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Precision Agriculture (PA) is a relatively new farming approach, applying science and technology to enhance
cost-effectiveness and improve food security by optimizing agricultural practices through the treatment of each
crop individually. To support the new practice, an Al-based, responsive monitoring algorithm, called the
Dynamic-Adaptive Search algorithm, has been developed to minimize operation costs with the benefit of
acquiring new and timely information. Three modules of the algorithm are 1) Module for image processing based
on Al, 2) Module for error-responsive search expansion, and 3) Module for estimating stress propagation.
Computational experiments have demonstrated that the newly developed algorithm outperforms other alter-
natives, yielding significantly higher system performance and system gain, compared to other algorithms. The
sensitivity analysis confirms the algorithm’s ability to deliver within + 10% of the theoretical optimal value,
resulting in economic benefits under varying conditions. The algorithm’s applications can be extended to other

decision-making situations involving cost-benefit tradeoffs of acquiring more data.

1. Introduction

Precision Agriculture (PA) is a relatively new farming approach that
treats each crop individually and differently, as needed. PA aims to in-
crease agricultural efficacy while decreasing farming inputs (or costs),
consequently solving global food security problems (Stafford, 2000;
Zhang et al., 2002; Bechar, 2021). PA also has a significant economic
and ecological impact since cost-effective procedures can improve
agricultural resource utilization (McBratney et al., 2005).

To treat each crop differently, a crop stress monitoring system is
essential. Despite the advancement of monitoring systems, intelligent
and responsive algorithms that utilize newly available and timely data
are still required. In order to address the challenge of PA, this study
presents a novel algorithm called the Dynamic-Adaptive Search algo-
rithm (D-AS). D-AS is an Artificial Intelligence (AI)-based and responsive
algorithm that responds promptly to crop stress information as early as it
is recognized. The proposed and developed algorithm is designed to
respond to crop stress information and enhance the performance of
monitoring systems. The advanced and adaptable capability of the new
algorithm allows for the timely treatment of crops, hence minimizing
agricultural yield loss.

Identifying and managing crop stress is a critical aspect of PA
because the stress in crops can indicate potential diseases that may
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negatively affect crop productivity. Behmann et al. (2014) report that
crops are commonly subjected to stressors such as temperature and
humidity fluctuations. Therefore, farmers commonly grow crops in
greenhouses to control environmental factors, as well as adjust growing
conditions to maximize crop production. This practice, however, may
also induce stress in crops, which can result in the development of
various diseases (Reddy et al., 2022). According to Golhani et al. (2018),
the inadequate handling of crop diseases results in a loss of over $200
billion worth of food crops each year.

The implementation of crop stress management is a key strategy for
addressing these concerns. Delayed identification of stress in crops can
result in a wastage of nearly 40% of food crops, despite the knowledge
possessed by farmers and researchers regarding the measures to mitigate
such stress (Gunders, 2017). The expenses associated with the
mismanagement of crop stress can increase the overall production costs
of crops by 15%-40% (Meissle et al., 2010). Moreover, crop stress
induced by environmental factors such as drought or heat stress can
result in major decreases in crop yield. As per the research conducted by
Lobell et al. (2011), it has been estimated that there would be 7.4%
decline in the maize yields for every 1 °C rise in environmental tem-
perature. Likewise, Schlenker and Roberts (2009) conducted a study and
revealed that an increase in inappropriate environmental temperature
could potentially decrease wheat yields by 6% per degree Celsius. In
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addition, the quality of agricultural products can also be affected by crop
stress. According to Wongnaa et al. (2023), the extent of post-harvest
losses in tomatoes caused by fungal infections can vary between 20%
and 70%, contingent upon the level of stress severity. Hence, it is crucial
to develop a methodology for the timely identification of crop stress to
mitigate expenses associated with treatment and operations.

There is another concern: a crop’s distinctive and crucial attribute to
propagate stress to adjacent areas. According to Pathan et al. (2020),
stress can disseminate among host organisms, including pests and in-
sects, as well as non-insect vectors, such as contaminated soil and
airflow. Hence, failure to timely detect crop stress can result in signifi-
cant effects across agricultural areas.

Based on the economic impact of crop stress management and the
attempt to avoid any reduction in crop productivity reported by Zhang
et al. (2012), there exists a requirement for intelligent and adaptable
algorithms that can effectively utilize the accessible data to enhance
crop monitoring systems and identify stress at the earliest opportunity.

Over the years, there has been an advancement in crop monitoring
systems, enabling an effective system for detecting anomalies and
recognizing potential issues of crops (Maraveas et al., 2023). Although
the Adaptive Search algorithm (AS) in PA’s monitoring system has
demonstrated efficacy in enhancing system performance, as reported by
Dusadeerungsikul and Nof (2019), its present algorithm remains static
and does not account for additional factors beyond the state of the crop
at the current site. The algorithm’s limitation in accounting for system
dynamics (i.e., monitoring system’s errors and crop stress changing
characteristics) results in its uniform application across various stress
types and inspection equipment. Although the AS can be triggered by
knowledge-based information provided by experts in plant pathology, it
may not result in an optimal inspection and search procedure to monitor
actual crop stress in PA.

This study presents a novel methodology, namely the Dynamic-
Adaptive Search algorithm (D-AS), to overcome the limitations in the
existing implementation of the AS. The D-AS incorporates Al-based
techniques, developing a responsive algorithm to the system’s dy-
namics and the changing crop stress characteristics, resulting in a more
focused, responsive and effective inspection procedure.

This research addresses the challenges regarding the most advanta-
geous approach for detecting and reacting to various types of stress in
crops within a system prone to errors. This study offers academic and
practical contributions by creating a mathematical model formulation
and solution algorithms that can be applied to real applications, further
reducing economic loss due to crop yield reduction.

