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Abstract
Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented reso
lution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the 
transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, 
or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and 
analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss com
mon challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve 
reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this 
fast-developing field of research.
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Introduction: plant-specific challenges for 
single-cell approaches
Plant molecular and developmental biologists are fully 
embracing single-cell applications. Specifically, single-cell 
RNA-sequencing (scRNA-seq) and single-nucleus RNA- 
sequencing (snRNA-seq) are gaining a lot of traction while 
spatial transcriptomics is emerging as a promising comple
mentary technology (Fig. 1). Despite an increase in the use 
and publication of plant single-cell experimentation 
(Fig. 1A), it is fair to say that the plant field has, so far, not 
settled on common strategies, protocols, or analysis meth
ods. Given the high complexity of the different technologies 
and sample types (Fig. 1, B and C), we feel it is important to 
provide a best-practice workflow and guidelines that will 
help in establishing a collectively accepted quality cutoff. 
These guidelines will aid in the evaluation of experimental 
approaches and computational analyses of single-cell tran
scriptomic data, while also offering solutions to commonly 
observed challenges, thereby improving the reproducibility 
and comparability of experiments in the broader field of 
plant research. The present coauthors collectively accept 
these guidelines and commit to applying them to their re
search. We also highlight examples where consensus has 
not yet been achieved between coauthors, which will need 
to be resolved when both the technologies and the field de
velop further. As one example, single-cell multiomics and 
spatial transcriptomics are, in our opinion, not established 
enough in the plant field to propose any sort of definitive 
rules at this moment in time.

To date, we have identified the following 8 main challenges 
in the field of plant single-cell/nucleus (sc/sn) transcrip
tomics: (i) deciding on the best single-cell methods to answer 
a specific biological question; (ii) understanding experimen
tal variability; (iii) biases in protocols and platforms; (iv) de
ciding on a sequencing strategy; (v) generating expression 
matrices and defining high-quality cells; (vi) constructing 
cell clusters and mapping them to cell types; (vii) trajectory 
inference methods and applications; and (viii) documenting 
and publishing data sets (Fig. 2). Each of these challenges is 
discussed in detail in the following sections.

Challenge 1: selecting the best approach to 
answer a specific biological question
Before considering the best experimental approach to obtain 
single-cell transcriptomic data, it is important to evaluate the 
potential benefits of accessing single-cell resolution over bulk 
RNA-sequencing (bulk RNA-seq). This assessment depends 
on the biological system considered and the biological ques
tions to answer. sc/snRNA-seq provides a snapshot of the 
transcriptome of each cell within an organism, offering a 
high spatiotemporal resolution of the dynamic gene regula
tion involved in plant development, cell differentiation, or 
responses to biotic and abiotic stresses. Single-cell transcrip
tomics can also offer the required resolution to study 

cell-type-specific responses during cellular evolution and 
adaptation mechanisms among plant species (Guillotin 
et al. 2023). We thus advocate using sc/sn transcriptomic 
technologies over bulk RNA-seq when working with a cellu
larly complex sample or to capture dynamic transcriptomic 
responses to stimuli. In other cases, the question at hand 
might be more easily addressed using bulk RNA-seq or tar
geted gene expression experiments.

scRNA-seq versus snRNA-seq
A thorough understanding of the different strategies and 
types of protocols (Fig. 1C) is essential before one can 
make an educated decision on which technology will best an
swer a specific biological question. A first example of an im
portant choice is whether to profile the transcriptome from 
isolated nuclei or cells. When doing scRNA-seq, the most 
popular choice to obtain single cells from a plant organ re
quires the enzymatic digestion of cell walls and the gener
ation of so-called protoplasts. There are a number of 
disadvantages of using protoplasts such as some tissues 
(e.g. sclerenchyma) and species (e.g. sorghum; Guillotin 
et al. 2023) are recalcitrant to cell wall digestion; enzymatic 
digestion affects the transcriptional status of the plant cells 
and could bias the outcome of experiments (Birnbaum 
et al. 2005); and the large size of protoplasts reduces their 
capture efficiency with most of the currently available com
mercialized single-cell platforms. Nucleus isolation followed 
by snRNA-seq gained traction in plant single-cell transcrip
tomics as well. However, the recovered data content per nu
cleus (e.g. Unique Molecular Identifier (UMI) or genes) is up 
to 10 (for UMIs) and 3 times (for genes) lower compared to 
scRNA-seq (Farmer et al. 2021; Guillotin et al. 2023). 
Furthermore, even though the transcriptome coverage is 
similarly efficient between scRNA-seq and snRNA-seq (e.g. 
89% of all Arabidopsis expressed genes were captured in 
snRNA-seq data; Farmer et al. 2021; Guillotin et al. 2023), a nu
clear transcriptome and a cellular transcriptome are not 
equivalent (Lee and Bailey-Serres 2019; Reynoso et al. 2019). 
For example, differences in abundance and composition be
tween transcripts obtained from nuclear versus polyA RNA 
under hypoxia point toward nuclear transcript retention or 
enrichment as part of the stress response (Lee and 
Bailey-Serres 2019; Reynoso et al. 2019). Furthermore, the half- 
life of the transcripts (estimations range between 12 min and 
more than 24 h in Arabidopsis cells; Narsai et al. 2007) sug
gests that the cellular transcriptome is the result of the accu
mulation of the transcript synthesis over time, while the 
nuclear transcriptome is considered to accommodate faster 
to changes in gene activity. These differences are important 
to consider when selecting and later interpreting a single- 
cellular transcriptome versus a nuclear-based transcriptome 
and should be determined by the experimental system or bio
logical question. Therefore, when studying, e.g. early stress re
sponses of plant cells, a snRNA-seq could achieve higher 
resolution of rapid transcriptomic changes, while scRNA-seq 
might be more informative when understanding the biology 
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of a cell type or when studying cells that are enucleated at 
some stages of development (e.g. sieve element cells in the 
phloem cell lineage; Miyashima et al. 2019).

