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A B S T R A C T

Precision Agriculture (PA) is a relatively new farming approach, applying science and technology to enhance 
cost-effectiveness and improve food security by optimizing agricultural practices through the treatment of each 
crop individually. To support the new practice, an AI-based, responsive monitoring algorithm, called the 
Dynamic-Adaptive Search algorithm, has been developed to minimize operation costs with the bene昀؀t of 
acquiring new and timely information. Three modules of the algorithm are 1) Module for image processing based 
on AI, 2) Module for error-responsive search expansion, and 3) Module for estimating stress propagation. 
Computational experiments have demonstrated that the newly developed algorithm outperforms other alter-
natives, yielding signi昀؀cantly higher system performance and system gain, compared to other algorithms. The 
sensitivity analysis con昀؀rms the algorithm’s ability to deliver within ± 10% of the theoretical optimal value, 
resulting in economic bene昀؀ts under varying conditions. The algorithm’s applications can be extended to other 
decision-making situations involving cost-bene昀؀t tradeoffs of acquiring more data.   

1. Introduction

Precision Agriculture (PA) is a relatively new farming approach that
treats each crop individually and differently, as needed. PA aims to in-
crease agricultural ef昀؀cacy while decreasing farming inputs (or costs), 
consequently solving global food security problems (Stafford, 2000; 
Zhang et al., 2002; Bechar, 2021). PA also has a signi昀؀cant economic 
and ecological impact since cost-effective procedures can improve 
agricultural resource utilization (McBratney et al., 2005). 

To treat each crop differently, a crop stress monitoring system is 
essential. Despite the advancement of monitoring systems, intelligent 
and responsive algorithms that utilize newly available and timely data 
are still required. In order to address the challenge of PA, this study 
presents a novel algorithm called the Dynamic-Adaptive Search algo-
rithm (D-AS). D-AS is an Arti昀؀cial Intelligence (AI)-based and responsive 
algorithm that responds promptly to crop stress information as early as it 
is recognized. The proposed and developed algorithm is designed to 
respond to crop stress information and enhance the performance of 
monitoring systems. The advanced and adaptable capability of the new 
algorithm allows for the timely treatment of crops, hence minimizing 
agricultural yield loss. 

Identifying and managing crop stress is a critical aspect of PA 
because the stress in crops can indicate potential diseases that may 

negatively affect crop productivity. Behmann et al. (2014) report that 
crops are commonly subjected to stressors such as temperature and 
humidity 昀؀uctuations. Therefore, farmers commonly grow crops in 
greenhouses to control environmental factors, as well as adjust growing 
conditions to maximize crop production. This practice, however, may 
also induce stress in crops, which can result in the development of 
various diseases (Reddy et al., 2022). According to Golhani et al. (2018), 
the inadequate handling of crop diseases results in a loss of over $200 
billion worth of food crops each year. 

The implementation of crop stress management is a key strategy for 
addressing these concerns. Delayed identi昀؀cation of stress in crops can 
result in a wastage of nearly 40% of food crops, despite the knowledge 
possessed by farmers and researchers regarding the measures to mitigate 
such stress (Gunders, 2017). The expenses associated with the 
mismanagement of crop stress can increase the overall production costs 
of crops by 15%–40% (Meissle et al., 2010). Moreover, crop stress 
induced by environmental factors such as drought or heat stress can 
result in major decreases in crop yield. As per the research conducted by 
Lobell et al. (2011), it has been estimated that there would be 7.4% 
decline in the maize yields for every 1 ◦C rise in environmental tem-
perature. Likewise, Schlenker and Roberts (2009) conducted a study and 
revealed that an increase in inappropriate environmental temperature 
could potentially decrease wheat yields by 6% per degree Celsius. In 
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addition, the quality of agricultural products can also be affected by crop 
stress. According to Wongnaa et al. (2023), the extent of post-harvest 
losses in tomatoes caused by fungal infections can vary between 20% 
and 70%, contingent upon the level of stress severity. Hence, it is crucial 
to develop a methodology for the timely identi昀؀cation of crop stress to 
mitigate expenses associated with treatment and operations. 

There is another concern: a crop’s distinctive and crucial attribute to 
propagate stress to adjacent areas. According to Pathan et al. (2020), 
stress can disseminate among host organisms, including pests and in-
sects, as well as non-insect vectors, such as contaminated soil and 
air昀؀ow. Hence, failure to timely detect crop stress can result in signi昀؀-
cant effects across agricultural areas. 

Based on the economic impact of crop stress management and the 
attempt to avoid any reduction in crop productivity reported by Zhang 
et al. (2012), there exists a requirement for intelligent and adaptable 
algorithms that can effectively utilize the accessible data to enhance 
crop monitoring systems and identify stress at the earliest opportunity. 

Over the years, there has been an advancement in crop monitoring 
systems, enabling an effective system for detecting anomalies and 
recognizing potential issues of crops (Maraveas et al., 2023). Although 
the Adaptive Search algorithm (AS) in PA’s monitoring system has 
demonstrated ef昀؀cacy in enhancing system performance, as reported by 
Dusadeerungsikul and Nof (2019), its present algorithm remains static 
and does not account for additional factors beyond the state of the crop 
at the current site. The algorithm’s limitation in accounting for system 
dynamics (i.e., monitoring system’s errors and crop stress changing 
characteristics) results in its uniform application across various stress 
types and inspection equipment. Although the AS can be triggered by 
knowledge-based information provided by experts in plant pathology, it 
may not result in an optimal inspection and search procedure to monitor 
actual crop stress in PA. 

This study presents a novel methodology, namely the Dynamic- 
Adaptive Search algorithm (D-AS), to overcome the limitations in the 
existing implementation of the AS. The D-AS incorporates AI-based 
techniques, developing a responsive algorithm to the system’s dy-
namics and the changing crop stress characteristics, resulting in a more 
focused, responsive and effective inspection procedure. 

