
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tprs20

International Journal of Production Research

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tprs20

Multi-agent system optimisation in factories of the
future: cyber collaborative warehouse study

Puwadol Oak Dusadeerungsikul, Xiang He, Maitreya Sreeram & Shimon Y.
Nof

To cite this article: Puwadol Oak Dusadeerungsikul, Xiang He, Maitreya Sreeram & Shimon
Y. Nof (2022) Multi-agent system optimisation in factories of the future: cyber collaborative
warehouse study, International Journal of Production Research, 60:20, 6072-6086, DOI:
10.1080/00207543.2021.1979680

To link to this article:  https://doi.org/10.1080/00207543.2021.1979680

Published online: 11 Oct 2021.

Submit your article to this journal 

Article views: 727

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

2022, VOL. 60, NO. 20, 6072–6086

https://doi.org/10.1080/00207543.2021.1979680

Multi-agent system optimisation in factories of the future: cyber collaborative
warehouse study

Puwadol Oak Dusadeerungsikul, Xiang He, Maitreya Sreeram and Shimon Y. Nof

PRISM Center and School of Industrial Engineering, Purdue University, West Lafayette, IN, USA

ABSTRACT

The rapid advancement of technologies leading to automation 5.0 has challenged manufacturers
preparing for factories of the future, including warehouses, which are considered a key element in
supply chains. Because of technologies such as warehouse robots, Internet of Things, Internet of
Services, and cyber-augmented collaboration, the traditional warehouse system structure has been
changed, improving its performances significantly. The challenges, however, are how to design a
system with multi-agents and technologies to reach maximum potential. In this study, a new col-
laborative workflow protocol for cyber collaborative warehouse, called Collaboration Requirement
Planning protocol for HUB-CI (CRP-H), is developed for optimising the collaborative workflow of
a warehouse multi-agent system. The two phases of CRP-H are designed to answer questions: (1)
Which robot(s) should execute which task? and (2) When should this task be executed? Results show
(with statistical significance) that under CRP-H, total operational cost reduces by 11.84%, and total
weighted completion time reduces by 37.11%.When the systemhas unplanned requests, CRP-H can
still reduce total operational cost by 5.70% and total weighted completion time by 10.11%. Lastly,
CRP-H,which enables ahuman input integrated into thedesign, can also reduce the total operational
cost even when critical information is missing.
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C2W cyber collaborative warehouse

CCT collaborative control theory

CRM collaboration requirement matrix

CRP collaboration requirement planning

CRP-H collaboration requirement planning proto-

col for HUB-CI

CRS collaborative robot schedule

FoF factories of the future

HUB-CI HUB for collaborative intelligence

IoT/IoS Internet of things and internet of services

MRTA multi-robot tasks allocation

TAP task administration protocol

UR unplanned request

VIPO visual programming

WSPT weighted shortest processing time orst

Variables

∆Cost cost saving

∆Time time saving
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γ total weighted completion time of all pack-

age except i and i′

CCRP−H total operational cost from CRP-H

CBasedline total operational cost from the baseline

procedure

Cmax makespan

C∗
max optimal makespan

Cij cost for package i is stored by a robot of

robot team j

K maximum loading factor

N number of packages

Np number of job in package p

pi processing time of package i

R number of robot or robot team

Rj robot j

S, S′ schedule

WCRP−H total weighted completion time fromCRP-

H

WBasedline total weighted completion time from base-

line procedure

xij indicator of package i is executed by a

robot or robot team j

yit indicator of package i start at time t
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1. Introduction

Currently, humanity is at an early stage of a massive

convergence of technologies. This convergence of tech-

nologies can afect the design and implementation of

Factories of the Future (FoF), including warehouses and

distribution centres. Warehouses and distribution cen-

tres have been considered as an important element in

supply chain which needs to address perspectives and

features including next-generation agility and adaptabil-

ity to market demands, modular and connected systems,

learning and intelligent agents, treating data as an asset,

virtual system models, and digital supply chain visibility

(Tate 2018). Therefore, the competitiveness of compa-

nies in the globalised supply chain would depend upon

how well they address these features, characteristics, and

challenges.

In this article, a study of the Cyber Collaborative

Warehouse (C2W) operations is examined. Robots have

been utilised in warehouses to execute tasks such as

picking, packing, storing, and retrieving packages. While

there have been policies designed for optimising rout-

ing decisions for a single robot in a smart warehouse

(He, Aggarwal, and Nof 2018), there is limited literature

onmulti-robot task allocation and scheduling.Moreover,

Internet of Things and Internet of Services (IoT/IoS)

devices will be the important elements in the future ware-

house as they canminimise data collection and validation

time (Cao et al. 2019). Without a model to manage mas-

sive data generated in real-time by IoT/IoS, and to opti-

mise and harmonise system agents, the system will work

inefectively.

To accomplish the above objective, a Collaboration

Requirement Planning protocol for HUB-CI (CRP-H)

is designed, developed, and validated in this research.