Biological replicates in single-cell transcriptomics
As for all scientific observations, generating robust sc/sn data 
sets requires performance evaluation across multiple, inde
pendent biological replicates. We hereby note that a biologic
al replicate relies on the independent growth, harvesting and 
processing of various plant samples. Any separation after 
protoplast or nucleus isolation cannot be classified as bio
logical replicates and can only be reported as technical repli
cates. No standardized metrics are available within the 
community to evaluate reproducibility between replicates. 
We propose that a correlation coefficient of the average 
gene expressions among all cells would be an informative as
say. Alternatively, one could compare the frequency of cell 
types or cell clusters across replicates. As such, we advise 

analyzing cell cluster-specific differentially expressed genes 
and annotating each replicate separately, before merging the 
replicates and applying batch effect correction. Other para
meters, e.g. Average Silhouette Width and Adjusted Rand 
Index, have been used to quantify cell-type purity assessments 
after batch effect correction and can also be informative to 
evaluate replicate robustness (Tran et al. 2020).

From a statistical point of view, independent biological 
replicates are unconditionally advised to increase the signifi
cance of biological data sets (Heumos et al. 2023). However, 
in many cases, replicates in sc/snRNA-seq experiments are 
currently performed to increase the total number of cells 
or nuclei analyzed, while the replicate information and a 
comparison between replicates are not necessarily incorpo
rated in the actual statistical analysis. A statistical compari
son among biological replicates is thus strongly advised 
to ensure high data quality and to prevent cluster formation 
based on replicate-specific artifacts. As such, biological 
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Figure 1. Overview of plant single-cell and single-nucleus experiments. A) Number of publications describing sc/snRNA-seq data in the plant field 
per year from 2019 until 2022. B) Distribution of species used in these papers (n: 46). C) Overview of the different sc/sn technologies and their usage 
in the plant field. Example references used: a. (Farmer et al. 2021; Cervantes-Pérez et al. 2022; Conde et al. 2022; Neumann et al. 2022; Sun et al. 2022; 
Guillotin et al. 2023; Li et al. 2023; Liu et al. 2023); b. (Tian et al. 2020; Marand et al. 2021); c. (Wendrich et al. 2020; Graeff et al. 2021; Lopez-Anido et al. 
2021; Ortiz-Ramírez et al. 2021; Wang , Huan, et al. 2021; Apelt et al. 2022; Otero et al. 2022; Kim et al. 2023); d. (Denyer et al. 2019; Jean-Baptiste et al. 
2019; Ryu et al. 2019; Shulse et al. 2019; Turco et al. 2019; Zhang et al. 2019; Satterlee et al. 2020; Bezrutczyk et al. 2021; Chen et al. 2021; Gala et al. 
2021; Kim et al. 2021; Liu et al. 2021; Ma et al. 2021; Yang et al. 2021; Zhang , Chen, et al. 2021; Zhang, Chen, and Wang 2021; Li et al. 2022; Shahan et al. 
2022; Tao et al. 2022); e. (Kao et al. 2021; Picard et al. 2021; Sunaga-Franze et al. 2021; Abramson et al. 2022; Li et al. 2023); f. none; g. (Efroni et al. 2016; 
Lopez-Anido et al. 2021; Roszak et al. 2021; Serrano-Ron et al. 2021; Omary et al. 2022); h. (Zong et al. 2022); and i. (Nelms and Walbot 2019; Song 
et al. 2020; Xie et al. 2022).
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replicates are imperative to add certainty on the reproduci
bility of the experiment. However, merely adding biological 
replicates does not remove transcriptional artifacts intro
duced during sample preparation in each of the replicates. 
One example is the effect of the enzymatic digestion needed 
to generate protoplasts or the procedures to extract nuclei 
on the transcriptome. Therefore, performing replicates by 
themselves does not provide sufficient confidence in the 
data to draw biological conclusions. To achieve confident 
biological interpretation, extensive downstream experimen
tal validation is always required in the form of e.g. reporter 
lines, in situ hybridization, or spatial transcriptomics.

Challenge 2: experimental variability during 
sample preparation
While the potential of sc/snRNA-seq for plant research is evi
dent, its applicability depends largely on establishing reliable 
cell and nucleus isolation protocols. These protocols must sup
port the generation of high-quality, high-yield nuclear and vi
able cellular suspensions within a short amount of time and 
must be compatible with downstream procedures (e.g. limited 
usage of PCR inhibitors like CaCl2). The efficiency of protoplast 
generation from tomato roots for example was increased by op
timizing the pH of the enzyme-containing buffer and, in part, 
also by using hand sections instead of intact tissues (Omary 

et al. 2022). Preincubation in L-cysteine and sorbitol for roots 
of maize, sorghum, and Setaria improves enzymatic cell wall di
gestion and protoplast generation (Ortiz-Ramírez et al. 2018, 
2021), while L-arginine positively influenced the survival rate 
of maize meristem protoplasts (Satterlee et al. 2020). In contrast, 
nuclei can be isolated from fresh (Farmer et al. 2021; Picard et al. 
2021; Cervantes-Pérez et al. 2022; Conde et al. 2022; Sun et al. 
2022; Liu et al. 2023), frozen (Sunaga-Franze et al. 2021; 
Abramson et al. 2022; Neumann et al. 2022; Li et al. 2023), or 
fixed (Kao et al. 2021) starting material, offering flexibility in 
terms of sample handling and preparation, while simultaneous
ly securing dynamic transcriptional changes upon their rapid 
fixation. While nucleus isolation seems more straightforward 
to conduct than protoplast isolation, the assessment of nucleus 
quality prior to snRNA-seq library construction remains a diffi
cult task. The leaking and clumping of isolated nuclei should be 
seen as a sign of breakage of the nuclear membrane leading to 
RNA leakage and the generation of low-quality libraries.

Overall, careful workflow optimization should include the 
following: 

1) Visual assessment of tissue digestion or nucleus release 
through e.g. the observation of protoplasts/nuclei pro
duced from all desired cell types, via cell wall digestion 
of fluorescently tagged cells of a particular cell type (if 
available) as a proxy or via gene expression quantifica
tion of cell-type markers in a pilot experiment.

2) Rapid and nondestructive sample cleanup strategies 
including washing steps (e.g. centrifugation and filtra
tion), fluorescence (and image-based) activated cell/ 
nucleus sorting (FACS/FANS), or microfluidic cell en
richment devices can increase the population of viable 
cells and the purity of cellular/nuclear suspensions. A 
careful analysis of nucleus shape will help to identify 
problems with RNA leakage.

3) Careful analysis of cell sizes for protoplasts since most 
commercial platforms have a cell size restriction that 
might introduce a bias in cell capturing and a prefer
ence for incorporating smaller over larger cells (see 
Challenge 3).

