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ABSTRACT

Plant stresses and diseases cause major losses to agricultural productivity and quality. Left
unchecked, stresses and diseases can spread and propagate to nearby plants, causing even more
damage, necessitating early detection. To address this challenge, the Agricultural Robotic System for
Plant Stress Propagation Detection (ARS/PSPD) is developed. In this cyber-physical system, the robot
agents are assigned scanning tasks to detect stresses in greenhouse plants. The problem of plant
stress propagation detection is formulated with disruption propagation network modelling, which
captures the plant stress occurrence and propagation mechanisms. The network modelling enables
better situation awareness and augments the development of advanced collaborative scanning pro-
tocols. Five collaborative scanning protocols are designed and implemented in this research, with
one protocol serving as a baseline, three protocols utilising disruption propagation network analy-
sis, and one protocol utilising Bayesian network inference. The scanning protocols minimise errors
and conflicts in scanning task allocation and enable better plant stress detection. The five ARS/PSPD
collaborative scanning protocols are validated with numerical experiments, using agricultural green-
houses as experiment settings. The experiments show that the scanning protocol using Bayesian
network inference outperforms all other protocols in all scenarios, with 16.92% fewer undetected

ARTICLE HISTORY
Received 23 February 2021
Accepted 17 November 2021

KEYWORDS

Bayesian network;
cyber-physical systems;
disruption propagation;
plant stress; Bayesian
methods

plant stresses and 12.28% fewer redundant scans.

1. Introduction

Agricultural plants are susceptible to abnormal stress sit-
uations, even in a controlled greenhouse environment
(Guo, Dusadeerungsikul, and Nof 2018). Such stress sit-
uations include sudden changes in water levels, tempera-
ture, humidity, diseases, and pests. Irreversible damage
can occur if effective and reliable stress/disease detec-
tion is not provided. Agricultural production losses from
stresses and diseases can be as high as approximately 40%
of food production in the world (Oerke and Dehne 2004).
Early detection and monitoring of plant stress are essen-
tial to ensure agricultural productivity. On one hand,
exhaustive scanning of all plants is economically infea-
sible, due to the time-consuming nature of the scanning
activities (Dusadeerungsikul and Nof 2019). Currently,
plant stress detection activities performed by human
operators are highly labour-intensive (Khan, Martin, and
Hardiman 2004). These activities involve human opera-
tors walking into the plot and scan plant locations. On
average, in order to cover 8 hectares of plotting areas, an
operator often walks approximately 20 km per day to per-
form the scanning tasks, inspecting the plant parts such

as leaves and stems for a sign of stresses or diseases (Wang
et al. 2018). The limited number of operators and the
amount of working time available often result in reduced
accuracy of scanning and delayed detection of stresses
and diseases.

Undetected stresses/diseases can spread and propa-
gate to nearby plants, causing significant losses of agri-
cultural productivity. Early detection of plant stresses
and diseases is necessary to ensure agricultural pro-
ductivity and quality. This is possible due to recent
advances in agricultural robotics, agricultural cyber-
physical systems, and plant stress/disease detection tech-
nologies. Agricultural robotics enables the automation of
repetitive scanning tasks in an agricultural environment
(Bechar and Vigneault 2016; Dusadeerungsikul and Nof
2019). Agricultural cyber-physical systems enable com-
plex sharing of information and knowledge, as well as
sophisticated telerobotic and telecollaboration capabil-
ities (Guo, Dusadeerungsikul, and Nof 2018). Further-
more, these systems are augmented by the advancements
in plant stress/disease detection technologies such as
hyperspectral imaging (Alsuwaidi, Grieve, and Yin 2018;
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Wang et al. 2018), sensor-based monitoring of crops yield
and environmental conditions (Ferentinos et al. 2017),
and machine visualisation, mapping, and guidance for
autonomous robotics (Dar, Edan, and Bechar 2011).

All of the aforementioned capabilities, however, must
be guided by an agricultural robotic system sup-
ported with collaborative intelligence, scanning proto-
cols, heuristics, algorithms, and knowledge-based infor-
mation. In this work, the Agricultural Robotic System
for Plant Stress Propagation Detection (ARS/PSPD), one
main contribution of this research, is developed. The
ARS/PSPD model expands upon the agricultural robotic
system (ARS) frameworks (Guo, Dusadeerungsikul,
and Nof 2018; Dusadeerungsikul and Nof 2019) and
the collaborative response to disruption propagation
(CRDP) methodology (Nguyen and Nof 2019). Specif-
ically, ARS/PSPD focuses on the plant stress detection
function of the ARS, which assigns robot agents scanning
tasks to find and detect stresses in greenhouse plants.
Adapting CRDP to the plant stress detection problem
results in the formulation of the plant stress propaga-
tion detection problem with disruption propagation net-
work modelling, which is another contribution of this
research. This PSPD formulation captures the plant stress
occurrence and propagation mechanisms, enabling bet-
ter situation awareness and augments the development of
advanced collaborative scanning protocols. A total of five
collaborative scanning protocols are designed and imple-
mented in ARS/ PSPD. The scanning protocols minimise
errors and conflict in scanning task allocation and enable
better detection of plant stress. The first scanning proto-
col is the random scanning protocol, which is the baseline
protocol for comparison. The second, third, and fourth
scanning protocols are adaptive scanning protocols that
utilise existing plant stress information and stress prop-
agation network topology to assign scanning tasks. The
fifth scanning protocol, Bayesian network-driven scan-
ning protocol, constructs a Bayesian network based on
existing plant stress information, and infer the proba-
bility of plant stress of unscanned locations. The appli-
cation of Bayesian network inference to the ARS/PSPD
model is the third contribution of this work. To validate
the PSPD formulation and the five collaborative scan-
ning protocols, numerical experiments are conducted.
The experiment results show that the Bayesian network-
driven scanning protocol outperforms the three adap-
tive scanning protocols, which in turn outperform the
baseline random scanning protocol.

The remainder of the article is organised as follows.
Section 2 summarises previous research related to this
work. Section 3 specifies the ARS/PSPD model, the
accompanying PSPD problem formulation, and the five
collaborative scanning protocols. Section 4 describes the

Table 1. List of abbreviations and notations.