The performance of the proposed D-AS has been evaluated and
compared with both the existing algorithms and the current approach in
PA. This study employs a comparative analysis to investigate the efficacy
of the D-AS from several perspectives. As a result, the deployment of D-
AS can enhance economic outcomes in agriculture by optimizing costs,
improving response efficiency, and minimizing losses.

The remainder of the article includes the following. Section 2 pre-
sents literature review, while Section 3 discusses the framework and
development of the D-AS. Section 4 presents empirical experiments,
results, and subsequent analysis. Section 5 of the article presents the
conclusions and discussion, emphasizing the potential of the D-AS to
significantly enhance the capabilities of monitoring systems of PA.

2. Literature review

2.1. Crop monitoring system with cyber collaboration and Cyber-Physical
System approaches

The necessity of an efficient stress monitoring system in PA arises due
to the criticality of stress in crops. Daily crop inspections are typically
conducted through random sampling to assess their condition and
identify appropriate and timely interventions, if necessary. According to
Dusadeerungsikul et al. (2019), the implementation of a crop

International Journal of Production Economics 271 (2024) 109204

monitoring system utilizing cyber collaboration and Cyber-Physical
System (CPS) involving humans, a mobile robot, and sensors has
demonstrated superior performance compared to conventional
non-collaborative and non-CPS techniques. Humans are cognitively
intelligent agents who can handle real-time, unexpected, and ambiguous
situations within an agricultural system (Sreeram and Nof, 2021). The
mobile robot moves through a greenhouse and approaches crops in
different locations and orientations. Visual sensors mounted on the
robot inspect crops with minimal physical contact, minimizing crop
contamination and the probability of stress spreading. Dusadeerungsikul
and Nof (2019) designed and integrated three algorithms into the
monitoring system, namely 1) Routing algorithm, 2) Stress Detection
algorithm, and 3) Adaptive Search algorithm to enhance the system
performance.

The routing algorithm develops mobile robot routes to minimize
travel time. Moreover, Wang et al. (2019) reported that the Stress
Detection algorithm with robots and sensors can assess a crop’s status
and stress levels. In the event that the Stress Detection algorithm detects
stress in a particular area, the system will activate the Adaptive Search
algorithm (AS) to direct its focus toward intensifying the monitoring of
the high-risk locations (as determined by their propagation behavior)
and to report on the effects of the stress.

According to Guo et al. (2018), the propagation characteristics of
stress in crops can be utilized to develop search propagation charac-
teristics of AS, resulting in cost and time savings. Assuming a prior un-
derstanding of plant pathology within an expert system, it can be
inferred that the most probable direction of stress propagation is to-
wards a certain direction (e.g., the eastern direction) in relation to the
recently identified crops under stress. Subsequently, the AS proceeds to
choose the adjacent crop located in the eastern direction for further
examination. Guo et al. (2018) also report that utilizing information
from plant pathology expert systems can enhance the monitoring sys-
tem’s responsiveness and precision. The efficacy of the AS in identifying
stressed crops with minimal resource use has been established and
validated through the integration of knowledge-based information
(Dusadeerungsikul and Nof, 2019). Nair et al. (2021) report the
empirical field experiments involving cyber-augmented software, such
as the AS. The experiments, which included multiple algorithms and
agents (human agents, robot cart with a manipulator, and hyperspectral
cameras), were conducted at Volcani Insititute in Israel, while re-
searchers responsible for controlling the robot cart were situated in the
United States. Utilizing a developed cloud system, algorithms, signals,
data, and commands generated from multiple agents are collaborated
and integrated to optimize the monitoring system. This facilitates the
implementation of a cyber-collaborative protocol that enables local
adaptation of AS, taking into account global and real-time information.
The experiment results have demonstrated superior performance in the
early identification of stressed locations when the AS is implemented,
compared with current practice.

Lastly, in terms of Al-based in PA search algorithm, the study by
Nguyen et al. (2022) has established a promising approach for detecting
and monitoring crop stress propagation through the integration of
disruption propagation network modeling and Bayesian network infer-
ence. The methodology focuses on developing a simulation model to
determine the direction of stress propagation. Therefore, the study
presented in this article will build on the foundation laid by Nguyen
etal. (2022) and extend it by addressing the research gap in the practical
application of their model in dynamic crop environments. The algorithm
aims to improve the effectiveness and economic impact of the stress
detection algorithm by incorporating real-time data and leveraging Al
techniques, as well as considering potential errors and operation costs.
This will eventually contribute to the development and deployment of
more effective crop management strategies.
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2.2. Conflicts and errors management

Inherent in every system are conflicts and errors (C&E), which, if not
appropriately managed, could result in inefficiencies and increased
operation costs. According to Nof et al. (2015), conflicts can be defined
as discrepancies between the state of the system and the objectives of the
agent, which can be mathematically expressed as Equation (1):

Dissatisfy

CIS@)), if Osy——7,(1) @
Where.

C is Conflict

S(t) is an integrated agent at time t.

sy is a state of integrated agent S at time t.

7,(t) is system constraint r at time t.

In contrast, errors refer to inconsistencies between the output of a
system and the expected specifications, which can be mathematically
expressed as shown in Equation (2):

Dissatisfy

IE[AQ@)], if Oaw) 7,(1) )
Where.

E is Error

A(t) is an agent at time t.

Oa(y is a state of agent A at time t.

7,(t) is system constraint r at time t.

Note that, in this research, system error is the focus. In order to
mitigate these errors, researchers have devised diverse examination
protocols and methodologies to manage and minimize extra operation
expenditures.