This research addresses the challenges regarding the most advanta-
geous approach for detecting and reacting to various types of stress in 
crops within a system prone to errors. This study offers academic and 
practical contributions by creating a mathematical model formulation 
and solution algorithms that can be applied to real applications, further 
reducing economic loss due to crop yield reduction. 

The performance of the proposed D-AS has been evaluated and 
compared with both the existing algorithms and the current approach in 
PA. This study employs a comparative analysis to investigate the ef昀؀cacy 
of the D-AS from several perspectives. As a result, the deployment of D- 
AS can enhance economic outcomes in agriculture by optimizing costs, 
improving response ef昀؀ciency, and minimizing losses. 

The remainder of the article includes the following. Section 2 pre-
sents literature review, while Section 3 discusses the framework and 
development of the D-AS. Section 4 presents empirical experiments, 
results, and subsequent analysis. Section 5 of the article presents the 
conclusions and discussion, emphasizing the potential of the D-AS to 
signi昀؀cantly enhance the capabilities of monitoring systems of PA. 

2. Literature review 

2.1. Crop monitoring system with cyber collaboration and Cyber-Physical 
System approaches 

The necessity of an ef昀؀cient stress monitoring system in PA arises due 
to the criticality of stress in crops. Daily crop inspections are typically 
conducted through random sampling to assess their condition and 
identify appropriate and timely interventions, if necessary. According to 
Dusadeerungsikul et al. (2019), the implementation of a crop 

monitoring system utilizing cyber collaboration and Cyber-Physical 
System (CPS) involving humans, a mobile robot, and sensors has 
demonstrated superior performance compared to conventional 
non-collaborative and non-CPS techniques. Humans are cognitively 
intelligent agents who can handle real-time, unexpected, and ambiguous 
situations within an agricultural system (Sreeram and Nof, 2021). The 
mobile robot moves through a greenhouse and approaches crops in 
different locations and orientations. Visual sensors mounted on the 
robot inspect crops with minimal physical contact, minimizing crop 
contamination and the probability of stress spreading. Dusadeerungsikul 
and Nof (2019) designed and integrated three algorithms into the 
monitoring system, namely 1) Routing algorithm, 2) Stress Detection 
algorithm, and 3) Adaptive Search algorithm to enhance the system 
performance. 

The routing algorithm develops mobile robot routes to minimize 
travel time. Moreover, Wang et al. (2019) reported that the Stress 
Detection algorithm with robots and sensors can assess a crop’s status 
and stress levels. In the event that the Stress Detection algorithm detects 
stress in a particular area, the system will activate the Adaptive Search 
algorithm (AS) to direct its focus toward intensifying the monitoring of 
the high-risk locations (as determined by their propagation behavior) 
and to report on the effects of the stress. 

According to Guo et al. (2018), the propagation characteristics of 
stress in crops can be utilized to develop search propagation charac-
teristics of AS, resulting in cost and time savings. Assuming a prior un-
derstanding of plant pathology within an expert system, it can be 
inferred that the most probable direction of stress propagation is to-
wards a certain direction (e.g., the eastern direction) in relation to the 
recently identi昀؀ed crops under stress. Subsequently, the AS proceeds to 
choose the adjacent crop located in the eastern direction for further 
examination. Guo et al. (2018) also report that utilizing information 
from plant pathology expert systems can enhance the monitoring sys-
tem’s responsiveness and precision. The ef昀؀cacy of the AS in identifying 
stressed crops with minimal resource use has been established and 
validated through the integration of knowledge-based information 
(Dusadeerungsikul and Nof, 2019). Nair et al. (2021) report the 
empirical 昀؀eld experiments involving cyber-augmented software, such 
as the AS. The experiments, which included multiple algorithms and 
agents (human agents, robot cart with a manipulator, and hyperspectral 
cameras), were conducted at Volcani Insititute in Israel, while re-
searchers responsible for controlling the robot cart were situated in the 
United States. Utilizing a developed cloud system, algorithms, signals, 
data, and commands generated from multiple agents are collaborated 
and integrated to optimize the monitoring system. This facilitates the 
implementation of a cyber-collaborative protocol that enables local 
adaptation of AS, taking into account global and real-time information. 
The experiment results have demonstrated superior performance in the 
early identi昀؀cation of stressed locations when the AS is implemented, 
compared with current practice. 

Lastly, in terms of AI-based in PA search algorithm, the study by 
Nguyen et al. (2022) has established a promising approach for detecting 
and monitoring crop stress propagation through the integration of 
disruption propagation network modeling and Bayesian network infer-
ence. The methodology focuses on developing a simulation model to 
determine the direction of stress propagation. Therefore, the study 
presented in this article will build on the foundation laid by Nguyen 
et al. (2022) and extend it by addressing the research gap in the practical 
application of their model in dynamic crop environments. The algorithm 
aims to improve the effectiveness and economic impact of the stress 
detection algorithm by incorporating real-time data and leveraging AI 
techniques, as well as considering potential errors and operation costs. 
This will eventually contribute to the development and deployment of 
more effective crop management strategies. 
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2.2. Con昀؀icts and errors management 

Inherent in every system are con昀؀icts and errors (C&E), which, if not 
appropriately managed, could result in inef昀؀ciencies and increased 
operation costs. According to Nof et al. (2015), con昀؀icts can be de昀؀ned 
as discrepancies between the state of the system and the objectives of the 
agent, which can be mathematically expressed as Equation (1): 

∃C[S(t)], if θS(t)̅̅̅̅̅̅→
Dissatisfy

γr(t) (1)  

Where. 
C is Con昀؀ict 
S(t) is an integrated agent at time t. 
θS(t) is a state of integrated agent S at time t. 
γr(t) is system constraint r at time t. 
In contrast, errors refer to inconsistencies between the output of a 

system and the expected speci昀؀cations, which can be mathematically 
expressed as shown in Equation (2): 

∃E[A(t)], if θA(t)̅̅̅̅̅̅→
Dissatisfy

γr(t) (2)  

Where. 
E is Error 
A(t) is an agent at time t. 
θA(t) is a state of agent A at time t. 
γr(t) is system constraint r at time t. 
Note that, in this research, system error is the focus. In order to 

mitigate these errors, researchers have devised diverse examination 
protocols and methodologies to manage and minimize extra operation 
expenditures. 