General abbreviations and
notations

Plant stress propagation detection
formulation

ARS Agricultural robotic system
ARSgingie () ARS' single agent
attime t

ARSGroup(t) ARS’ group of
collaborating agents at time t
Ay Agent x

C Conflict

CRDP Collaborative response
to disruption propagation
CRM Collaborative requirement
matrix

CRP Collaboration requirement
planning

Cyy Cost of agent x performing
tasky

E Error

EPCR Error prevention n and
conflict resolution

Nr(t) Set of constraints r at
time t

PSPD Plant stress propagation
detection

tTime t

Ty Tasky

e A directed edge, representing a
stress propagation direction

E Set of directed edges

E"(n) Set of incoming edges of

plantn

E°(n) Set of outgoing edges of

plantn

L Grid length of the greenhouse

M, First performance metric of ARS,

the total number of undetected

stresses

M3 Second performance metric of

ARS, the total number of redundant

scans

n A plant (represented as a node in

the network)

Npeyt Next plant to be scanned

N The set of nodes/plants

N™(n) Set of incoming nodes of

plantn

N°(n) Set of outgoing nodes of

plantn

O(n) Scanning/observation status

of plantn

0p Scanning budget

Op General notation for the

collaborative scanning protocols

ORandom Random scanning

protocol

O pdaptive Adaptive basic scanning

protocol

OtnDegree Adaptive in-degree

scanning protocol

OpualDegree Adaptive dual-degree

scanning protocol

OpayesNet Bayesian network-driven

scanning protocol

po Probability of origin stress

Sp(n) Final stress status of plantn

So(n) Origin stress status of plant n

W Grid width of the greenhouse

numerical experiments of the plant stress detection sim-
ulation. Section 5 discusses the conclusions and future
work directions. The list of abbreviations and mathemat-
ical notations is given in Table 1.

2. Background

2.1. Agricultural robotics for plant stress detection
and monitoring

Plant stresses and diseases are serious problems in
agriculture production (Vurro, Bonciani, and Vannacci
2010), with agricultural production losses up to 40% per
year (Strange and Scott 2005). Particularly dangerous
are the plant stresses and diseases capable of propagat-
ing from plants to plants, which are common occur-
rences due to the large-scale and high-density nature of
agricultural production (Strange and Scott 2005). Prop-
agation of plant stress/disease primarily occurs due to
the close proximity between plants, and the spread is



typically from one plant to the ones around that plant.
Agricultural robotics has been utilised for helping engi-
neers, researchers, and farmers perform routine tasks
such as irrigating, harvesting, and fertilising for more
than two decades (Keicher and Seufert 2000; Reid et al.
2000; Dusadeerungsikul 2020; Sreeram 2020). Due to
the importance of plant stress and disease management,
agricultural robotics has also been applied to assist farm-
ers in plant stress monitoring tasks, i.e. detecting plant
stresses and monitoring plant conditions (Astrand and
Baerveldt 2002). Autonomous mobile robots with remote
sensing have also been developed (Iida et al. 2013) to
collect plant status data (Diker and Bausch 2003) and
environmental condition data (Nagasaka et al. 2004).
The main advantages of using the robots with sen-
sors include performance consistency as well as contact
avoidance, which help preventing diseases from prop-
agating/spreading to other plants (due to the physi-
cal contact). Agricultural robots are also designed to
minimise maneuvering non-value-added time and space
(Spekken and de Bruin 2013). Robot manipulators are
usually mounted with additional equipment such as nav-
igation subsystems (Xue, Zhang, and Grift 2012), sen-
sors (Xue, Zhang, and Grift 2012), sprayers (Ko et al.
2014), and Wi-Fi (Ishibashi et al. 2013). Such equip-
ment not only gathers information at the location but
also enables the mobile robot in the fields to con-
nect with the host and other agents (Sai et al. 2016).
Because the agricultural robotic system requires mul-
tiple different agent types such as robots, sensors, and
humans, the system needs to be capable of planning
and prioritising agent sequence as well as resolving con-
flicts (Ishibashi et al. 2013; Dusadeerungsikul and Nof
2019). Agricultural robotics systems show superior per-
formance in terms of cost-effectiveness and detection
ability compared to the traditional methods (Bochtis et al.
2011).

2.2. Collaborative control theory, conflict and error
detection, and disruption propagation response

Collaborative control theory (CCT) is a principle for the
design of a collaborative multi-agent system (Nof 2007).
The relevant CCT principles to this research are col-
laboration requirement planning, error prevention and
conflict resolution, collaborative fault tolerance (Nof et al.
2015). The well-designed systems with collaboration and
multiple agents are shown to be more reliable, require
lower cost, and complete tasks faster (Moghaddam and
Nof 2017). CCT has been extensively applied to vari-
ous settings, for example, telerobotics for collaborative
life-cycle management in nuclear handling tasks (Zhong,
Wachs, and Nof 2013), capacity and demand sharing
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(Yoon and Nof 2010; Moghaddam and Nof 2014), and
cyber-physical system (Nayak et al. 2016).

In agricultural tasks, CCT principles are applied for
several processes to improve processes and communica-
tion between agents (Dusadeerungsikul, Nof, and Bechar
2018). The CCT principles have been implemented to
improve the selection of robotic end-effectors for har-
vesting vegetables and fruits (Zhong, Nof, and Berman
2015). In addition, CCT has been applied to develop
cyber-physical systems for stress monitoring in the
greenhouse, called MDR-CPS (Guo, Dusadeerungsikul,
and Nof 2018). The MDR-CPS has shown that with
collaboration, the system will (1) minimise operation
cost, (2) have higher error and conflict tolerance, and
(3) respond faster to the new request. Moreover, CCT
has also been utilised for managing local agents in
the monitoring system by managing detailed operations
such as robot routing and adaptive search algorithms to
avoid conflicts and errors and minimise mismatch cost
(Dusadeerungsikul and Nof 2019). CCT principles have
also been applied to the collaborative response of prop-
agating disruptions (Zhong and Nof 2015; Nguyen and
Nof 2019), which include plant stress propagation as a
sub-problem. Disruption propagation can be modelled
as a complex network to enable better collaboration, task
allocation, and situation awareness (Nguyen 2020). Using
the CRDP framework, a complex network is created with
the subjects of disruptions modelled as nodes, and the
potential disruption propagation directions modelled as
edges. The CRDP framework also recommends the use
of network structure analysis (Nguyen and Nof 2020)
and network centrality analysis (Nguyen and Nof 2018)
to provide insights into the propagation pattern. Knowl-
edge of the disruption propagation pattern can further
increase the disruption response effectiveness.