In past decades, researchers have developed procedures to minimize
the impacts of errors. Raz and Bricker (1993) introduced the sequence
inspection model to reduce various types of errors. Similarly, Wang and
Sheu (2001) proposed an inspection policy that optimizes cost per unit
in a production system with errors. Furthermore, the correlation be-
tween an organization’s profit and the inspection policy is noteworthy,
particularly when misclassification errors happen (Cheikhrouhou et al.,
2018). Error prognostics and prevention algorithms and protocols were
developed Chen and Nof (2007, 2012, 2023) and Chen (2022).

According to Ben-Gal et al. (2002), inspection-related expenses may
increase due to errors in inspection procedures. Cardenas-Barron et al.
(2013) report that it is frequently necessary to conduct targeted in-
spections during operation in order to guarantee quality and reduce
expenses from errors. Increased frequency of inspections can result in
high operation expenses (Sarkar and Saren, 2016), whereas inadequate
inspections may fail to sustain the desired level of output and quality
(Colledani and Tolio, 2009). According to Wang et al. (2010), achieving
superior performance in inspections requires a carefully calculated
number of inspections, as opposed to conducting full, or no inspections.

In PA, according to Mahlein et al. (2013), it is imperative to conduct
crop inspections to ascertain their health status. In addition, a prompt
and accurate treatment plan must be prepared in case of any detected
anomalies (Maraveas, 2022). The identification of crop stress and its
severity degree can be accomplished through the utilization of hyper-
spectral cameras and image processing methodologies, as previously
demonstrated by Bock et al. (2010) and Dhingra et al. (2018). The uti-
lization of deep learning techniques, specifically convolutional neural
network models, has been observed in the processing and analyzing of
images depicting various crop parts, including, but not limited to leaves
and stems. This approach has also been explored in studies conducted by
Bari et al. (2021) and Rehman et al. (2021). The models mentioned have
also shown the capacity to detect the current status of crops, as sup-
ported by additional research such as by Gadekallu et al. (2021), Jiang
et al. (2019), Li et al. (2021), and Sun et al. (2021).

Furthermore, errors that emerge during the monitoring process may
lead to misinterpretation of inspection results (Ferentinos, 2018). With
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inspection errors, a crop may be perceived as unhealthy and require the
necessary treatment when, in reality, the crop is healthy (Arnal Barbedo,
2019). Hence, the operation cost may also increase due to wasting time
and resources beyond the necessary requirements (Legg and Nagy,
2006). To minimize the total operation cost, a crop monitoring pro-
cedure that weighs the cost of inspection against the risk of error is
important (Banker et al., 2006), and thereby, this concern will be
addressed in the research presented in this article.

3. Methodology: Dynamic-Adaptive Search algorithm
development

This section describes the evolution of the Dynamic-Adaptive Search
algorithm (D-AS). The algorithm’s components are first defined. Then,
the D-AS is developed.

3.1 Nomenclature

Abbreviations

Al Artificial Intelligence FP False Positive

AS Adaptive Search IoT/ Internet of Things/Internet of

IoS Services

CDF Cumulative OR- Outlier Removal Auxiliary

Distribution Function AC- Classifier Generative
GAN Adversarial Network

C&E Conflicts and Errors

CPS Cyber-Physical PA Precision Agriculture
System

Dy Module for image S-AS Static-Adaptive Search
processing based on algorithm
Al

Dy Module for error- TAP Task Administration Protocol
responsive search
expansion

D3 Module for estimating TN True Negative
stress propagation

D-AS Dynamic-Adaptive TP True Positive
Search algorithm

FN False Negative

Variables

A Adaptive search is p Probability that the first crop
activated developed stress

A(t) Agent at time ¢ q Probability that stress

propagates in a certain
direction

C Conflict

Cr Inspection operation R Rejection region
cost

Co Over-inspection cost Ry Critical ratio

Cy Under-inspection cost R; Infected ratio

E Error S Crop has stress

Gy Gain from indicating s Crop does not have stress
a healthy plant

Gs Gain from indicating S(t) Integrated agent at time t
stressed crop

m Current location TNR True Negative Ratio

m* Optimal location TPR True Positive Ratio

M Random variable of Y(x) Result from assumed
the current location parameters

MG Monitoring Gain Y(x*) Result from actual parameters

Ny Total number of True a Type 1 error
Negative found

Ninirv Total locations p Type 2 error
indicating healthy
crops

Nrp Total number of TP 7:(6) System constraint r at time t
found

Nrpomp Total locations Oae) State of agent A at time t
indicating stressed
crops

Nrp.ppiTniTP Total number of Os) State of integrated agent S at
inspections time t
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3.2. The design of the Dynamic-Adaptive Search algorithm

The D-AS aims to balance inspection costs with the benefits of newly
obtained data to improve the monitoring system’s economic efficiency.
The algorithm has three modules: namely, a module for image pro-
cessing based on AI (D;), a module for error-responsive search expansion
(D2), and a module for estimating stress propagation (D3). D; applies Al
techniques to detect and assess crop stress. When stress is detected,
further examination is required to identify its severity. Dy determines
the optimal search progression, considering system errors and stress
characteristics. D, focuses on an error-responsive search approach,
optimizing search progression, and reducing inspection costs. Lastly, D3
indicates the direction of search advancement, following the D5.

This section provides an explanation of D-AS of each module.

3.2.1. Module for image processing based on AI (D;)

The D; inspects crops using a hyperspectral imaging system mounted
on a robot with a manipulator. The Outlier Removal Auxiliary Classifier
Generative Adversarial Network (OR-AC-GAN) developed by Wang et al.
(2018, 2019) is employed to detect crop stress early through an Al-based
technique. Hyperspectral imaging captures spectral information of crops
at a high resolution, allowing to indicate the evaluation of crop status by
detecting slight changes in spectrum features that may not be visible to
the normal human eye.