In past decades, researchers have developed procedures to minimize 
the impacts of errors. Raz and Bricker (1993) introduced the sequence 
inspection model to reduce various types of errors. Similarly, Wang and 
Sheu (2001) proposed an inspection policy that optimizes cost per unit 
in a production system with errors. Furthermore, the correlation be-
tween an organization’s pro昀؀t and the inspection policy is noteworthy, 
particularly when misclassi昀؀cation errors happen (Cheikhrouhou et al., 
2018). Error prognostics and prevention algorithms and protocols were 
developed Chen and Nof (2007, 2012, 2023) and Chen (2022). 

According to Ben-Gal et al. (2002), inspection-related expenses may 
increase due to errors in inspection procedures. Cárdenas-Barrón et al. 
(2013) report that it is frequently necessary to conduct targeted in-
spections during operation in order to guarantee quality and reduce 
expenses from errors. Increased frequency of inspections can result in 
high operation expenses (Sarkar and Saren, 2016), whereas inadequate 
inspections may fail to sustain the desired level of output and quality 
(Colledani and Tolio, 2009). According to Wang et al. (2010), achieving 
superior performance in inspections requires a carefully calculated 
number of inspections, as opposed to conducting full, or no inspections. 

In PA, according to Mahlein et al. (2013), it is imperative to conduct 
crop inspections to ascertain their health status. In addition, a prompt 
and accurate treatment plan must be prepared in case of any detected 
anomalies (Maraveas, 2022). The identi昀؀cation of crop stress and its 
severity degree can be accomplished through the utilization of hyper-
spectral cameras and image processing methodologies, as previously 
demonstrated by Bock et al. (2010) and Dhingra et al. (2018). The uti-
lization of deep learning techniques, speci昀؀cally convolutional neural 
network models, has been observed in the processing and analyzing of 
images depicting various crop parts, including, but not limited to leaves 
and stems. This approach has also been explored in studies conducted by 
Bari et al. (2021) and Rehman et al. (2021). The models mentioned have 
also shown the capacity to detect the current status of crops, as sup-
ported by additional research such as by Gadekallu et al. (2021), Jiang 
et al. (2019), Li et al. (2021), and Sun et al. (2021). 

Furthermore, errors that emerge during the monitoring process may 
lead to misinterpretation of inspection results (Ferentinos, 2018). With 

inspection errors, a crop may be perceived as unhealthy and require the 
necessary treatment when, in reality, the crop is healthy (Arnal Barbedo, 
2019). Hence, the operation cost may also increase due to wasting time 
and resources beyond the necessary requirements (Legg and Nagy, 
2006). To minimize the total operation cost, a crop monitoring pro-
cedure that weighs the cost of inspection against the risk of error is 
important (Banker et al., 2006), and thereby, this concern will be 
addressed in the research presented in this article. 

3. Methodology: Dynamic-Adaptive Search algorithm 
development 

This section describes the evolution of the Dynamic-Adaptive Search 
algorithm (D-AS). The algorithm’s components are 昀؀rst de昀؀ned. Then, 
the D-AS is developed. 

3.1 Nomenclature  

Abbreviations 
AI Arti昀؀cial Intelligence FP False Positive 
AS Adaptive Search IoT/ 

IoS 
Internet of Things/Internet of 
Services 

CDF Cumulative 
Distribution Function 

OR- 
AC- 
GAN 

Outlier Removal Auxiliary 
Classi昀؀er Generative 
Adversarial Network 

C&E Con昀؀icts and Errors   
CPS Cyber-Physical 

System 
PA Precision Agriculture 

D1 Module for image 
processing based on 
AI 

S-AS Static-Adaptive Search 
algorithm 

D2 Module for error- 
responsive search 
expansion 

TAP Task Administration Protocol 

D3 Module for estimating 
stress propagation 

TN True Negative 

D-AS Dynamic-Adaptive 
Search algorithm 

TP True Positive 

FN False Negative   
Variables 
A Adaptive search is 

activated 
p Probability that the 昀؀rst crop 

developed stress 
A(t) Agent at time t q Probability that stress 

propagates in a certain 
direction 

C Con昀؀ict   
CI Inspection operation 

cost 
R Rejection region 

CO Over-inspection cost R0 Critical ratio 
CU Under-inspection cost RI Infected ratio 
E Error S Crop has stress 
GH Gain from indicating 

a healthy plant 
S′ Crop does not have stress 

GS Gain from indicating 
stressed crop 

S(t) Integrated agent at time t 

m Current location TNR True Negative Ratio 
m∗ Optimal location TPR True Positive Ratio 
M Random variable of 

the current location 
Y(x′) Result from assumed 

parameters 
MG Monitoring Gain Y(x∗) Result from actual parameters 
NTN Total number of True 

Negative found 
α Type 1 error 

NTN+FN Total locations 
indicating healthy 
crops 

β Type 2 error 

NTP Total number of TP 
found 

γr(t) System constraint r at time t 

NTP+FP Total locations 
indicating stressed 
crops 

θA(t) State of agent A at time t 

NTP+FP+TN+TP Total number of 
inspections 

θS(t) State of integrated agent S at 
time t  
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3.2. The design of the Dynamic-Adaptive Search algorithm 

The D-AS aims to balance inspection costs with the bene昀؀ts of newly 
obtained data to improve the monitoring system’s economic ef昀؀ciency. 
The algorithm has three modules: namely, a module for image pro-
cessing based on AI (D1), a module for error-responsive search expansion 
(D2), and a module for estimating stress propagation (D3). D1 applies AI 
techniques to detect and assess crop stress. When stress is detected, 
further examination is required to identify its severity. D2 determines 
the optimal search progression, considering system errors and stress 
characteristics. D2 focuses on an error-responsive search approach, 
optimizing search progression, and reducing inspection costs. Lastly, D3 
indicates the direction of search advancement, following the D2. 