2.3. Stress monitoring systems and protocols

Engineers and researchers have been developed and
applied many techniques for improving the monitor-
ing systems and protocols to detect biotic and abiotic
plant stress (Jackson 1986). Biotic stresses include weeds
and plant pathogens, whereas abiotic stresses include
heat, chill, and nutrient deficiencies (Behmann et al.
2015). Modern stress monitoring systems are usually
composed of humans, robots, and sensors. The three
agents are responsible for different tasks in the system,
and researchers have tried to improve such tasks by min-
imising unnecessary operations or reducing system fail-
ure. Examples of techniques that researchers used for
improving stress monitoring systems are image process-
ing and analyzing (Behmann, Steinriicken, and Pliimer
2014; Dusadeerungsikul et al. 2019), machine learning
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(Behmann et al. 2015; Gémez et al. 2019), deep learn-
ing (Singh et al. 2018; Saleem, Potgieter, and Arif 2019),
neural network (Bhattacharya et al. 2020), support vec-
tor machines (Guerrero et al. 2012), and unfold principal
component analysis (Villez, Steppe, and De Pauw 2009).
Statistical inference techniques such as Bayesian network
inference can also be applied in this problem context
(Yet et al. 2016). The aforementioned works mainly con-
cern the process of identifying plant stresses and dis-
eases (including propagation), and there remains a dearth
of research regarding the detection of propagation of
stresses and diseases.

Apart from the techniques to improve the monitor-
ing procedure, it is necessary to have a system struc-
ture that optimises the interaction between agents due
to the complexity of collaborative interactions. Also, in
the modern system, the agents are distributed and decen-
tralised for more efficient work and better system per-
formance. Task Administration Protocol (TAP), which
is an optimisation workflow, is usually used for coordi-
nating tasks to resources (e.g. agents) in the system at a
suitable time (Nof et al. 2015). With the well-designed
protocol, errors, conflicts, and operational costs are min-
imised while the quality of the outcome is optimal. The
TAP has been applied for plant monitoring process and
shows superior improvement compared to the current
practice (Dusadeerungsikul et al. 2020).

3. Agricultural robotic system for plant stress
propagation detection (ARS/PSPD)

In this section, the Agricultural Robotic System for
Plant Stress Propagation Detection (ARS/PSPD) model
is introduced and explained. This section specifies the
agents, tasks, information exchange, and knowledge shar-
ing involved in the ARS thatare concerned with detecting
propagating plant stress. Then, the mathematical formu-
lation of the plant stress propagation detection problem
is presented. The collaborative scanning protocols are
then presented. An illustration of the ARS/PSPD model
is presented in Figure 1.

3.1. Specification of the ARS/PSPD model

The ARS/PSPD model is the expansion of the ARS model
(Guo, Dusadeerungsikul, and Nof 2018; Dusadeeru-
ngsikul and Nof 2019), with the specific focus on the plant
stress propagation detection problem. To tackle the plant
stress propagation problem, the Collaborative Response
to Disruption Propagation (CRDP) framework is applied
in this research (Nguyen and Nof 2019). Per the ARS
model, the ARS/PSPD model consists of multiple intelli-
gent agents: human agents, robot agents, software agents,

and sensors. The environment of concern is a green-
house, consisting of multiple plants and plant locations.
The plants in this environment are subjected to stresses,
which are conditions that can reduce plant productivity.
These stresses are often not confined to a single plant, and
the underlying conditions can propagate to nearby plants.
Such propagations are referred to as plant stress propa-
gation in this work. The goal of ARS/PSPD is to assign
scanning tasks to its robot agents to detect plant stresses
in the greenhouse concerned, with a limited scanning
budget.

Each single robot agent in the ARS/PSPD is a
robot mounted on a telerobotic/remote-controlled or
autonomous mobile platform. Each robot agent is
equipped with an end-effector carrying multiple sensors
and/or spectral image cameras to scan the plants for pos-
sible stresses. This technology is enabled by the recent
advances in agricultural robotics (Bechar, Meyer, and
Edan 2009; Wang et al. 2018). The sensor results and/or
images captured are then transferred to the ARS/PSPD
system for analysis, through a combination of expert
knowledge and machine learning techniques. The analy-
sis, within the scope of this work, either returns a positive
or negative stress condition. Expert knowledge can also
provide the probability of plant stress occurrence given
the current situation of the greenhouse, as well as the
potential plant stress propagation directions. This plant
stress detection approach addresses the limitations of the
highly labour-intensive approach of using human agents
to inspect every single plant manually.

Stressful conditions for plants are often not limited to
a single plant location, and can often propagate to nearby
plants if the stresses are not detected and responded
to promptly (Dusadeerungsikul and Nof 2019). In this
work, this mechanism is called plant stress propaga-
tion. Examples of stress propagation include spreading
plant diseases and pests and/or extreme environmen-
tal conditions that affect a larger section of the green-
house. The Collaborative Response to Disruption Propa-
gation (CRDP) framework has established that utilising
the knowledge of disruption propagation can improve
response performance (Nguyen and Nof 2019). In the
case of ARS/PSPD, the relevant disruptions are the plant
stresses, and the response activities are the scanning
activities of the robot agents. The application of the
CRDP framework in ARS results in the PSPD portion
of this research. Specifically, the CRDP framework rec-
ommends the detailed formulation of the PSPD problem
using network theory, as specified in detail in subsec-
tion 3.2. Advanced analytics and protocols can then be
developed to improve plant stress detection performance,
as discussed in subsection 3.3. Advanced analytics are
meaningful measures and indices that summarise and
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Figure 1. ARS/PSPD illustration.

condense the different status measures of the greenhouse.
Based on the advanced analytics, collaborative scanning
protocols can be developed and implemented to min-
imise errors and conflicts, as well as to ensure the desir-
able detection of plant stress.

The design of the ARS/PSPD model is supported
by the Collaborative Control Theory, particularly the
principles Collaboration Requirement Planning (CRP)
and Error Prevention and Conflict Resolution (EPCR).
This support is inherited from the previous work on
ARS (Guo, Dusadeerungsikul, and Nof 2018; Dusadeer-
ungsikul and Nof 2019). The CRP concept can be applied
to the assignment of agents to tasks. The planning phase
of CRP aims to develop the collaborative requirement
matrix (CRM), which can be represented as below.

Ax x Ty — CRM (1)

Ay represents the available agent x and T), denotes task y.
The CRM is the matrix that contains CRM(Ay, Ty) ele-
ments representing the cost of agent x to perform task y
as follows.