The OR-AC-GAN algorithm analyzes the data to detect abnormalities
in the spectral signature of the crop, returning the condition and nature
of stress, such as its potential to spread.

In addition, the OR-AC-GAN is also developed to eliminate anoma-
lous data points with the objective of improving the accuracy of the
algorithm to deliver a more precise crop status. The process of D; for D-
AS is shown in Fig. 1.

The incorporation of Al methodologies, specifically hyperspectral
imaging with OR-AC-GAN, within D, has the potential to improve the
efficacy of crop monitoring systems in the field of PA. Although OR-AC-
GAN has the potential to enhance the precision of stress detection, it is
not infallible and may still be susceptible to errors. Consequently, it is
imperative that the subsequent module, a module for responsive search
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expansion (D3), be undertaken to ascertain and measure any inaccura-
cies in the detection procedure and enhance the precision of the D-AS.

3.2.2. Module for error-responsive search expansion (D,)

3.2.2.1. Analyzing errors in D-AS. In order to create an error-responsive
search expansion module, it is necessary to comprehend the potential
inaccuracies in D-AS that result from D;. This understanding will enable
compensation for search progression in the presence of system errors.
The null hypothesis of D; is that the crop is in a state of health
(Hy : Crop is healthy). Given this assumption, the system may incur two
types of errors: Type 1 error (@) and Type 2 error (f). Fig. 2 illustrates the
interrelationships and contextual factors of the errors within the system.

Type 1 error (a) refers to the occurrence of a False Positive (FP). In
the context of crop stress detection, this error arises when the D, erro-
neously indicates the presence of stress in a crop, despite the absence of
any actual stress. On the contrary, in the absence of stress in a particular
crop, the D; should indicate a True Negative (TN) outcome with com-
plete accuracy. Equation (3) illustrates the probability of Type 1 error
within the D-AS.

a=P(R|S) 3
Where

R = Rejection region (Reject the null hypothesis)

s = Crop does not have stress

Type 2 error (), referred to as False Negative (FN), occurs when the
D; fails to identify stress in a crop despite the presence of stress. The D,
should accurately indicate True Positive (TP) without any errors.
Equation (4) illustrates the probability of Type 2 error.

B=1-P(R|S) C))

Where

R = Rejection region (Reject the null hypothesis)

Data-based of crop image

P S

e |
spectrum
i
/ ‘ Fake

Spectrum

Fal
Spectrum

Status of crop

- Stress or Healthy

- Type of stress

- Probability of the stress to propagate

OR-AC-GAN algorithm

Fig. 1. Module D; for image processing based on Al
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Inspection at location m

Case 1; Case 2;
True Positive; TP False Positive; FP
1-p) (a)

Power of the inspection Type 1 error

Case 3; Case 4;
False Negative; FN True Negative; TN
® (1-ao

Type 2 error Correct inspection

Fig. 2. Type of errors of D-AS.

S = Crop has stress

Equation (5) presents the efficacy of the D; in detecting stress in a
crop, commonly referred to as the system’s power.

Power of monitoring system=1 — f§ = P(R|S) 5)

The utilization of Equations (3)-(5) has the potential to enhance the
efficacy of D; in D-AS and provide direction for the creation of algo-
rithms that are more accurate and reliable.

3.2.2.2. Cost of errors in D-AS. In the event of errors, there will be
corresponding costs connected to each type of error. This section will
discuss the Monitoring Gain (MG), the benefit of inspecting each crop,
which will diminish with an increase in cost. Subsequently, the cost of
errors is quantified.

3.2.2.2.1. Monitoring Gain (MG). The outcome of the system is
contingent upon the actions that are undertaken, resulting in either a net
gain or loss. The concept of MG refers to the advantage that a system
obtains from the acquisition of new information. The monitoring system
comprises two categories of gain, namely the Gain from correctly
identifying a stressed crop (Gs) and the Gain from correctly identifying a
healthy crop (Gg).

Accurately identifying a crop experiencing stress is advantageous for
the system, as prompt treatment is necessary to avert any potential
reduction in yield. Hence, it is reasonable to assume that the benefit
derived from accurately identifying a crop under stress (Gg) is greater
than the benefit obtained from correctly identifying a healthy crop (Gg),
Gs > Gy.

3.2.2.2.2. Cost of inspection. The D-AS is associated with three types
of costs: Inspection operation cost, Over-inspection cost, and Under-
inspection cost. The following sections explain each type of cost.

1. Inspection operation cost

In the inspection operation, there will be an Inspection operation
cost (Cp). Assuming the crop is in a state of good health, the system
should minimize the operation cost, meaning not to operate. On the
other hand, if a crop experiences stress, it is necessary for the system to
conduct an inspection and identify the status and type of stress. Given
the criticality of promptly treating the identified crop and preventing the
propagation of stress to adjacent areas, it may be inferred that Gg > C; >
Gy.

Furthermore, the occurrence of system errors (either Type 1 or Type
2) will result in additional costs, which will be quantified as follows.

2. Over-inspection cost

The Over-inspection cost (Cp) is an additional cost that arises when
the system conducts an inspection of a crop without stress.

Lemma 1. Type 1 error incurs the Over-inspection cost (Cp) and the
amount of Co is equal to a x C.
Proof: see Appendix A

3. Under-inspection cost

The Under-inspection cost (Cy) is an incremental cost that arises
when the system fails to conduct an inspection of a crop that is experi-
encing stress.