4) Quantification of cell viability by manual cell counting 
(upon staining with trypan blue or fluorescein diace
tate) or with the help of automated cell counters.

The procedure of cell wall digestion itself (Birnbaum et al. 
2005)—as well as external factors introduced during sample 
collection and generation (e.g. growth and harvesting condi
tions, enzyme concentration and activity, and temperature 
and timing)—affects cell viability, cell wall digestion effi
ciency, cell-type representation, and the transcriptional pro
files of cells. One of the most promising developments for 
reducing experimental biases is the inclusion of a fixation 
step. Until now, scRNA-seq-compatible cell fixation protocols 
have mainly been described in mammalian research (Attar 
et al. 2018; Wohnhaas et al. 2019; Phan et al. 2021; Wang, 
Yu, and Wu 2021), but its application could drastically boost 
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Figure 2. Challenges in plant single-cell and single-nucleus transcrip
tomics. Overview of the different steps of performing sc/snRNA-seq 
in plant samples and summary of how the most important challenges 
discussed here influence this flowchart.
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the plant single-cell field by massively reducing the effects of 
external factors during sample processing, including the gen
eration of protoplasts. Indeed, protoplast isolation efficiency 
increased when plant tissues were fixed and digested at opti
mal enzyme activity temperature (Marchant et al. 2022). 
However, concerns about tissue fixation on protoplast shape 
(Marchant et al. 2022) and the sequencing results have been 
reported, motivated in particular by the reduction of cDNA 
yields and biases toward 3′-end enrichment (Wang, Yu, and 
Wu 2021). Despite these limitations, the potential gains for 
the field could be major, warranting dedicated investments 
in tissue fixation approaches.

Challenge 3: biases and specificities of 
commercial platforms for plant single-cell 
transcriptomic samples
The most popular commercial platforms and scRNA-seq 
protocols used for plant samples rely on microfluidic droplet- 
based cell compartmentalization or nanowell-based cell 
separation (Fig. 1C). Techniques that can be performed by 
manual handling, such as combinatorial barcoding (Cao 
et al. 2017; Rosenberg et al. 2018), are rapidly expanding in 
the animal field but have yet to be shown in use for plant 
samples. The choice of the sample processing method or 
platform must be taken carefully to allow uniform cell size 
capture rate, resolvability, and, if necessary, a sample multi
plexing option or flexibility toward cell capturing and lysis 
steps. Droplet-based platforms allow fast cell/nucleus pro
cessing but offer limited flexibility regarding the cell prepar
ation workflow. Also, the level of pressure imposed on the 
sample when creating the emulsion could cause the bursting 
of cells into the droplet-based platform. Well-based methods 
like SMART-Seq2 (Lopez-Anido et al. 2021) and platforms 
used with plant samples, such as BD Rhapsody (Zong et al. 
2022) or iCELL8 (Sunaga-Franze et al. 2021), require longer 
cell processing protocols but offer more flexibility during 
the sample processing. However, the compatibility of com
mercial platforms to handle the size and fragility of plant pro
toplasts is not necessarily evaluated. Plant cell sizes typically 
lie in the range of 10 to 80 µm, with even larger values ob
served for endoreduplicated cells, which is far above the re
commended cell size maxima from current technology 
providers (∼40 µm). Furthermore, cell size heterogeneity 
can create cell capture biases, because droplet-based techni
ques favor smaller cells, while the well sizes in nanowell tech
niques must be fine-tuned to reduce the possibilities of 
doublets from smaller cells while still allowing capture and 
processing of larger cells. The consequences could be high 
multiplet rates and/or imbalanced cell-type/stage represen
tation. Careful optimization of the maximum cell loading 
capacity, loading speed, cell compartmentalization time, 
and the number of washing steps is necessary depending 
on the platform of choice. Identification of cell type or stage 
capture rates, however, requires in vivo experimental 

validation by quantification of cell types or tracing of devel
opmental cell stages. This validation has been done by com
paring cell numbers per cell type between scRNA-seq data 
and cell counting via imaging (Wendrich et al. 2020), but it 
could also be achieved by spiking in a fixed ratio of cell types 
using transgenic marker lines.

Furthermore, a detailed plant-specific benchmark study 
comparing the commercially available platforms and kits is 
urgently needed to evaluate the benefits and pitfalls when ap
plied to plant samples. Similar benchmark studies using hu
man and mouse cell lines allowed practicality and financial 
comparisons of common methods, while also comparing 
cell capture rates and technical bias across cells with distinct 
cell properties (Mereu et al. 2020). Ideally, a benchmark study 
should cover numerous species and tissue combinations to al
low the establishment of quality standards independent of 
the species or tissue used. A plant-specific benchmark study 
might in addition also focus on comparing the ability to recre
ate developmental or spatial cell states, because most plant 
single-cell samples offer a chance to also capture and compare 
developmental cell trajectories. Given the sensitive nature of 
protoplasts, it would also be important to address the effect 
of total sample processing durations, as well as the abundance 
of ambient RNA due to for example protoplast bursting.

Challenge 4: establishing an efficient 
sequencing strategy
Full-length versus 3′- or 5′-end transcript sequencing
Two approaches for library preparation are currently used in 
single-cell methodology, namely full-length transcript cover
age and 3′- or 5′-end transcript coverage. While most re
ported plant single-cell transcriptomic data sets today 
(Fig. 1C) were generated using 3′end transcript coverage, 
full-length transcript sequencing (used for example in 
Lopez-Anido et al. 2021) bares huge application potential 
in plant research, as it can help in improving transcriptome 
and epitranscriptome resources (reviewed in Shen et al. 
2023) and in providing cell-type-selective isoform usage 
(shown for example during neuronal maturation in mouse 
embryos; Lebrigand et al. 2020).