Cyy;  if agent x can perform tasks x
— xy>
CRM(As 1y)= [M ;  otherwise
(2)

Ciy is the cost of agent x performs task y and M is a large
number representing the situation that agent x cannot
perform task y (M > max(Cyy)).

The ARS/PSPD system involves multiple agents, as
well as complex interactions and collaboration, inevitably
leading to conflicts and errors. The EPCR principle
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enables and augments the prevention, detection, and
resolution of errors and conflicts in order to minimise
performance loss. Errors occur when the input, output,
and/or intermediate results of ARS/PSPD do not meet
specifications or expectations. An error is defined as
follows.

JE[ARSsingie (1], f (Statearsgg, ) > No(t) (3)

Where E is an error, ARSsjngle () is the ARS’ single agent
at time #, Statearsg;,q. () is the state of the agent at time f,
and N,(?) is the set of constraints, r, at time t.

A conflict refers to the difference between the infor-
mation, goals, plans, operations, or activities of a group
of collaborating agents. A conflict is defined as follows.
Dissatisfy

— N:(1)

(4)

Where C is a conflict, ARSGroup(f) is the ARS’ group
of collaborating agents at time f, Stateagsg,,, (t) is the
state of the group of collaborating agents at time ¢, and
N,(t) is the set of constraints, r, at time £. The errors and
conflicts relevant to ARS/PSPD have been discussed in
the previous work on ARS (Dusadeerungsikul and Nof
2019).

AC[ARSGroup (1)]], if (State Ars o, (£))

3.2. Theformulation of the plant stress propagation
detection problem

In this subsection, the formulation of the plant stress
propagation detection problem is presented. In ARS/
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PSPD, the set of plants consists of the plants in the
agricultural greenhouse environment. Each plant can be
subjected to stresses that can propagate once to a set
of predetermined directions. Applying the Collabora-
tive Response to Disruption Propagation (CRDP) frame-
work (Nguyen 2020), each plant is modelled as a node
n € N, and each possible propagation from one plant to
another is modelled as a directed edge e = (n;, ;) € E.
The CRDP framework specifies client system, the disrup-
tion propagation, and the response mechanisms. Apply-
ing the framework to this problem, the client system
corresponds to the plants, the disruption propagation
corresponds to the plant stress/disease, and the response
mechanisms correspond to the scanning activities. The
CRDP framework recommends the network modelling
of the disruption-client interaction, namely, the stress
propagation directions. This modelling enables and aug-
ments the scanning decisions by the improved situation
awareness.

An example of the network modelling is given
(Figure 2). In this example, a 5 x 3 plant grid with 2
stress propagation directions (orthogonal directions) is
converted to a 15-node and 22-edge network.

The network modelling can represent sophisticated
combinations of stress propagation directions and pat-
terns by drawing the corresponding directed edges
between the plants. For example, diagonal stress propa-
gation directions can be included with diagonal directed
edges (in the case presented in Figure 2). Any combi-
nation of propagation directions can also be represented
this way. Furthermore, ‘jumping’ propagation from one
node to another node further away (distance more than
1) can also be represented by drawing the corresponding
directed edges. To properly apply the ARS/PSPD model,
it is necessary that the network representation of the
stress propagation be constructed according to previous
knowledge or expert knowledge, which is enabled by the
inclusion of expert knowledge.

B
&
&

3
&
5

%
&
%

Stress propagation
directions

Figure 2. Network modelling of stress propagation example.

Based on the set of nodes N and the set of edges E, the
set of incoming edges E" (1) for each plant n is defined as

E"(n) = {(n;»nj) € E: nj = n} (5)
The set of incoming nodes of each plant 7 is defined as
N™(n) = {nje N:3(ni,nj) e E:nj=n}  (6)

Similarly, the set of outgoing edges E®"(n) for each plant
n is defined as

E*™(n) = {(n;,n;) € E: nj = n} (7)
The set of outgoing nodes of each plant # is defined as
N°(n) ={nje N:3(ni,nj)) € E:nj=n} (8)

In ARS, stresses affecting a plant can propagate to nearby
plants, due to location and environmental factors. To
model this behaviour, the stress origin probability pg €
[0, 1] is defined, which is the probability that each plant
has a source of stress that stresses the plant itself and
potentially nearby plants. This origin stress status So(n)
of a plant # is defined as

1, with probability pg

0, otherwise

So(n) = [ 9)

These origin stresses can propagate stresses along the out-

going edges. Formally, the final stress status of each plant
S(n) is defined as

if Sg(n) =1 or
S(n)={" 3n; € N"(n):Sy(n;) =1
0, otherwise

(10)

An example of origin stress status and final stress status is
given (Figure 3). A total of 3 plants are affected by Sp(n) =
1, leading to 8 plants being affected by S(n) = 1.

—

Stress
propagation

O Plant



Stress
propagation

So(n)=1
Figure 3. Stress propagation example.

The information about Sy(n) and S(n) is not known
to ARS until a plant n is scanned/observed. The scan-
ning/observation status O(n) of a plant n, which is a
decision variable, is defined as

1, plant#n is observed
Q) = {0, otherwise an
Setting O(n) < 1 allows ARS to see the status of S(n).
For most applications, the number of scans is limited
due to the time-consuming nature of the stress scanning
process (Dusadeerungsikul and Nof 2019). In the scope
of this work, the maximum number of scans allowed is
defined as Op € NN [0, |N]], which denotes the maxi-
mum number of scans allowed for a particular simulation
run.

0y > Z O(n) (12)

neN

To guide the scanning/observation decisions, different
collaborative scanning protocols, generally denoted as
O(protocolname) are developed and employed. The selected
scanning protocol for a simulation run is denoted as
Op. These protocols are discussed in the following
subsection.

Two performance metrics with minimisation goals
are defined to measure the effectiveness of the scanning
decisions. The first performance metric M; € [0, 1], the
undetected stress ratio, is defined as

[{n € N :8(n) = 1and O(n) = 0}

M; = i (13)

The performance metric M; is the total number of
stressed plants that were not scanned divided by the total
number of plants. An alternative formula for M; is

_ 3 ey max(0, S(n) — O(n))

M
IN|

(14)
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The second performance metric M, € [0, 1], the redun-
dant scanning ratio, is defined as
[{n € N : O(n) = 1 and S(n) = 0}|

M, = 15
2 O (15)

The performance metric M, is the total number of
scanned plants that were not stressed divided by the max-
imum number of scans allowed. An alternative formula
for M, is

ZREN max(0, O(n) — S(n))

M; =
2 Ob

(16)

The ARS simulation logic is as follows.