This section provides an explanation of D-AS of each module. 

3.2.1. Module for image processing based on AI (D1) 
The D1 inspects crops using a hyperspectral imaging system mounted 

on a robot with a manipulator. The Outlier Removal Auxiliary Classi昀؀er 
Generative Adversarial Network (OR-AC-GAN) developed by Wang et al. 
(2018, 2019) is employed to detect crop stress early through an AI-based 
technique. Hyperspectral imaging captures spectral information of crops 
at a high resolution, allowing to indicate the evaluation of crop status by 
detecting slight changes in spectrum features that may not be visible to 
the normal human eye. 

The OR-AC-GAN algorithm analyzes the data to detect abnormalities 
in the spectral signature of the crop, returning the condition and nature 
of stress, such as its potential to spread. 

In addition, the OR-AC-GAN is also developed to eliminate anoma-
lous data points with the objective of improving the accuracy of the 
algorithm to deliver a more precise crop status. The process of D1 for D- 
AS is shown in Fig. 1. 

The incorporation of AI methodologies, speci昀؀cally hyperspectral 
imaging with OR-AC-GAN, within D1, has the potential to improve the 
ef昀؀cacy of crop monitoring systems in the 昀؀eld of PA. Although OR-AC- 
GAN has the potential to enhance the precision of stress detection, it is 
not infallible and may still be susceptible to errors. Consequently, it is 
imperative that the subsequent module, a module for responsive search 

expansion (D2), be undertaken to ascertain and measure any inaccura-
cies in the detection procedure and enhance the precision of the D-AS. 

3.2.2. Module for error-responsive search expansion (D2) 

3.2.2.1. Analyzing errors in D-AS. In order to create an error-responsive 
search expansion module, it is necessary to comprehend the potential 
inaccuracies in D-AS that result from D1. This understanding will enable 
compensation for search progression in the presence of system errors. 
The null hypothesis of D1 is that the crop is in a state of health 
(H0 : Crop is healthy). Given this assumption, the system may incur two 
types of errors: Type 1 error (α) and Type 2 error (β). Fig. 2 illustrates the 
interrelationships and contextual factors of the errors within the system. 

Type 1 error (α) refers to the occurrence of a False Positive (FP). In 
the context of crop stress detection, this error arises when the D1 erro-
neously indicates the presence of stress in a crop, despite the absence of 
any actual stress. On the contrary, in the absence of stress in a particular 
crop, the D1 should indicate a True Negative (TN) outcome with com-
plete accuracy. Equation (3) illustrates the probability of Type 1 error 
within the D-AS. 
α=P(R|S′) (3)  

Where 
R = Rejection region (Reject the null hypothesis)

S′=Crop does not have stress 

Type 2 error (β), referred to as False Negative (FN), occurs when the 
D1 fails to identify stress in a crop despite the presence of stress. The D1 
should accurately indicate True Positive (TP) without any errors. 
Equation (4) illustrates the probability of Type 2 error. 
β= 1 − P(R|S) (4)  

Where 
R = Rejection region (Reject the null hypothesis)

Fig. 1. Module D1 for image processing based on AI.  
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S=Crop has stress 

Equation (5) presents the ef昀؀cacy of the D1 in detecting stress in a 
crop, commonly referred to as the system’s power. 
Power of monitoring system= 1 − β = P(R|S) (5) 

The utilization of Equations (3)–(5) has the potential to enhance the 
ef昀؀cacy of D1 in D-AS and provide direction for the creation of algo-
rithms that are more accurate and reliable. 

3.2.2.2. Cost of errors in D-AS. In the event of errors, there will be 
corresponding costs connected to each type of error. This section will 
discuss the Monitoring Gain (MG), the bene昀؀t of inspecting each crop, 
which will diminish with an increase in cost. Subsequently, the cost of 
errors is quanti昀؀ed. 

3.2.2.2.1. Monitoring Gain (MG). The outcome of the system is 
contingent upon the actions that are undertaken, resulting in either a net 
gain or loss. The concept of MG refers to the advantage that a system 
obtains from the acquisition of new information. The monitoring system 
comprises two categories of gain, namely the Gain from correctly 
identifying a stressed crop (GS) and the Gain from correctly identifying a 
healthy crop (GH). 

Accurately identifying a crop experiencing stress is advantageous for 
the system, as prompt treatment is necessary to avert any potential 
reduction in yield. Hence, it is reasonable to assume that the bene昀؀t 
derived from accurately identifying a crop under stress (GS) is greater 
than the bene昀؀t obtained from correctly identifying a healthy crop (GH), 
GS > GH. 

3.2.2.2.2. Cost of inspection. The D-AS is associated with three types 
of costs: Inspection operation cost, Over-inspection cost, and Under- 
inspection cost. The following sections explain each type of cost.  

1. Inspection operation cost 

In the inspection operation, there will be an Inspection operation 
cost (CI). Assuming the crop is in a state of good health, the system 
should minimize the operation cost, meaning not to operate. On the 
other hand, if a crop experiences stress, it is necessary for the system to 
conduct an inspection and identify the status and type of stress. Given 
the criticality of promptly treating the identi昀؀ed crop and preventing the 
propagation of stress to adjacent areas, it may be inferred that GS > CI >
GH. 

Furthermore, the occurrence of system errors (either Type 1 or Type 
2) will result in additional costs, which will be quanti昀؀ed as follows.  

2. Over-inspection cost 

The Over-inspection cost (CO) is an additional cost that arises when 
the system conducts an inspection of a crop without stress. 
Lemma 1. Type 1 error incurs the Over-inspection cost (CO) and the 
amount of CO is equal to α× CI. 