Lemma 2. Type 2 error incurs the Under-inspection cost (Cy) and the
amount of Cy is equal to f x Cj.
Proof: see Appendix B

3.2.2.3. Optimal balancing of Co and Cy. To achieve the optimal bal-
ance between Cp and Cy to maximize MG, Theorem 1 is proposed.

Theorem 1. Optimal expansion of the responsive search: The optimal
expansion of the responsive search is achieved when the search expands to the
location m*, where the cumulative distribution function (CDF) is greater than
or equal to the critical ratio (Ro), as calculated in Equation (6).

s

p+a ©®

PM<m")=F(m")>Ry=

Proof: see Appendix C

The critical ratio, Ry, can be determined through Equation (6), which
involves dividing Type 2 error by the sum of Type 1 and Type 2 errors.
Hence, the preferred, optimal expansion is to progress the search toward
the first m crops, stop at the crop m*, where the cumulative distribution
function (CDF), denoted as F(m*), attains a value greater than or equal to
the critical ratio, Ry.

It is noteworthy that Theorem 1 presents an optimal procedure for the
balance of inspection costs and the maximization of MG, which represents
the crop’s information. Therefore, the D, is designed to limit the search
expansion to crops with a high probability of stress detection while
simultaneously minimizing the costs associated with both Cy and Cy.
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Fig. 3. Dynamic-Adaptive Search algorithm.

3.2.2.4. Error-responsive search expansion algorithm. The responsive
search expansion algorithm is formulated based on Theorem 1 and is
presented as Algorithm 1.

Algorithm 1 : Error — responsive search expansion algorithm

Initialize

Parameters

m«1,R<0

Calculate critical ratio (Ro)

FOR each starting location (m = 1) in monitoring plan DO
Inspect the first location

IF m has stress DO

R = R+ P(the first crop has stress)
WHILE R < Ro DO

m=m+1

Inspect m

R = R+ P(m crop has stress )

END WHILE

END IF

END FOR

Terminate Algorithm

PN AN

R el e )
SO

3.2.3. Module for estimating stress propagation (Ds3)

For the D, module to perform effectively, it is necessary to compute
the CDF of stress propagation. Building on Nguyen et al. (2022) about
stress propagation direction, the following section outlines the algo-
rithmic approach to accomplish the CDF required by D,.

Lemma 3. Environmental conditions can cause stress in crops, which can
subsequently propagate to adjacent areas of crops in particular directions.
This propagation is influenced by several factors, including sunlight,
geographic location, season, airflow, and the type of stress, as determined by
experts in plant pathology.

Theorem 2. Crop Stress Probability Estimation Model: The probability of
stress propagating from the initial crop to a maximum of m crops, under the
condition that crops located away from the first crop are susceptible to stress
from the initial crop, can be expressed as Equation (7).

1 —pg";m >0
0; otherwise

P(At most m crops are stressed) = P(M <m) = { @)

Where

p is probability that the first crop developed stress.

q is probability that the stress propagates in a certain direction.

Proof: see Appendix D

Note: p and q, which are necessary for Equation (7) are obtained
from the D; module. Moreover, Algorithm 2 can be utilized to generate
the CDF.

Algorithm 2 : CDF generation algorithm for plant stress propagation

Initialize

Parameter

m«Current location

Calculate P(M < m) according to Equation (7)
Return P(M < m)

Terminate Algorithm

oG hwie

3.2.4. Dynamic-Adaptive Search algorithm (D-AS)

The D-AS is explained in detail in this section. The proposed meth-
odology involves the integration of three modules: 1) Module for image
processing based on AI (D;), 2) Module for error-responsive search
expansion (D;), and 3) Module for estimating stress propagation (Ds),
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Table 1

Summary of parameter settings.
Parameter Value
Number of simulations runs 100
Type 1 error a =5%

Type 2 error

Gain from indicating a healthy crop
Gain from indicating stress in crop
Inspection cost

B =35%
Gg = 10 cost unit/location
Gy = 3 cost unit/location
C; = 5 cost unit/location

employing a cyber-collaborative approach derived from the Task
Administration Protocol (TAP). The D-AS is depicted in Fig. 3.

3.3. Integration of D-AS in crop monitoring system for precision
agriculture

Incorporating D-AS into the PA monitoring system can potentially
improve the system’s accuracy and efficacy. To perform smoothly, it is
required to establish a connection between D-AS and other agents, such
as the hyperspectral imaging system mounted on a robot, a robot
manipulator, and human agents. The hyperspectral imaging system in-
puts high-resolution spectral data of crops to D; of D-AS to identify any
abnormalities in the crops.

In the event that stress is detected, D; will send the information and
trigger the Dy, which is tasked with determining the optimal search
expansion of the system and reacts via a robot manipulator. The
development of D, involved an examination of the error analysis and
stress characteristics (from D;) to ascertain the requisite level of search
expansion necessary to investigate stress severity and timely mitigate
potential harm to the crops. The stress propagation estimation module,
denoted as D3, can be utilized to compute the probability of stress
propagation.

The implementation of D-AS can offer valuable guidance to farmers
regarding the appropriate measures to take in order to mitigate the
issue, thus preventing its escalation and consequential harm to the crop.
Additionally, D-AS has the capability to engage with human agents to
receive input on the system’s performance and adjust the parameters of
D-AS accordingly, leveraging their specialized knowledge and practical
know-how. The incorporation of D-AS alongside other agents can
enhance the agility and adaptability of the monitoring system, facili-
tating prompt responses to varying conditions and streamlining the crop
monitoring procedure.