ARS step 1: Initialise N, E, pg, Op, Op

ARS step 2: Vn € N : Compute E™®(n), E°(n), N™*(n),
Nm[t(n)

ARS step 3: Initialise origin stress : Vn € N :

if unif(0,1) < pg : So(n) < 1,else Sp(n) < 0

ARS step 4: Propagate stress : Vn € N :

if Sy(n) = 1 or (An; € N™(n) : Sy(n;) = 1) :
S(n) <1
else: S(n) <0
ARS step 5: Allocate scanning :
Fori:=0to Oy :
Decide O(n) according to Op, resulting in #1;¢xt
O(npext) <1

ARS step 6: Compute My, M,

In the ARS simulation logic, ARS step 1 initialises
the parameters needed for the simulation. Step 2 com-
putes the derived sets of incoming/outgoing nodes and
edges for each node. These sets are defined for the con-
venience of future simulation steps and scanning proto-
cols. Step 3 initialises the origin stress Sp(n), and step
4 propagate such stresses along the outgoing edges to
S(n). Step 5 allocates the scanning decisions according
to the selected plant stress scanning protocol Op and
the maximum number of scans Op allowed. The differ-
ent scanning protocols are discussed in subsection 3.3.
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Step 6 computes the system performance metrics M, the
undetected stress ratio, and M3, the redundant scanning
ratio.

3.3. The collaborative scanning protocols for the
detection of plant stress

Within the scope of this research, five different collab-
orative scanning protocols, generally referred to as Op,
are specified and validated. Following the EPCR prin-
ciple, the ARS/PSPD system uses the scanning proto-
cols to ensure that the scanning results O(n) are shared
across the system, and those plant locations are not
scanned twice in a short period of time. The selected
scanning protocol specifies the respective analysis that
the ARS/PSPD uses and the next scanning location.

ORrandom: Random scanning protocol, which ran-
domly selects unobserved plants n € N: O(n) =0 to
scan (Dusadeerungsikul and Nof 2019). This protocol is
the baseline protocol, with which the other four more
advanced scanning protocols are compared to. The ran-
dom scanning protocol ensures scanning coverage but
does not consider stress propagation. All unobserved
plants received the same probability of being selected.
Formally,

tinext < randomly select from {n € N : O(n) = 0}
(17)

ARS does not see Sy(n), thus, computing the probabil-
ity P(Sp(n) = 1) and P(S(n) = 1) is necessary. From the
definition of So(#), the probability of origin stress is

P(So(n) =1) =po,Vne N (18)

Combined with the definition of final stress, and given
no other information, formally @, the probability of final
stress is

P(S(n) = 1|0)
=1- J] a-PSm)=1), VneN
nieN"(n)
& P(S(n) = 1|9)
=1- [] a-po
meN" (1)

—1—(1—po)N"®  vypeN (19)

Because the selections of O(n) are completely random,
and independent from the values of S(n) (whether
observed or not), the expected values of M; and M; can
be estimated. This means the expected value for M is as

follows:
o) P(S(n) =1
sy 2% ooy PSE) = 19)
IN]
0 1 — (1 — py)IN" ()]
_ Op x P en( |N|( o) ) o)
And the expected value for M; is
By = X T PS) = 010)
IN
_ % X Ypen A —p™
IN

Opdaptive : Adaptive basic scanning protocol, which
prioritises plants with higher numbers of incoming
nodes/plants that have been detected to be stressed, tie-
breaking randomly (Dusadeerungsikul and Nof 2019).
The main idea behind this scanning protocol is that the
nodes next to the found-to-be-stressed nodes are more
likely to be stressed than others. Using the nodes and
edges defined, this protocol has been reformulated as

Mpext <— argmax {|{n; € Ni”(n) :0(ny) =1
neN:0(n)=0

and S(n;) = 1}|} (22)

The alternative formulation is

Hpext <— argmax
neN:0O(n)=0

> Om)*Stm) ¢ (23)

n;eNn(n)

An example of Opgaptive is provided (Figure 4). In this
brief example, the nodes 3, 6, 7, 9, 13, and 15 have been
scanned, thus O(n) = 1 for those nodes. Nodes 3, 6,
and 15 are found to be not stressed with S(n) = 0, and
nodes 7, 9, and 13 are found to be stressed with S(n) = 1.
Using Oadaptives Mnext is determined to be node 8, with a
selection value of 2 (due to nodes 7 and 13 found to be
stressed). Other nodes with selection values of 1 include
nodes 2, 4, 10, and 14.

OtnDegree: Adaptive in-degree scanning protocol, which
prioritises plants based on the numbers of incoming
nodes/plants that have been detected to be stressed and
not stressed, tie-breaking randomly. Two coefficients
a, B € R are used to adjust the weights between stressed
and not stressed nodes. This protocol expands upon
Oadaptive by considering nodes that have been found to
be stressed and not stressed. Formally:

a x |{n; € N"(n) : O(n;) =1
and S(n;) = 1}|—

B x |{n; € N"(n) : O(n;) =1
and S(n;) = 0}

Mpext <— argmax
neN:0(n)=0

(29)
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Figure 4. lllustration of adaptive search scanning protocol.

The alternative formulation is

Hpext <— argmax
neN:0(n)=0

x{ Y O0m)x((@+p) xSm)—pB) (25

meNimn(n)

An example of Ompegree is provided (Figure 5). In this
example, the nodes 1, 3, 6, 7, 8, 9, 13, and 15 have been
scanned, thus O(n) = 1 for those nodes. Nodes 1, 3, 6,
and 15 are found to be not stressed with S(n) = 0, and
nodes 7, 8, 9, and 13 are found to be stressed with S(n) =
1. Using Opypegrees With @ = 1and B = 0.5, f1y,ex; is deter-
mined to be node 14, with the selection value of 1 (due
to node 13 found to be stressed). Other nodes with selec-
tion values of 0.5 include nodes 2, 4, and 10. If O pgaptive is
used, nodes 2, 4, 10, and 14 would all receive the selection
values of 1 instead.