Cell number and sequencing depth
Although cDNA amount and profile after library preparation 
are used as a proxy for the overall quality of the sc/ 
snRNA-seq library, sequencing followed by analysis currently 
remains the only way to fully estimate its quality and bio
logical value. Two major issues that require careful consider
ation during the experimental planning and sample 
optimization are the number of cells/nuclei needed for opti
mal coverage of the cell type(s) of interest and the aimed se
quencing depth per cell/nucleus. The number of cells/nuclei 
in published cell atlases is moving from thousands to hun
dreds of thousands. Increasing numbers is indeed beneficial 
for predicting novel marker genes, because it allows better 
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Table 1. Necessary reported information to allow evaluation and repetition of a plant sc/sn experiment

Details Recommendations

Biological material Species e.g. Arabidopsis thaliana, Zea mays
Accession e.g. Col-0
Genotype e.g. WT or mutant background
Tissue type e.g. root, leaf, stem, and seed
Detailed growth conditions e.g. temperature, light conditions, and medium
Harvest conditions e.g. age of plants, time of day, and amount harvested

Sample preparation Isolation protocol Short description of the way the sample was isolated
Tissue dissection e.g. razor blades, needles, and tissue homogenizer
Fixation Short description of the way the sample was fixed if this was done
Cell/nucleus enrichment e.g. sucrose gradient, FACS (incl. model, nozzle size, and temperature)
Total sample preparation time For cells: <90 min for Arabidopsis roots (from material harvest to cell loading)* 

*Duration may increase depending on starting material and time needed for 
optimal tissue digestion 
For nuclei: 30 to 60 min (depending whether a nucleus enrichment step is included)

Estimated cell/nucleus number loaded An estimation of the amount of cells or nuclei loaded, based on the cell/nucleus 
concentration and volume that was loaded

Instrument/method/kit e.g. 10× Genomics 3′ v3.1, BD Rhapsody WTA
Cell viability test For cells: trypan blue, fluorescein diacetate, calcein, propidium iodide, 

4′,6-diamidino-2-phenylindol 
For nuclei: not applicable

Libraries Library construction Protocol and revision/version that was followed, e.g. CG000204 Rev D for 3′ v3.1
Amplification method e.g. number of PCR cycles used for cDNA amplification
End bias e.g. 3′-end mainly; excess of rRNA or TSO sequences

Sequence results Instrument/method e.g. NovaSeq, NextSeq, ONT, and DNBSEQ
Library layout/paired-end Consider to use standardized library structures (Booeshaghi et al. 2023)
N° sequenced reads 20,000 to 50,000/cell for RNA or more 

20,000 to 40,000/nucleus for RNA or more
Raw data Reference genome Link to Ensembl Plant fasta file, JGI, NCBI, PLAZA

Annotation version If custom annotation, also include.gtf/.gff/.gff3 files
Mapping method (incl. software, 

customized settings)
e.g. STAR (cellranger)

Mapping efficiency >85% for Arabidopsis* 
*Value may be lower in other species

Sequencing saturation >50%
Estimation of ambient RNA Fraction of reads in cells > 60% for scRNA-seq 

Fraction of reads in cells > 50% for snRNA-seq
Imputation method and settings If relevant

Processed data N° captured cells/nuclei e.g. 60% of estimated number
N° high quality cells/nuclei e.g. 20% of estimated number
Filter criteria: % mitochondrial reads/cell 

or nucleus
<10% for scRNA-seq* 

close to 0% for snRNA-seq* 
*value may deviate depending on biological context

Filter criteria: % chloroplast reads/cell or 
nucleus

<5% to 10% for scRNA-seq* 
close to 0% for snRNA-seq* 
*values may be higher depending on biological context

Filter criteria: 
Minimum N° UMI/cell or nucleus

>1000 for scRNA-seq>400 for snRNA-seq

N° total detected transcripts Dependent on the species but e.g. 60% of total number of transcripts in the 
annotated genome

Doublet rate Estimates according to 10× Genomics user guide based on number of loaded cells/ 
nuclei

Replicate comparisons Provide coefficient correlation of the most variable genes or cluster-specific genes 
between independent replicates or compare pseudo-bulk from sc/snRNA-seq 
versus bulk RNA-seq

Batch correction method for merging 
(incl. reasoning for batch correction)

e.g. Seurat, Harmony

Additional processing e.g. removal of protoplast-induced genes, cell cycle regression, noise (ambient RNA) 
removal, cluster membership bias between replicates, removal of low quality clusters

Validation Method of automatic annotation of 
clusters

e.g. Label transfer, spatial transcriptomics

Method of manual annotation (markers, 
gene function info)

e.g. Marker genes, orthologous, correlation with bulk RNA-seq and microarray data; 
Index of Cell Identity calculation

(continued) 
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coverage of rare populations and lowly expressed genes. This 
higher coverage in turn helps to outweigh the bias of differ
ential expression analysis tools toward highly expressed genes 
(Squair et al. 2021) and data set-specific noise (Fischer and 
Gillis 2021). However, at what point does a cell atlas fully cap
ture the cellular diversity of its samples? The meristematic re
gion of an Arabidopsis root has about 3,000 to 4,000 cells, 
meaning that a data set of 100,000 cells sufficiently covers 
each cell about 20 to 30 times, assuming that all cells are 
equally represented in the data set. Alternatively, when a spe
cific cell type is isolated from a tissue by upstream cell sort
ing, an atlas of 2,000 cells could already be saturating. As a 
rule of thumb, when the cell-type composition of the tissue 
of interest is known, the minimum number of cells that need 
to be analyzed can be estimated from the probability to ro
bustly capture the rarest cell type(s) (e.g. https://satijalab. 
org/howmanycells/). For example, to obtain at least 10 quies
cent center cells (estimated to represent 0.1% of all cells 
within the Arabidopsis root meristem according to 
Cartwright et al. 2009; Shahan et al. 2022) with 95% confi
dence, one would need to profile 15K to 20K cells.

Additionally, the required sequencing depth must be 
adapted depending on the biological question, the tissue com
plexity, and the sample quality. However, it is recommended 
that optimal coverage is given with 1 read/cell/gene (Zhang 
et al. 2020). Alternatively, sequencing can be staged by first ini
tiating a shallow sequencing of the library (e.g. up to 10,000 
reads/cell) before deeper sequencing (e.g. aiming for 50,000 
reads/cell). Such shallow sequencing allows evaluating the per
formance of cell cluster analysis and annotation and is sufficient 
to capture the entire cell-type heterogeneity of the sample 
(Zhang et al. 2020). Another common suggestion for a prelim
inary sample quality control is to analyze the expression of a 
gene subset related to a biological question (Zhang et al. 
2020). Sequencing even less for testing the quality of the library 
is possible but will affect the retrieval of cell types with a lower 
number of transcripts, which might be lost within the back
ground of empty droplets if the sequencing is too shallow. 
The desired final read depth will depend on the goal of the ex
periment but should ensure sequencing enough cells at a se
quencing depth that captures individual events robustly (e.g. 
50% sequencing saturation; Table 1).