4. Experimental results and analysis

This section outlines the design of the computational experiments
and outcomes analyzed by computer simulations to assess the efficacy of
the D-AS. Compared to other available crop monitoring methods, the
experiments focus on the comparative analysis of the performance and
cost associated with D-AS. Furthermore, a sensitivity analysis is per-
formed to assess the algorithms’ sensitivity.

4.1. Experimental setting

The experiments, in each run, involved 100 crops to inspect from
monitoring plan, randomly selected from those in a greenhouse. Upon
the discovery of each crop’s status, one of the search algorithms outlined
in Section 4.2 was implemented. Results from implementation of the
search algorithm is measured for analyzing its performance. The ex-
periment’s simulation parameters are summarized in Table 1.

4.2. Search algorithm alternatives

The experiment evaluates the efficacy of the developed D-AS in
comparison to alternative policies such as Static-Adaptive Search (S-AS),
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Always Search, and No Search. The initial two search methodologies are
classified as adaptive, whereas the last two alternatives are categorized
as non-adaptive. A detailed description of each search algorithm is
presented below.

4.2.1. Dynamic-Adaptive Search

As developed in the methodology section, the D-AS aims to enhance
the crop monitoring system. The algorithm considers the errors and cost
of inspections and modifies its search progression in response to new
information. The algorithm has been explained in Section 3 and visually
represented in Fig. 3.

4.2.2. Static-Adaptive Search

The Static-Adaptive Search algorithm (S-AS), as proposed by Dusa-
deerungsikul and Nof (2019), has been modified to integrate
knowledge-based information to prioritize particular directions for in-
spection. Although the algorithm has the ability to adjust to new data,
the sequence of searches is established in advance according to the
existing knowledge. The S-AS is presented in Algorithm 3.

Algorithm 3 : Statics adaptive search algorithm

Initialize

Parameter

FOR each starting location (m = 1) in monitoring plan DO
Inspect the first location

IF m is infected DO

Inspectm+ 1,m+ 2,and m+ 3

Calculate infected ratio (R;) = #infected crops/#inspections
IF R; > Predetermined threshold DO

9. Inspect m+ 4 and m+ 5

10. END IF

11. END IF

12. END FOR

PN A N

4.2.3. Always Search

The Always Search algorithm is an algorithm that functions in the
absence of real-time data. The system possesses pre-existing scientific
knowledge regarding the expected directions of stress propagation. As a
result, the algorithm will always explore a specific direction to acquire
maximal information.

Algorithm 4 : Always Search algorithm

Initialize

Parameter

FOR each starting location (m = 1)in monitoring plan DO
Inspectm,m+ 1,m+ 2,m+ 3,m+ 4,and m+ 5

END FOR

AEE o S

4.2.4. No Search

The No Search algorithm is an illustration of the currently typical
practice employed by farmers. The procedure lacks the incorporation of
knowledge-based information, resulting in workers solely examining
only random crops in accordance with the monitoring plan without
expanding further. Algorithm 5 presents the No Search algorithm.

Algorithm 5 : No Search algorithm

Initialize

Parameter

FOR each starting location (m = 1)in monitoring plan DO
Inspect m

END FOR

ahwh=

4.3. Computational experiments and results

4.3.1. System performance analysis

This section will assess system performance by means of computer
simulation experiments. The system performance is measured through
the utilization of two ratios, namely the True Positive Ratio (TPR) and
True Negative Ratio (TNR).
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Fig. 4. Experiment results for the performance analysis (TPR).
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Fig. 5. Experiment results for the performance analysis (TNR).

4.3.1.1. True Positive Ratio. The True Positive Ratio (TPR) denotes the
ratio of correctly identified positive instances (i.e., stressed crops) to the
total number of instances that are identified as positive, including both
TP and FP. A system that delivers a higher TPR is regarded as superior.
Equation (8) can be utilized to calculate TPR.

NTP

Nrpirp

TPR= ®

Where

Nrp = Total number of True Positive found

Nip,rp = Total locations indicating as stressed crop (both TP and FP)

4.3.1.2. True Negative Ratio. The True Negative Ratio (TNR) metric
quantifies the proportion of correctly identified negative instances (i.e.,
healthy crops) relative to the total number of negative instances (i.e.,
both TN and FN). A system that delivers a higher TNR is more desirable
as it accurately detects non-stressed crops without falsely indicating
them as stressed. Equation (9) can be utilized to compute TNR.

Ny

NTN+FN

TNR =

)]

Where

N7y =Total number of True Negative found



P.O. Dusadeerungsikul and S.Y. Nof

International Journal of Production Economics 271 (2024) 109204

21
16
[w]
‘=
&) 11
on
=
e
i}
£ 6
(o)
i A I I
1 B EE TR T I
- . -
-4
p=30% p=30% p=30% p=60% p=60% p=60% p=90% p=90% p=90%
q=30%  q=60% q=90% q=30% q=60% q=90% q=30% q=60%  q=90%
mD-AS 0.1001 0.1012 0.0843 2.1996 2.7208 7.4496 4.3004 6.3489 20.3837
S-AS -3.3675 -1.8788 -0.144 -0.7351 2.2428 5.5937 1.8981 6.3635 11.2127
iAlways Search -1.4050 -1.1483 -1.3477 -0.8095 -0.296 -0.6962 -0.2149 0.5549 -0.0446
m No Search 0.1000 0.0999 -0.2651 2.2005 2.1998 1.4707 4.3001 4.2997 3.2062
p—value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Fig. 6. Experiment results for the cost analysis (MG).

Nin.ry = Total locations indicating a healthy crop (both TN and FN)

4.3.1.3. Experiment results. In terms of TPR, the results demonstrate
that the D-AS generally performs significantly better than other ap-
proaches, while TNR outcomes are similar among different algorithms.