Proof: see Appendix A  

3. Under-inspection cost 

The Under-inspection cost (CU) is an incremental cost that arises 
when the system fails to conduct an inspection of a crop that is experi-
encing stress. 
Lemma 2. Type 2 error incurs the Under-inspection cost (CU) and the 
amount of CU is equal to β× CI. 

Proof: see Appendix B 

3.2.2.3. Optimal balancing of CO and CU. To achieve the optimal bal-
ance between CO and CU to maximize MG, Theorem 1 is proposed. 
Theorem 1. Optimal expansion of the responsive search: The optimal 
expansion of the responsive search is achieved when the search expands to the 
location m∗, where the cumulative distribution function (CDF) is greater than 
or equal to the critical ratio (R0), as calculated in Equation (6). 

P(M fm∗)=F(m∗)gR0 =
β

β + α
(6) 

Proof: see Appendix C 
The critical ratio, R0, can be determined through Equation (6), which 

involves dividing Type 2 error by the sum of Type 1 and Type 2 errors. 
Hence, the preferred, optimal expansion is to progress the search toward 
the 昀؀rst m crops, stop at the crop m∗, where the cumulative distribution 
function (CDF), denoted as F(m∗), attains a value greater than or equal to 
the critical ratio, R0. 

It is noteworthy that Theorem 1 presents an optimal procedure for the 
balance of inspection costs and the maximization of MG, which represents 
the crop’s information. Therefore, the D2 is designed to limit the search 
expansion to crops with a high probability of stress detection while 
simultaneously minimizing the costs associated with both CO and CU. 

Fig. 2. Type of errors of D-AS.  
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3.2.2.4. Error-responsive search expansion algorithm. The responsive 
search expansion algorithm is formulated based on Theorem 1 and is 
presented as Algorithm 1.   

Algorithm 1 : Error− responsive search expansion algorithm 
1. Initialize 
2. Parameters 
3. m←1,R←0 
4. Calculate critical ratio (R0)
5. FOR each starting location (m = 1) in monitoring plan DO 
6. Inspect the first location 
7. IF m has stress DO 
8. R = R+ P(the first crop has stress)
9. WHILE R f R0 DO 
10. m = m+ 1 
11. Inspect m 
12. R = R+ P(m crop has stress )
13. END WHILE 
14. END IF 
15. END FOR 
16. Terminate Algorithm  

3.2.3. Module for estimating stress propagation (D3) 
For the D2 module to perform effectively, it is necessary to compute 

the CDF of stress propagation. Building on Nguyen et al. (2022) about 
stress propagation direction, the following section outlines the algo-
rithmic approach to accomplish the CDF required by D2. 
Lemma 3. Environmental conditions can cause stress in crops, which can 
subsequently propagate to adjacent areas of crops in particular directions. 
This propagation is in昀؀uenced by several factors, including sunlight, 
geographic location, season, air昀؀ow, and the type of stress, as determined by 
experts in plant pathology. 

Theorem 2. Crop Stress Probability Estimation Model: The probability of 
stress propagating from the initial crop to a maximum of m crops, under the 
condition that crops located away from the 昀؀rst crop are susceptible to stress 
from the initial crop, can be expressed as Equation (7). 

P(At most m crops are stressed)=P(M fm)=

{

1 − pqm;m g 0

0; otherwise
(7)  

Where 
p is probability that the 昀؀rst crop developed stress. 
q is probability that the stress propagates in a certain direction. 
Proof: see Appendix D 
Note: p and q, which are necessary for Equation (7) are obtained 

from the D1 module. Moreover, Algorithm 2 can be utilized to generate 
the CDF.   

Algorithm 2 : CDF generation algorithm for plant stress propagation 
1. Initialize 
2. Parameter 
3. m←Current location 
4. Calculate P(Mf m) according to Equation (7)
5. Return P(Mf m)

6. Terminate Algorithm   

3.2.4. Dynamic-Adaptive Search algorithm (D-AS) 
The D-AS is explained in detail in this section. The proposed meth-

odology involves the integration of three modules: 1) Module for image 
processing based on AI (D1), 2) Module for error-responsive search 
expansion (D2), and 3) Module for estimating stress propagation (D3), 

Fig. 3. Dynamic-Adaptive Search algorithm.  
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employing a cyber-collaborative approach derived from the Task 
Administration Protocol (TAP). The D-AS is depicted in Fig. 3. 

3.3. Integration of D-AS in crop monitoring system for precision 
agriculture 

Incorporating D-AS into the PA monitoring system can potentially 
improve the system’s accuracy and ef昀؀cacy. To perform smoothly, it is 
required to establish a connection between D-AS and other agents, such 
as the hyperspectral imaging system mounted on a robot, a robot 
manipulator, and human agents. The hyperspectral imaging system in-
puts high-resolution spectral data of crops to D1 of D-AS to identify any 
abnormalities in the crops. 

In the event that stress is detected, D1 will send the information and 
trigger the D2, which is tasked with determining the optimal search 
expansion of the system and reacts via a robot manipulator. The 
development of D2 involved an examination of the error analysis and 
stress characteristics (from D1) to ascertain the requisite level of search 
expansion necessary to investigate stress severity and timely mitigate 
potential harm to the crops. The stress propagation estimation module, 
denoted as D3, can be utilized to compute the probability of stress 
propagation. 

The implementation of D-AS can offer valuable guidance to farmers 
regarding the appropriate measures to take in order to mitigate the 
issue, thus preventing its escalation and consequential harm to the crop. 
Additionally, D-AS has the capability to engage with human agents to 
receive input on the system’s performance and adjust the parameters of 
D-AS accordingly, leveraging their specialized knowledge and practical 
know-how. The incorporation of D-AS alongside other agents can 
enhance the agility and adaptability of the monitoring system, facili-
tating prompt responses to varying conditions and streamlining the crop 
monitoring procedure. 