HUB-CI is a hub for Collaborative Intelligence, inspired

by CCT, the Collaborative Control Theory (Nof 2007;

Nof et al. 2015), and has been introduced and developed

at the Purdue PRISM Center since 2008 (Devadasan,

Zhong, and Nof 2013; Zhong,Wachs, and Nof 2014; Nair

2019). HUB-CI is a brain-inspired model for address-

ing problems in agents9 collaboration and data manage-

ment. Its objective is to manage massive information

exchanges among distributed agents in real-time. Based

on the current information and intelligence, it can opti-

mise and harmonise operations instructed by human

operators. This hub is designed to receive commands

from human agents via a user interface and develop

a plan for robots that are managed by executive mid-

dleware. A CRP-H, which manages local information

obtained from systemagents (humans, robots, warehouse

shelves, etc.), enables collaboration among agents in the

system.

The contribution of the research is the develop-

ment of a new protocol for C2W enhancing the abil-

ity of HUB-CI. Moreover, an algorithm for scheduling

multi-robot collaboration, called Collaborative Robots

Scheduling (CRS), is developed to support the newproto-

col. Two theorems that ensure the system9s performance

are proven in this article. Lastly, the design analysis shows

the beneot of implementing the original concept of C2W

compared to current practices.

In this article, Section 2 summarises the background

and previous work related to the problem. Section 3

deones the characteristics of C2W, and Section 4, to solve

the problem, presents the design of CRP-H. Section 5

discusses the experiment conducted to validate the per-

formance of CRP-H and summarises the results. Finally,

Section 6 discusses the conclusion and future research

directions.

2. Literature review

In order to improve the performance of warehouse oper-

ation, robots have been utilised for tasks such as stor-

age and retrieval. Such warehouse operation is a criti-

cal value-adding activity in the supply chain to attain

excellence in terms of customer service, lead times, and

cost (Liu, Yu, and Liu 2006). With increasing inter-

action and collaboration between agents (e.g. robots),

there is a growing demand for real-time e-services

for communication and information validation. Intel-

ligent agents for future warehouse operation, such as

autonomous robots, must be able to process informa-

tion and decisions from their environment, share the

worknows with their peers to overcome dioculties due

to shortage and lateness of data, improve eociency by

integrating real-time information (Wang, Chen, and Xie

2010) and decrease work-related errors and connicts in

systems.

The primary motivation for adopting multi-robot

control in warehouse is the possibility of reducing pro-

duction costs by having robots working faster and in

parallel (Brogårdh 2007), and in overall work tasks and

resource collaboration (Nof 1999). Collaborative work

has been proven to reduce processing time, enable bet-

ter task assignment and performance allocation, and

thus improves the eociency, timeliness, and quality of

operations. Instead of having a single, powerful, and

complicated robot, a group of small yet simple robots

is easier to implement (Khamis, Hussein, and Elmogy

2015) and yields superior performance (Nof et al. 2015).

When collaborating machine sets share the same func-

tionality, the overlap of machine capability introduces

backup resources to the system. The beneot is especially
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signiocant at process bottlenecks, in which cases a sin-

gle failure can disrupt the entire worknow. Moreover,

the overlap of machine capability through collaboration

adds another dimension of nexibility due to the addi-

tional tasks that can be performed by the collaborating

machine set (Rajan and Nof 1996). Importantly, hav-

ing multiple small and simple robots can be cheaper to

implement than having a single powerful and compli-

cated robot (Nof 2007; Khamis, Hussein, and Elmogy

2015).

In Part 12, Robotics Terminology, of the Handbook

of Industrial Robotics (Nof 1999) deones a Collabo-

rative Multi-Robot System as a system where robots

exploit the ability to complete tasks independently or

through collaboration. In such systems, tasks such as

storing packages in warehouse can be assigned either to

individual robots or collaborative teams of robots with

enhanced capabilities (Ceroni and Nof 1999). The chal-

lenging problem in a collaborative multi-robot system

is the Multi-Robot Task Allocation (MRTA) problem,

especially when it comes to heterogeneous, unreliable

robots equipped with diferent types of sensors and actu-

ators (Khamis, Hussein, and Elmogy 2015). This prob-

lem can be seen as onding the task-to-robot assignment

to achieve the overall system goals. The following chal-

lenges, therefore, need to be addressed when designing a

solution to an MRTA problem (Parker 1999): (1) How to

assign a set of tasks to a set of robots? (2) How the robot

teaming is coordinated eociently and reliably? (3) How

tomake the robot teams adapt autonomously to dynamic

changes in the environment?

To systematically address and solve the challenges,

there are several collaborative tools designed for oper-

ation, knowledge, and information sharing (Durugbo

2016; Zhong et al. 2015). Task Administration Protocol

(TAP) (e.g. Nof et al. 2015; Tkach, Edan, and Nof 2017),

HUB-CI (e.g. Zhong, Wachs, and Nof 2014; Nair 2019),

and Collaboration Requirement Planning (CRP) (e.g.

