when studying highly or
lowly metabolically active cells or cells undergoing e.g. pro-
grammed cell death. If no mitochondria or chloroplast gen-
ome is available, plotting the number of genes versus the
total UMI count can be used instead to show cells with
low data content. The barcode-rank-plot (“knee plot”) is a
commonly used tool to determine sample quality by ranking
all barcodes according to their UMI content (Fig. 4A). A sam-
ple of low quality can be identified if there is no clearly
defined boundary between barcodes with high UMI content
and barcodes with significantly lower UMI content (Fig. 4C).
Similarly, poor cluster separation in a sample that fails to
differentiate cell types indicates an insufficient amount of
transcript content per cell/nuclei.

Ambient RNA and the presence of empty droplets and
doublets—both associated with droplet and nanowell-based
technologies—can also lead to noise in the expression
matrices, inaccurate cell clusters, and falsely differentially
expressed genes. Therefore, it is important to ensure low
amount of ambient RNA introduced during sample prepar-
ation (e.g. by mixing cells/nuclei from multiple species)
and to optimize cell loading concentration (Fig. 4C).
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Figure 4. Overview of common problems in sc/snRNA-seq analysis and possible solutions.

Bioinformatic tools (e.g. SoupX, Young and Behjati 2020; or
CellBender, Fleming et al. 2023) can be used to computation-
ally remove transcriptional noise introduced by ambient
RNA. Experimentally, even though not yet shown suitable
for plant single-cell transcriptomics, doublets can be de-
tected using antibody (cell hashing; Stoeckius et al. 2018)
or lipid-tagged indices (MULTI-Seq; McGinnis et al. 2019)
sample multiplexing strategies. Here, doublets are identified
if the cell-specific barcode is connected to multiple antibody
or lipid-tagged indices, respectively. Mixing cells/nuclei from
multiple species in 1 sample offers another experimental set-
up to identify doublets (Shulse et al. 2019; Fig. 4C). In this
case, the doublet is identified due to the cell-specific barcode
being linked to multiple species. While an experimental setup
that allows doublet identification would be the best practice
for identifying doublets, it will not help in removing doublets
from already existing data sets. Even though significant
advances have been made in identifying doublets computa-
tionally (see benchmark study; Xi and Li 2021), it remains a
major challenge in general and even more in plant sc/sn tran-
scriptomic analysis due to the presence of endoreduplica-
tion. Such polyploid cells will appear as outliers when
plotting the gene content or UMI/cell, but additional expres-
sion quantification of ploidy marker genes (if available)
allows to distinguish endoreduplicating cells (Wendrich
et al. 2020).

Identification of protoplast-induced genes

In order to exclude that the invasive enzymatic treatments
needed to generate protoplasts might influence the observed
transcriptional status of certain cells or cell populations, the
overall transcriptomic responses induced during these proce-
dures should be determined using bulk RNA-seq in each ex-
perimental setup (Birnbaum et al. 2005; Brady et al. 2007).
Indeed, protoplast isolation adds a definite stressing factor
to each cell type (Denyer et al. 2019; Xu et al. 2021; Wang,
Huan, et al. 2021). Although the absence or presence of
protoplast-induced genes did not alter cell clustering or an-
notation in Arabidopsis root scRNA-seq data (Denyer et al.
2019), these genes should at least be flagged in the data set
to avoid misinterpretation.