When assessing the most cost-effective sc/snRNA-seq 
technologies, should one profile many cells/nuclei but have 
shallow sequencing or should one profile fewer cells/nuclei 
but with deeper sequencing? In many cases, the ideal 
scenario will be something in-between assuming that 
the researchers are working on high-quality cells/nuclei. 
Nevertheless, a choice toward either a higher number of 
cells/nuclei or higher sequencing depth can be made de
pending on the biological question, the quality of the bio
logical entities used for the analysis, and the relative 
abundance of each cell type composing the organ. If the 
aim is to generate an atlas potentially uncovering rare cell 
types, a better strategy would be to profile many cells/nuclei 
with a lower sequencing saturation. However, a minimal 
depth in sequencing (Table 1) upon maximizing cell/nucleus 
quality is still necessary to ensure that low-abundance tran
scripts that define rare cell types are captured and to saturate 
the transcriptome of the sample. Validation of high- 
throughput technologies in the plant field that enable to ac
cess the transcriptomes of hundreds of thousands and even 
up to 1 million cells or nuclei, combined with the ongoing ex
pansion of sequencing capabilities and the decrease in se
quencing costs, could help to overcome this dilemma. If 
the goal is to do functional gene discovery and generate 
gene regulatory networks for example (Ferrari et al. 2022), 
a high sequencing saturation per cell/nucleus favors the dis
covery of low-abundance gene transcripts. To achieve this 
goal, one can select a subset of genes related to the biological 
question and adjust the sequencing depth until at least 1 
read/cell for each of those genes is reached (Zhang et al. 
2020). In all cases, we recommend optimizing cell and nu
cleus isolation methods to ensure the capture of the largest 
number of transcripts from each biological entity.

Challenge 5: generating an expression matrix 
from high-quality cells/nuclei
Once mRNA sequence reads are obtained, reads are mapped 
to the genome and ultimately to genes and cells of origin using 
a reference genome and UMI and cellular barcode informa
tion. Standard data analysis workflows further include quality 
control filtering, quantification of gene expression in each cell, 

Table 1. (continued)  

Details Recommendations

Verification in planta (e.g. number of 
markers used for validation)

e.g. Spatial transcriptomics; RNA in situ hybridization; promoter fusions

Data availability Analysis scripts & codes (GitHub) If relevant
Excel Tables DEG for each cluster e.g. Lists for each cell type/developmental stage from FindMarkers (Seurat)
Objects/count matrix in repository 

(which one, where?)
e.g. use NCBI GEO to store count matrices and Seurat object

On-line tool/browser URL List the URL if relevant
Cell-level metadata table Include cell-type annotations for each cell barcode

Additional additional comments from the authors e.g. annotation/counting of rRNA, allow for rRNA estimation, consideration of 
intronic reads

A downloadable empty version for use in publications can be found as Supplementary Table S1. If numerical values deviate from the recommended numbers provided below, an 
explanation should be provided. The numerical values in this table are derived from available studies in plants, most of which originated from Arabidopsis.
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clustering, and visualization of cells based on transcriptomic 
similarity (Fig. 3). While the recommendations below are gi
ven with the intention to standardize sample quality para
meters within the field (see recommendations in Table 1), 
we want to highlight that a sn/scRNA-seq experiment (with 
a read depth of 30K reads/nucleus or cell) should typically re
sult in the capture of 1,000 expressed genes/nucleus or 3,000 
expressed genes/cell, respectively. Furthermore, utilizing uni
versal preprocessing pipelines for single-cell genomic data 
(e.g. Booeshaghi et al. 2023) can help in streamlining cell qual
ity filtering and enhance data reproducibility in the future.

Read mapping
Plant genomes in general and crop genomes in particular are 
poorly annotated compared to e.g. human or mouse gen
omes. Moreover, due to frequent whole-genome duplica
tions (Fox et al. 2020), many plants are polyploid and thus 
contain multiple similar copies of each gene. Structural anno
tations of genes are especially important for most droplet- 
based technologies using a 3′ capturing strategy to properly 
map the sequencing reads and to quantify transcript abun
dance. The distribution of the mapped reads on the genome 
can give an indication about the quality of the annotations. 
Poor mapping efficiency consequently causes gene loss, 
which can be dramatic especially for popular 3′-based single- 
cell technologies. Even for Arabidopsis scRNA-seq data sets, 
mapping rates vary but should be e.g. >85% (Table 1). A 
high percentage of reads mapping to intergenic regions 
(e.g. >20%) can be an indication either that not all genes 
are annotated or that the annotated 3′ UTR regions should 
be longer. As a note, it is important to mention that the se
quencing reads generated upon conducting a snRNA-seq ex
periment should be mapped against the exonic and intronic 
sequences of the annotated transcripts, a reflection of the 
capture of spliced and unspliced transcripts.

Removal of low-quality cells/nuclei
After read mapping, low-quality cells/nuclei (e.g. cells/nuclei 
with low number of UMIs and genes) need to be filtered out 
(see numerical recommendations in Table 1). Impairments in 
applying low-quality cell filtering may increase the noise in 
the data set and reduce the accuracy in downstream analysis, 
including cell clustering or erroneous identification of cell 
types (Fig. 4, A and B). General filter parameters will depend 
on the application and sample type (i.e. cells versus nuclei). 
For plants, it is good practice to exclude cells with high mito
chondrial (e.g. >10%) and chloroplast (e.g. >5% to 10%) 
reads (Table 1). Such cases may indicate cells under stress be
cause of perturbations during the sample preparation. These 
values might need to be adapted when studying highly or 
lowly metabolically active cells or cells undergoing e.g. pro
grammed cell death. If no mitochondria or chloroplast gen
ome is available, plotting the number of genes versus the 
total UMI count can be used instead to show cells with 
low data content. The barcode-rank-plot (“knee plot”) is a 
commonly used tool to determine sample quality by ranking 
all barcodes according to their UMI content (Fig. 4A). A sam
ple of low quality can be identified if there is no clearly 
defined boundary between barcodes with high UMI content 
and barcodes with significantly lower UMI content (Fig. 4C). 
Similarly, poor cluster separation in a sample that fails to 
differentiate cell types indicates an insufficient amount of 
transcript content per cell/nuclei.