4. Experimental results and analysis 

This section outlines the design of the computational experiments 
and outcomes analyzed by computer simulations to assess the ef昀؀cacy of 
the D-AS. Compared to other available crop monitoring methods, the 
experiments focus on the comparative analysis of the performance and 
cost associated with D-AS. Furthermore, a sensitivity analysis is per-
formed to assess the algorithms’ sensitivity. 

4.1. Experimental setting 

The experiments, in each run, involved 100 crops to inspect from 
monitoring plan, randomly selected from those in a greenhouse. Upon 
the discovery of each crop’s status, one of the search algorithms outlined 
in Section 4.2 was implemented. Results from implementation of the 
search algorithm is measured for analyzing its performance. The ex-
periment’s simulation parameters are summarized in Table 1. 

4.2. Search algorithm alternatives 

The experiment evaluates the ef昀؀cacy of the developed D-AS in 
comparison to alternative policies such as Static-Adaptive Search (S-AS), 

Always Search, and No Search. The initial two search methodologies are 
classi昀؀ed as adaptive, whereas the last two alternatives are categorized 
as non-adaptive. A detailed description of each search algorithm is 
presented below. 

4.2.1. Dynamic-Adaptive Search 
As developed in the methodology section, the D-AS aims to enhance 

the crop monitoring system. The algorithm considers the errors and cost 
of inspections and modi昀؀es its search progression in response to new 
information. The algorithm has been explained in Section 3 and visually 
represented in Fig. 3. 

4.2.2. Static-Adaptive Search 
The Static-Adaptive Search algorithm (S-AS), as proposed by Dusa-

deerungsikul and Nof (2019), has been modi昀؀ed to integrate 
knowledge-based information to prioritize particular directions for in-
spection. Although the algorithm has the ability to adjust to new data, 
the sequence of searches is established in advance according to the 
existing knowledge. The S-AS is presented in Algorithm 3.  

Algorithm 3 : Statics adaptive search algorithm 
1. Initialize 
2. Parameter 
3. FOR each starting location (m = 1) in monitoring plan DO 
4. Inspect the first location 
5. IF m is infected DO 
6. Inspect m+ 1,m+ 2,and m+ 3 
7. Calculate infected ratio (RI) = #infected crops/#inspections 
8. IF RI > Predetermined threshold DO 
9. Inspect m+ 4 and m+ 5 
10. END IF 
11. END IF 
12. END FOR  

4.2.3. Always Search 
The Always Search algorithm is an algorithm that functions in the 

absence of real-time data. The system possesses pre-existing scienti昀؀c 
knowledge regarding the expected directions of stress propagation. As a 
result, the algorithm will always explore a speci昀؀c direction to acquire 
maximal information.   

Algorithm 4 : Always Search algorithm 
1. Initialize 
2. Parameter 
3. FOR each starting location (m = 1)in monitoring plan DO 
4. Inspect m,m+ 1,m+ 2,m+ 3,m+ 4,and m+ 5 
5. END FOR  

4.2.4. No Search 
The No Search algorithm is an illustration of the currently typical 

practice employed by farmers. The procedure lacks the incorporation of 
knowledge-based information, resulting in workers solely examining 
only random crops in accordance with the monitoring plan without 
expanding further. Algorithm 5 presents the No Search algorithm.   

Algorithm 5 : No Search algorithm 
1. Initialize 
2. Parameter 
3. FOR each starting location (m = 1)in monitoring plan DO 
4. Inspect m 
5. END FOR  

4.3. Computational experiments and results 

4.3.1. System performance analysis 
This section will assess system performance by means of computer 

simulation experiments. The system performance is measured through 
the utilization of two ratios, namely the True Positive Ratio (TPR) and 
True Negative Ratio (TNR). 

Table 1 
Summary of parameter settings.  

Parameter Value 
Number of simulations runs 100 
Type 1 error α = 5% 
Type 2 error β = 35% 
Gain from indicating a healthy crop GS = 10 cost unit/location 
Gain from indicating stress in crop GH = 3 cost unit/location 
Inspection cost CI = 5 cost unit/location  
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4.3.1.1. True Positive Ratio. The True Positive Ratio (TPR) denotes the 
ratio of correctly identi昀؀ed positive instances (i.e., stressed crops) to the 
total number of instances that are identi昀؀ed as positive, including both 
TP and FP. A system that delivers a higher TPR is regarded as superior. 
Equation (8) can be utilized to calculate TPR. 

TPR=
NTP

NTP+FP

(8)  

Where 
NTP =Total number of True Positive found  

NTP+FP =Total locations indicating as stressed crop (both TP and FP)

4.3.1.2. True Negative Ratio. The True Negative Ratio (TNR) metric 
quanti昀؀es the proportion of correctly identi昀؀ed negative instances (i.e., 
healthy crops) relative to the total number of negative instances (i.e., 
both TN and FN). A system that delivers a higher TNR is more desirable 
as it accurately detects non-stressed crops without falsely indicating 
them as stressed. Equation (9) can be utilized to compute TNR. 

TNR=
NTN

NTN+FN

(9)  

Where 
NTN =Total number of True Negative found 

Fig. 4. Experiment results for the performance analysis (TPR).  

Fig. 5. Experiment results for the performance analysis (TNR).  
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NTN+FN =Total locations indicating a healthy crop (both TN and FN)

4.3.1.3. Experiment results. In terms of TPR, the results demonstrate 
that the D-AS generally performs signi昀؀cantly better than other ap-
proaches, while TNR outcomes are similar among different algorithms. 

The ANOVA and Tukey HSD Post-hoc Test outcomes are displayed in 
Figs. 4 and 5. The results show that D-AS outperforms (or performs as 
good as) in comparison to other alternatives with a 99% con昀؀dence 
level, except in some cases. For instance, in situations where stress 
generation or propagation chances are low, such as p or q equal to 30%, 
TPR from the D-AS and the No Search algorithm are not statistically 
different, while both algorithms still perform signi昀؀cantly better than 
other alternatives. In this case, however, when TNR is a concern, the 
Always Search algorithm outperforms other methods with a con昀؀dence 
level of 99%. 

