LEAFWISE FLAT FORMS ON INOUE-BOMBIERI SURFACES

DANIELE ANGELLA AND VALENTINO TOSATTI

ABSTRACT. We prove that every Gauduchon metric on an Inoue-Bombieri surface admits a
strongly leafwise flat form in its 80-class. Using this result, we deduce uniform convergence
of the normalized Chern-Ricci flow starting at any Gauduchon metric on all Inoue-Bombieri
surfaces. We also show that the convergence is smooth with bounded curvature for initial
metrics in the d9-class of the Tricerri/Vaisman metric.

1. INTRODUCTION

In this paper we are interested in the convergence of the normalized Chern-Ricci flow on
Inoue-Bombieri surfaces. The Chern-Ricci flow is a parabolic evolution equation for Hermitian
metrics (with associated (1, 1)-forms) w(t) on a compact complex manifold, given by

(CRF) %w(t) = —Ric"(w(t)), w(0) = wo,

where Ric“"(w) loc —+/—1001logdetw denotes the Chern-Ricci form of w, and wy is any initial
Hermitian metric. It was first studied by M. Gill in the setting of manifolds with vanishing
first Bott-Chern class [Gilll], where a parabolic proof of the non-Kéhler Calabi-Yau Theorem
[TW10] was given, and then introduced and studied in general by B. Weinkove and the second-
named author [TW15]. If the initial metric is Kéhler, then the Chern-Ricci flow equals the
Kahler-Ricci flow, but in general it is quite different from the Ricci flow. The behavior of the
Chern-Ricci flow on compact complex surfaces was investigated in [TW13, TWY15, FTWZ16,
Kaw16, Niel7, Tol8, Edw21, AS20], and further general results in all dimensions can be found in
[Gil13, GS15, KN19, Laul5, LR15, Ngul6, Niel4, SW13, Yanl6, Zhel7], see also [LT20, HLT19]
for the Chern-Ricci flow on noncompact complex manifolds, and [TW22] for a survey. From
all these works it is clear that the behavior of solutions of the Chern-Ricci flow deeply reflects
the underlying complex structure. Understanding the behavior of the Chern-Ricci flow on non-
Kahler compact complex surfaces is particularly interesting, due to the fact that such surfaces
are not completely classified.

Recall (see e.g. [BHPV04]) that minimal non-Kéahler compact complex surfaces can be divided
into three classes according to their Kodaira dimension, namely minimal non-K&ahler properly
elliptic surfaces (Kod = 1), Kodaira surfaces (Kod = 0), and minimal surfaces of class VII
(Kod = —00). The behavior of the Chern-Ricci flow on minimal non-Kéahler properly elliptic
surfaces is described in general in [TWY15], while Kodaira surfaces are covered by [Gilll].
Minimal class VII surfaces S with bo(S) = 0 are also classified [Bog76, Bog82, LYZ90, LYZ94,
Tel94], and they are either Hopf or Inoue-Bombieri surfaces, while those with b2(S) > 0 are
not classified in general, see e.g. [Kat78, DOT03, Tel05, Tell0]. The Chern-Ricci flow on Hopf
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surfaces has been studied in [TW15, TW13, Edw21], and in this paper we focus on Inoue-
Bombieri surfaces.

More precisely, we will consider the normalized Chern-Ricci flow starting at a Hermitian
metric wy:

(NCRF) Qw(t) = —Ric“"(w(t)) — w(t) w(0) = w
at b 07
where the underlying manifold will be an Inoue-Bombieri surface.

Inoue-Bombieri surfaces [Bom73, Ino74] are surfaces of class VII with second Betti number
equal to zero and with no holomorphic curves [Bog76, Bog82, LYZ90, LYZ94, Tel94]. Their
universal cover is C x H, where H denotes the upper half-plane. They are divided into three
families: Sy, SJJ(,’p’q’T;t, and Sﬁ,p,q,r‘ They have a structure of fibre bundle over S!, where
the fibre is a 3-dimensional torus in case Sys, and a compact quotient of the 3-dimensional
Heisenberg group in case S*. Furthermore, every Inoue-Bombieri surface of type S~ has an
unramified double cover of type S*.

On any Inoue-Bombieri surface S, the standard metric on H (with coordinate w = zo +
v/—1ys2) induces the degenerate metric [HL83]

(1.1) = gdw A dw,
4ys

which satisfies

0 < e —cPY(9),
where A = 1 when S is of type Sp; and A = 2 when S is of type ST. For convenience, let us
define

(1.2) Woo 1= Adv.

Moreover, the kernel of « defines a holomorphic foliation on S by parabolic Riemann surfaces,
whose leaves are dense in the fibres of the bundle structure.

It follows from [TW15, Theorem 1.2] (cf. [TWY15, Theorem 2.1]) that the Chern-Ricci
flow starting at any Hermitian metric on an Inoue-Bombieri surface has a unique solution
for all positive time. In [TW13, §5, §6, §7], explicit solutions of the normalized Chern-Ricci
flow starting at the Tricerri, respectively Vaisman-Tricerri metric on an Inoue-Bombieri surface
S, respectively S*, were shown to converge to S' in the sense of Gromov-Hausdorff, [TW13,
Theorem 5.1, Theorem 6.1, Theorem 7.1]. More generally, this holds for all initial locally
homogeneous metrics, [Laul5, LR15].