Ambient RNA and the presence of empty droplets and 
doublets—both associated with droplet and nanowell-based 
technologies—can also lead to noise in the expression 
matrices, inaccurate cell clusters, and falsely differentially 
expressed genes. Therefore, it is important to ensure low 
amount of ambient RNA introduced during sample prepar
ation (e.g. by mixing cells/nuclei from multiple species) 
and to optimize cell loading concentration (Fig. 4C). 
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Figure 3. Workflow for sc/snRNA-seq data analysis.
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Bioinformatic tools (e.g. SoupX, Young and Behjati 2020; or 
CellBender, Fleming et al. 2023) can be used to computation
ally remove transcriptional noise introduced by ambient 
RNA. Experimentally, even though not yet shown suitable 
for plant single-cell transcriptomics, doublets can be de
tected using antibody (cell hashing; Stoeckius et al. 2018) 
or lipid-tagged indices (MULTI-Seq; McGinnis et al. 2019) 
sample multiplexing strategies. Here, doublets are identified 
if the cell-specific barcode is connected to multiple antibody 
or lipid-tagged indices, respectively. Mixing cells/nuclei from 
multiple species in 1 sample offers another experimental set
up to identify doublets (Shulse et al. 2019; Fig. 4C). In this 
case, the doublet is identified due to the cell-specific barcode 
being linked to multiple species. While an experimental setup 
that allows doublet identification would be the best practice 
for identifying doublets, it will not help in removing doublets 
from already existing data sets. Even though significant 
advances have been made in identifying doublets computa
tionally (see benchmark study; Xi and Li 2021), it remains a 
major challenge in general and even more in plant sc/sn tran
scriptomic analysis due to the presence of endoreduplica
tion. Such polyploid cells will appear as outliers when 
plotting the gene content or UMI/cell, but additional expres
sion quantification of ploidy marker genes (if available) 
allows to distinguish endoreduplicating cells (Wendrich 
et al. 2020).

Identification of protoplast-induced genes
In order to exclude that the invasive enzymatic treatments 
needed to generate protoplasts might influence the observed 
transcriptional status of certain cells or cell populations, the 
overall transcriptomic responses induced during these proce
dures should be determined using bulk RNA-seq in each ex
perimental setup (Birnbaum et al. 2005; Brady et al. 2007). 
Indeed, protoplast isolation adds a definite stressing factor 
to each cell type (Denyer et al. 2019; Xu et al. 2021; Wang, 
Huan, et al. 2021). Although the absence or presence of 
protoplast-induced genes did not alter cell clustering or an
notation in Arabidopsis root scRNA-seq data (Denyer et al. 
2019), these genes should at least be flagged in the data set 
to avoid misinterpretation.

Challenge 6: cell cluster identification and 
annotation
Data normalization, dimensionality reduction, and 
cell cluster visualization
Considering the limited number of transcripts per cell, single- 
cell transcriptomics fail to detect transcripts for most genes 
in a given cell. This sparsity is further enhanced by intrinsic 
noise from stochastic transcript fluctuations, cell-cycle state, 
and cell heterogeneity among other biological factors. As a 
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result, it is necessary to implement scRNA-seq-specific normal
ization and batch correction protocols (see Luecken and Theis 
2019 for a review on this specifically). Clusters of cells (i.e. cells 
that share similar expression profiles) are constructed using 
community detection algorithms, which control the degree 
to which similar cells should be grouped together or stay sep
arate based on preset parameters. To visualize the data, “di
mensional reduction” algorithms are applied to the data, 
typically via Principle Component Analysis (PCA), t-distribu
ted Stochastic Neighbor Embedding (t-SNE), or Uniform 
Manifold Approximation and Projection (UMAP). However, 
a word of caution is necessary here: whereas PCA involves lin
ear projections, t-SNE and UMAP are nonlinear transforma
tions introducing significant distortions (Chari and Pachter 
2023). Indeed, visualizing a synthetic data set with tSNE or 
UMAP revealed that cluster distances and locations in discrete 
and trajectory simulations are inaccurately represented com
pared to the defined distances in the original data (Wu et al. 
2018). These results indicate that cluster distances or locations 
cannot be used alone to draw biological conclusions. If differ
ent clustering outcomes (produced with customized para
meters) seem equally plausible, it is appropriate to apply the 
next step—mapping clusters to cell types—to each possibility 
and then use that extra information to decide which clustering 
makes most sense from a biological point of view.

Cell cluster annotation
The annotation of clusters (meaning mapping each cluster to 
a cell type or state) is facilitated using manual or automated 
cell annotation methods (Fig. 5). Manual annotation requires 

previous transcriptome knowledge gained from as many dif
ferent cell types as possible. Cell-type marker genes for plant 
tissues in well-studied species can come from manually cu
rated lists that are based on bulk RNA-seq data from purified 
cell populations (Jin et al. 2022) or from already annotated 
single-cell data sets. However, to date, databases containing 
this information are rare and restricted to a few plant species 
and tissues (e.g. Jin et al. 2022). One can appeal to interspecies 
correspondences to support the functional annotations of the 
clusters, assuming that a substantial fraction of orthologous 
genes share similar cell-type transcriptional specificities. For in
stance, if an atlas for another species is available, one can at
tempt to extend the orthology between genes to orthology 
between cell types. Such an approach has been very successful, 
leading to atlases for instance in rice (Wang, Huan, et al. 2021; 
Li et al. 2023), Medicago truncatula (Cervantes-Pérez et al. 
2022), maize, sorghum, and Setaria (Guillotin et al. 2023). 
However, this approach also has its limitations: genes often ex
ist in multigene families rendering the orthology mapping am
biguous, and the conservation of marker gene/cell type pairs is 
far from perfect (Movahedi et al. 2012). An additional limita
tion of these approaches is that they require multiple marker 
genes per cluster to ensure proper annotation.

Another option is so-called label transfer: transferring clus
ter labels between existing single-cell expression atlases (e.g. 
for roots: https://rootcellatlas.org/, or other organs: http:// 
neomorph.salk.edu:9000/) to unlabeled data sets. Common 
tools used are scmap (Kiselev et al. 2018), SingleCellNet 
(Tan and Cahan 2019), SingleR (Aran et al. 2019), and 
Seurat (Stuart et al. 2019), which differ in their accuracy 
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and their ability to handle sample- and protocol-related 
nested batch effect removal and the presence or absence 
of cell types in the reference atlas or target data set 
(Luecken et al. 2022). The advantage of this approach is 
that already published data can be directly reused. With 
both automated annotation approaches, it is important to 
consult several tools and select one final annotation, for in
stance using a majority rule.