The ANOVA and Tukey HSD Post-hoc Test outcomes are displayed in
Figs. 4 and 5. The results show that D-AS outperforms (or performs as
good as) in comparison to other alternatives with a 99% confidence
level, except in some cases. For instance, in situations where stress
generation or propagation chances are low, such as p or q equal to 30%,
TPR from the D-AS and the No Search algorithm are not statistically
different, while both algorithms still perform significantly better than
other alternatives. In this case, however, when TNR is a concern, the
Always Search algorithm outperforms other methods with a confidence
level of 99%.

Furthermore, when the stress is easily generated or propagated, such
as when p or q equals 90%, the No Search algorithm delivers a statisti-
cally better TPR than other algorithms with 99% confidence, while the
D-AS and the S-AS deliver no statistical difference from each other.
When considering TNR, however, the No Search algorithm yields the
lowest performance than alternatives.

The findings lead to the conclusion that the D-AS adapts the search
process following the various inputs, producing an optimal search
strategy in each case, balancing TPR and TNR. For instance, the D-AS has
adapted itself to the No Search algorithm in scenarios when the disease
generation or propagation rate is low. The D-AS, however, advances the
search further to improve the performances when facing a disease with
high generation or propagation rate.

4.3.2. Cost analysis

This section presents an assessment of the cost-effectiveness of D-AS
in comparison to alternatives, utilizing the Monitoring Gain (MG)
metric. The computer simulation experiments are conducted to assess
the algorithms, which are implemented and applied for analysis.

4.3.2.1. Monitoring Gain (MG). The MG quantifies the net benefit of
acquiring additional information through an expanded search, consid-
ering the associated operation costs. Gaining new data about the current

state of the crop is typically beneficial to the monitoring system.
Nonetheless, it increases system expenses due to the operation and in-
spection costs. The MG captures the benefits gained or lost by inspecting
an additional location. Therefore, the system with a greater MG is
favored. The MG can be computed utilizing Equation (10).

MG = (GsNyp + GuNin) — CiNrpirpirnirp (10)

Where

Gy = Gain from indicating a stressed crop
Nzp = Total number of True Positive found
Gy = Gain from indicating a healthy crop
Ny =Total number of True Negative found
C; = Inspection operation cost

Nrpyrpi7ve7p = Total number of inspections

4.3.2.2. Experiment results. The findings of the cost analysis experi-
ments, which aimed to compare the cost-effectiveness of D-AS relative to
other search algorithms, are displayed in Fig. 6. In the majority of cases,
the D-AS shows superior performance. The study employed statistical
tests, i.e., ANOVA and Tukey HSD Post-hoc Test, to examine the statis-
tical differences among the search algorithms. Fig. 6 displays the find-
ings, revealing that the D-AS delivers MG that is statistically higher or
equal to the remaining algorithms, with a confidence level of 99%.

Nonetheless, when the stress propagation rate (q) is at a low value,
there is no statistically significant difference between the MG of D-AS
and the No Search algorithm. The results could be attributed to the
similarity in behavior between D-AS and the No Search algorithm under
conditions of low stress propagation rate. The rationale behind this
approach is that if stress propagation is limited, the algorithm should
refrain from expanding to adjacent locations despite the initial indica-
tion of stress, as the potential cost of expansion may outweigh the ex-
pected benefits.

In contrast, the Always Search algorithm exhibited the lowest MG,
plausibly attributable to its practice of examining additional locations
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irrespective of the crop’s condition. Therefore, the Always Search al-
gorithm is considered as expensive and yields the lowest MG.

4.3.3. Sensitivity analysis

This section conducts the sensitivity analysis of the D-AS algorithm,
in contrast to other alternatives, under various conditions. The sensi-
tivity of algorithms is crucial for algorithms that work in agricultural
systems, because of the inherent uncertainty and susceptibility to fluc-
tuations (Itoh et al., 2003). An algorithm that exhibits less sensitivity to
parameter variations is considered a favorable alternative.

The experiments involve the manipulation of four parameters (i.e., p,
g, a, and f) in order to investigate the changes in performance and cost
metrics. The sensitivity is defined as the ratio of the result obtained from
the assumed parameters (Y(x)) to the result from the actual parameters
(Y(x*)), as presented in Equation (11). The analysis is conducted in
scenarios where the conditions differ from the assumptions outlined in
Table 1.

+25% -10% +25% -10%
TNR MG
0.9903 = 0.9859 = 0.9819 0.9572 0.9241 0.9807 0.9309
0.9940  0.9908 09873 0.9550 0.9287 @ 0.8761 @ 0.8091
0.9965 = 0.9946 = 0.9927 0.5490 0.4377 03199 0.2480
0.9821 = 0.9745 09683 0.9477 0.8985 0.8519  0.8047
-

Sensitivity = Y((;i)) an

Where

Y(x) = Result from assumed parameters

10

Y(x*) = Result from actual parameters
4.3.3.1. Experiment results. Fig. 7 through 10 display the outcomes of
the sensitivity analysis conducted on search algorithms, in response to
fluctuations in the parameter values of p, ¢, a, and B. The parameter
deviations range from 10% to 25%.

The results indicate that the D-AS is relatively insensitive and yields
outcomes that deviate by no more than 10% from the optimal setting.
This finding implies that D-AS yields near-optimal results even in situ-
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ations with input uncertainty. In contrast, the remaining algorithms
exhibit a higher degree of sensitivity towards variations in the param-
eters, compared to D-AS. The Always Search algorithm shows the
highest sensitivity compared to other alternatives, particularly when the
values of p and q are lower than the assumed parameters.