Challenge 6: cell cluster identification and
annotation

Data normalization, dimensionality reduction, and
cell cluster visualization

Considering the limited number of transcripts per cell, single-
cell transcriptomics fail to detect transcripts for most genes
in a given cell. This sparsity is further enhanced by intrinsic
noise from stochastic transcript fluctuations, cell-cycle state,
and cell heterogeneity among other biological factors. As a
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Figure 5. Cluster annotation and appropriate labels. A common technique to represent single-cell RNA-seq data requires mapping of each cell’s
transcriptome to a low (typically 2-) dimensional domain (e.g. tSNE or UMAP), after which highly similar cells group together into initially unan-
notated clusters. Annotating cells to a cell type or developmental stage is important for further interpretation of transcriptomic signatures.
Traditional, manual annotation methods screen differentially expressed genes within each cluster for the presence of individual marker genes or
by transferring knowledge on cluster annotation from a reference data set to an unannotated data set (reviewed in Clarke et al. 2021). Without
prior knowledge of marker genes and reference data sets, automated annotation methods (e.g. eager, lazy, and marker learning methods; Xie
et al. 2021) can aid in assigning labels based on comparing cell cluster-specific genes and their biological functions. Cells and clusters that cannot
be annotated with high confidence to (only) one cell type must be analyzed carefully to determine if they represent a mix of subcell types and/or cell
states. Although there is currently no standardized definition of a “cell type” or a “cell state” (discussed in more detail in Amini et al. 2023), it has been
proposed that a cluster with homogenous marker gene expression among all cells likely represents a cell type, while expression gradients among the
cells within a cluster represent cell states (Clarke et al. 2021). However, as these definitions are still evolving, caution should be taken to not mix
different anatomical levels (cell types, tissues, or organs) and cellular processes (e.g. cell division and cell cycle) within the same visual representation.
To avoid confusion, we recommend using multiple figures with different levels of labels (e.g. separate cell types, cell division states, tissues, and so on).

result, it is necessary to implement scRNA-seqg-specific normal-
ization and batch correction protocols (see Luecken and Theis
2019 for a review on this specifically). Clusters of cells (i.e. cells
that share similar expression profiles) are constructed using
community detection algorithms, which control the degree
to which similar cells should be grouped together or stay sep-
arate based on preset parameters. To visualize the data, “di-
mensional reduction” algorithms are applied to the data,
typically via Principle Component Analysis (PCA), t-distribu-
ted Stochastic Neighbor Embedding (t-SNE), or Uniform
Manifold Approximation and Projection (UMAP). However,
a word of caution is necessary here: whereas PCA involves lin-
ear projections, t-SNE and UMAP are nonlinear transforma-
tions introducing significant distortions (Chari and Pachter
2023). Indeed, visualizing a synthetic data set with tSNE or
UMAP revealed that cluster distances and locations in discrete
and trajectory simulations are inaccurately represented com-
pared to the defined distances in the original data (Wu et al.
2018). These results indicate that cluster distances or locations
cannot be used alone to draw biological conclusions. If differ-
ent clustering outcomes (produced with customized para-
meters) seem equally plausible, it is appropriate to apply the
next step—mapping clusters to cell types—to each possibility
and then use that extra information to decide which clustering
makes most sense from a biological point of view.

Cell cluster annotation

The annotation of clusters (meaning mapping each cluster to
a cell type or state) is facilitated using manual or automated
cell annotation methods (Fig. 5). Manual annotation requires

previous transcriptome knowledge gained from as many dif-
ferent cell types as possible. Cell-type marker genes for plant
tissues in well-studied species can come from manually cu-
rated lists that are based on bulk RNA-seq data from purified
cell populations (Jin et al. 2022) or from already annotated
single-cell data sets. However, to date, databases containing
this information are rare and restricted to a few plant species
and tissues (e.g. Jin et al. 2022). One can appeal to interspecies
correspondences to support the functional annotations of the
clusters, assuming that a substantial fraction of orthologous
genes share similar cell-type transcriptional specificities. For in-
stance, if an atlas for another species is available, one can at-
tempt to extend the orthology between genes to orthology
between cell types. Such an approach has been very successful,
leading to atlases for instance in rice (Wang, Huan, et al. 2021;
Li et al. 2023), Medicago truncatula (Cervantes-Pérez et al.
2022), maize, sorghum, and Setaria (Guillotin et al. 2023).
However, this approach also has its limitations: genes often ex-
ist in multigene families rendering the orthology mapping am-
biguous, and the conservation of marker gene/cell type pairs is
far from perfect (Movahedi et al. 2012). An additional limita-
tion of these approaches is that they require multiple marker
genes per cluster to ensure proper annotation.