This convergence result is extended to a larger class of initial metrics in [FTWZ16], where S.
Fang, the second-named author, B. Weinkove, and T. Zheng proved that the normalized Chern-
Ricci flow collapses any Hermitian metric on an Inoue-Bombieri surface to a circle, modulo an
initial conformal change. In fact, they proved that on an Inoue-Bombieri surface the solution
of the normalized Chern-Ricci flow starting at any Hermitian metric in the 9d-class of a (1,1)-
form which is strongly flat along the leaves converges uniformly to we as t — 400, [FTWZ16,
Theorem 1.1], and that this implies that the Gromov-Hausdorff limit is a circle. The convergence
is in fact in CP, for every 0 < 8 < 1, when the initial metric is in the 90-class of the Tricerri,
respectively Vaisman-Tricerri metric, [FTWZ16, Theorem 1.3]. Moreover, any Hermitian metric
on an Inoue-Bombieri surface admits a Hermitian metric in its conformal class which is strongly
flat along the leaves [FTWZ16].

Here, a real (1,1)-form w (not necessarily a Hermitian metric) on an Inoue-Bombieri surface
S is called flat along the leaves if the restriction of w to every leaf of the holomorphic foliation
of S is a flat Kihler metric on C in case Sy, respectively C* in case S*. Equivalently, consider
the universal cover P: C x H — S. Then w is flat along the leaves if and only if P*w|cx{w}
is a flat Kéhler metric for any w € H. This is equivalent to asking that a A w = 7*n w%v,
for some 1 € C*°(S*; R>?), where 7: Sy — S! denotes the projection of the bundle structure,
[FTWZ16, Lemma 2.1] and wry denotes the Tricerri metric [Tri82] in the case Sy, respectively
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the Vaisman-Tricerri metric [Vai87, Tri82] in the case ST. If moreover P*w lcx{w) is equal to

c(Imw)-v/—1dzAdz on Sy, respectively c-/—1dzAdz on S*, (here z is the coordinate on C),
then w is called strongly flat along the leaves. This is equivalent to asking that a Aw = cw%v,
where ¢ > 0 is a constant, [FTWZ16, Lemma 2.1].

The results in [FTWZ16] left open the question of the behavior of the Chern-Ricci flow
on Inoue-Bombieri surfaces when the initial Hermitian metric is arbitrary. More precisely in
Question 1 in [FTWZ16, §4] they asked whether all Hermitian metrics belong to the 90-class of
a (1, 1)-form which is strongly flat along the leaves, or whether this holds at least for Gauduchon
metrics. In this paper we answer these questions.

Our first observation, see Lemma 5.3, is that it is in fact not true that all Hermitian metrics
on an Inoue-Bombieri surface belong to the d0-class of a (1,1)-form which is strongly flat along
the leaves. This follows from a simple obstruction (see (1.3) below) coming from elements in
the kernel of the leafwise Laplacian. We also observe that this obstruction vanishes for all
Gauduchon metrics.

More interestingly, our main Theorems 5.4 and 5.5 show that if this obstruction vanishes (in
particular this holds for all Gauduchon metrics) then the Hermitian metric does belong to the
d0-class of a (1,1)-form which is strongly flat along the leaves. This gives:

Theorem 1.1. Let S be an Inoue-Bombieri surface. Let w be a Gauduchon metric on S (or
more generally a Hermitian metric which satisfies (1.3)). Then there exists a smooth function
u on S such that w + /—100u is a real d0-closed (1,1)-form which is strongly flat along the
leaves.

This theorem reduces to solving the degenerate elliptic equation

(5.1) Apu = G(w),
where o
V—=100u A «
Apu = —F5——
wry

is the Laplacian along the leaves, and where we set

_w/\a fsw/\a

G(w) := .
Wiy Jswiv
A necessary condition for the solvability of (5.1) is given by
(13) G(w) J—Lz(w%v) ker A'D,

and this is satisfied by Gauduchon metrics w, Lemma 5.3. Inoue-Bombieri surfaces are bundles
over the circle with fiber T? in the case of Sy and a 3-dimensional nilmanifold in the case of S=.
Using Fourier expansion along these fibers (partial Fourier expansion in the case of nilmanifolds),
we obtain a distributional solution to (5.1) whenever (1.3) is satisfied, and we show that this
solution is in fact smooth using crucially the Liouville theorem on rational approximations of
irrational algebraic numbers.

As a consequence of Theorem 1.1, using more or less directly [FTWZ16, Theorem 1.1], we get
uniform convergence for the normalized Chern-Ricci flow starting at any Gauduchon metric on
all Inoue-Bombieri surfaces, thus answering a question in [FTWZ16, Conjecture 1, page 3183].

Corollary 1.2. Let S be an Inoue-Bombieri surface, and w be any Gauduchon metric on S (or
more generally a Hermitian metric satisfying (1.3)). Let w(t) be the solution of the normalized
Chern-Ricci flow (NCRF) starting at w. Then

w(t) = wWeo as t — 400,
uniformly on S and exponentially fast, where wy is defined in (1.2). Moreover,

(S,w(t)) — (Sl,d) ast — 400
3



in the Gromov-Hausdorff sense, where d is the standard metric on S', of radius depending on

S.

In [FTWZ16, Conjecture 2, page 3183] it was also conjectured that in the setting of Corollary
1.2, the metrics w(t) converge to ws smoothly, and it was suggested that this could be first
approached in the case of Gauduchon metrics in the 90-class of wry. Our final theorem confirms
the conjecture in this case, and also shows that the evolving metrics w(t) collapse to weo with
uniformly bounded curvature. Our arguments also apply to the setting of non-K&hler minimal
properly elliptic surfaces as studied in [TW13, TWY15] with initial metrics in the d9-class of
the Vaisman metric [Vai87], which greatly improves the main result of [Kaw16].

Theorem 1.3. Let S be an Inoue-Bombieri surface or a non-Kdhler minimal properly elliptic
surface, and let wpy be the Tricerri/Vaisman metric on S from [Tri82, Vai87]. Let w be a
Gauduchon metric on S which is of the form w = wry + /—100v¢ for some smooth function
. Let w(t) be the solution of the normalized Chern-Ricci flow (NCRF) starting at w. Then we
have that w(t) — weo in the C™ topology, and furthermore

sup [Rm(w(®) oy < O

for allt > 0.