Rajan and Nof 1996; Velásquez and Nof 2008) are among

key tools that shown promise results. TAP is the work-

now optimisation protocol for managing a multi-agent

system. HUB-CI, as extended in this work to optimise

and harmonise agent actions across domains, is a tool

designed for cyber-augmented collaboration between

physical and virtual agents, while previous HUBs were

limited to virtual interactions between agents (McLennan

and Kennell 2010). Lastly, CRP is a hierarchical decision-

support strategy for the collaborativemulti-robot system.

CRP is the process of generating a consistent and coor-

dinated global execution plan for a set of tasks to be

completed by a multi-agent system based on the task col-

laboration requirements and interactions (Rajan and Nof

1996).

While there is considerable work relating to multi-

robot collaboration, the design of the warehouse to sup-

port automation 5.0 has been far less studied. To sup-

port automation 5.0, a new approach that can incorpo-

rate new technologies to improve service level and min-

imise operational cost is necessary. Hence, the C2W is

orst deoned for supporting future supply chain systems.

Then, an original approach based on the combination of

TAP, HUB-CI, and CRP is proposed for improving and

collaborating operations in C2W.

3. Problem description: the cyber collaborative
warehouse (C2W)

The main operations in a warehouse are package storage

and retrieval (Bartholdi and Hackman 2008). Storage is

the process of putting-away items to storage locations;

Retrieval is the process of items picking process from

their storage location. Because of the symmetry, in this

article, only storage operations are discussed.

Moreover, the objectives of the C2W are not only to

store all the packages with minimum cost but to pro-

vide nexibility for responding to new requests. Multiple

robots with diferent capabilities are selected to work in

C2W as it allows more nexibility and cost-efectiveness

at the same time. In C2W, new information is collected

continuously via IoT/IoS devices. Also, packages difer

by their relative priorities. For example, higher priority

packages can have more critical time constraints than

regular priority packages.

For the rest of the article, the following model is

used: The C2W contains two unique types of robots:

R1 andR2. Hence, there are three possible robot team-

ing options:R1, R2, and R1 + R2. Moreover, to renect the

reality, R1, R2, and R1 + R2 have diferent cost and capa-

bility to store packages. Two types of C2W operations

are (1) Planned operation and (2) Unplanned operation,

categorised based on whether the arrival of an opera-

tional request is planned or unplanned. Also, ove package

types in C2W are distinguished based on either robot or

team9s ability to accomplish them. The following sections

explain the operational types and task types as well as

cost/time associated with them.

3.1. C2Woperational types

Planned operation and Unplanned operation are the two

types of operations in C2W. Because of the dynamic

environment in warehouses, not every operation can be

scheduled in advance. There is a high potential to receive

additional requests during a normal operational process.

Hence, the warehouse must be able to deal with each

unplanned request. The details for each operational type

are as follows.
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(1) Planned operation. Under normal operation, the oper-

ation starts with a receipt of the task list, indicating

the type of package, storage location, and priority.

The task list is a list of packages to store, usually

received in advance according to truck schedule and

material planning. The type of package information

specioes the handling procedure, indicating which

type and number of robot(s) are required. The stor-

age location is the destination of the package within

the warehouse. Naturally, the farther the distance

of the storage location from the receiving dock,

there will be higher operational cost and longer time

required. Lastly, the priority value of a given package

indicates its priority of storage. The packages with

higher priority need to be processed earlier than

others.

(2) Unplanned operation. During a storage process, the

system may receive additional operations, called

Unplanned Requests (UR). The UR must be inte-

grated into the current plan to complete all tasks.

Typically, re-optimising the entire array of the

remaining tasks along with the UR would pro-

vide the best results. However, given that the re-

optimising process usually comes with additional

cost and time, the C2W should have the decision

support systems in place to ensure that an entire

schedule re-optimisation is not required.

3.2. C2Wpackage types

In the operational process (either Planned or Unplanned

operation), there are ove possible types of packages

based on specioc robot handling capabilities, which are

explained as follows.

Type 1. No-bottleneck: The simplest package, which

can be executed by eitherR1,R2 or the collaborative team,

(R1 + R2). This is the most common package type in

warehouses.

Type 2. Robot 1 is critical: R1 is necessary for storing

this package. The storage can either be completed by R1

or by the collaborative team, (R1 + R2).

Type 3. Robot 2 is critical: Similar to Type 2, R2 is nec-

essary for storing this package. The storage can either be

completed by R2 or by the collaborative team, (R1 + R2).

Type 4. Mandatory: The package requires both robots

(R1 + R2) working but cannot be accomplished by either

individual robot. Example: Large or heavy package(s)

which cannot be carried by either robot alone, but can

be carried when they work collaboratively.

Type 5. Optional: The storage of this package can be

executed by either R1 or R2 individually, but not col-

laboratively as a team. Examples: Package(s) where the

storage location has space constraints such as narrow

aisles, where either single robot can path.