OpualDegree: Adaptive dual-degree scanning proto-
col, which prioritises plants based on the numbers of
both incoming and outgoing nodes/plants that have
been detected to be stressed and not stressed, tie-
breaking randomly. The coefficients «, B,y,8 € R can
be adjusted. This protocol expands upon Ompegree by
considering both incoming nodes and outgoing nodes.
Formally:

Mpext <— argmax
neN:0O(n)=0
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' | Om=1.8m=1

om=1.5mn=0
Q Myext

a x |{n; € N"(n) : O(n;) = 1
and S(n;) = 1}|—

B x |{ni e N™(n) : O(n;) = 1
and S(n;) = 0}|+

*1y x |y e N#(my: Om) = 1[  26)
and S(nj) = 1}|—

8 x |{nj € N (n) : O(nj) = 1
and S(n;) = 0}]

The alternative formulation is

fpext <— argmax

neN:0O(n)=0
Y O(m) x (& + B) x S(mi) — B)+
n;eNT (1)
Y O(n) x (v +8) x S(m)) — 8)
njeN°"(n)

(27)

An example of Opyalpegree is provided (Figure 6), which
is similar to the example provided in Figure 5. Using
ODualDegree: withe =1, 8 = 0.5, y = 0.5, and § = 0.25,
Muext 18 determined to be node 14, with selection value of
1.25 (due to node 13 found to be stressed). Nodes 4 and
10 receive selection values of 0.5, and node 2 receives the
selection value of 0.25.

OBayesNet: Bayesian network-driven scanning proto-
col. This protocol utilises Bayesian network inference
(Pearl 1985; Pearl and Paz 1987) to determine the
probability of each plant being stressed, based on all
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OIuDegree

Figure 5. lllustration of in-degree scanning protocol.

ODuaLDegree

Figure 6. lllustration of dual-degree scanning protocol.

observations/scanning already done. Given a causal dia-
gram, a Bayesian network can be used to answer con-
ditional probability queries about an event happening.
In this work, a Bayesian network is constructed using
the network model from ARS/PSPD to establish the con-
ditional dependencies between the stress occurrences
of the different nodes. Utilising the scanning results,
the Bayesian network can then infer the probabilities
P(Sp(n)| scanning results) and P(S(n)| scanning results).
This information is then used to select the next scanning
decision.

O(n)=0
) oMm)=1,5m)=1

On)=1.85m=0

O Myext

O =0
om=1.5m=1

O =1.5m=0

O Mnext

To construct the Bayesian network representing the
plant stress propagation problem, the following BayesNet
logic is used:

BayesNet step 1: Initialise BayesNet

BayesNet step 2: Vn € N, within BayesNet :

Create a BayesNet node for Sp(#)

Set 2x1 probability table for So(n) of BayesNet with
P(So(n) =0) =1—po
P(So(n) = 1) = po

Create a BayesNet node for S(n)

Create a BayesNet edge (So(n), S(n))



O Plant node

Stress
propagation

BayesNet node

—_—

BayesNet edge
Figure 7. BayesNet formulation example.

BayesNet step 3: Ve = (n;, nj) € E, within BayesNet :
Create a BayesNet edge (So(n:), S(n;))
BayesNet step 4: Yn € N, within BayesNet :
Set conditional probability table for S(n) given all
incoming edges :
Number of rows — 2/(incoming BayesNet edges to S(m)}|
Number of columns = |{incoming BayesNet
edges to S(n)}| + 2
For each row of this conditional probability
table :
If S(n) = 0, set P(S(n) = 0) = 0 if any incoming
BayesNet edge is 1, and 0 otherwise
If S(n) = 0, set P(S(n) = 1) = 1if any incoming
BayesNet edge is 1, and 0 otherwise
BayesNet step 1 initialises the BayesNet representing
the plant stress propagation problem. Step 2 creates a
BayesNet node representing Sy(n) for each node n € N,
and a corresponding probability table for the nodes. The
probability of 1 — pg and pg are determined from the ARS
simulation logic. For each node n € N, Step 2 also creates
a BayesNet node representing S(n) and a BayesNet edge
from Sy(n) to S(n). Step 3 refers to E, and for each e =
(n;, ;) € E, create a BayesNet edge from Sy(n;) to S(n;).
An example of a BayesNet formulation from a 9-node and
12-edge network is given (Figure 7).
Step 4 creates all conditional probability tables for
all S(n) of all n € N. For each n € N, the dimension
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of conditional probability table for S(1) depends on the
number of incoming BayesNet edges of S(n), which is
1 or greater. The case of 1 is when N'(n) = @, and the
only incoming BayesNet edge of S(n) is So(n). In the net-
work provided in Figures 4-6, there are nodes with 0
in-degree (such as node 11), 1 in-degree (such as node
1), and 2 in-degree (such as node 5), and their BayesNet
conditional probability tables are given (Table 2). The
conditional probability values are determined from the
ARS simulation logic step 4.

The scanning protocol Opayesnet initialises the
BayesNet, and updates the set of observations after each
scanning decision allocation. Each observed node n € N
with O(n) = 1 would have its corresponding S(#) status
updated in the BayesNet. Then, the probability of each
unobserved node being stressed (with O(n) = 0) can
be computed. Exact Bayesian network inference requires
exponential time, but the belief propagation algorithm,
which requires polynomial time, can also be used (Pearl
1982). The scanning protocol Opgyesnet then proceeds to
select an unobserved node with the highest probability
of being stressed, given all observations already made.
Formally,

fnext < argmax {P(S(n)|{S(n*) :
neN:0(n)=0

O(n*) = 1,Vn* € N})} (28)
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Table 2. Example of BayesNet conditional probability table, using the example given in

Figure 4.
So(n11) P(S(n11) = 0[Sp(m1)) P(S(n11) = 15a(n1))
0 1 ]
1 0 1
So(m)  So(ne) P(5(n1) = 0/50(m), So(ne)) P(5(n1) = 1|S0(m1), So(ne))
0 ] 1 0
1] 1 0 1
1 ] 0 1
1 1 0 1
So(na)  So(ms)  So(mo)  P(S(ns) = 0[So(na), So(ns), So(ma)  P(S(ns) = 1|Sa(ng), So(ns), Sp(mo)
V] 0 0 1 0
0 V] 1 V] 1
0 1 0 0 1
0 1 1 ] 1
1 ] 0 V] 1
1 ] 1 0 1
1 1 0 ] 1
1 1 1 0 1

The information S(n*) is already available to the system
because O(n*) =1 for all n* € N, and P(S(n)[{S(n*) :
O(n*) = 1,Vn* € N}) is provided by the BayesNet.