The main idea that we will use originates from the work of Gross-Tosatti-Zhang [GTZ13] on
collapsing Calabi-Yau manifolds fibered by abelian varieties, with the role of the abelian varieties
fibers now played by the leaves of the canonical foliation on .S, and adapted to the Kéahler-Ricci
flow in [Tos18, §5.14] (see also [FZ15, HT15, TZ15]). We apply a family of stretchings in the
direction of the leaves to make the PDE uniformly elliptic, and using the explicit behavior of
the Tricerri/Vaisman metric under this stretching we obtain higher order estimates for w(t)
after stretching from standard higher-order regularity of uniformly elliptic PDEs of complex
Monge-Ampere type.

The paper is organized as follows. In Sections 2 and 3, we recall the construction of Inoue-
Bombieri surfaces of type Sy, respectively ST, and their main properties. In Section 4, we study
Gauduchon metrics on Inoue-Bombieri surfaces, and show that a certain natural obstruction
for constructing strongly leafwise flat forms vanishes for such metrics (Lemmas 4.1 and 4.2). In
Section 5 we prove our main result, Theorem 1.1 (see Theorems 5.4 and 5.5 respectively), by
solving a degenerate elliptic equation on these surfaces, whenever the aforementioned obstruc-
tion vanishes, and we also deduce Corollary 1.2. And lastly in Section 6 we give the proof of
Theorem 1.3.
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2. THE INOUE-BOMBIERI SURFACES Sj

2.1. Construction. Consider the Inoue-Bombieri surface [Ino74|
Sy = (CxH)/T,

with coordinates z = z1 + v/ —1y; € C and w = 29 + v/—1ys € H, with yo > 0.
Here, we are given a matrix M = (M), € SL(3;Z) with a real eigenvalue A > 1 and

complex non-real eigenvalues p and fi. Note that A € R\ Q, (indeed, A # 1 is a root of a monic
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polynomial with Oth order term equal to 1), and A|u|? = 1. Denote by (¢1, f2,f3) an eigenvector
for A, and by (m1, me, m3) an eigenvector for p. Since A is irrational, it follows immediately that
at least two of the ¢;’s must be nonzero, so at least one of the ratios {¢;/{;};+; is well-defined
and is an irrational algebraic number.

Define I = (fo, f1, f2, f3) to be the subgroup of automorphisms of C x H generated by

fo(z,w) :== (nz, \w), fi(z,w) == (z + mj,w + {;),
varying j € {1,2,3}. The action of I" on C x H is fixed-point free and properly discontinuos

with compact quotient, so Sjs is a compact complex manifold. Denote by P: C x H — Sy, the
projection.

2.2. Torus-bundle structure. Note that Sj; has a structure of T3-bundle over S', with pro-
jection
m: Sy 2 (z,w) — Imw € R>0/<y2 — Ayg) ~ St

More precisely, notice that {(mq,mg, ms), (M1, M2, m3), (¢1,%2,¢3)} are C-linearly indepen-

dent, whence
{(Reml, Remg, Remg), (Im mi, Im ma, Im m3), (51, ZQ, Kg)}

are R-linearly independent. Therefore the subgroup I := (f1, f2, f3) < I is isomorphic to Z3.
Moreover it acts properly-discontinuosly and freely on C x H, with quotient X = (Cx H)/T' ~
T3 x R>0. The projection 71 : X — R>? is induced by (z,w) — Imw.

Since pu-my = Yoy My, -my and X-£; = S0 My - g, with My, € Z, then fo descends to
amap fo: X — X, and we have that Sy = X /(fo).

Note that fo maps the torus fibre T, := 7 }(
particular, fo induces the diffeomorphism ¥: Ty
mapping torus as follows:

to the torus fibre Ty, = 7 1(A-y). In

Y)
= T). We get that Sjp; has a structure of

Su = (T2 x [1,A]) /((p,1) ~ (¥ (p), N)) -

2.3. Foliation. The form « := 4y21 dw N dw being closed, induces a foliation on Sj;, whose
2

leaves are dense in the torus fibre.
More precisely, the kernel of \/?dw A dw on C x H is the integrable distribution
2

4y
D:—spanc{g },
z

whose leaves are of the form
Loy :={(z,wy) ECxH:zeC},wy € H.

It induces a holomorphic foliation D on Sy, without singularities, and whose leaves P(Ly,)
are biholomorphic to C, and Inoue [Ino74] (see also [BHPV04, Proposition V.19.1] for a simple
proof) showed that under the projection P: C x H — Sy, for any wy € H, the image P(Ly,)
is dense in the torus fibre T := 7= (Imwg) C Syy.

2.4. Solvmanifold structure. The Inoue-Bombieri surface has a structure of solvmanifold
with invariant complex structure, discovered in [Wal86].
We consider the holomorphic action of the solvable Lie group (C x R) xR on C x H given by

(361 + \/jyl, To + \/—7192) ((aJm/':lb’S)’t)
((p'z1 + a) + V=1('y1 +b), (N'aa + s) + V—1Ays) .
We get an action of the lattice I' := Z3 %37 Z on C x H, and then
Sy =C x H/T.



The forms on C x H defined by
1 90 1 0 o 0 o 0
ﬁ@ixl’ 62-—ﬁ87y1, 63-—92871?, €4~—9287y27
are invariant, and give a global frame on Sys. Its dual co-frame is

1 1
V= iy day, e® = /Y2 dyr, e = Edazg, et = Edyg.