3.3. Operational cost and time

The cost (and time) to execute each operation by the

robots or their collaborative teams is deoned by the Col-

laboration Requirement Matrix (CRM). As an assump-

tion, individual robot execution cost (and time) is strictly

cheaper (and slower) than when executed by a team.

CRM contains cij which represent cost for package i

stored by robot (or team) j. For package types 1, 2, and

3, if a robot team stores a package, the operational cost

is the total operational costs executed by each individual

robot, which is strictly higher.

4. Proposedmethodology

In this section, the approach, called Collaboration

Requirement Planning protocol for HUB-CI (CRP-

H), is discussed. The CRP-H improves from work by

Dusadeerungsikul et al. (2019). The objective of CRP-

H is to increase warehouse9s performance by applying

cyber collaboration to the system for synchronising sys-

tem agents. The proposed approach is as follows.

4.1. Cyber collaborative warehouse system

architecture

The C2W system has three main agents; human opera-

tors, robots, and warehouse shelves (indicated by IoT/IoS

devices). The system receives input from human oper-

ators via a spatial-visual programming software called

VIPO (Huang et al. 2020). VIPO allows human operators

to input information to the system in the spatial con-

text within an interface, which canminimise the learning

time. Also, with VIPO, human (as an intelligence agent)

can oll in missing information (Dusadeerungsikul and

Nof 2019) for packages which contain incomplete data

such as priority or location to store. In such cases, it is

up to human operators to use their expertise to provide

missing data for the packages, e.g. appropriating prior-

ity, updating storage location, and add packages to the

queue once the information is complete. An output from

VIPO is a computer script that indicates the type of pack-

age, location to store, and priority. The output will feed to

HUB-CI, which canmanage tasks in real-time and decide

how to maximise system performance.

HUB-CImaintains CRP-H, which has twomainmod-

ules; Optimiser (CRP-I) and Harmoniser (CRP-II). The

Optimiser is responsible for assigning a package to a

robot or a robot team (one to one or one to many

matching). TheHarmoniser takes care of sequencing and
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Figure 1. Cyber collaborative warehouse system architecture.

scheduling a robot or robot team to store packages under

dynamically changing constraints. After the inputs are

processed by HUB-CI, utilising CRP-H, the generated

plan will be distributed to warehouse shelves, robots, and

human users. The system architecture is presented in

Figure 1.

4.2. CRP-H protocol design

For efective coordination, a Collaboration Requirement

Planning protocol for HUB-CI, called CRP-H, is devel-

oped in this section. The CRP-H is the worknow optimi-

sation and collaboration protocol in HUB-CI for package

allocation and storage scheduling/sequencing. Figure 2

presents the CRP-H and its components.

As mentioned before, CRP-H has two modules,

Optimiser (CRP-I) and Harmoniser (CRP-II). The fol-

lowing section will describe each part of CRP-H in

detail.

The objectives of a C2W system are (1) Store given

packages with the lowest total operational cost (solved

by package allocation); (2) Minimise the total weighted

completion time; (3) Minimise makespan. The sec-

ond and third objectives are solved by robot sched-

ule. Also, considering that the system can receive unex-

pected/emergency requests (UR) which can often impact

the current schedule, it is advantageous to minimise total

weighted completion time as the objective function since

the system will complete the higher priority package ear-

lier. Thus, if there is a new request (i.e. UR) during

operation, it will create a lesser impact on the overall

performance.

4.2.1. Optimiser (CRP-I)

To achieve the orst objective of C2W (store packages with

the lowest total operational cost), the Optimiser (CRP-

I) is applied. The Optimiser aims to minimise the total

operation cost for planned operations by assigning pack-

age(s) to the suitable agent. The mathematical model for

Optimiser is presented as follows.

4.2.1.1. Mathematical model for optimiser. Let

cij = cost for package i is performed

by a robot or team of robots j

xij =

⎧

⎪

«

⎪

¬

1 if package i is performed

by a robot or team of robots j

0 otherwise

R = Number of robot or team of robots

N = Number of packages

Np = Number of packages of type p

K = Maximum loading factor = max

(

N

R
, max

p
(Np)

)
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Figure 2. CRP-H protocol.

Objective function

min z =
∑

i

∑

j

cijxij (1)

s.t.
∑

j

xij = 1;∀i (2)

∑

i

xij ≤ K;∀j (3)

xij ∈ {0, 1},∀i, j

i = 1, 2, . . . ,N

j = 1, 2, . . . ,R

As mentioned before, the objective of the Optimiser

is to minimise the total operational costs presented in

Equation (1). cij is the operational cost deoned in the

CRM. The CRM will update continuously with the new

information received from IoT/IoS agents and human

operators.

The orst constraint, Equation (2), ensures that all tasks

will be executed by a robot or robot team. The second

constraint, Equation (3), ensures that the robot or robot

team will not be overloaded. Because in CRP-H, not only
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total operational cost is considered, time to complete

each task is also important. K which is the maximum

loading factor helps the Optimiser balance tasks among

robot and robot team. Without Equation (3), it might be

a scenario that one robot is overloaded and afects the

second and third objectives of CRP-H (minimise total

weighted completion time and minimise makespan).

