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Recent developments in modern cyber-physical systems (CPSs) have allowed greater levels of intelligence and
flexibility. The high levels of interactions and interdependencies in CPSs, however, also increase their vulner-
abilities to external attacks and internal malfunctions. Disruptions in one cluster of a CPS can propagate to
another cluster, eventually compromising the entire CPS if protective mechanisms and preparations are insuf-
ficient. The economic impacts are immediately local, but will become global should response mechanisms prove
insufficient. Ensuring CPS resilience against disruption propagation requires the appropriate strategic prepara-
tion of response mechanisms, which is studied in this article. Recent work in CPS disruption response, notably the
Collaborative Response to Disruption Propagation (CRPD) framework, has established the foundations for
modeling and comprehension of the disruption response problem. Building upon the CRDP framework, this
research introduces the Collaborative Response to Disruption Propagation/Strategic Lines of Collaboration
(CRDP/SLOC) to investigate the effects of selecting different response agent teams to tackle disruptions. This
selection is a strategic decision that cannot be altered once the disruptions begin, and thus needs to be guided by
an appropriate collaborative control principle, called the SLOC principle. The SLOC principle analyzes the
network structure, incorporates disruption propagation knowledge, and evaluates the strategic compatibility of
the response agent teams to guide the selection and preparation process. The CRDP/SLOC model is validated
using a set of experiments with different factors. These experiments indicate that the teams selected with the
SLOC principle outperform the baseline teams in terms of response performance and resilience.

1. Introduction where disruptions in one node can negatively affect preceding and

succeeding nodes, due to unfulfilled demands and/or supplies (Reyes

1.1. Motivations for this work

Unexpected disruptive events during recent decades have drawn
increasing attention to the concept of resilience in cyber-physical sys-
tems (CPSs) and complex networks: Networks of information, supply,
computers, manufacturing, utility, transportation, and other infra-
structure (Crucitti et al., 2004). The complex interactions and in-
terdependencies of a CPS, while enabling greater economic growth and
better quality of services, also allow the locally-occurring disruptions to
propagate to other parts and subsystems of the CPS. For example,
computer networks and sensor networks are vulnerable to propagating
malware and informational errors, which can compromise the quality
and/or functionality of the networks (Snediker et al., 2008; Kim et al.,
2015; Liu et al., 2016). Advanced supply networks and manufacturing
networks are also vulnerable to disruptions and disruption propagation,
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Levalle and Nof, 2015b; 2015a, 2017; Reyes Levalle, 2018). External
disruptions, such as natural disasters and cyber-attacks, can disrupt the
production of certain raw materials and intermediate production steps;
damage or destroy infrastructure, which can negatively impact
manufacturing processes and product quality (Day, 2014; Gong et al.,
2014). Internal disruptions, such as demand/supply uncertainties,
human errors, equipment and machinery breakdowns, can also affect
the performance of advanced supply networks and manufacturing net-
works (Sajadi et al., 2011). Disruptions within a CPS can also propagate
between the physical layer (hardware, machinery, robots, tools,
autonomous vehicles, drones, other physical connectors, etc.); and the
cyber layer (software agents, automatic control and decision algorithms
and protocols, communication protocols, etc.) of the CPS. This propa-
gation of disruptions between the different CPS layers occur because of
the high interdependency and interconnectedness between these layers.
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For example, unforeseen errors and conflicts in the physical layer can
cause software exceptions and crashes in the cyber layer, which can then
propagate and affect other components of the physical layer.

The challenge of ensuring resilience in CPSs requires the effective
planning and preparation of response mechanisms to disruption prop-
agation. Proper preparation of response mechanisms is particularly
important because of the involvement of advanced, flexible
manufacturing equipment and complex machinery. The economic im-
pacts of disruptions, both short-term and long-term, can be devastating
(Nguyen and Nof, 2019). Disruptions of supply in supply networks can
lead to downstream raw materials and intermediate components
shortage, which in turn lead to disruptions of demand affecting up-
stream productions and revenues (Nguyen and Nof, 2018).
Cyber-attacks on information networks and computer service networks
can lead to short-term losses due to leaks and compromises of sensitive
information as well as service denials, long-term equipment damage,
loss of customer’s trust, and loss of strategic advantages (Zhong and Nof,
2015, 2020). The planning of response to disruption propagation is also
challenged by the size and complexity of the CPSs and complex networks
involved, requiring cyber-augmented planning and management to
effectively coordinate response activities (Snediker et al., 2008).

To ensure the resilience of CPSs, appropriate preparation of disrup-
tion response resources is necessary. The presence of response can not
only remove the disruptions, but also prevent the potential propagation
that would have occurred (Nguyen and Nof, 2019). For example, elim-
inating a supply disruption at a supply network’s node (firm/company)
not only benefits the concerned node, but also prevents the prop-
agating/cascading effects of the shortage to its successor nodes (cus-
tomers). Timely response to disruptions is critical to ensure CPS
resilience, because late and/or insufficient responses can allow disrup-
tions to propagate beyond the capability of the response resources.
However, timely disruption response is often difficult to achieve because
the exact time and location of the disruption occurrences are usually not
known to the response resources ahead of time. Therefore, appropriate
strategic preparation and deployment of response resources are neces-
sary to ensure the resilience of CPSs, and this challenge is addressed in
this work.

1.2. The CRDP/SLOC model

In this work, the Collaborative Response to Disruption Propagation
via the Strategic Lines of Collaboration (CRDP/SLOC) model, which is
an original contribution, is introduced to illustrate the effects of strategic
preparation of response resources against disruption propagation on a
CPS. The CRDP/SLOC model expands upon the general framework
CRDP of Nguyen and Nof (2019) by providing insights into the impacts
of the strategic decisions of preparing response resources before dis-
ruptions occur. The second original contribution is the development of
the Strategic Lines of Collaboration (SLOC) principle that guides the
strategic preparation and allocation of disruption response resources.
The SLOC principle specifies the network structure analysis of the CPS
concerned, the incorporation of disruption propagation understanding
into the analysis, and the evaluation of strategic compatibility of the
possible teams of response agents. This work is the continuation of the
CRDP work, and is inspired by the SmaRTA, Smart Response-Task
Allocation project as well as the Dynamic Lines of Collaboration
(DLOC) model (Zhong et al., 2014; Zhong and Nof, 2015, 2020; Zhong,
2016; Nguyen and Nof, 2018, 2019). The CRDP/SLOC model and its
accompanying analytics and principles are designed to be general, and
can be adapted for different specific applications and problems.