4. Experiment results

In this section, numerical experiments are conducted to
illustrate and validate the plant stress detection simula-
tion and the plant stress scanning protocols. A square
grid is used as the layout of the greenhouse, as is typ-
ical in the agricultural greenhouse setting (Liu, Yuan,
and Wang 2006; Brien et al. 2013; Kochhar and Kumar
2019). The size of the grid is 10-by-10, resulting in
a total of 100 nodes. The potential stress propagation
directions are the four cardinal directions (up/north/N,
down/south/S, left/west/W, and right/east/E), which are
commonly studied in greenhouse experiment designs
(Brien et al. 2013). Due to symmetry within the 10-by-10
grid, only five combinations of stress propagation direc-
tions are necessary: 1-direction, 2-direction-opposite,
2-direction-orthogonal, 3-direction, and 4-direction. 1-
direction is either N/S/W/E, and due to geometrical sym-
metry within the 10-by-10 grid, only one case is neces-
sary. 2-direction is either NS/NW/NE/SW/SE/WE, but
can be further reduced to 2-direction-opposite (NS, WE)
or 2-direction-orthogonal (NW, NE, SW, SE). 3-direction
is either NSW/NSE/NEW/SWE, and due to symmetry,
only one case is necessary. 4-direction is one case of
NSWE. Therefore, only five combinations of propagation
directions are investigated.

Six cases of py are investigated: 0.05, 0.10, 0.15, 0.20,
0.25, and 0.30. The scanning budget Op is 50. The
five scanning protocols described in 3.2 are applied:
ORandom> OAdaptive- OInDegreEn ODua]Degree: and OBayesNet-
The numerical experiments are conducted on Python 3,
and the calculations supporting OpayesNet are provided
by the library Pomegranate (Schreiber 2014, 2017). The

performance metrics M;j, total number of undetected
stresses, and M;, total number of redundant scans, are
reported. Both M; and M, are minimisation objectives.
A total of 100 replications (randomising origin stress sta-
tuses Sp(n) for all nodes n € N) are simulated for each
factorial combination. Given five cases of stress propaga-
tion direction, six cases of py, and five cases of scanning
protocols Op, this set of experiments involve a total of 150
factorial combinations, and a total of 15,000 simulation
runs.

The performance comparison between scanning pro-
tocols Op (with 95% confidence interval bars) are pro-
vided in Table 3 and Figure 8.

The results in Table 3 and Figure 8 are averaged across
all cases of stress propagation directions and stress origin
probability. The scanning protocol Ogaptive outperforms
ORrandom by 20.6% with respect to number of undetected
stresses M; and by 15.9% with respect to number of
redundant scans M,, with statistical significance. The
scanning protocol Opayesnet Outperforms Opandom by
35.4% in M; and by 27.3% in M, with statistical signifi-
cance. The three scanning protocols Oagaptives OmbDegrees
and Opyalpegree do not provide statistically significant
differences in performance. Also, the scanning protocol
OgayesNet outperforms the next best scanning protocol by

Table 3. Summary of comparison between scanning protocols.

Scanning Number of undetected Number of redundant
protocol Op stresses M, scans M3
ORandom 0.22027 0.57088
Odaptive 017473 0.47981
OnDegree 0.17126 0.47287
OpualDegree 0.17840 0.48715
ORayesnet 0.14227 0.41479
—16.92% —12.28%

Values different from other values of the same category with statistical signif-
icance at @ = 0.05 are underlined.
The best value of a performance metric is bolded, and compared with the
next best value.
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Figure 8. Comparison between scanning protocols.

16.92% in M; and by 12.28% in M, with statistical signif-
icance. These results indicate that the scanning protocol
OgayesNet provides superior stress detection performance
(due to the lower number of undetected stresses M),
as well as superior scanning efficiency (due to the lower
number of redundant scans M>).

The performance comparison between scanning pro-
tocols Op (with 95% confidence interval bars), grouped
by stress propagation directions, are provided in Table 4
and Figure 9.

The results in Table 4 and Figure 9 are averaged across
all cases of stress origin probabilities, and grouped by the
stress propagation directions. In all five cases of stress
propagation directions, the scanning protocol Opayesnet
provides the highest performance in both M; and M;,
whereas the baseline scanning protocol Ogapdom provides
the lowest performance. In the case of 1-direction, the
next best scanning protocol is Opyalpegree- In the case of
2-direction-opposite, the next best scanning protocol is
OrnDegree- In the case of 2-direction-orthogonal, the three
scanning protocols OAdaptive» OI.uDegree» and ODnalDegree
provide similar performance. The performance gap in the
two cases of 3-direction and 4-direction, both Oagaptive
and Ompegree are next best in terms of performance in
both M; and M;. With respect to Mj, the performance
gaps between Opayesnet and the next best scanning pro-
tocol is lowest with the 2-direction-opposite case, and
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highest with the 1-direction case. With respect to M»,
the performance gaps between Opayesnet and the next
best scanning protocol is lowest with the 2-direction-
opposite case, and highest with the 4-direction case. The
first observation is that the scanning protocol OpayesNet
provides superior stress detection performance and supe-
rior scanning efficiency in all stress propagation direc-
tion cases. The second observation is that the next best
scanning protocol is not necessarily the more advanced
scanning protocol Opyalpegree-

The performance comparison between scanning pro-
tocols Op(with 95% confidence interval bars), grouped by
stress origin probability pg, are provided in Table 5 and
Figure 10.

The results in Table 5 and Figure 10 are averaged
across all cases of stress propagation directions, and
grouped by the stress propagation probabilities. In all six
cases of po, the scanning protocol Opayesnet provides the
highest performance in both M; and M;, whereas the
baseline scanning protocol Orandom provides the low-
est performance, all with statistical significance. The M;
performance gap between OpayesNet and the next best Op
decreases as pg increases, from 60.8% with 0.05 to 12.67%
with 0.30. Also, M; steadily increases with higher py,
which is due to the higher number of stresses. The M>
performance gap between Opayesnet are the next best Op
increases from 5.35% at py = 0.05to 15.31% at py = 0.10,
and then stabilises around 12% to 15%. Also, M, steadily
decreases with higher pg, because of the higher number
of stresses. Based on the results in Table 5, it is observed
that Opgayesnet Outperforms all other scanning protocols
across all py scenarios. It is also observed that the three
scanning protocols OAﬂapﬁves OInDegreea and ODua]Degree
perform relatively similar to each other, across all stress
probability pg.