Another option is so-called label transfer: transferring clus-
ter labels between existing single-cell expression atlases (e.g.
for roots: https://rootcellatlas.org/, or other organs: http://
neomorph.salk.edu:9000/) to unlabeled data sets. Common
tools used are scmap (Kiselev et al. 2018), SingleCellNet
(Tan and Cahan 2019), SingleR (Aran et al. 2019), and
Seurat (Stuart et al. 2019), which differ in their accuracy
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and their ability to handle sample- and protocol-related
nested batch effect removal and the presence or absence
of cell types in the reference atlas or target data set
(Luecken et al. 2022). The advantage of this approach is
that already published data can be directly reused. With
both automated annotation approaches, it is important to
consult several tools and select one final annotation, for in-
stance using a majority rule.

As an alternative or complementary approach, clusters can
be annotated manually. To achieve this, marker gene expres-
sion of cells can be visualized in a UMAP plot or via a dot plot
showing cluster-specific expression of marker genes. Cell
clusters with conflicting annotations or no annotation, due
to e.g. low quality of the transcriptomic information or cap-
ture of uncharacterized cell (sub)type or cell transition state,
should be marked as “unknown.”

Refining cell cluster annotation

Ideally, each cluster will be clearly associated with one cell
type, using any of the approaches described above.
However, the current literature often mixes different levels
of anatomical annotations. The ambiguity between classical
anatomical descriptions and the new molecular characteriza-
tions of these cell types, tissues, and structures make it even
more challenging to navigate among these definitions.
Hence, to resolve these ambiguities, multiple hierarchically
structured annotations can be used in which cells/clusters
can be annotated according to e.g. broad expression domains,
the tissue, or the cell type level (Michielsen et al. 2021). Until
there is a consensus in the community, we recommend to
separate the different levels of annotations (cell type, tissue,
and cell cycle) into distinct plots. This will avoid ambiguity
and misinterpretation of the data (Fig. 5).

Validation of cell cluster annotation

Independent of the annotation approach used, we strongly
recommend experimentally validating the main annotations
by e.g. generating corresponding reporters, performing RNA
in situ hybridizations, or complementing the data with spa-
tial transcriptomics. This independent experimental ap-
proach is the only way to assess if differential gene
expression observed in a high-throughput single-cell experi-
ment is relevant in vivo or an artifact introduced by one of
the many steps, e.g. protoplasting.

Beyond these more classical approaches, spatial transcrip-
tomics can be used to support the annotation of clusters iden-
tified in plant sc/snRNA-seq data sets (Guillotin et al. 2023;
Lee et al. 2023; Nobori et al. 2023). The technologies that allow
probing tissue gene expression and simultaneously retaining
its spatial location can be divided into two main categories:
targeted and untargeted. The division into those two categor-
ies is based on the type of approach applied to analyze the tis-
sue gene expression information. Specifically, targeted
methods, i.e. in situ sequencing (Ke et al. 2013; Laureyns
et al. 2021), MERFISH (Moffitt et al. 2016; Lee et al. 2023;
Nobori et al. 2023), Xenium (Ke et al. 2013; Lee et al. 2015;
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Janesick et al. 2022; Liu et al. 2022), NanoString CosMx (He
et al. 2022), Molecular Cartography (Groiss et al. 2021;
Guillotin et al. 2023; Yang et al. 2023) to list a few, require a
priori knowledge on which genes to study, since these ap-
proaches use gene-specific probes to fluorescently visualize
and count the gene transcripts of interest in the tissue. In con-
trast, untargeted methods, e.g. Visium (Giacomello et al. 2017;
Liu et al. 2022, Liu et al. 2023; Peirats-Llobet et al. 2023),
DBiT-Seq (Liu et al. 2020), Slide-seq v2/Curio (Stickels et al.
2027; Lee et al. 2023), and Stereo-seq (Xia et al. 2022), leverage
a localized capture of polyadenylated transcripts, thus allow-
ing to obtain 2D whole transcriptomic maps. Both targeted
and untargeted approaches can aid in determining the spatial
location of specific cell types or stages of interest (e.g. indeter-
minate and determinate SAM cells in maize, defined by their
expression levels of PLASTOCHRONT; Laureyns et al. 2021), an-
notate cluster identities obtained in sc/snRNA-seq experi-
ments, and/or validate marker genes (Guillotin et al. 2023;
Lee et al. 2023; Nobori et al. 2023). As such, spatial transcrip-
tomics and sc/snRNA-seq are complementary technologies
for obtaining high-resolution spatiotemporal expression data.