In CRDP/SLOC, the CPS, referred to as the client network, is repre-
sented as a network of directed and weighted edges, with the nodes
representing the components and subsystems of the CPS and the edges
representing the connections between the nodes and the potential
disruption propagation directions. The nodes are subjected to initial
disruptions. Any potential disruption propagation directions are
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modeled as directed and weighted edges between the nodes. This
network modeling approach generalizes the disruptions and their
propagation, allowing CRDP/SLOC to be applied to different CPS con-
texts and applications. A centrally controlled team of response agents
collaborate to remove/repair the disruptions and to prevent immediate
propagation of disruptions. The main modeling difference from the
original CRDP model is that this team of response agents is selected from
a collection of multiple different teams, each with different response
agents that have different response capabilities.

The SLOC principle is then introduced to guide the team selection
process, which is a strategic decision that cannot be altered once the
disruptions occur. The structure of the client network is analyzed, and
the knowledge of the disruption propagation mechanisms is incorpo-
rated into the SLOC analysis. Then, the strategic value of each node is
computed, which provides information for the strategic compatibility
evaluation of all response teams. Then, the most appropriate team(s) is
selected to stand by against potential disruptions. To validate the CRDP/
SLOC model and the SLOC principle, a set of experiments with three
different random network models is performed. The experiments show
that the application of the SLOC principle leads to better response per-
formance of the selected agent team, which results in higher resilience of
the CPS under disruption.

The remainder of the article is organized as follows: Section 2.
Background with the literature review of related work and previous
work; Section 3. Methodology and Theory of the CRDP/SLOC model, the
network analysis, the disruption propagation analytics, and the Strategic
Lines of Collaboration principle; Section 4. Experiments, Results, and
Discussions with the set of experiments and results; Section 5. Conclu-
sion and Discussion. The abbreviations are listed in Table 1.

2. Background

In this section, the relevant previous work is discussed. This review is
not exhaustive and is intended to provide an overview of recent research
surrounding response to disruption propagation in CPSs; disruption
response mechanisms; disruption response strategies, analytics, and
protocols.

Cyber-physical systems (CPSs) typically consist of multiple sub-
systems and components, both physical and cyber. Due to the complex
relationship and interconnection between the subsystems, CPSs can be
modeled as complex networks, with the subsystems and components
represented as nodes, and their connections/relationships represented
as edges. In production networks or supply networks, nodes can repre-
sent companies, factories, and facilities, and edges can represent de-
mand/supply relationship. In information networks and computer
networks, nodes can represent servers, computers, clients, and users,
and edges can represent connections and information exchanges. In
manufacturing networks, nodes can represent machines and de-
partments, and edges can represent flows of raw materials, intermediate
products, final products, and information. Within the context of CPSs
and networks, Nguyen and Nof (2019) define disruptions as “Any un-
expected, and often negative, changes to any entity in the network,
including but not limited to: the nodes, the attributes of the nodes, the
edges, and the attribute of the edges”. It is noted that the specific nature

Table 1
Abbreviations.
CMN Cyber-augmented Manufacturing Networks
CPS Cyber-physical system
CRDP Collaborative Response of Disruption Propagation
DLOC Dynamic Lines of Collaboration
FCFS First-come-first-serve
MATW Minimizing additional task workload
MNDP Minimizing neighboring disruption propagation
SLOC Strategic Lines of Collaboration
SPT Shortest processing time
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and mechanisms of the disruptions are highly dependent on the CPS of
interest and the modeling decisions of the concerned researchers.

One type of CPS disruption is the removal of nodes and/or edges
from the network (Barabasi and Albert, 1999; Albert et al., 2000; Shen
et al.,, 2012; Shen, 2013; Wang et al., 2017). The node/edge removal
disruptions are highly related to graph theory and network theory and
the concepts of node degree and degree distribution. A class of complex
network, the scale-free network, is observed to be highly resistant
against this type of disruption (Albert et al., 2000), yet less resistant to
disruptions that propagate through the network due to the lower char-
acteristic path length. Several algorithms and allocation protocols are
developed to select node/edge removal disruptions to optimize certain
objectives, such as maximizing the number of graph components and
minimizing the largest component size (Shen et al., 2012; Shen, 2013).

An important type of disruption focuses on a pre-defined set of at-
tributes of the nodes and edges of the CPS. This set of attributes can be
freely designed, which enables researchers to model the actual CPSs and
their mechanisms accurately. In production networks and supply net-
works, node attributes can reflect a node’s production capability and
inventory level, while edge attributes can reflect the demand/supply
statuses between nodes. One type of disruption reduces the production
capability of the nodes, affecting succeeding nodes, and these disrup-
tions are propagated through the network if not properly contained
(Reyes Levalle and Nof, 2015b; 2015a, 2017; Reyes Levalle, 2018). Such
disruptions reduce the production capability of succeeding nodes,
requiring these nodes to have contingent supply/inventory, affecting the
nodes downstream (Seok et al., 2016). In road/traffic networks, dis-
ruptions are concerned with the attribute traffic density (Zhang, Gier, &
Garoni, 2014). An important type of disruption is concerned with the
attribute failure status of the CPS’s nodes and edges (Zhong et al., 2014;
Zhong & Nof, 2015, 2020; Zhong, 2016), which targets both nodes and
edges, then propagates to neighboring nodes and edges, and this prop-
agation cycle continues.

Various research also investigates different disruption propagation
mechanisms. For example, the load-based mechanism (Motter and Lai,
2002) involves disruptions that reduce the load of the neighboring
nodes, and nodes with insufficient load are removed from the network,
the cycle repeats itself to the point of equilibrium (Yin et al., 2016). The
load-based disruption can be generalized using pre-defined relationships
and functions for individual nodes (Guariniello and DeLaurentis, 2017).
Other research investigating disruption propagation includes the works
of Crucitti et al. (2004); Buzna et al. (2007); Swift (2008); Buldyrev et al.
(2010); Chaogqi et al. (2017a, 2017b); and Chaogqi et al. (2018). It is
observed that the mechanisms of disruption propagation are specific to
the applications and problems of concern to the researchers. In undi-
rected networks, disruptions generally propagate through the neigh-
boring connections of the nodes, whereas in directed networks,
disruptions generally propagate downstream through the directions of
the edges.