Furthermore, when the stress is easily generated or propagated, such 
as when p or q equals 90%, the No Search algorithm delivers a statisti-
cally better TPR than other algorithms with 99% con昀؀dence, while the 
D-AS and the S-AS deliver no statistical difference from each other. 
When considering TNR, however, the No Search algorithm yields the 
lowest performance than alternatives. 

The 昀؀ndings lead to the conclusion that the D-AS adapts the search 
process following the various inputs, producing an optimal search 
strategy in each case, balancing TPR and TNR. For instance, the D-AS has 
adapted itself to the No Search algorithm in scenarios when the disease 
generation or propagation rate is low. The D-AS, however, advances the 
search further to improve the performances when facing a disease with 
high generation or propagation rate. 

4.3.2. Cost analysis 
This section presents an assessment of the cost-effectiveness of D-AS 

in comparison to alternatives, utilizing the Monitoring Gain (MG) 
metric. The computer simulation experiments are conducted to assess 
the algorithms, which are implemented and applied for analysis. 

4.3.2.1. Monitoring Gain (MG). The MG quanti昀؀es the net bene昀؀t of 
acquiring additional information through an expanded search, consid-
ering the associated operation costs. Gaining new data about the current 

state of the crop is typically bene昀؀cial to the monitoring system. 
Nonetheless, it increases system expenses due to the operation and in-
spection costs. The MG captures the bene昀؀ts gained or lost by inspecting 
an additional location. Therefore, the system with a greater MG is 
favored. The MG can be computed utilizing Equation (10). 
MG=(GSNTP +GHNTN) − CINTP+FP+TN+TP (10)  

Where 
GS =Gain from indicating a stressed crop  

NTP =Total number of True Positive found  

GH =Gain from indicating a healthy crop  

NTN =Total number of True Negative found  

CI = Inspection ​ operation cost  

NTP+FP+TN+TP =Total number of inspections  

4.3.2.2. Experiment results. The 昀؀ndings of the cost analysis experi-
ments, which aimed to compare the cost-effectiveness of D-AS relative to 
other search algorithms, are displayed in Fig. 6. In the majority of cases, 
the D-AS shows superior performance. The study employed statistical 
tests, i.e., ANOVA and Tukey HSD Post-hoc Test, to examine the statis-
tical differences among the search algorithms. Fig. 6 displays the 昀؀nd-
ings, revealing that the D-AS delivers MG that is statistically higher or 
equal to the remaining algorithms, with a con昀؀dence level of 99%. 

Nonetheless, when the stress propagation rate (q) is at a low value, 
there is no statistically signi昀؀cant difference between the MG of D-AS 
and the No Search algorithm. The results could be attributed to the 
similarity in behavior between D-AS and the No Search algorithm under 
conditions of low stress propagation rate. The rationale behind this 
approach is that if stress propagation is limited, the algorithm should 
refrain from expanding to adjacent locations despite the initial indica-
tion of stress, as the potential cost of expansion may outweigh the ex-
pected bene昀؀ts. 

In contrast, the Always Search algorithm exhibited the lowest MG, 
plausibly attributable to its practice of examining additional locations 

Fig. 6. Experiment results for the cost analysis (MG).  
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irrespective of the crop’s condition. Therefore, the Always Search al-
gorithm is considered as expensive and yields the lowest MG. 

4.3.3. Sensitivity analysis 
This section conducts the sensitivity analysis of the D-AS algorithm, 

in contrast to other alternatives, under various conditions. The sensi-
tivity of algorithms is crucial for algorithms that work in agricultural 
systems, because of the inherent uncertainty and susceptibility to 昀؀uc-
tuations (Itoh et al., 2003). An algorithm that exhibits less sensitivity to 
parameter variations is considered a favorable alternative. 

The experiments involve the manipulation of four parameters (i.e., p, 
q, α, and β) in order to investigate the changes in performance and cost 
metrics. The sensitivity is de昀؀ned as the ratio of the result obtained from 
the assumed parameters (Y(x′)) to the result from the actual parameters 
(Y(x∗)), as presented in Equation (11). The analysis is conducted in 
scenarios where the conditions differ from the assumptions outlined in 
Table 1. 

Sensitivity=
Y(x′)

Y(x∗)
(11)  

Where 
Y(x′)=Result from assumed parameters  

Y(x∗)=Result from actual parameters  

4.3.3.1. Experiment results. Fig. 7 through 10 display the outcomes of 
the sensitivity analysis conducted on search algorithms, in response to 
昀؀uctuations in the parameter values of p, q, α, and β. The parameter 
deviations range from 10% to 25%. 

The results indicate that the D-AS is relatively insensitive and yields 
outcomes that deviate by no more than 10% from the optimal setting. 
This 昀؀nding implies that D-AS yields near-optimal results even in situ-

Fig. 7. Sensitivity analysis 1.  

Fig. 8. Sensitivity analysis 2.  
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ations with input uncertainty. In contrast, the remaining algorithms 
exhibit a higher degree of sensitivity towards variations in the param-
eters, compared to D-AS. The Always Search algorithm shows the 
highest sensitivity compared to other alternatives, particularly when the 
values of p and q are lower than the assumed parameters. 

5. Conclusions and discussion 

PA is a relatively new agricultural methodology that seeks to opti-
mize the ef昀؀ciency of the agricultural system, thus enhancing economic 
performance and elevating the level of food security; both of which have 
recently gained signi昀؀cant attention. A crucial aspect of PA relies on the 
effective management of crop stress, as untreated stress can potentially 
escalate into disease and result in irreparable consequences. 