€1 =

The structure equations are
1 1
det = —261/\6 de? = —562/\64, ded = e A et de* = 0.
The complex structure on Sy; induced by the invariant complex structure on C x H is given
by
Jep := eg, Jesg 1= ey.

So a global co-frame of (1,0)-forms on Sy is given by

1
ol = el+ﬁ62:@dz, o =3+ V-1t = — duw,
Y2

with structure equations

V= vl
1 1 y VYoo A2,

A
4 80 ‘P

2 \ S02/\

de™ = de” = @

2.5. Tricerri metric. Consider the degenerate metric [HL83]

V-1 v—1
(1.1) a=~—dw ANdw = ——¢* \ 77,
4ys 4
namely, the pull-back of the Poincaré metric on H.
Consider the Tricerri metric [Tri82]

wr = 4da+ V=1 Ag! = V=1p' A gt + V=102 A G2
Note that the Tricerri metric is an lcK metric on Sjs, with Lee form
Lo 1,
2¥ T ¥
Notice that Sy; does not contain any curve, as proven in [Ino74]. Indeed, since by(Sps) = 0,
the closed (1,1)-form « is exact. If there were a curve C, then foa = 0. Since a > 0, then

TC C D, that is, C is contained in a leaf of D, which is dense in a torus T? as mentioned above.
This is impossible.

V=

3. THE INOUE-BOMBIERI SURFACES S+

3.1. Construction. Consider the Inoue-Bombieri surface
St =5t = (Cx H)/T,

N,p,q,r, t -
with coordinates z = x1 + v —1y; € C and w = 22 + v —1y2 € H, with yo > 0. Here, we choose
N = (n?)j7k € SL(2;Z) with two real eigenvalues v and v~! with v > 1 (it follows that ~ is
irrational), and p,q,r € Z such that r # 0, and t € C. Let (a1,a2) and (b1,b2) be two real
eigenvectors corresponding to the eigenvalues v and y~!. Let (c1, c2) € R? be a solution of the
linear equation
bl cag — b2 caq
(3.1) (61,02) = (61,62)'Nt—|—(61,62)—|——
where, for j € {1,2},
1

€ ::i

’ (pv Q)7

r

1
-njl-(nj1—1)~a1-b1+§-nj2'(nj2—1)-ag‘bg—i—nﬂ'nﬂ-bl'ag.
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Whence define T' = (fo, f1, f2, f3) to be the subgroup of automorphisms of C x H generated by
fo(z,w) == (z+t,v-w), fi(z,w) :== (2 +bj - w+c¢j,w+ aj),
varying j € {1,2}, and

Bl = (24

The action of I' on C x H is fixed-point free and properly discontinuous with compact quotient,
so ST is a compact complex manifold.

The Inoue-Bombieri surface S~ is constructed similarly (see [Ino74]), but the important point
for us is that it has an unramified double cover of type S™T.

bi-az — by -aq )
—=——w.

r

Remark 3.1. For later use, let us remark here that neither the slope of (a1, a2) nor the slope
of (b1, b2) (which are clearly algebraic numbers) can be rational numbers. If this was true, then
(1,a2/a1) (or (ai/az,1)), or (1,b2/b1) (or (b1/bz, 1)) would be eigenvectors of N = (n;i);r with
rational entries. This means that, for example, ny1 + nlgg—f = v would be rational.

3.2. Nilmanifold-bundle structure. On S, as in the case of Sjs, we consider the subgroup
11’ = (f1, f2, f3) < I', which acts properly-discontinuosly and freely on C x H, with quotient
X := (C x H) /I which is described as follows:

. I yi =
(3.2) X = Yo T2 tx1, Y1, 0 €E Ry € R0 /F”,
1
where I ~ T" is the discrete group generated by the matrices
I hh «a 1 by ¢ 1 0 c3
g1 = L ay |, g2= L ax |, g3= 1o [,
1 1 1

acting by left multiplication, where
Cbrrag—by-ay

C3 =
r

Indeed, setting z = 1 + v/—1y; and w = x3 + v/—1ys, the action of the matrix g; is identical
to the action of f;, for j = 1,2,3. The projection 7 : X — R>Y is induced by (z,w) — Imw,
with fibers X,, = 7, !(y2), and we have that X is diffeomorphic to X x R>? where X = X is
the compact 3-dimensional nilmanifold

I y1 =
X1:H(3;R)/P”: 1 x9 =: (l’g,yhl’l) :x1,y1,x2€R /F//,
1

where H (3;R) is the Heisenberg group. Since fy lies in the normalizer of TV by [Ino74, p. 276],
it follows that fy induces a diffeomorphism W : X 5 X, and we have

ST =X/(fo) = X x [1,7)/ ((p, 1) ~ (¥(p), 7)) -
The projection
78T 3 (z,w) = y2 € R>O/<y2 - y) ~ St

yields a structure of X-bundle over S'.

3.3. Foliation. The form Y5 dw A dw being closed, it induces a foliation on ST, whose leaves

4y§
are dense in the X-fibre.
More precisely, the kernel of \Fdw A dw on C x H is the integrable distribution

v3
0
D := spang {82} ,
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whose leaves are of the form
Loy :={(z,wy) ECxH:zeC},wy € H.

It induces a holomorphic foliation D on ST, without singularities, and whose leaves P(L,,,) are
biholomorphic to C*, and under the projection P: C x H — S, for any wg € H, the image
P(Ly,) is dense in the X-fibre 77 1(Imwg) C ST (see e.g. [TW13, Lemma 6.2] or [Brul3,
Proposition 2.1]). Indeed, if they were not dense, then (1,0,0) and (0,1,0) would be elements
of the lattice generated by (a1, b1, ¢1), (az,be,c2), and (0,0, ¢3), which would contradict Remark
3.1.