As an alternative or complementary approach, clusters can 
be annotated manually. To achieve this, marker gene expres
sion of cells can be visualized in a UMAP plot or via a dot plot 
showing cluster-specific expression of marker genes. Cell 
clusters with conflicting annotations or no annotation, due 
to e.g. low quality of the transcriptomic information or cap
ture of uncharacterized cell (sub)type or cell transition state, 
should be marked as “unknown.”

Refining cell cluster annotation
Ideally, each cluster will be clearly associated with one cell 
type, using any of the approaches described above. 
However, the current literature often mixes different levels 
of anatomical annotations. The ambiguity between classical 
anatomical descriptions and the new molecular characteriza
tions of these cell types, tissues, and structures make it even 
more challenging to navigate among these definitions. 
Hence, to resolve these ambiguities, multiple hierarchically 
structured annotations can be used in which cells/clusters 
can be annotated according to e.g. broad expression domains, 
the tissue, or the cell type level (Michielsen et al. 2021). Until 
there is a consensus in the community, we recommend to 
separate the different levels of annotations (cell type, tissue, 
and cell cycle) into distinct plots. This will avoid ambiguity 
and misinterpretation of the data (Fig. 5).

Validation of cell cluster annotation
Independent of the annotation approach used, we strongly 
recommend experimentally validating the main annotations 
by e.g. generating corresponding reporters, performing RNA 
in situ hybridizations, or complementing the data with spa
tial transcriptomics. This independent experimental ap
proach is the only way to assess if differential gene 
expression observed in a high-throughput single-cell experi
ment is relevant in vivo or an artifact introduced by one of 
the many steps, e.g. protoplasting.

Beyond these more classical approaches, spatial transcrip
tomics can be used to support the annotation of clusters iden
tified in plant sc/snRNA-seq data sets (Guillotin et al. 2023; 
Lee et al. 2023; Nobori et al. 2023). The technologies that allow 
probing tissue gene expression and simultaneously retaining 
its spatial location can be divided into two main categories: 
targeted and untargeted. The division into those two categor
ies is based on the type of approach applied to analyze the tis
sue gene expression information. Specifically, targeted 
methods, i.e. in situ sequencing (Ke et al. 2013; Laureyns 
et al. 2021), MERFISH (Moffitt et al. 2016; Lee et al. 2023; 
Nobori et al. 2023), Xenium (Ke et al. 2013; Lee et al. 2015; 

Janesick et al. 2022; Liu et al. 2022), NanoString CosMx (He 
et al. 2022), Molecular Cartography (Groiss et al. 2021; 
Guillotin et al. 2023; Yang et al. 2023) to list a few, require a 
priori knowledge on which genes to study, since these ap
proaches use gene-specific probes to fluorescently visualize 
and count the gene transcripts of interest in the tissue. In con
trast, untargeted methods, e.g. Visium (Giacomello et al. 2017; 
Liu et al. 2022, Liu et al. 2023; Peirats-Llobet et al. 2023), 
DBiT-Seq (Liu et al. 2020), Slide-seq v2/Curio (Stickels et al. 
2021; Lee et al. 2023), and Stereo-seq (Xia et al. 2022), leverage 
a localized capture of polyadenylated transcripts, thus allow
ing to obtain 2D whole transcriptomic maps. Both targeted 
and untargeted approaches can aid in determining the spatial 
location of specific cell types or stages of interest (e.g. indeter
minate and determinate SAM cells in maize, defined by their 
expression levels of PLASTOCHRON1; Laureyns et al. 2021), an
notate cluster identities obtained in sc/snRNA-seq experi
ments, and/or validate marker genes (Guillotin et al. 2023; 
Lee et al. 2023; Nobori et al. 2023). As such, spatial transcrip
tomics and sc/snRNA-seq are complementary technologies 
for obtaining high-resolution spatiotemporal expression data.

Challenge 7: application of trajectory 
inference in plant single-cell transcriptomics
Trajectory inference can predict developmental or stress–re
sponse trajectories in sc/snRNA-seq data sets, allowing one 
to pinpoint e.g. cell cycle transitions or bifurcations when 
new specific cell identities branch off from another lineage. 
While trajectory interference is a very promising tool to iden
tify novel biological phenomena and questions, it is import
ant to understand that the pseudotemporal ordering of cells 
along a trajectory is purely based on transcriptomic similar
ities, meaning that a sufficient, unbiased sampling of cells is 
required, as well as prior knowledge to assign a developmen
tal direction (see Tritschler et al. 2019 for general recommen
dations). Furthermore, no conclusions about the spatial 
organization can be drawn, and it is advised to confirm 
and complement the trajectory output with other methods. 
Multiple trajectory interference methodologies have been 
developed, benchmarked, and used in the animal field 
(Saelens et al. 2019), but they show special promise in plants 
because plants have many continuous developmental pro
grams and plant cells have remarkable capabilities for dedif
ferentiation and adaptation. Trajectory analysis gave 
significant insight into recreating cell (type)-specific tran
scriptional events during plant developmental processes, 
such as lateral root development (Serrano-Ron et al. 2021), 
stomata development (Kim et al. 2023), root hair (Denyer 
et al. 2019; Shulse et al. 2019), pistil (Li et al. 2023), or phloem 
development (Roszak et al. 2021; Otero et al. 2022). For 
example, when combined with live imaging, trajectory- 
predicted expression gradients and cell-type-specific tran
scriptional networks allowed a complete reconstruction of 
the developmental process and a precise, cell-by-cell lineage 
tracing during protophloem development (Roszak et al. 
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2021). An interesting computational analysis that can be ap
plied to verify predicted trajectories in plant tissues is making 
use of the ploidy increase in plant cells as they mature from 
meristematic cells with 2C/4C content into a more differen
tiated stage, marked by 8C/16C or higher content. In 
Arabidopsis root tissues, these ploidy states have been linked 
to specific markers, leading to predictions of the ploidy status 
of each individual cell. This increase in ploidy level allows to 
pinpoint or validate the more meristematic cells with low 
ploidy levels and the more differentiated cells in a sc/ 
snRNA-seq data set with higher ploidy levels (Bhosale et al. 
2018; Wendrich et al. 2020; Shahan et al. 2022).