In the planned operation, the input data (package,

location, and priority) are received in advance. In addi-

tion, Optimiser requires relatively larger computational

power and processing time than Harmoniser (CRP-II)

due to the volume of data being processed; hence it is

initiated ahead of the actual operation.

The Optimiser output is the assignment of the pack-

age(s) to a robot or robot team with respect to cost (cij).

Two types of assignments from theOptimiser are (1) Col-

laborative assignment package and (2) Non-collaborative

assignment package. A collaborative assignment package

is for (R1 + R2); a non-collaborative assignment package

is for a single robot (R1 or R2). The output, however, does

not indicate the sequence of tasks for each team of agents.

Therefore, the Harmoniser is necessary.

4.2.2. Harmoniser (CRP-II)

The second phase of CRP-H is Harmoniser. The Har-

moniser has the main objective of sequencing given tasks

for each robot or robot team, to minimise makespan

(Cmax) and total weighted completion time. The objective

is selected to ensure that in case of unexpected con-

ditions such as UR, robot delays, operation connicts,

and errors, the high priority packages are scheduled as

early as possible to minimise losses due to re-schedule.

The mathematical model for Harmoniser is presented as

follows.

4.2.2.1. Mathematical model for harmoniser. Themath

ematical model for Harmoniser is as follows.

Let

yit =

{

1 if package i starts at time t

0 otherwise

pi = proces sin g time of package i

wi = priority of package i

Cmax =
∑

i

pi

Objective function

min z =
∑

i

∑

t

wi(t + pi)yit (4)

s.t.

Cmax−1
∑

t=0

yit = 1;∀i (5)

N
∑

i=1

t−1
∑

u=(max(t−pi),0)

yiu = 1;∀t (6)

yit ∈ {0, 1};∀i, t

i = 1, 2, . . . ,N

t = 0, 1, 2, . . . ,Cmax − 1

The objective function, Equation (4), ensures themin-

imisation of the total weighted completion time. pi is the

processing time of package i. In practice, pi can be calcu-

lated from travel time plus storing time of package i.wi is

the priority of package iwhich can be set according to the

importance of the package. The orst constraint, Equation

(5), ensures that any package has a single starting point

(any t). Also, Cmax in Equation (5) can be calculated in

advance as an input of the model. The second constraint,

Equation (6), ensures only one package can be executed

at a time t. By solving the above mathematical model,

a schedule that minimises the total weighted comple-

tion time is generated. Furthermore, the minimisation

of makespan is ensured by having a non-delay sched-

ule. Note that, in the Harmoniser phase, cost (cij) is not

considered. The reason is because costs are considered

during the Optimiser phase. The Harmoniser aims to

sequence packages for each robot or robot team.

The solution, however, needs a relatively large com-

putational power and time due to the nature of NP-hard

problems when the problem size is scaled up. There-

fore, an algorithm for Harmoniser, called Collaborative

Robots Scheduling (CRS), is introduced.

4.2.2.2. Collaborative robots scheduling (CRS) algo

rithm. The Harmoniser provides real-time control and

adaptation based on new information. Harmoniser is

executed at the local agent(s) levels to provide eocient

responsiveness. Solving the mathematical model pre-

sented, which contains a large number of decision vari-

ables (t × yit) requires powerful computational power for

real-time execution. The Collaborative Robots Schedul-

ing (CRS) algorithm is developed to ensure that an opti-

mal schedule is achieved locally at a relatively lower

computational burden.

The CRS utilises the advantages of the Weighted

Shortest Processing Time orst (WSPT) algorithm that

yields the optimal solution for the total weighted com-

pletion time problem. In addition, CRS helps combine
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multi-levels of WSPT to provide the optimal makespan.

The CRS algorithm is deoned as follows.

CRS algorithm

Step 1. Schedule collaborative assignment packages, according to
WSPT (called collaborative schedule).

Step 2. Schedule non-collaborative assignment packages,
according to WSPT (called non-collaborative schedule).

Step 3. Combine the collaborative schedule with the non-
collaborative schedule by setting the release time of
the non-collaborative schedule equal to the makespan
(Cmax) of the collaborative schedule. In other words, the
starting time of a non-collaborative schedule is after all
collaborative schedules are completed.

Step 4. Terminate algorithm.

From the CRS, it can be shown that the algorithm

can yield (1) Optimal schedule for collaborative robots

and (2) Optimal makespan of the collaborative robot

schedule as follows.

Theorem 4.1: The optimal schedule for collaborative

robots: The CRS yields an optimal total weighted comple-

tion time for each robot and robot team.