To prevent, eliminate, and/or reduce disruptions, response mecha-
nisms are often deployed. The response activities are often controlled
and coordinated by response strategies and protocols. One response
strategy is concerned with gradually increasing the response resource
allocation in accordance with the disruption status of the nodes (Buzna
et al., 2007). Against load-based disruption, a response strategy
involving balancing energy loads of nodes is developed (Chaoqi et al.
(2017a, 2017b; Chaoqi et al., 2018). Both centralized and decentralized
algorithms have been investigated and compared in preventing errors
and conflicts (Chen and Nof, 2012; Landry et al., 2013). In supply net-
works, response mechanisms can include both agent-based and
semi-centralized decision making to re-route supply/demand (Reyes
Levalle and Nof, 2015b; 2015a, 2017; Reyes Levalle, 2018). One
response mechanism involves agents traveling to the nodes to perform
the repair operations (Zhong et al., 2014; Zhong and Nof, 2015; Zhong,
2016), and the agents are supported by the centrality-based allocation
strategy and advanced online scheduling protocols.
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The CRDP/SLOC model is an extension of the CRDP model developed
by Nguyen and Nof (2019) and is related to the Cyber-augmented
Manufacturing Networks (CMN) (Nguyen and Nof, 2018). Both CRDP
and CRDP/SLOC are also related to the Dynamic Lines of Collaboration
(DLOC) principle developed by Zhong and Nof (2015) and the Emergent
Lines of Collaboration and Command (ELOCC) principle developed by
Velasquez et al. (2010). Both CRDP and DLOC specifically address the
challenge of coordinating response activities to tackle disruption prop-
agation, whereas ELOCC addresses the coordination of collaboration
during emergencies. In the DLOC research, the CPSs concerned are
modeled as unweighted and undirected networks, with the response
agents traveling to repair disrupted nodes. The DLOC response strategies
include centrality-based depot allocation protocol, activity-based online
scheduling protocol, and auxiliary lines edge rewiring protocol. In the
CMN work (see Table 2) the CPSs concerned are modeled as weighted
and directed manufacturing networks, and the response strategies
include employing network analytics, disruption analytics, and flow
analytics to support response decisions. In the CRDP work, the CPSs
concerned are modeled as weighted and directed networks, with
response agents having the capability to remove disruptions, as well as
preventing immediate disruption propagation. The CRDP’s main
contribution was the analysis of the response-disruption interaction, and
the CRPD response strategy emphasizes this interaction to enhance the
response activities. All the aforementioned work provides a concrete
foundation and important research directions for the development of
CRDP/SLOC. The summary and comparison of the related preceding
work are provided in Table 2.

From the literature survey, there is limited investigation on the
interaction effect between the CPS and the response mechanisms. Based
on the CRPD framework, this interaction effect belongs to the category
of client-response interaction, which governs the important relation-
ships between the CPS and the response mechanisms. It is observed that
both CRDP and DLOC focus more on the dynamic aspect, i.e., the online
scheduling protocol of the response activities, and do not discuss the
strategic aspect of preparation and configuration of the response
mechanisms to tackle disruption propagation. This knowledge gap is
addressed by the CRDP/SLOC model and the accompanying SLOC
principle, which are discussed in the next section.

Table 2
Summary and comparison of preceding work of CRDP/SLOC.

Model CPS type Dynamic response Strategic response
strategy/protocol strategy/protocol
DLOC? Unweighted, Online scheduling Limited: Centrality-
undirected network protocol: Nearest based depot
Application: General — neighbor allocation
pLoc® complex network Online scheduling
protocol: activity-
based;
Edge rewiring:
Auxiliary links
CMN* Weighted, directed Online scheduling Very limited: Offline
network protocol: Based on analytics of network,
Applications: analytics disruption, flow
Manufacturing/
production/supply
network
CRDP" Weighted, directed Online scheduling None
CRDP/ network protocol: minimizing Significantly
SLOC Application: General — neighboring expanded: Network
[this complex network disruption analysis, disruption
work] propagation, propagation

minimizing additional
task workload

analytics, SLOC

2 (Zhong and Nof, 2015).
b (Zhong, 2016).

¢ (Nguyen and Nof, 2018).
d (Nguyen and Nof, 2019).
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3. Methodology and Theory
3.1. The CRDP/SLOC model — framework and formulation

In this section, the CRDP/SLOC model is presented (Fig. 1). The 3
main components of CRDP/SLOC are defined based on the CRDP general
framework: D1 - the client network; D2 — the response teams; and D3 —
the disruption propagation. In addition, the SLOC principle is developed
to guide the strategic selection and preparation of the response teams.
Component D1, the client network, represents the CPS concerned.
Within the scope of this work, the client network is a network of un-
weighted nodes with directed and weighted edges. The nodes represent
the subsystems of the CPS, which are subjected to disruptions repre-
sented by 0 and 1 binary values. Any possible disruption propagation
directions between nodes are modeled as directed edges. Component
D2, the set of response teams, consists of response teams that can be
deployed to tackle the disruptions and their propagations. For each
disruption scenario, one response team can be selected and deployed to
tackle the disruptions and their propagation. Component D3 consists of
the disruptions, which occur initially, target the nodes, and propagate
throughout the client network through the directions of edges. Within
the scope of the CRDP/SLOC model, the disruptions are assumed to
occur initially, only in nodes, and can propagate within the client
network through the directions and weights of the edges. Should edge
disruption modeling be required, the CRDP/SLOC model can be applied
by converting the edges to new nodes that reflect the relevant attributes
of the original edges, as necessary. Then new edges can be created to
reflect the relationship between the original nodes and original edges
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(Nguyen and Nof, 2019).

The edges of the triangle represent the interaction between the main
components: E12 — the client-response interaction; E13 — the client-
disruption interaction; and E23 — the response-disruption interaction.
Based on the CRDP framework, this work defines the interaction as
follows. Edge E12 represents the interaction between the client network
and the response team, which specifies that each response team consists
of a number of response agents, and each response agent can repair a
disrupted node. Edge E13 represents the interaction between the client
network and the disruption propagation: Disruptions propagate through
the directions and the weights of the edges of the client network. Edge
E23 represents the interaction between response teams and the disrup-
tions, in that the effect of response removes the disruption and prevents
ongoing disruption propagation; which limits the disruption
propagation.