5. Conclusions and discussion

PA is a relatively new agricultural methodology that seeks to opti-
mize the efficiency of the agricultural system, thus enhancing economic
performance and elevating the level of food security; both of which have
recently gained significant attention. A crucial aspect of PA relies on the
effective management of crop stress, as untreated stress can potentially
escalate into disease and result in irreparable consequences.

To address the issue, this research develops an Al-based, dynamic

11

and responsive search algorithm, D-AS. The D-AS is designed to enhance
the monitoring process by focusing on high-potential stressed locations
and balancing operation cost and information gain. D-AS is comprised of
three main modules: 1) Module for image processing based on Al (D), 2)
Module for error-responsive search expansion (Dy), and 3) Module for
estimating stress propagation (D3).

The performance of D-AS has been validated with computer simu-
lation experiments and compared against other algorithms. The findings
indicate that the D-AS exhibits superior abilities compared to other al-
gorithms, demonstrating relatively higher performance and cost-
effectiveness. The D-AS shows adaptability in response to varying
stress characteristics, adjusting its behavior according to how easily or
scarcely stress can develop and propagate. For example, in situations
where stress is unlikely to develop or propagate, the D-AS adapts itself
by not progressing the search to nearby locations. On the other hand,
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when stress does propagate, D-AS progresses the search further to obtain
more information. Furthermore, sensitivity analysis reveals that when
parameters deviate from assumptions, the D-AS can still generate nearly
optimal solutions, providing reassurance for its economic effectiveness.
This insensitive ability to parameters actual deviations, based on the Al
support, is desirable in an agricultural system that is unstructured and
uncertain by nature.

The D-AS balances costs incurred during inspection, and the benefits
of acquiring new information. The algorithm presents a promising so-
lution for enhancing the economic efficiency of agricultural systems. Its
ability to optimize costs, improve resource allocation, and mitigate
losses holds substantial potential for increasing profitability and
ensuring long-term sustainability in the farming industry. The algorithm
can be employed by farmers and engineers through integration with
agricultural robotic systems, such as the system developed by Dusa-
deerungsikul and Nof (2019), in order to enhance the system’s overall
performance.

Scholars may pursue future research in this domain by exploring the
three following directions.

1. Multi-directional stress propagation: This study focused on the
propagation of stress in a single direction, whereas multi-directional
stress propagation was not taken into account. Subsequent in-
vestigations may study the propagation of stress in various directions
to more accurately depict the attributes of crops for multiple stress
propagation directions.

2. Different system objectives: In this study, the algorithm aimed to
balance the cost of inspection with the benefits of acquiring new
information. Further investigation may examine different algorithm
goals, such as maximizing the precision of stress identification,
minimizing the duration of inspection, or minimizing total energy
consumption.

Appendix A. Proof of Lemma 1 (Over-inspection cost)
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3. Consideration of system conflicts: The present investigation focused
on errors that occur during the inspection process. Researchers may
explore other plausible conflicts within the agricultural system, such
as conflicting agents, to investigate the factors that could affect the
monitoring procedure.
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At each location where a crop does not have stress, the additional cost of an inspection is equal to

Co=PA|S)xC

Where

A = Adaptive search is activated

s = Crop does not have stress

(A1)

By definition, P(Adaptive search is activated | Crop does not have stress) is Type 1 error.

Co=a x (

Appendix B. Proof of Lemma 2 (Under-inspection cost)

(A.2)

At each location where a crop has stress, the cost of not progressing the search is equal to:

Cy=(1-PA]S))xC

Where

A = Adaptive search is activated

S = Crop has stress

12

(B.1)
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By definition, 1 — P(Adaptive search is activated | Crop has stress) is Type 2 error.

Cu=pxC (B.2)

Appendix C. Proof of Theorem 1 (Optimal Expansion of Dynamic-Adaptive Search)

At location m, the algorithm should progress to inspect location m + 1 if the expected Over-inspection cost is lower than the expected Under-
inspection cost, which can be formulated as follows:
P(M <m)xCop<P(M>m) x Cy

Moreover, the algorithm should stop inspection progression at m* which is the optimal location when the expected Under-inspection cost and
expected Over-inspection cost are equal, which can be written as follows:

PM<m")xCo=PM>m") x Cy

From Lemma 1 and Lemma 2,
PM<m)xaxCi=PM>m")xf x C;
PM<m*)xa=PM>m") x

PM<m)xa=(1-PM<m"))xp

F(m*):P(Mém*):aiﬂ (C.1)

Appendix D. Proof of Theorem 2 (Crop Stress Probability Estimation Model)

Based on Lemma 3 and Figure D.1, a given stress can be modeled as follow.

»
>

Stress propagation direction

q q q q q

NN N NN

pq(l—q) pi*(1—q) pe*(1-q) pq*(1—q)

my m; ms My msg
Fig. D.1. Stress propagation.

Let p denote the probability that the first crop developed a disease; q is the probability of the stress propagating in a certain direction. Therefore, the
probability that stress propagates to crop m, P(M = m), is shown in Table D.1.

Table D.1
Probability that disease propagates to crop m
P(M =m) Probability that stress propagates to crop m
M=0 (1-p)
M=1 p(1-q)
M =2 pq(l—q)
M=3 pg*(1-q)
M=m

pqm (1-9q)

To calculate CDF, P(M < m), consider:
PM<m)=1—PM>m+1)

13
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=1-(pg"(1—q)+pg"" (1 —q) +pg" (1 —q)+...)

=1-pd"1—q)(1+q+q+...)

=1-pq"(1—-q) (ﬁ})

=1-pq"
Therefore,
1—pq"sm >0
P(X<m)= = D.1
(X <m) { 0; otherwise (0.1
|
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