Proof: see Appendix 1 �

Theorem 4.2: The guarantee optimal makespan for col-

laborative robot schedule

The optimal makespan C∗
maxof the system is

C∗
max =

∑

k∈R1+R2

pk + max

⎛

¿

∑

i=R1

pi,
∑

i′=R2

pi′

À

⎠ (7)

Proof: see Appendix 2 �

5. Experiments and results

To validate the newly designed protocol and algorithm,

three simulations experiments are constructed by coding

in MATLAB. The orst experiment presents the system

performance during the normal condition; all packages

arrive in advance with priority 1 (the lowest priority)

to 10 (the highest priority) and no UR. The second

experiment shows the situation where UR happens ran-

domly during the operation. Lastly, the third experiment

presents a situation where some critical information is

missing.

5.1. Experiment 1: performance analysis in planned

operations

Experiment 1 compares the designed protocol with a

standard warehousing procedure (baseline) for the nor-

mal operations. The system description is as follows.

5.1.1. System description

Agents: Two robots (R1 andR2) and one robot team (R1 +

R2); R = 3.

Tasks: 100 packages with diferent priorities are avail-

able immediately at the start (N = 100).

Operation procedures: Two types of operation proce-

dures.

(1) CRP – H: The designed protocol

(2) Baseline procedure: Randomly assign packages to

robot or robot team with First Come First Serve

(FCFS) scheduling.

5.1.2. Experiment 1 results

The results from random package to agent assignment

with FCFS rule are used as the design baseline. Table 1

and Figure 3 summarise two performance metrics based

on the results of 100 operation runs. The average total

operation cost and the average weighted completion time

of theCRP-Hare 11.84%and 37.11% lower than the base-

line, respectively. At signiocance level 0.05, two sample

standard t-tests (p<0.0001) conorm that the CRP-H sig-

niocantly outperforms the baseline both in terms of total

operation cost and total weighted completion time. The

diference of 37% in the average total weighted comple-

tion time ismeaningful because it renects the innuence of

the task priority (weight) on the total weighted comple-

tion time under the CRP-H logic on the scheduling and

prioritising. It is interesting to note that even though in

the experiment there is only 1% lower makespan, as both

schedules from CRP-H and the baseline are non-delay

schedules, CRP-H yields a statistically signiocant lower

makespan (p<0.0001) than the baseline. Importantly,

the makespan from the CRP-H has met the guaranteed

optimal makespan from Theorem 4.2.

Next, to see the impact of savings from the CRP-H,

the cost and time savings are calculated, as shown in

Equations (8) and (9).

Cost saving

∆Cost = CBasedline − CCRP−H (8)

where∆Cost = Cost saving,CBasedline = Total operation

cost from the baseline procedure, CCRP−H = Total oper-

ation cost from CRP-H.

Time saving

∆Time = WBasedline − WCRP−H (9)

where ∆Time = Time saving, WBasedline = Total weigh

ted completion time from the baseline procedure,

WCRP−H = Total weighted completion time from

CRP-H.

Figure 4 shows the cost and time savings at a various

number of packages. The results show that cost savings
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Table 1. Results of Experiment 1 based on 100 tasks in the queue.

CRP-H Baseline Difference %

Average Total Operational Cost ($) 4916.02 (235.97) 5576.10 (267.65) 11.84%∗

Average Total Weighted Completion Time (sec) 1.61×105 (2.01×104) 2.56×105(2.87×104) 37.11%∗

Average Makespan (sec) 889 (15.91) 901 (18.57) 1.33%∗

Note: Standard deviations are given in parentheses; ∗ – Statistically significant at (p< 0.0001).

Figure 3. Experiment 1: Performance metrics at 100 packages.

are linearly proportional (R2 = 0.997) to the increasing

number of packages, and, interestingly, the time savings

are in a polynomial, non-linear relationship (R2 = 0.981)

with the number of packages. The possible explanation is

that while cost saving impacts independently from other

packages, time saving creates a snowball efect, which

impacts the later package in queue. In other words, with

time saving, the following packages will be completed

faster, creating greater time saving to the overall system.

The results also validate the robustness of the CRP-H in

a multi-robot task allocation problem, as both cost and

time savings are always positive.

5.2. Experiment 2: performance analysis with

unplanned operations

Experiment 2 compares the performance of the CRP-

H with the baseline when unplanned operations hap-

pen (e.g. UR). The designed protocol is tested against

the standard warehousing procedure to deal with

unplanned operations (Baseline). The system description

is as follows.

5.2.1. System description

Agents: Two robots (R1 andR2) and one robot team (R1 +

R2); R = 3.

Tasks: 90 packages available immediately with difer-

ent priorities (N = 90) and 10 packages randomly added

after the operation begins (UR = 10).

Operation procedures: Two types of operation proce-

dures.

(1) CRP – H: The designed protocol will re-schedule a

new task, according to Harmoniser.

(2) Baseline procedure: Utilising Optimiser for the

package assignment with FCFS for UR.