The main difference between the CRDP/SLOC model and the original
CRDP model is in addressing the problem of selecting and preparing a
response team (out of a set of response teams) to tackle the given dis-
ruptions. Each response team has a different capability, and its perfor-
mance is not known unless the computationally expensive simulation is
performed. Thus, the Strategic Lines of Collaboration (SLOC) principle,
discussed in detail in the subsection below, is developed to guide this
selection and preparation process. Following the SLOC principle, the
structure of the client network is analyzed, and the knowledge of the
disruption propagation mechanisms is incorporated into the analysis.
This analysis is extended to compute the strategic value of each node is
computed, and each team’s strategic compatibility is computed. Then,
the most appropriate team(s) is selected to standby for response against

SLOC Principle

Strategic network analysis:
Analyze network structure

Evaluate strategic value of each
node

Evaluate strategic compatibility
of each response team

Select response team(s) to

D1: Client Network

/\

El2: Client-Response El3: Client-Disruption
Interaction Interaction

CRDP/SLOC

D3: Disruption

‘ E23: Response-Disruption

deploy

Interaction

Propagation

Responded node

Disruption propagation prevented

o O > >
LR

O Disrupted node

Next disruption propagation

Fig. 1. The CRDP/SLOC model.
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potential disruptions.

The summary of the CRDP/SLOC model, per the CRDP framework, is
provided next in Table 3.

The SLOC principle, which is one original contribution of this work,
is developed to analyze the CRDP/SLOC model and to guide the response
team selection and preparation process. The first step is to analyze the
client network’s structure and calculate the distance matrix and the
nodes’ out-degrees (the total number of outgoing edges of each node).
Then, the understanding of disruption propagation, based on E13, is
utilized to analyze the disruption propagation patterns and behavior.
This information is used to estimate the strategic values of each node.
Even though the client network contains unweighted nodes, the nodes
with more outgoing nodes (both at the local-level and network-level), if
disrupted, are more likely to propagate disruptions. Using the strategic
values of the nodes, each response team’s strategic compatibility with
the client network is calculated using their response requirement
matrices as specified by E12. Finally, a response team is selected to
respond to the disruptions. The details of the SLOC principle are
explained in subsection 3.2.

The CRDP/SLOC model is simulated through the use of C# and a
discrete-event simulation programming, which culminates in the

Table 3
Summary of the CRDP/SLOC model.
Aspect Features Details
CRDP/SLOC D1 - Client network The CPS represented as a
components network of unweighted nodes
with directed and weighted
edges.

D2 - Response teams The set of response teams, in
which one team is selected to
respond to the disruptions. Each
response team consists of
response agents that can be
assigned to repair disrupted
nodes.

D3 - Disruption Initial disruptions that target

propagation nodes and propagate through the
edges.

CRDP/SLOC E12 - Client-response Each response agent can have a
interactions interaction different response time for

Comparison to the
original CRDP
model

E13 - Client-disruption
interaction

E23 — Response-
disruption interaction

The response team
selection problem

SLOC - client network
analysis

SLOC - disruption
propagation analysis

SLOC - client network
strategic analysis

SLOC - response team
strategic compatibility
analysis

different nodes of the client
network. This information is
presented by a response
requirement matrix.

Disruptions can propagate
through the directions and
weights of the edges of the client
network.

The existence of response
activities removes and prevents
the effects of disruptions and
disruption propagation.

For a simulation instance, a
single response team is selected
(from the set of response teams)
to respond to the disruptions.
The network structure of the
client network is analyzed and
node-level analytics are
computed.

The disruption propagation
analysis is performed to provide
information on the disruption
propagation pattern.

Using the information from the
client network analysis and
disruption propagation analysis,
each node’s strategic value is
computed.

Then, each response team’s
strategic compatibility is
evaluated.
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Teamwork Integration Evaluator/Collaborative Response to Disruption
Propagation/Strategic Lines of Collaboration (TIE/CRDP/SLOC) soft-
ware. The terms and their attributes are defined in Table 4.

The entities and attributes provided in Table 4 are necessary to
satisfy the CRDP/SLOC model requirements as introduced in Table 3.
The entities of interest in the system include the nodes, edges, response
teams, response agents, and disruptions. The attributes are character-
istics of the entities. The entities and attributes are either input entities,
input attributes, dynamic attributes, or derived attributes. The input
entities and input attributes are given by the user or the case study and
remain unchanged throughout the simulation. The derived attributes are
derived from the input entities and input attributes, and also remain
unchanged throughout the simulation. The main difference between the
CRDP/SLOC modeling and the CRDP modeling is the addition of the set
of response teams TL, and the adjustment of the dynamic variables
NOS(n,t), NAA(n,t), NFCFS(n,t), EDPS(e,t), and ABS(a,t). The addition of
TL allows CRDP/SLOC to model the impact of choosing different
response teams on the resilience of the CPS. The adjustment of the dy-
namic variables also enables the analysis of the SLOC principle. The
other items of the CRPD/SLOC modeling, including the discrete events,
simulation logic, and performance metrics, follow the original CRDP
modeling (Nguyen and Nof, 2019), with the adjustment of the dynamic
variables taken into account. Readers are referred to Nguyen and Nof
(2019) for further elaboration and details. The important performance
metrics of CRDP/SLOC are listed in Table 5 for reference.

The next subsection discusses the SLOC principle, which analyzes the
CRDP/SLOC model and guides the selection of the response team.

3.2. The Strategic Lines of Collaboration (SLOC) principle

The SLOC principle is a collaborative control principle that addresses
the strategic selection and preparation of a team of agents for the CRDP
model. The SLOC principle consists of five steps. The first step involves
the structure analysis of the client network. The second step in-
corporates the knowledge regarding the disruption propagation mech-
anisms into the network structure analysis. The third step utilizes the
analytics created from the second step to evaluate the strategic value of
each node. The fourth step then extends the analysis to evaluate the
strategic compatibility of each response team. The fifth step then selects
the most appropriate response team to be on standby to respond against
disruptions.

The first step of the SLOC principle involves the analysis of the client
network, which is presented as follows.