Challenge 8: documentation and publication 
of plant single-cell data sets
Recent advances in single-cell omic technologies in plants 
have enabled insights into diverse aspects of physiology 
and development and have been the centerpiece of a grow
ing number of elegant studies. However, there is additional 
potential for single-cell resources through their reuse in inte
grative meta-analyses (showcased e.g. in Leote et al. 2022). 
The multiple applications would increase their power and 
depth through greater numbers of cells, a more comprehen
sive assessment of biological variation, and enhanced enrich
ment for different cell types or states that are targeted by 
individual studies. Popular methods enabled within software 
packages (e.g. Seurat, Monocle, Scanpy, and Harmony) (Wolf 
et al. 2018; Korsunsky et al. 2019; Van den Berge et al. 2020; 
Hao et al. 2021) have streamlined the process of stitching 
data sets together across samples, studies, and experimental 
platforms, even across tissues and species, allowing for a 
more expansive use of single-cell data for describing and un
derstanding biological organization across scales.

To make optimal use of the generated data in the plant 
field, there is an urgent need for published single-cell data 
and their associated metadata to be more easily accessible 
and usable. First steps toward establishing a suitable infra
structure that allows data storage and comparison have 
been taken within the framework of the Plant Cell Atlas 
(Fahlgren et al. 2023). To a large extent, this FAIR (Findable, 
Accessible, Interoperable, Reproducible) principle has not 
been an issue for raw single-cell data. Unprocessed FASTQ 
files are deposited routinely through major data portals, 
such as the National Center for Biotechnology Information 
Short Read Archive (NCBI SRA; http://www.ncbi.nlm.nih. 
gov/sra), and accessibility to raw data is usually mandated 
by journals, funding agencies, and institutions. In most cases, 
well-indexed raw data are available and cited in journals. 
However, care must be taken for single-cell data generated 
through popular platforms in that only reads from the 
paired-end sequencing strategy, as well as indexed and/or 
UMI FASTQ, must be deposited. These genomic reads alone 
are insufficient for reconstructing the single-cell count matrix 
necessary for nearly all analysis steps. Processed data should 
also be stored in publicly accessible repositories such as the 

NCBI Gene Expression Omnibus (GEO; http://www.ncbi. 
nlm.nih.gov/geo). Processed data not only include the cell/ 
gene counts matrix at minimum but can also include more 
complex data objects such as those generated by the Seurat 
(R) (Hao et al. 2021) or AnnData (Python) (Wolf et al. 
2018) packages. The EBI Single-cell Expression Atlas is another 
repository that will accept processed count matrices and al
lows for the deposition of cell metadata (see below).

Less prevalent is the public accessibility of metadata asso
ciated with single-cell studies. This metadata takes several 
forms: (i) experimental metadata describing how samples 
were treated, what tissues were harvested, how the samples 
were processed, and what platforms/versions single-cell sequen
cing was performed on them; and (ii) imputed metadata de
scribing attributes of cells defined by downstream analysis of 
the raw data, including the cell’s identifier (usually a sequence 
barcode), the number of distinct genes detected, total tran
scripts detected, assigned cell type or cluster number, or other 
features that are described in a study but not immediately avail
able from the raw data. Experimental metadata, including pro
tocols used to generate samples, should be well documented in 
the manuscript that presents them, and we encourage deposit
ing the protocol in a public repository. Protocols.io is emerging 
as a standard for this (see e.g. the repository for the Plant Cell 
Atlas; https://www.protocols.io/workspaces/plant-cell-atlas), 
and detailed sample information should go along with the 
raw data when submitting to a repository like GEO/SRA. 
Imputed metadata can be provided along with the raw data 
in the NCBI GEO as a simple machine-readable table (.csv 
or .tsv). All forms of metadata are vitally important for integra
tive analysis, as it is difficult, if not impossible, to recreate exactly 
the analysis steps performed from a published study to replicate 
results. In Table 1, we have listed important metadata para
meters that should be accompanying all publications using 
sc/snRNA-seq data to ensure transparency in data quality and 
will allow for a better interpretation of the results and their 
use in larger meta-analyses. Although it is challenging to give 
an exact number for these parameters due to the vast differ
ences in experimental systems, species, tissues, and technologies, 
we do attempt to provide a range based on the collective 
author’s experience in processing and analyzing multiple species 
and organs to guide the less experienced user. An empty version 
of this table can be downloaded as Supplementary Table S1 and 
freely used for publication. All coauthors collectively commit to 
start using this table in all publications.

Finally, analysis scripts, software environments, and (ideal
ly) visualization portals should be made publicly available on 
established repositories/portals. Where possible, a well- 
documented code can be stored in dedicated repositories. 
Analysis environments should at minimum be well documen
ted (with versions specified for all software packages used for 
analysis).

Many of these tools are only valid for single-cell transcrip
tomic or chromatin accessibility methods that use DNA se
quence as an output and are thus incompatible with other 
data modalities such as proteomics or metabolomics. 
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While these data types are outside the scope of this review, 
they too should adhere to FAIR principles (Wilkinson et al. 
2016) to ensure that they can be integrated with other 
data sets when the computational infrastructure develops. 
These data management tools are also not guaranteed to 
be future proof. New technologies may arise that will render 
existing data sets/tools obsolete. Thus, it is imperative that, as 
the field evolves, we do not forget about legacy data and en
sure that it is preserved in a way that will be useful before this 
becomes impossible.

Conclusion and outlook
Even for more advanced users, it is challenging to keep up 
with the rapidly evolving field of sc/snRNA-seq. Continuous 
advancements are not limited to the actual technology 
and also include the choice of which technology to use 
for a specific problem, which method to use to isolate high- 
quality cells or nuclei, and how to analyze, compare, and 
store these vast amounts of data. In this commentary, we 
discuss recommendations regarding data generation, ana
lysis, storage, and documentation to ensure transparency 
in publication and optimal use of the generated data across 
experiments, tissues, species, and laboratories. We collect
ively commit to following the guidelines and recommenda
tions (Table 1). Future research and method maturation 
will allow us to fine-tune and expand these guidelines 
and recommendations.
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