5.2.2. Experiment 2 results

In Experiment 2, 10 packages are added to the queue after

the Optimiser has been executed. The goal of the exper-

iment is to understand the impact of dynamic changes

in the C2W environment. Table 2 and Figure 5 compare

the performance metrics from the results of 100 opera-

tion runs. Results show that, at a signiocant level of 0.05,

the average operational cost of CRP-H and the weighted

completion time of CRP-H is lower than the baseline.

In addition, CRP-H also provides a statistically signif-

icant lower makespan than the baseline. Note that the

makespan by the CRP-H in experiment 2 is larger than

the guaranteed bound from Theorem 4.2. The makespan

from the theorem captures only planned operation while

the actual makespan renects the URs.
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Figure 4. Experiment 1: Cost and time savings at different number of packages.

Figure 5. Experiment 2: Performance metrics of 100 packages, with 10 packages added while robots are in operation.

5.3. Experiment 3: performance analysis with

human operator

In experiment 3, human experts are involved in the

decision-making process. Human is an intelligence agent

who can add or revise missing information such as pack-

age priority or wrong location via the user interface.

The CRP-H with human integration features is validated

against the non-human procedure. The system descrip-

tion is as follows.

5.3.1. System description

Agents: Two robots (R1 andR2) and one robot team (R1 +

R2); R = 3.

Tasks: 100 packages available immediately with 10

packages without priority (N=100).

Table 2. Results of Experiment 2 based on 100 packages, with 10 packages added while robots are in
operation.

CRP-H Baseline Difference %

Average Total Operational Cost ($) 4983.22 (219.01) 5284.31 (234.49) 5.70%∗

Average Total Weighted Completion Time (sec) 1.69×105 (1.91×104) 1.88×105 (2.11×104) 10.11%∗

Average Makespan (sec) 897 (7.32) 911 (8.75) 1.54%∗

Note: Standard deviations are given in parentheses; ∗ – Statistically significant at (p< 0.0001).
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Table 3. Results of Experiment 3 based on 100 packages with 10 packages without priority.

CRP-H Baseline Difference %

Average Total Operational Cost ($) 5071.68 (239.46) 5437.81 (267.65) 6.73%∗

Average Total Weighted Completion Time (sec) 1.61×105 (2.00×104) 1.93×105 (2.12×104) 16.58%∗

Average Makespan (sec) 893 (6.98) 899 (11.35) 0.67%∗

Note: Standard deviations are given in parentheses; ∗ – Statistically significant at (p< 0.001).

Figure 6. Experiment 3: Performance metrics at 100 packages with 10 packages without priority.

Figure 7. Cost differences between CRP-H and baseline when percentage of packages with missing information increases.
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Operation procedures: Two types of operation proce-

dures.

(1) CRP – H: The designed protocol with a human

operator.

(2) Baseline procedure: The designed protocol without a

human operator, packages with missing information

will be given a default priority (no priority).

5.3.2. Experiment 3 results

In Experiment 3, a certain percentage of packages arrive

with missing information, such as priority or deadlines.

The experiment studies the impact of human interven-

tion in the packages allocation and sequencing problem.

For this experiment, the human agent assigns the miss-

ing priority of packages during the Harmoniser process,

compared to the baseline state where these tasks are

added at the end of the queue with minimal priority.

The results, shown in Table 3 and Figure 6, suggest that

CRP-H signiocantly improves both the total operational

cost and weighted completed time compared to the base-

line (p<0.0001). An additional human involvement cost

for assigning priority of packages is assumed to be zero

since the involvement can be considered part of routine

human tasks. On the other hand, if there is an additional

human involvement cost, the cost should be lower than

a cost threshold (the diference between total operation

cost from CRP-H and baseline) to be considered as a

cost-efective situation.

Figure 7 shows the cost diference at various per-

centages of packages with missing information. The

results show the cost diferences are linearly propor-

tional (R2 = 0.998) to the increasing percentage of pack-

ages with missing information, suggesting that with an

increasing percentage of packages with missing infor-

mation, CRP-H improves cost reduction via augmented

stabilisation of performance.

6. Conclusion and discussion

Fast improvement and changes of technologies have

challenged emerging, future factories, warehouses, and

service systems. To be ready for automation 5.0, the

key preparation is to design a multi-agent system to

work smoothly and efectively, taking advantage of cost-

efective new advanced technologies.

In this article, a new protocol for HUB-CI called CRP-

H is designed, developed, and validated to address such

challenge. By studying a C2W, two operation types and

ove package types are deoned to represent the ware-

house operations. CRP-H, which aims to address oper-

ation in C2W, is composed of two main parts: Opti-

miser (CRP-I) for package(s) to robot(s) assignment

optimisation; and Harmonisation (CRP-II) for storage

sequencing and scheduling. Optimiser operates at the

global level, which requires high computational time. In

contrast, Harmoniser operates at the local agent level,

which has only limited computational power, respond-

ing to dynamic changes in the warehouse, and hence CRS

algorithm is introduced.