A node n’s set of incoming/preceding neighboring nodes NINL(n)C
NL is formally defined as

NINL(n) ={n; #2n€NL : 3e = (n;,n) €EL} (€8]

A node n’s set of outgoing/preceding neighboring nodes NONL(n)c
NL is formally defined as

NONL(n) = {n; #n€NL : 3e= (n,n;) €EL} )

A node n’s set of incoming/preceding edges NIEL(n)CEL is formally
defined as

NIEL(n) = {e= (n;,n;) EEL : n;=n} 3
A node n’s set of outgoing/succeeding edges NOEL(n)CEL is formally

defined as

NOEL(n)= {e: (n,»,n,-) €EL :n; En} “4)

Suppose a CN = (NL, EL) is given with all determined values for all
EDPT(e), and a node ng4 is selected as the only node disrupted initially,
meaning at t = 0,NOS(n4,0) =0 and NOS(n, 0) = 1,Vn € NL— {ng4},
with no response agents available, meaning AL = @. It is observed that

NOS(n;, EDPT(e)) =0,Ve = (n;,n;) € NOEL(n) )
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Table 4

Entities and basic attributes of the CRDP/SLOC model.
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Table 5
The CRDP/SLOC performance metrics.

Type Entity/Attribute and Explanation Corresponds System performance Explanation
to metric
The following entities are defined for the CRDP/SLOC model rF For each experiment, rF, the recovery fraction, is defined as
Input CRDP/SLOC = (CN,TL,DNL) CRDP model the fraction of the replications where the system fully
Input CN = (NL,EL) The client network, subjected to D1 recovers from the disruption propagation. Higher values of
disruptions. rFare preferred.
Input NL = {no,ny,n,...} The set of nodes in the client D1 rT For each replication, rT, the recovery time, is defined as the
network. time taken for the agent network to fully recover the client
Input EL = {eo,e1,5...} The set of weighted and directed D1 n'etwor%a When all noqes are at full operational status,
. A . disruptions are non-existent and no longer occur, and the
edges, which represent the directions and time taken X R
. . simulation ends. Lower values of rTare preferred.
for disruptions to propagate from one node to other X .
. if(NOS(n,t) = 1Vn € NL) rT«t, else rT«simLen
nodes connected to it.
Input TL = {(ALo,RRM)), (AL1,RRM,), ...} The set of D2 tPL For‘ each repllcatlon,vtPL, the total performance loss, is
. . defined as the over-time average fraction of nodes that are
response agent teams with the corresponding response )
. . . disrupted. Lower values of tPL are preferred.
requirement matrices. For each experiment simLen
replication, only one team to standby for response. ¢PL — Jt=0 pL(t)dt
Each team has a response requirement matrix towards simLen
the client network. For example, AL, follows RRM,, pL(t) = NL Mat t
and AL, follows RRM o N
1 1 mDPF For each replication, mDPF, the maximum disruption
Input AL = {ag,ai,ay...} The team of weighted response D2 propagation fraction, is defined as the largest fraction of the
agents, which is responsible for responding to client network that was ever disrupted. Lower values of
disruptions. For a simulation instance, a team ALis mDPFare preferred.
selected from the set TL to respond to the disruptions, mDPF = maxpL(t)
and its agents are deployed to tackle the disruptions d
and their propagation.
Input RRM = (r;;) € RA¥M The response requirement E12 This property is true because the disrupted node ny is the only cause
matrix, whose rows correspond to the agents in AL, and of disruption. It is noted that, however, certain nodes n; € NONL(n4)
COlu'_nns correspond to th,e nodes in NL. Tij. mdlc,ates may be disrupted earlier than the expected value of EDPT (e) if a shorter
the time taken for agent ito respond to a disruption di . . h exi P h q
affecting node j. isruption propagation path exists from ny to that node n;.
Input DNLCNL The set of nodes subjected to initial D3 The second step of the SLOC principle incorporates the knowledge
disruptions. regarding the disruption propagation mechanisms to the network

The following attributes are defined for each node n € NL

Dynamic

Dynamic

Dynamic

NOS(n,t) € {0,1} The operational status of node n at E13
time t. NOS(n, t) = 1 means the node is not disrupted at

time t. NOS(n,t) = 0 means the node is disrupted at

time t and can propagate disruptions to its successor

nodes.

NAA(n,t) € AL Node n’s currently assigned response E23
agent for responding to its disruption at time t.

NFCFS(n,t) € R>o Node n’s last disrupted time, at time ~ E13
t, which is used in the first-come-first-serve scheduling
protocol.

The following attributes are defined for each edge ¢ = (n;,n;) € EL

Input

Dynamic

EDPT(e) € R. Edge e’s disruption propagation time, E13
which is equivalent to edge e’s weight. Suppose node n;

is disrupted at time ¢, then at time t + EDPT(e), node n;

will become disrupted if both node n; and node n; have

not been responded to by an agent. If EDPT(e) = 0,

both n; and n; can be treated as the same node, and

their response requirement in RRMshould be updated
accordingly.

EDPS(e.t) € {0,1} Edge e’s disruption propagation E13
status at time t, mainly used for simulation of

disruption propagation. EDPS(e,t) = 1 means the

disruption propagation along edge e will occur as

planned. EDPS(e,t) = 0 means the disruption

propagation is halted, due to the intervention of an

agent.

The following attributes are defined for each agent a € AL:

Dynamic

ABS(a,t) € {0,1} Agent’s busy status at time t. D2
ABS(a, t) = 0 means the agent is idle, and ABS(a,t) = 1
means the agent is busy (currently responding to a
disruption).

Simulation-specific parameters are defined for the CRDP model:

Dynamic

Dynamic

Input

Input

tThe current time of the simulation. Simulation
tigstA variable mainly used for recording performance Simulation
metrics.

simLenSimulation length. Once t = simLen or Simulation

QLNOS(n) = |NL|, the simulation ends.
selProSelected protocol for the replication. E23

structure analysis. Based on this step, the neighboring disruption ana-
lytic NNDA(n) € R is defined as

NONL(n)
NNDA(n)= > 1 r?in {EDPT(e)} (6)

The NNDA (n) analytic provides information regarding the local-level
impact of a disruption affecting node n. The value of NNDA(n) increases
with a higher number of outgoing edges, or |[NOEL|, and with lower
weight for each edge e € NOEL(e). The formula also addresses the case
where multiple edges exist from n to nj, and NNDA(n) only considers the
shortest edge. Compared to network-level analytics, NNDA(n) is more
limited in terms of information provided, but requires less computa-
tional power to calculate, which is complexity O(|EL|).