Challenge 7: application of trajectory
inference in plant single-cell transcriptomics

Trajectory inference can predict developmental or stress—re-
sponse trajectories in sc/snRNA-seq data sets, allowing one
to pinpoint e.g. cell cycle transitions or bifurcations when
new specific cell identities branch off from another lineage.
While trajectory interference is a very promising tool to iden-
tify novel biological phenomena and questions, it is import-
ant to understand that the pseudotemporal ordering of cells
along a trajectory is purely based on transcriptomic similar-
ities, meaning that a sufficient, unbiased sampling of cells is
required, as well as prior knowledge to assign a developmen-
tal direction (see Tritschler et al. 2019 for general recommen-
dations). Furthermore, no conclusions about the spatial
organization can be drawn, and it is advised to confirm
and complement the trajectory output with other methods.
Multiple trajectory interference methodologies have been
developed, benchmarked, and used in the animal field
(Saelens et al. 2019), but they show special promise in plants
because plants have many continuous developmental pro-
grams and plant cells have remarkable capabilities for dedif-
ferentiation and adaptation. Trajectory analysis gave
significant insight into recreating cell (type)-specific tran-
scriptional events during plant developmental processes,
such as lateral root development (Serrano-Ron et al. 2021),
stomata development (Kim et al. 2023), root hair (Denyer
et al. 2019; Shulse et al. 2019), pistil (Li et al. 2023), or phloem
development (Roszak et al. 2021; Otero et al. 2022). For
example, when combined with live imaging, trajectory-
predicted expression gradients and cell-type-specific tran-
scriptional networks allowed a complete reconstruction of
the developmental process and a precise, cell-by-cell lineage
tracing during protophloem development (Roszak et al.
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2021). An interesting computational analysis that can be ap-
plied to verify predicted trajectories in plant tissues is making
use of the ploidy increase in plant cells as they mature from
meristematic cells with 2C/4C content into a more differen-
tiated stage, marked by 8C/16C or higher content. In
Arabidopsis root tissues, these ploidy states have been linked
to specific markers, leading to predictions of the ploidy status
of each individual cell. This increase in ploidy level allows to
pinpoint or validate the more meristematic cells with low
ploidy levels and the more differentiated cells in a sc/
snRNA-seq data set with higher ploidy levels (Bhosale et al.
2018; Wendrich et al. 2020; Shahan et al. 2022).

Challenge 8: documentation and publication
of plant single-cell data sets

Recent advances in single-cell omic technologies in plants
have enabled insights into diverse aspects of physiology
and development and have been the centerpiece of a grow-
ing number of elegant studies. However, there is additional
potential for single-cell resources through their reuse in inte-
grative meta-analyses (showcased e.g. in Leote et al. 2022).
The multiple applications would increase their power and
depth through greater numbers of cells, a more comprehen-
sive assessment of biological variation, and enhanced enrich-
ment for different cell types or states that are targeted by
individual studies. Popular methods enabled within software
packages (e.g. Seurat, Monocle, Scanpy, and Harmony) (Wolf
et al. 2018; Korsunsky et al. 2019; Van den Berge et al. 2020;
Hao et al. 2021) have streamlined the process of stitching
data sets together across samples, studies, and experimental
platforms, even across tissues and species, allowing for a
more expansive use of single-cell data for describing and un-
derstanding biological organization across scales.

To make optimal use of the generated data in the plant
field, there is an urgent need for published single-cell data
and their associated metadata to be more easily accessible
and usable. First steps toward establishing a suitable infra-
structure that allows data storage and comparison have
been taken within the framework of the Plant Cell Atlas
(Fahlgren et al. 2023). To a large extent, this FAIR (Findable,
Accessible, Interoperable, Reproducible) principle has not
been an issue for raw single-cell data. Unprocessed FASTQ
files are deposited routinely through major data portals,
such as the National Center for Biotechnology Information
Short Read Archive (NCBI SRA; http://www.ncbi.nlm.nih.
gov/sra), and accessibility to raw data is usually mandated
by journals, funding agencies, and institutions. In most cases,
well-indexed raw data are available and cited in journals.
However, care must be taken for single-cell data generated
through popular platforms in that only reads from the
paired-end sequencing strategy, as well as indexed and/or
UMI FASTQ, must be deposited. These genomic reads alone
are insufficient for reconstructing the single-cell count matrix
necessary for nearly all analysis steps. Processed data should
also be stored in publicly accessible repositories such as the
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NCBI Gene Expression Omnibus (GEO; http://www.ncbi.
nlm.nih.gov/geo). Processed data not only include the cell/
gene counts matrix at minimum but can also include more
complex data objects such as those generated by the Seurat
(R) (Hao et al. 2021) or AnnData (Python) (Wolf et al.
2018) packages. The EBI Single-cell Expression Atlas is another
repository that will accept processed count matrices and al-
lows for the deposition of cell metadata (see below).