To address the issue, this research develops an AI-based, dynamic 

and responsive search algorithm, D-AS. The D-AS is designed to enhance 
the monitoring process by focusing on high-potential stressed locations 
and balancing operation cost and information gain. D-AS is comprised of 
three main modules: 1) Module for image processing based on AI (D1), 2) 
Module for error-responsive search expansion (D2), and 3) Module for 
estimating stress propagation (D3). 

The performance of D-AS has been validated with computer simu-
lation experiments and compared against other algorithms. The 昀؀ndings 
indicate that the D-AS exhibits superior abilities compared to other al-
gorithms, demonstrating relatively higher performance and cost- 
effectiveness. The D-AS shows adaptability in response to varying 
stress characteristics, adjusting its behavior according to how easily or 
scarcely stress can develop and propagate. For example, in situations 
where stress is unlikely to develop or propagate, the D-AS adapts itself 
by not progressing the search to nearby locations. On the other hand, 

Fig. 9. Sensitivity analysis 3.  

Fig. 10. Sensitivity analysis 4.  
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when stress does propagate, D-AS progresses the search further to obtain 
more information. Furthermore, sensitivity analysis reveals that when 
parameters deviate from assumptions, the D-AS can still generate nearly 
optimal solutions, providing reassurance for its economic effectiveness. 
This insensitive ability to parameters actual deviations, based on the AI 
support, is desirable in an agricultural system that is unstructured and 
uncertain by nature. 

The D-AS balances costs incurred during inspection, and the bene昀؀ts 
of acquiring new information. The algorithm presents a promising so-
lution for enhancing the economic ef昀؀ciency of agricultural systems. Its 
ability to optimize costs, improve resource allocation, and mitigate 
losses holds substantial potential for increasing pro昀؀tability and 
ensuring long-term sustainability in the farming industry. The algorithm 
can be employed by farmers and engineers through integration with 
agricultural robotic systems, such as the system developed by Dusa-
deerungsikul and Nof (2019), in order to enhance the system’s overall 
performance. 

Scholars may pursue future research in this domain by exploring the 
three following directions.  

1. Multi-directional stress propagation: This study focused on the 
propagation of stress in a single direction, whereas multi-directional 
stress propagation was not taken into account. Subsequent in-
vestigations may study the propagation of stress in various directions 
to more accurately depict the attributes of crops for multiple stress 
propagation directions.  

2. Different system objectives: In this study, the algorithm aimed to 
balance the cost of inspection with the bene昀؀ts of acquiring new 
information. Further investigation may examine different algorithm 
goals, such as maximizing the precision of stress identi昀؀cation, 
minimizing the duration of inspection, or minimizing total energy 
consumption.  

3. Consideration of system con昀؀icts: The present investigation focused 
on errors that occur during the inspection process. Researchers may 
explore other plausible con昀؀icts within the agricultural system, such 
as con昀؀icting agents, to investigate the factors that could affect the 
monitoring procedure. 
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Appendix A. Proof of Lemma 1 (Over-inspection cost) 

At each location where a crop does not have stress, the additional cost of an inspection is equal to 
CO =P(A | S′) × CI (A.1)  

Where 
A=Adaptive search is activated  

S′ =Crop does not have stress 

By de昀؀nition, P(Adaptive search is activated | Crop does not have stress) is Type 1 error. 
CO = α × CI (A.2)  

∎  

Appendix B. Proof of Lemma 2 (Under-inspection cost) 

At each location where a crop has stress, the cost of not progressing the search is equal to: 
CU =(1 − P(A | S)) × CI (B.1)  

Where 
A=Adaptive search is activated  

S=Crop has stress 

P.O. Dusadeerungsikul and S.Y. Nof                                                                                                                                                                                                        



International Journal of Production Economics 271 (2024) 109204

13

By de昀؀nition, 1 − P(Adaptive search is activated | Crop has stress) is Type 2 error. 
CU = β × CI (B.2)  
∎  

Appendix C. Proof of Theorem 1 (Optimal Expansion of Dynamic-Adaptive Search) 

At location m, the algorithm should progress to inspect location m + 1 if the expected Over-inspection cost is lower than the expected Under- 
inspection cost, which can be formulated as follows: 
P(M fm)×CO <P(M >m) × CU 

Moreover, the algorithm should stop inspection progression at m∗ which is the optimal location when the expected Under-inspection cost and 
expected Over-inspection cost are equal, which can be written as follows: 
P(M fm∗)×CO =P(M >m∗) × CU 

From Lemma 1 and Lemma 2, 
P(M fm∗)×α×CI =P(M >m∗)× β × CI  

P(M fm∗)×α=P(M >m∗) × β  

P(M fm∗)×α=(1 − P(M fm∗)) × β  

F(m∗)=P(M fm∗)=
β

α + β
(C.1)  

∎  

Appendix D. Proof of Theorem 2 (Crop Stress Probability Estimation Model) 

Based on Lemma 3 and Figure D.1, a given stress can be modeled as follow.

Fig. D.1. Stress propagation.  

Let p denote the probability that the 昀؀rst crop developed a disease; q is the probability of the stress propagating in a certain direction. Therefore, the 
probability that stress propagates to crop m, P(M = m), is shown in Table D.1.  

Table D.1 
Probability that disease propagates to crop m  

P(M = m) Probability that stress propagates to crop m 
M = 0 (1− p)
M = 1 p(1− q)
M = 2 pq(1− q)
M = 3 pq2(1− q)
… … 

M = m pqm−1(1− q)
… …  

To calculate CDF, P(Mf m), consider: 
P(M fm)= 1 − P(M gm+ 1)
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= 1 −
(

pqm(1 − q)+ pqm+1(1 − q)+ pqm+2(1 − q)+…
)

= 1 − pqm(1 − q)
(

1+ q+ q2 +…
)

= 1 − pqm(1 − q)

(

1

1 − q

)

= 1 − pqm 

Therefore, 

P(X fm)=

{

1 − pqm;m g 0

0; otherwise
(D.1)  

∎  
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