An analytic more advanced than NNDA(n) would consider the
network-level aspect of disruption propagation. Based on the observa-
tion that disruptions propagate from one node n;(if n; is the only dis-
rupted node initially) to another node n; through the shortest path from
n; to nj; the shortest-path matrix SPM = (dij) € R%‘ PN can be
computed to assist with the calculation of network-level analytics. The
matrix SPM can be computed efficiently using the Floyd-Warshall al-
gorithm (Floyd, 1962) with complexity O(|NL|*). Each entry is defined
as SPD(n;,n;) = d;j € R>o representing the shortest-path distance from
node n; to node nj, with the edge directions applied and edge weights
represented by EDPT (e). If no such path exists, SPD(n;,n;) = null, and 1/
SPD(n;,n;) = 0. Using the shortest-path distance matrix, the harmonic
centrality analytic NHCA(n) € R is defined as

NL
NHCA(n)=> 1 / SPD(n,n;) %)
n#n

The NHCA(n) analytic provides information regarding the network-
level impact of a disruption affecting node n. The value of NHCA(n)
increases if node n is closer to more nodes. The formula of NHCA(n) also
addresses the case where multiple edges exist between one pair of nodes,
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in that only the shortest path is considered in the calculation. Compared
to the local-level analytic NNDA(n), NHCA(n) provides more informa-
tion regarding disruption propagation risk, but requires more compu-
tational power to calculate.

The main limitation of both NNDA(n) and NHCA(n) is that their
disruption propagation analyses do not consider the performance met-
rics used to evaluate a problem instance. While NHCA(n) can provide a
relative ranking between nodes, the proportional differences in values of
NHCA(n) between nodes may not reflect the actual differences with
respect to the performance metrics tPL and mDPF. To address these
limitations, the second step of the SLOC principle is to incorporate the
network-level understanding of disruption propagation.

To address the total performance loss metric tPL, the rate of
disruption propagation analytic NRDPA(n) € R is defined as

t= max SPD(n;.n
o ENL (n' ’)
_Jo

|{n; € NL: SPD(n,n;) < t}|dt
max SPD(n;, n;)

ninj€NL

NRDPA(n) (8)

The analytic NRDPA(n) aggregates the rate of increasing total per-
formance loss of the CPS if node n is the sole initially disrupted node
with no response agents present. To address the maximum disruption
propagation fraction metric mDPF, the maximum disruption propaga-
tion analytic NMDPA(n) € R is defined as

{nj € NL: SPD(n,nj) #+ null}|

"’r’nnieg(VLSPD(nh n]»)

NMDPA(n) = | )]

The analytic NMDPA(n) considers the maximum damage a disrup-
tion affecting node n can cause. Both NRDPA(n) and NMDPA(n) over-
come the limitation of NHCA(n) that tends to give a higher weight to
nearby nodes n; with extremely close proximity to n due to 1/ SPD(n, n;)
formula. A simple 3-node example is provided in Fig. 2.

The third step of the SLOC principle computes the strategic values for
each node. A node n’s strategic value NSV(n) € R is selected from
NNDA(n), NHCA(n), NRDPA(n), NMDPA(n) or a function combining
these four indices. This decision is left open to individual cases and
scenarios, depending on the available information and computational
resources.

The fourth step of the SLOC principle evaluates the strategic
compatibility of each agent team. A team of agents is defined as AL =

6
3
1
» of
0 1 2 3
1
t
5
3
1 »
» of
0 1 2 3
1
t
3
2
1
» of
0 1 2 3

numerator

NRDPA(n)

numerator

NRDPA(n)

numerator

NRDPA(n)
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{ao, a1, ...} with each agent a; capable of responding to a disruption
affecting node n; after a period of time RRM(i,j), which considers two
integer arguments. An alternative notation for RRM(i,j) is RRM(a;, ;).

An agent a’s estimated effectiveness index AEI(a) towards the client
network is defined as

e NSV(n)
AEl@)= RRM(a, n)*>_"NSV (n,)

n

10)

Aggregating all agents of a team, the team AL’s strategic compati-
bility index TSCI(AL) € R is defined as

L AEIa) A& NSV (n)
TSCI(AL) = Z |AL| Z Z |AL[*RRM (a,n)* "' NSV (n,) an

The index TSCI(AL) estimates the total effectiveness of a particular
team of response agents, given a certain selected method of deciding
NII(n), the team’s RRM, and the client network NL.

The final step of the SLOC principle is to select the appropriate
response team AL or a limited set of AL, based on the evaluation of
TSCI(AL). Higher values of TSCI(AL) would indicate higher strategic
compatibility.

4. Experiments, results, and discussions

In this section, experiments are conducted to illustrate the different
network analytics and response team preparation protocols with respect
to three types of random network models: Barabasi-Albert (Albert and
Barabasi, 2002), Erdos-Renyi (Erdos and Rényi, 1959), and
Watts-Strogatz (Watts, 2002). The details of the experiments are as
follows (Table 6).

The three random network models above are used for the client
network, with 100 replications each, each created with 100 nodes and
200 edges. A detailed comparison of the three random network models
can be found in the work of Albert and Barabasi (2002). These three
random network models can approximate current and emerging CPSs
and complex systems with certain accuracies (Chen and Nof, 2012;
Zhong and Nof, 2015), and are therefore appropriate network models for
these numerical experiments. The Barabasi-Albert networks are created
with 2 initial nodes, and the growth rate of 2 edges per new node, until
200 edges are reached. The Erdos-Renyi networks are created with the
same number of nodes and number of edges, and only fully connected

A
3 ™
: 4|—,7
L numerator
» of
0 1 2 3 NMDPA(n)
t
A
A
L numerator
» of
0 1 2 3 NMDPA(n)
t
A
1 numerator
» of
0 1 2 3 NMDPA(n)

Fig. 2. Example of NRDPA(n) and NMDPA(n).
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Table 6
Details of the experiments.

Factor # Details

variations

Client network 3 Barabasi-Albert random network vs Erdos-Renyi
random network vs Watts-Strogatz random
network, all 100-node and 200-edge.