To summarise the experiment results:

(1) The scanning protocol Opayesnet provides the best
detection performance in both M; and M; across all
experiment scenarios, with statistical significance.

Table 4, Summary of comparison between scanning protocols, grouped by stress propagation directions.

Scanning 1-dir 2-dir-opp 2-dir-ort 3-dir 4-dir
protocol Op My M3 My M3z M M3 My M3 M Mz
ORandom 0158 0703 0206 0595 0209 06 028 0512 0281 0443
OAdapﬁve 0.129 0.646 0.141 0.466 0.176 0.529 0.198 041 0.233 0.347
OInDegree 0.126 0.640 0.125 0434 0.176 0.534 0.196 0.408 0.233 0.347
ODualDegree 0111 0610 0.140 0.464 0.179 0.542 0213 0443 0247 0376
Ogayestet 0.93 0574 0118 0419 0.135 0452 0.168 0.359 0.198 0276
minus;16% —6% —6% —3% —22% —14% —14% —14% 0.198 0276

Values different from other values of the same category with statistical significance at @ = 0.05 are underlined.
The best value of a performance metric is bolded, and compared with the next best value.
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Figure 9. Comparison between scanning protocols, grouped by stress propagation directions.

(2) The three scanning protocols Oadaptive> OtnDegrees
and Opyalpegree Outperform the baseline scanning
protocols Opandom in both M; and M, across all

A-dir

Table 5. Summary of comparison between scanning protocols, grouped by stress origin

probability
Number of undetected stresses My
Scanning protocol O,  py =005 p; =010 p; =015 p;=020 p;=025 p, =030
ORandom 0.0714 0.15044 0.2081 0.25544 0.30026 0.33624
Oadaptive 0.0377 0.09774 0.15362 0.20554 0.25444 0.29938
OinDegree 0.035 0.09364 0.15014 0.2028 0.2511 0.29492
OpualDegree 0.0365 0.09958 0.15616 0.21082 0.2616 0.30576
OgayesNet 0.0137 0.04794 0.01123 0.01717 0.02293 0.02786
—60.8% —48.8% —25.2% —15.3% —8.67% —5.53%
MNumber of redundant scans Mz
Scanning protocol 0p pp=005 pp=010 py;=015 p;=020 p,=025 p, =030
O 0.86828 0.71452 0.5946 0.49692 041104 0.33992
OAdapt‘n,e 0.8014 0.60912 0.48564 0.39712 0.3194 0.2662
OluDegme 0.796 0.60092 0.47868 0.39164 0.31272 0.25728
C'[;,m,l[;.egnEe 0.799 06128 0.49072 0.40768 0.33372 0.27896
OgayesNet 0.7534 0.50892 0.40308 0.32952 0.26916 0.22468
—5.35% —15.31% —15.79% —15.86% —13.93% —12.67%

Values different from other values of the same category with statistical significance at @ = 0.05 are underlined.
The best value of a performance metric is bolded, and compared with the next best value.

experiment scenarios, with statistical significance.

(3) The three scanning protocols Oadaptive> OmbDegree
and Opyalpegree Only show statistically significant
difference in terms of M; and M; performance when
comparing different stress propagation scenarios.
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Figure 10. Comparison between scanning protocols, grouped by stress origin probability.

5. Conclusion and discussion of applications

This paper presents the Agricultural Robotic System for
Plant Stress Propagation Detection (ARS/PSPD), which
focuses on the plant stress detection function of the
ARS. Leveraging the cyber-physical nature of ARS and
the network modelling capability of CRDP results in the
formulation of the plant stress detection problem. This
PSPD formulation captures the plant stress occurrence
and propagation mechanisms, enabling better situation
awareness and augments the development of advanced
collaborative scanning protocols. A total of five collabo-
rative scanning protocols are designed and implemented
in ARS/ PSPD. The scanning protocols minimise errors
and conflict in scanning task allocation and enable bet-
ter detection of plant stress. The first scanning proto-
col is the random sampling scanning protocol, which
is the baseline protocol for comparison. The second,
third, and fourth scanning protocols are adaptive scan-
ning protocols that utilise existing plant stress informa-
tion and stress propagation network topology to assign
scanning tasks. The fifth scanning protocol, Bayesian

network-driven scanning protocol, constructs a Bayesian
network based on existing plant stress information, and
infers the state of plant stress of unscanned locations.
To validate the PSPD formulation and the five collabora-
tive scanning protocols, numerical experiments are con-
ducted. The experiment results show that the Bayesian
network-driven scanning protocol outperforms the three
adaptive scanning protocols, which in turn outperform
the baseline random sampling scanning protocol.

From this research, the following recommenda-
tions are made to greenhouse managers, supervisors,
and researchers involved in plant stress detection and
monitoring:

(1) The plant locations in the greenhouse should be
specified, modelled, and monitored to allow better
awareness and identification of plant stresses.

(2) The occurrence mechanisms and propagation mec-
hanisms of plant stresses should be investigated,
understood, and incorporated into the plant stress
detection and monitoring activities.
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(3) The information obtained from both stress-positive
scans and stress-negative scans should be utilised to
infer the stress statuses of unscanned plant locations.

Future research is recommended to further expand the
ARS/PSPD model and/or to enrich the research in plant
stress propagation detection and monitoring:

(1) Different types of plant stresses with different
occurrence and propagation behaviours could be
explored. Each plant type could have different prop-
agation probabilities as well. Better scanning deci-
sion analytics need to be developed to address this
complexity. Then, field experiments could be con-
ducted to validate the improved model and decision
analytics.

(2) More complex workflow problems and issues should
be considered: Multiple agent travelling; Scanning
and travelling interruptions and preemption due to
new information; Complex time constraints (trav-
elling and scanning) coupled with physical robot
limitations (battery recharging or equipment cali-
brating).

(3) Expanding the ARS/PSPD model to the case of lim-
ited or unavailable propagation pattern knowledge.
This case could require the use of statistical and
machine learning techniques to infer the propaga-
tion directions.

(4) Include human-in-the-loop design, which allows
humans to intervene in the system’s task allocation
and decision-making.

(5) Investigating and applying the property of high
stress/non-stress certainty into the scanning deci-
sions. The high certainty of stress/non-stress could
allow the skipping of scanning, due to certain nodes
having very high probability of having stress/non-
stress, further improving scanning performance.
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