3.4. Solvmanifold structure. See [Has05]. Write Imt = mlog~y, for some m € R, and
consider the global co-frame on S given by
—ml —ml
el = dgy — L TOBY2 2= dy, — L8 Y2 4
Y2 Y2
3 1 4
e’ := — dxg, e* = — dys,
Y2 Y2
In terms of the corresponding dual frame:
0 ( ) a 0 n 0
el = -, €a = — m 1o
1 071 3 Y1 gY2 o071 Y27~ 97y’
0 ( log y) 0 n 0
€2 = 75—, €4 = Y1 —mlogy2)5— T y25—
oy Iy Oy
The structure equations are
det = —e2 Ned —med Ae?, de? = —e? A e,
ded = e A et de = 0.
The complex structure is
J€1 = €9, Jeg = 64,
in terms of the frame; in terms of the co-frame, Je! = —e?, Je? e?, so a global co-frame of

(1,0)-forms on ST is given by

—ml
(pl = el + \/_162 — dZ — de7
Y2

1
ot =3 +/—1let = — duw,
Y2

with structure equations

1\/71 \/72 \/j12

o' AN+ P AP — 5 —— ¢’ AP,
2 V2_ 302/\952-

dp

dp® =

3.5. Vaisman-Tricerri metric. Consider the degenerate metric

e

(1.1) o= dw A dw = ~——p* A §°.
4y2
Consider the Vaisman-Tricerri metric
wy = da+ V=1 Al = V=1p! A @+ V1% A @2
This was discovered in [Tri82] when t is real and in [Vai87] in general. This metric is IcK if and
only if t is real.
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4. GAUDUCHON METRICS ON INOUE-BOMBIERI SURFACES

Consider an arbitrary Hermitian metric on an Inoue-Bombieri surface S (either of type Sys
or ST), which must be of the form

(4.1) wi=vV=Iro' ANt + V=Is P> NG +up' A@® —ap? A @t

where r, s € C*®°(S;R) and u € C>(S;C) are such that » > 0, s > 0, and rs — |u|? > 0, at every
point. In this section, we investigate the Gauduchon condition for w, namely,

H0w = 0.

4.1. Gauduchon metrics on Inoue-Bombieri surfaces of type S);. If w is Gauduchon,

then
d/ Ow =0,
7 1(y2)

therefore the function 7(y2) := fw—l(yz) Ow is constant on S!.
We compute

Therefore, by straightforward computations,

2v—1
T(y2) = / ()(2‘y2'5w7’+\/—1-7*+ N ‘8zu> el Ne2 A ed
7T_1y2

Y2

1
= Oy — —— Oy u ) et AP Aed
/7r1(y2) (3/2 2 ﬁyz Y1 >

1
—1—\/—1-/ <y2~8 r+r+—-0 u> et netned
7 1(y2) v VY2 o

= / dr/\elA62+/ du het Ae?
T 1(y2) 71 (y2)

—l-\/—l-/ (y2-6y2T+T)€1/\62/\63+/ du A e A e?
! (y2)

7= 1(y2)

= \/—1’/ (y2 - Oy +7) et Ne? A e
™

~y2)
= V—-1-(y2-0,,R+R),
where

R(y2) := / rdry Adyp A dxg = / 7VOly |1 (ya)-
7 (y2) 7 (y2)

By acting with ygaiyz on the constant quantity 7(y2), we get the ordinary differential equation

Ay2—2 QR::yg‘R—l—ny:O,

(dy2)

where R = g—ﬁ, and Ayz—Q(dyQ)g is the Laplace-Beltrami operator on S! with respect to the metric
Yoy %(dyy)?. Therefore, it has no solution on S' except than constants.

Therefore we get that

Lemma 4.1. On an Inoue-Bombieri surface of type Sy, if the Hermitian metric w as in (4.1)
is Gauduchon, then R := fﬂ"l(yz) 7 VOl | x—1(y,) does not depend on ys.
9
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4.2. Gauduchon metrics on Inoue-Bombieri surfaces of type S*. If w is Gauduchon,
then

d Ow =0,
7 1(y2)

therefore the function 7(y2) := [ )5w is constant on S!.

T 1(y2
We compute

= 1
ow = (\/—1-8zr‘(y1 —mlogys) + vV —1-0g7 - y2 — Ozu — 2'r> RN

v—1
+(—le'azs—azu-(yl—mlong)—awu‘yg—ZLW—F2-u) O AP AR

Therefore, by straightforward computations,
T(y2) = / (2 <0zr - (y1 —mlogys) +2- Ogr - y2 +2vV—10:u + v —1- 7") e Ae? Aed
1 (y2)
= / (ler-(yl—mlogyg)—l—@@r-yg—@ylu)-61A62A63
=1 (y2)
+v-1- / (0,7 - (y1 — mlogya) + Oyyr - yo + Opyu+1) et Ae? AP
T (y2)
= / dr/\el/\62+/ du/\el/\e3+\/—1-/ (Oyor - Y2 +7) et Ne? A e
~(y2) T 1(y2) 77

~1(y2)

—\/—1'/ (y1—mlogy2)~dr/\61/\63+\/—l‘/ du A e? A e
1 (y2) T 1(y2)

= v—-1- Dyt -y -t Ne2 A e

71 (y2
= V_l'yQ'ayzRa

where

1
R(y2) :—/ 7"-61/\62/\63_/ r —dz A dyy A dxs.
71 (y2) T l(y2) Y2

Hence we get the ordinary differential equation
Y2 - R + R = 07

where R = 2%' It has no solution on S' except than constants.
Therefore we get that

Lemma 4.2. On an Inoue-Bombieri surface of type ST, if the Hermitian metric w as in (4.1)

is Gauduchon, then R := fﬂ—l(yz) 7Ol |x—1(y,) does not depend on ys.