Agent network 4 Random team selection vs low strategic
compatibility vs medium strategic compatibility
vs high strategic compatibility

Disruption 1 25 initial disruptions

scenario
Online response 4 FCFS (baseline) vs SPT (baseline) vs MNDP vs
protocols MATW, based on (Nguyen and Nof, 2019)

networks are selected. The Watts-Strogatz networks are created with
mean degree 4, and rewiring probability of 0.5. Because the three
random network models used are undirected and unweighted networks,
adjustments are required to match the requirements of the CRDP model.
For each undirected and unweighted edge, there is a 2/3 probability for
an edge to be unidirectional, and 1/3 probability for an edge to be
converted to two directed edges of opposite directions. Each directed
edge e receives a weight EDPT(e) ranging from 0.5 to 1.5, uniformly
distributed. With respect to disruption propagation, 25 initial disrup-
tions are selected randomly based on a uniform distribution. The pa-
rameters of 10 agents and 25 initial disruptions for the 100-node
networks are selected based on previous work (Nguyen and Nof, 2019).

Four online response protocols for the agents are applied, based on
(Nguyen and Nof, 2019): First-come-first-serve protocol, FCFS, priori-
tizing disruptions that occur earlier; Shortest processing time protocol,
SPT, prioritizing disruptions that can be addressed quickly with a
selected idle agent; Minimizing neighboring disruption propagation
protocol, MNDP, prioritizing disruptions that can spread quickly to
undisrupted nodes; Minimizing additional task workload, MATW, a
generalization of the MNDP protocol in considering the propagation of
the task workload.

With respect to the response teams, a pool of 1000 teams are created,
each of 10 response agents. Each team receives an across-agent-
variation index AAVI(AL)with random distribution UNIF(0,1), which
determines the degree of variation between agents. Additionally, each
agent receives an across-node-variation index ANVI(a) with random
distribution UNIF(0,1)*AAVI(AL), which determines the degree of
variation in terms of response time for that agent to the different nodes.
Then, for each agent, the unnormalized response time URT(a, n) for each
node (out of 100) is generated with random distribution UNIF(1,1 +
ANVI(a)). Then, the unnormalized response time is normalized so that
the average response time across all nodes for each agent is equal to 1.
This procedure results in the creation of diverse teams and uniform
teams. The diverse teams have higher values of AAVI(AL) and have more
diverse agents, whereas the uniform teams have lower values of
AAVI(AL) and have more uniform agents. The more diverse agents have
higher values of ANVI(a) and tend to have a wider range of response
times across all nodes, whereas the uniform agents have lower values of
ANVI(a) and tend to have similar values of response times. The vari-
ability resulting from AAVI(AL) and ANVI(a) affects the response
requirement matrix RRM, which affects AEI(a), and ultimately affects
TSCI(AL). All agents, however, are assumed to have an average response
time of 1 across all nodes, thus, all teams are economically balanced, but
are not necessarily equal in terms of strategic compatibility. Simulating
the full CRDP model with 1000 provided teams would be computa-
tionally expensive. Therefore, the SLOC principle is applied to guide the
team selection decision. The first four steps of the SLOC principle are
applied, resulting in the TSCI(AL) for the 1000 provided teams. For this
set of experiments, four groups of TSCI(AL) are selected: A high-
compatibility group, which consists of the top 10 teams based on
TSCI(AL) ranking; a medium-compatibility group, which consists of the
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middle 10 teams; a low-compatibility group, which consists of the
lowest 10 teams; and a random group of 10 teams (selected randomly,
uniformly from the set of 1000 provided teams).

Four performance measures listed in Table 5 are used. The recovery
fraction, rF, is the fraction of the experiment replication where the client
network is fully recovered from the disruptions and is returned to
normalcy. The recovery time, rT, represents the total time taken for the
disruptions to be fully removed from the client network. If the client
network fails to recover within the prescribed simulation time, a large
penalty value of 50 is applied. Both rFand rT are important recovery
resilience metrics that indicate the effectiveness of the response activ-
ities and team configuration decisions. The total performance loss, tPL,
represents the total over-time loss of performance due to disruptions of
the client network. The metric tPLis relevant when the CPS is required to
continue functioning during disruptions. The maximum disruption
propagation, mDPF, represents the highest performance loss that occurs
during an experiment replication. This metric is relevant when long-
term damages are expected from disruptions, even after the disrup-
tions are removed. Examples include loss of sensitive information, un-
recoverable damages, and wear and tear.

Comparisons between strategic compatibility levels are provided in
Fig. 3 and Table 7.

The high strategic compatibility teams significantly outperform the
other three team types: 12.7%-15.6% improved recovery fraction,
7.3%-8.5% reduced recovery time, 9.6%-12.4% reduced total perfor-
mance loss, and 5.5%-8.8% reduced maximum disruption propagation.
Overall, the high strategic compatibility teams are proven to provide the
best performance with statistical significance, followed by either
randomly selected teams or medium strategic compatibility teams, then
by the low strategic compatibility teams. The next comparisons are be-
tween strategic compatibility levels and online response protocols
(Fig. 4, and Table 8).

When FCFS protocol is employed, high strategic compatibility teams
provide 0.6%-1.3% reduced total performance loss and 1.3%-3.7%
reduced maximum disruption propagation. This result is explained by
the very low effectiveness of FCFS protocol in preventing the propaga-
tion of disruptions. With SPT protocol, the usage of high strategic
compatibility teams significantly improves the resilience of the client
network: 161%-1540% increased recovery fraction, 13.4%-18.9%
reduced recovery time, 18.2%-26.9% reduced performance loss, and
11.6%-18% reduced maximum disruption propagation. It can be
concluded that the SPT protocol highly depends on the appropriate
strategic preparation of agent teams. With MNDP protocol, usage of high
strategic compatibility teams provides a statistically significant
improvement in resilience: 6.8%-11.2% increased recovery fraction,
5.3%-10.5% reduced recovery time, 7.6%-12.2% reduced performance
loss, and 4.6%-5.2% reduced maximum disruption propagation. With
MATW protocol, the high strategic compatibility teams provide statis-
tically significant better resilience: 3.6%-5.8% reduced recovery time,
6.5%-11.6% reduced total performance loss, and 2.1%-7.7% reduced
maximum disruption propagation. The lower improvement from
employing high compatibility teams can be partially explained by the
high effectiveness of the online response protocol MATW.