Two theorems are presented in this article. Theorem

4.1, the optimal schedule for collaborative robots, proves

that the CRS algorithm provides the optimal schedule for

collaborative robots in the warehouse. Theorem 4.2, the

guaranteed optimal makespan for a collaborative robot

schedule, provides the optimal makespan of the collabo-

rative robot schedule.

Based on the three experiments and their assump-

tions, observations indicate that the CRP-H protocol

can deliver superior performance in terms of total oper-

ation cost, makespan, and total weighted completion

time compared to a common practice in today9s oper-

ations. Lower operational cost is enabled by the use of

Optimiser, which optimally assigns package(s) to the

robot(s). Moreover, total weighted completion time and

makespan are minimised because of the Harmoniser,

which can update the execution schedule in real-time,

based on the ongoing cyber collaborative connectivity

with IoT/IoS devices9 timely information. In addition, the

experimental results also show that with human oper-

ators, the system becomes more robust via augmented

stabilisation, given that the versatility of human decision-

making is appropriately applied in cases of missing

data.

Considering practical implications, the CRP-H can

save both money and time for a company without

additional investment. Optimiser can be performed in

the background before operations begin. Harmoniser

requires a relatively small computational power due to

the simple rules of the algorithm and can support the

system by adjusting the operation during the ongoing

process in response to UR. Additionally, with the design

allowing humans involved, the system can overcome

unexpected situations, such as missing data, with mini-

mal incremental cost. On the other hand, if the additional

cost due to human operators (e.g. specialised worker

cost) exceeds the diference between CRP-H and the

baseline case, then it is not attractive to maintain human

operators. It, however, must be mentioned that if the

human input were not included, the tasks would either

incur hidden costs from erroneous storage or cost from

retrieving packages from the distant locations, both of

which are undesired outcomes.

Based on this work, and to extend it, researchers will

pursue the following directions.

(1) Research machine learning algorithms to improve

CRP-H. Learning can adapt to new data collected
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during operation and can deal with more complex

situations and tasks in a warehouse.

(2) Explore situations where two robots are not suf-

ocient. A warehouse might be too large for two

robots, or tasks may require more than two robots

to be completed efectively. Hence, a more complex

protocol to synchronise and optimise multi-robots

operation worknow is necessary.

(3) Apply other simulation tools such as Gazebo and

ROS to include more realistic scenarios of a ware-

house. Also, examine the more complex situation,

such as when connicts and errors are prone to occur

and cause major delays in certain operations, or

when the agents have boundaries such as limited

operating hours or limited energy.
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Appendices

Appendix 1: Proof of Theorem 4.1 (The optimal
schedule for collaborative robots)

At each particular robot (and robot team), the problem
becomes 1||

∑

wiCi problem.
Let package i has priority wi, the time to complete the

storage operation pi, and task i′ has priority wi′ , the time to
complete the storage operation pi′ so that

wi
pi

<
wi′

pi′
.

Suppose schedule S′, which starts at time t, contradicted
with the WSPT rule. There will be at least one pair of pack-
ages such that wi

pi
<

wi′

pi′
. However, package i is placed before i′

(Figure A8). The total weighted completion time of S′ is γ +

wi(t + pi′) + wi′(t + pi + pi′) where γ is the total weighted
completion time of all packages except i and i′.

Figure A8. Schedule S′.

If task i and i′ are interchanged and produce schedule S
(Figure A9), the total weighted completion time of S is γ +

wi(t + pi′) + wi′(t + pi + pi′). Note that γ of S and S′ are the
same as all packages, except i and i′ remain unchanged.

Figure A9. Schedule S.

Because wi
pi

<
wi′

pi′
, then wi(t + pi′) + wi′(t + pi + pi′) >

wi(t + pi′) + wi′(t + pi + pi′) and the new schedule, which fol-
lows WSPT, has a strictly lower objective function value.

Moreover, since a non-collaborative assignment package
requires a strictly longer processing time (by deonition of the
package) and have strictly lower priority (because it uses only
a single robot), to schedule the storage operation optimally, the
non-collaborative schedules must be released after the comple-
tion of the collaborative schedule. �

Appendix 2: Proof of Theorem 4.2 (The
guarantee optimal makespan for collaborative
robot schedule)

There are two sub-schedules for themakespan; makespan form
collaborative schedule and from non-collaborative schedule.
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First, consider a robot team (R1 + R2). Regardless of the
sequence of storage operation, the makespan of the robot team
equals to the total processing time of all storage operations
assigned to the robot team (

∑

k∈R1+R2

pk).

Next, consider a single robot agent (R1 and R2). Each robot
can work individually, and the makespan of all single robot
agent become maximum total completion time of all robots

(max(
∑

R1
pi,

∑

R2
pi′)). Also, the earliest time that each robot

can start working is immediately after the collaboration sched-
ule is done. Therefore, the optimal makespan for the robotic
schedule is:

C∗
max =

∑

k∈R1+R2

pk + max

⎛

¿

∑

i=R1

pi,
∑

i′=R2

pi′

À

⎠ �
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