5. STRONGLY LEAFWISE FLAT FORMS ON INOUE-BOMBIERI SURFACES

5.1. Strongly leafwise flat forms. Recall that a real (1,1)-form 7 on an Inoue-Bombieri
surface S is called strongly leafwise flat if

nAo c R>0
2 9
wrv
where the constant equals fs ZQ“, and where wry denotes either the Tricerri or the Vaisman-
STV

Tricerri metric according to the type of S.
The 00-class of w is given by

Wy = w + V—100u > 0

varying u € C*(S;R)/R.
10



Looking for u as above such that w + v/—199u, in the d0-class of w, is a strongly leafwise
flat (1, 1)-form is equivalent to solving the equation

(5.1) Apu = G(w),
where o
V—=100u A «
Apu = —F——
wry

is a degenerate elliptic operator on C*°(S;R), and where we set

_w/\a fsw/\a

G(w) =

2 2
wryv Jswiv
More precisely, we have that
1

Apu = — 0,zu in case Sy,
8y
1

Apu = 3 0.5u in case ST,

is the Laplacian along the leaves with respect to the Tricerri, respectively Vaisman-Tricerri
metric.
For any given Hermitian metric w on S, which we can write in the form (4.1), we have

(5.2) Gw) = —}r + 1][ Wiy
8 8Js

5.2. Gauduchon obstruction. Consider
ker Ap = 7*C>(S';R)
= {¥=1(y2) € C(R™%R) : (A - yo) = ¢(yg) for any 2},
where A = )\ in case Sy, and A = 7 in case ST. Indeed, if u € C*°(S;R) is in the kernel of
Ap, then the restriction of u to each leaf is a bounded harmonic function on C or C*, whence

constant. Since each leaf is dense in a fibre of 7: S — S!, then u is the pull-back of a smooth
function over S'. Conversely, each such function is in the kernel of Ap.

Lemma 5.1. Given any Hermitian metric w on S, if there is a smooth function u such that
w ++/—1090u is strongly leafwise flat, then we must have that

(5.3) /S PG (w)wdy = 0,
for all ¢ € ker Ap.

Proof. Indeed, for ¢ € ker Ap, we have
/ VG (W)way, = / VApUWE, = / YV —100u A
S S S

= /ux/—lﬁﬁd)/\a:/uApd)w%V:O,
S

S
yielding the statement. U

It is clear that every invariant metric on S satisfies (5.3), since by invariance we have G(w) = 0
in this case.

Lemma 5.2. The obstruction (5.3) is satisfied for all ¢ € ker Ap if and only if we have

(5.4) /1(y )G(w) VOleV wal(yz) = O,
7T 2

for all y € S*.
11



Proof. In one direction, suppose (5.4) holds and let ¢ be any element of ker Ap, so v is the
pullback to S of a smooth function on S'. Then we have

dy2
G(w)why = / / G(w)voly, .. . = =0,
/Sw Wty = ¢ Slﬂ)( 1y VOl 1(y2)> ”

where c is a numerical positive constant.
For the converse, if we had fwl () G(w) Vol | x—1(g0) > 0 for some qo € S!, then by continuity

this would be true for all ¢ € U for some open subset U C S' containing ¢y, and then if we
choose a smooth function ¥ on S' which is nonnegative, compactly supported in U and positive
at qo, we obtain that [ PG (w)wi, > 0, contradicting (5.3). O

The following result will be crucial to us.

Lemma 5.3. Every Gauduchon metric on S satisfies (5.3), and there exist (non-Gauduchon)
Hermitian metrics on S which do not satisfy (5.3).

Proof. Given any Gauduchon metric w on S as in (4.1), the associated function r on S satisfies
that

R(y2) := /1( )TVOIWTVUT_I(W)
7r Y2

is a constant function of yo € S, thanks to Lemmas 4.1 and 4.2. Thanks to (5.2), this implies
that
1

1
5.5 G 1 - = —-.R 7,¢R N
( ) /7r1(y2) (W) VOlyry |7 (y2) S (y2) + 3 g (yg) Wy ,
for all o € S'. The first statement thus follows from Lemma 5.2.

For the second statement, choose any smooth positive nonconstant function r: S' — R, and

define
wi=vV—-1re' Agt+V=1¢? A &>
Then if we choose 1) = r € ker Ap, we have

1 1 rw2)?
/SwG(w)w%v _ _s/STQW%V LAUsmeiv)”

8 fsw%v

because r is nonconstant. O

5.3. Strongly leafwise flat forms on Inoue-Bombieri surfaces Sy;. In this section, we
explicitly solve equation (5.1) on Sy, so proving Theorem 1.1 for the case of Inoue-Bombieri
surfaces of type Syy.

Theorem 5.4. Let w be a Hermitian metric on Sy which satisfies (5.3). Then there is a
smooth function u such that w4+ /—100u is a strongly leafwise flat (1,1)-form.

Proof. Recall that there is a quotient map p : T3 x [1,\] = Sys, which identifies (g, 1) with
(¥(q),\) for a certain diffeomorphism ¥ of T3 induced by fo. Here T? = R3/A, where we use
the coordinates z1,y1,x2 on R, and the lattice A is spanned by 9y, 02, 05 which are given by

Rem1 Re mso Rem3
(56) 81 = Im mq s 62 = Im mo s (93 = Im ms3 s
4 Uy 3

Pulling back G(w) via p we obtain a smooth function g on T3 x [1, ] which thanks to (5.4)
(which is equivalent to (5.3) by Lemma 5.2) satisfies