The experiment results indicate that using high strategic compati-
bility teams provides superior performance relative to other team types,
demonstrating the effectiveness of employing the SLOC principle in
strategic preparation of agent teams. The higher performance is most
notable with the use of SPT online response protocol, followed by
MNDP, then by MATW. It is also noted that using medium strategic
compatibility teams is at about the same level of performance as the
randomly selected teams.

5. Conclusion and Discussion of applications

Disruption propagation prevention and control can have significant
social and economic value in the design of CPS. In the context of
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Recovery Fraction vs Strategic Compatibility
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Recovery Time vs Strategic Compatibility

Random Low
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27.000
Medium

Max Disruption Propagation Frac vs Strategic
Compatibility

Random
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Fig. 3. Comparison chart of strategic compatibility levels (with 95% confidence intervals).

Table 7
Comparison table of strategic compatibility levels.
Strategic Recovery Recovery Total Maximum
Compatibility Fraction Time Performance Disruption
rF T Loss Propagation
tPL Fraction
mDPF
Random 0.416 31.941 0.465* 0.647*
Low 0.405* 32.368 0.480 0.671*
Medium 0.416 32.055 0.469 0.654*
High 0.469* 29.628* 0.421* 0.612*
(+12.74%) (—7.24%) (—9.46%) (—5.41%)

*: indicates statistical significance at.a = 0.05
Best values of a metric are bolded, and compared with next best values.

Collaborative Control Theory, the Collaborative Response against
Disruption Propagation/Strategic Lines of Collaboration (CRDP/SLOC)
is introduced as an expansion of the CRDP framework, analyzing the
effects of strategic preparation of teams of response agents against
disruption propagation damaging a CPS. The new SLOC principle is
developed and introduced as a general and adaptable collaborative
control principle to design and select the appropriate strategic decisions
in preparation against disruption propagation. The CRDP/SLOC model

Recovery Fraction vs (SC x ORP)

1.000
0.800

m Random
0.600

=Low
0.400 = Medium
0.200 High
0.000 . -

FCFS MNDP MATW
Total Performance Loss vs (SC x ORP)

0.800
0.600 = Random
0.400 =Low

= Medium
g High
0.000 it

FCFsS MNDP MATW

is validated using a set of experiments with three different random
network models, four agent team selection protocols (with one protocol
based on the SLOC principle), and four online response protocols. The
developments of the CRDP/SLOC model and the SLOC principle for
strategic selection of response agent teams are contributions to the
research area of disruption propagation response in general, and in CPSs
design in particular. The development of the CRDP/SLOC model dem-
onstrates the generality of the CRDP framework to model collaboration
response activities to tackle disruption propagation and furthering
research in CPS resilience. Specifically, the SLOC principle addresses one
important research direction of the CRDP model, the long-term value of
strategic preparation and analytical decision-making. By applying
complex network representation, the SLOC principle can be adapted to
different types of CPSs and different disruption mechanisms, disruption
propagation mechanisms, response mechanisms, and strategic prepara-
tion types. Practitioners, however, should employ robust validation in
adapting the SLOC principle to significantly different cases.

From the results of this research, the following recommendations are
made to managers, supervisors, and coordinators of CPSs and complex
networks, e.g. production networks, supply networks, and information
networks:

Recovery Time vs (SC x ORP)
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Fig. 4. Comparison chart of strategic compatibility levels and online response protocols (with 95% confidence intervals).
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Table 8
Comparison table of strategic compatibility levels and online response protocols.
SC RP rF T tPL mDPF RP rF T tPL mDPF
Rand  FCFS 0.000 50.000 0.820 0.908* MNDP 0.577* 27.121* 0.342 0.587
Low FCFS 0.000 50.000 0.814* 0.924* MNDP 0.608 25.636* 0.325 0.584
Med FCFS 0.000 50.000 0.819 0.913* MNDP 0.597 26.574* 0.332 0.584
High  FCFS 0.000 49.981 0.809* 0.895* MNDP 0.649* 24.270* 0.300* 0.557*
(—0.06%) (—1.43%) (+6.74%) (—10.5%) (—7.69%) (—4.62%)
Rand SPT 0.087* 46.33* 0.684* 0.799 MATW 1.000 4.306 0.015 0.295*
Low SPT 0.014* 49.43* 0.765* 0.861* MATW 1.000 4.408* 0.016 0.313*
Med SPT 0.068* 47.31* 0.711* 0.815 MATW 1.000 4.335 0.016 0.304*
High SPT 0.227* 40.11* 0.559* 0.706* MATW 1.000 4.152* 0.014* 0.289*
(+161%) (—13.4%) (—18.3%) (—11.6%) (—3.58%) (—6.65%) (—2.03%)

* indicates statistical significance at.a = 0.05

SC = strategic compatibility, RP = response protocol, Rand = random, Med = medium.
Best values of a metric of a category when comparing strategic compatibility are bolded, and compared with next best values.

(1) The CRDP framework is recommended for managers and super-
visors. The framework can be applied to further develop their
comprehensive understanding of disruptions, disruption propa-
gation, and response to disruptions, and how these components
interact with each other.

Then, the SLOC principle can be applied to support the prepara-
tion of strategic resources against different disruption propaga-
tion scenarios. The strategic preparation should be accompanied
by the use of advanced collaborative coordination protocols to
coordinate response activities, in order to achieve better system
resilience.

(2)

At this stage of research, the CRDP/SLOC model is limited in terms of
disruption occurrence modeling and response activities modeling.
Another limitation is the assumption of homogeneous node types and
disruption types used in the network model. Although strategic
compatibility with the client network has been discussed in this work,
the synergy of the strategic decisions and the tactical (on-line) decisions
has not been explored. Therefore, further research is recommended in
the following directions:

(1) New collaboration mechanisms among response agents/teams in
response to disruption propagation.

(2) Consideration of different node types and disruption types, and
adapting the team preparation protocols and team coordination
protocols accordingly.

(3) Generalization of collaborative control principles for disruption
propagation response.

(4) The modeling of disruption detection activities, disruption pre-
vention activities, in addition to repair.

(5) Development of advanced analysis and protocols to further sup-
port the team formation and reconfiguration decisions.

(6) Exploration and analysis of the synergy and counter-synergy
between the strategic team preparation decisions and the
tactical (on-line) response decisions.
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