Less prevalent is the public accessibility of metadata asso-
ciated with single-cell studies. This metadata takes several
forms: (i) experimental metadata describing how samples
were treated, what tissues were harvested, how the samples
were processed, and what platforms/versions single-cell sequen-
cing was performed on them; and (ii) imputed metadata de-
scribing attributes of cells defined by downstream analysis of
the raw data, including the cell’s identifier (usually a sequence
barcode), the number of distinct genes detected, total tran-
scripts detected, assigned cell type or cluster number, or other
features that are described in a study but notimmediately avail-
able from the raw data. Experimental metadata, including pro-
tocols used to generate samples, should be well documented in
the manuscript that presents them, and we encourage deposit-
ing the protocol in a public repository. Protocols.io is emerging
as a standard for this (see e.g. the repository for the Plant Cell
Atlas;  https://www.protocols.io/workspaces/plant-cell-atlas),
and detailed sample information should go along with the
raw data when submitting to a repository like GEO/SRA.
Imputed metadata can be provided along with the raw data
in the NCBI GEO as a simple machine-readable table (.csv
or .tsv). All forms of metadata are vitally important for integra-
tive analysis, as it is difficult, if not impossible, to recreate exactly
the analysis steps performed from a published study to replicate
results. In Table 1, we have listed important metadata para-
meters that should be accompanying all publications using
sc/snRNA-seq data to ensure transparency in data quality and
will allow for a better interpretation of the results and their
use in larger meta-analyses. Although it is challenging to give
an exact number for these parameters due to the vast differ-
ences in experimental systems, species, tissues, and technologies,
we do attempt to provide a range based on the collective
author’s experience in processing and analyzing multiple species
and organs to guide the less experienced user. An empty version
of this table can be downloaded as Supplementary Table S1and
freely used for publication. All coauthors collectively commit to
start using this table in all publications.

Finally, analysis scripts, software environments, and (ideal-
ly) visualization portals should be made publicly available on
established repositories/portals. Where possible, a well-
documented code can be stored in dedicated repositories.
Analysis environments should at minimum be well documen-
ted (with versions specified for all software packages used for
analysis).

Many of these tools are only valid for single-cell transcrip-
tomic or chromatin accessibility methods that use DNA se-
quence as an output and are thus incompatible with other
data modalities such as proteomics or metabolomics.
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While these data types are outside the scope of this review,
they too should adhere to FAIR principles (Wilkinson et al.
2016) to ensure that they can be integrated with other
data sets when the computational infrastructure develops.
These data management tools are also not guaranteed to
be future proof. New technologies may arise that will render
existing data sets/tools obsolete. Thus, it is imperative that, as
the field evolves, we do not forget about legacy data and en-
sure that it is preserved in a way that will be useful before this
becomes impossible.

Conclusion and outlook

Even for more advanced users, it is challenging to keep up
with the rapidly evolving field of sc/snRNA-seq. Continuous
advancements are not limited to the actual technology
and also include the choice of which technology to use
for a specific problem, which method to use to isolate high-
quality cells or nuclei, and how to analyze, compare, and
store these vast amounts of data. In this commentary, we
discuss recommendations regarding data generation, ana-
lysis, storage, and documentation to ensure transparency
in publication and optimal use of the generated data across
experiments, tissues, species, and laboratories. We collect-
ively commit to following the guidelines and recommenda-
tions (Table 1). Future research and method maturation
will allow us to fine-tune and expand these guidelines
and recommendations.
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