(5.7) / gdxy A dy; A dze =0,
T3 x{y2}

12



for all yo € [1,A]. The equation we wish to solve pulls back to the PDE
1 0%u  O%u
5.8 L (O
(5:8) 3249 (&B% + Oy%) g

on T3 x [1, A]. Since the differential operators 8%1 and 8%1 are in the T3 direction, it is natural

to try to solve this PDE by using the Fourier series expansion on each T2 x {y»} separately. We
write 8%1 and 8%1 with respect to the basis {01, 02,03} as

0 0

=A101+ A0, + A3 03 and = B1 01 + By 02 + B3 03,

oy o
where
Al Bl Rem1 Rem2 Rem3 -1 1 0
Ay By = Immy Immso Immg -1 0 1
As Bj 0y Ly U3 0 0
1 —Immgfly + Immols —F¢3Rems + oRems
= - Im mgfl —Im m1€3 EgReml — €1Rem;>, s
€ —Immofy + Immily —F3Remq + ¢1Remsy
where

Re mq Re mso Re ms
e = det| Immy Immg Immg
o ly l3

= (=Immsly + Immal3)Rem; — (—Immgly + Imml3)Remy
+(—|m mgﬁl + Im mlﬁg)Re ms.
We compute the Laplacian along the leaves in terms of the above basis:
1 02 1 ok 0?
Ap = — . — = +
8ys 0z0Z 32y \Ox10xr1  Oy10y1
2 2

1
= Zj:Ajaj + ;Bjaj

1
- STyQ Z(AJ?+B]2) 8jj+2 Z(AjAh—FBth) ajh
Y j<h
1 o
= 327y2 . ( 81 82 83 ) -7 gi ,

where
A2 + B? A1Ay + B1By A1A3+ B1B3
Z = A1As + BBy A%+ B3 Ay As + By B3
A1A3+ B1B3 AsA3 + BoB3 A% + B?

_ Ay Ay Az t_ A1 Ay Az
N B1 By Bs By By B3z )’

which is semipositive definite of rank 2, whose kernel is generated by the vector

Ang — Ang 1 El
(5.9) —A3B1 +A1Bs | =—=| &2 |,
AsBy — A1 B =\ 4

where the second equality follows by direct inspection.

13



We solve equation (5.8) by considering the Fourier series expansion. More precisely, consider
the Fourier series of the datum in terms of the above basis for the torus:

glt,y2) = > di(ya) - exp 2V =1 (kL)) ,
keZ3\ {0}
where k = (ki, ko, k3), and t = (t1,t2,t3) are the coordinates in the basis (91,02, 03), and
(k|t) = k1t1 + kota + ksts. The zero Fourier mode does not appear because of (5.7), while the
other Fourier coefficients di(y2) € C depend smoothly on y2. Consider the Fourier series of the
expected solution:

(5.10) ultye) = > ap(yz) - exp (2mV/—1 (k|t)) .

kez3\{0}

Equation (5.8) is equivalent to, for any k € Z3\{0},

a(y2) = (QW\/jl)_Q . 32y2 - di(y2)

3
where

k1

Zk::(k‘l k‘g k‘g)Z ]{32

k3
For this to make sense, we need to show that z # 0 for all k € Z3\{0}, or equivalently that
the kernel of the 3 x 3 semipositive definite matrix Z meets Z? in {(0,0,0)} only. As we said
above, the kernel of Z is 1-dimensional spanned by the vector

2

v = 52
{3

If we have vv € Z3 for some v € R, then (vly,vl,vls) € Z? and the relations
3
)\Vﬁj = Z Mjngkv
k=1

where Mj; € Z, imply that v = 0. Therefore we have shown that z # 0 for all k € Z*\{0},
and so (5.10) defines a distributional solution u of (5.8) on T® x {yo} for all 3. Recall the
well-known fact that a Fourier series on a torus of the form (5.10) defines a smooth function if
and only if its Fourier coefficients aj, decay faster than any power |k|~V, N > 0, as |k| — co. In
particular, since our datum ¢ is smooth, the coefficients dj(y2) satisfy this decay property, for
any fixed yo. It follows that, exactly as in [GW72], to show smoothness of u(+,y2) on each fiber
T3 x {12}, it is sufficient to show that

C
ki + k3 + k3)M
for some C, M > 0 and for all |k;|, |ka|, |k3| sufficiently large.
To see this, we use the Liouville theorem on Diophantine approximation: if € R is irrational

and algebraic of degree d > 1, then there is a constant C' > 0 such that for all integers (p, q),
with ¢ > 1, we have

(5.11) |2k| > (

PS¢

q q
The property (5.12) says that x is a non-Liouville number, or strongly-dispersive in the termi-
nology of [OT21].

To deduce (5.11) from Liouville’s Theorem, first note that |z;| is comparable to the square
of the distance from the point (ki, k2, ks3) to the real line spanned by v (since the other two
eigenvalues of Z are positive). Recall that at least one of the ratios {/;/¢;};+; is well-defined
and is irrational, and we may assume that it is ¢o/¢;. Then this distance from (ki, ko, k3) to
14
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the span of v is larger than or equal to the distance from (ki, k2) to the line spanned by ({1, £2),
which up to a fixed constant equals

¢ ky ¢
ky — 2k M2

2 k1 2

But the ratio £2/¢; is an irrational algebraic number (of degree say d), and so Liouville’s Theorem
shows that

= |k

ky L), C

ki 0| = |ka]?
for a fixed constant C' > 0 and so we have shown that

c’ C’

B

> )
2 T (kY 4 k3 + k39

as claimed.

We have thus proved smoothness of u on each T? fiber, and smoothness in the variable s
now follows from the smoothness of the Fourier coefficients ai(y2). We have thus obtained a
smooth solution u of (5.8) on T x [1, A]. Next we show that the solution u descends to a smooth
function on Sy, or equivalently that u(p, 1) = u(¥(p), \) for all p € T3, where recall that ¥ is
induced by fo(z,w) = (uz, Aw). Of course the function g on the right hand side of (5.8) has
this property. Let @(p,1) = u(¥(p), \), which is a smooth function on T? x {1} which satisfies

(writing u = p1 + v/ —1pg and p = (21, Y1, 72))

1 [ 0? 0?
Api 71 = 39 a2 a 9 - ) 7)‘
pi(p,1) 5 <8x% + 8y%> (u(pz1 — pay, iy + paxt, Ax2))
| ‘2 1 <62u N 62u>( n Aoo)
= M sz |\ a3 T 539 ) H1T1 — H2Y1, K1Y1 T H2T1, AT2
16 \ 9z = Oy}
1 0%u 0%
= oo laz T a7 (p1z1 — poy1, piy1 + o, Ax2)
1 1

= 9(¥(p), ) = g(p,1) = Apu(p, 1),
and hence u(-,1) and 4(-,1) differ by a constant, which is in fact zero since both functions

have integral zero on the torus. Therefore u descends to a smooth solution of (5.1) on Sy, as
desired. ]

5.4. Strongly leafwise flat forms on Inoue-Bombieri surfaces S*. In this section, we
explicitly solve equation (5.1) on ST, proving Theorem 1.1 for the remaining case of Inoue-
Bombieri surfaces of type S*.

Theorem 5.5. Let w be a Hermitian metric on S* which satisfies (5.3). Then there is a smooth
function u such that w 4+ /—100u is a strongly leafwise flat (1,1)-form.

Proof. As we mentioned earlier, it suffices to treat the case of ST, since the case of S~ reduces
to ST by using the double cover. Indeed, the covering involution ¢ of ST (such that S~ =
S*/u) is of the form u(z,w) = (\/7z, —w), see e.g. [TWI13, page 2130], and this preserves
the foliation. Pulling back w to ST gives an t-invariant Hermitian metric @ on S™ which still
satisfies (5.3), so we will find u such that & + /—100u is strongly leafwise flat. Therefore, so
is w4+ +v/—100 (%) , which now descends to the desired strongly leafwise flat form on S—.

From now on, we therefore work on an Inoue-Bombieri surface of type ST. Our arguments
begin by following the same outline as in the case of Sy, by looking at St as a nilmanifold-
bundle over S!, and then performing partial Fourier series expansion on the nilmanifold which
is a T2-bundle over S!. The proof of solvability of the ODEs that we will obtain will however
be different from the case of Sj;. For Fourier series on Heisenberg-type nilmanifolds, see e.g.
[ATT75, DS84, Ric82] as well as the very recent [HZ22, HZ20, RS22] which also apply this to
study geometric questions.
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Again, since the operator Ap involves only derivatives in the directions of the fibers of the
X-bundle structure 7 : ST — S!, we will first solve the PDE separately on each m-fiber, and
later show that these piece together to a global solution. Since 7 is a smooth fiber bundle, all
fibers are diffeomorphic to the group-quotient X; = H(3;R)/T"”, the fiber over y3 = 1, but now
the operator Ap actually depends on y2. The fiber X, is equal to the quotient X,, = R3/T” in
(3.2) with fixed value of y2, where I = ((aq, b1, ¢1), (ag, b2, ¢2), (0,0, ¢c3)) acts as the “yo-rescaled
product”

(a,b,¢) - (x2,y1,21) := (X2 + a,y1 + y2b, x1 + b + ¢).
Recall that, by Remark 3.1, neither (a1, a2) nor (b1, be) has rational algebraic slope.

An arbitrary function f on X, is identified with a function f(x2,y1, 1) on R® which satisfies
the periodicity conditions

f(x2,y1,71) = f(z2+a1,y1 + y2bi, 21 + bize + 1)
= [f(z2+ a2, y1 + yaba, ¥1 + baw2 + c2)
= f(z2,y1,71 + c3).

By taking advantage of the periodicity in the variable x1, we take the Fourier series expansion
of f in the last variable:

f(5527y17$1) = ka(xQ)yl)eXp (Qﬂﬁ2k> )

keZ
where the coefficients f; are complex-valued functions such that

(5.13) fr = For

and satisfying the further periodicity conditions

(5.14) fre(xa,11) = fr(wa +a1,y1 + y2b1) exp <27T\/jl (bxz + Cl) k:>

= fi(x2 + a2, y1 + y2b2) exp <2m/—1

In particular, for k = 0, these rewrite as

fo(za,y1) = folza + ar, y1 + y2b1)
= fo(z2 + a2, y1 + y2b2),
that is, fo is periodic with respect to the lattice
a2
<y2b2> ’

Z(al ) Y/
yab1

2y —1 ( b ) n 21/ —1
o —a m
y2(a1bg — agby) Ya0ata a2 y2(a1be — agby

and we can further expand

fol@e,y1) = Y fomn eXp<

m,neL

) (—y2b1o + alyl)n> ;

where fo . € C are such that fomn = fo,—m,—n-
For simplicity of notation, we again denote the pullback of our function 32G(w) to R? by g,
which can then be expanded as above

X
9(z2,y1,71) = ng(xg,yl)exp (2w¢j11k> ,
cs

kEZ
where the coefficients gy satisfy (5.13) and the periodicity conditions (5.14), in particular,

2my/—1 2my/—1
90(x2,51) = Y Go.mnexD

el y2(a1by — agby) ya(arbs — asby

(y2baxg — agy1) m + ) (—y2biz2 + a1y1) n) ;

16



where crucially the zero mode gg 0 vanishes, thanks to (5.4) (which is equivalent to the ob-
struction (5.3) by Lemma 5.2).
The equation (5.1) 32 Apu = g reduces to the system

a0 \? k2
(5.15) (8y1> up(x2,y1) — 47T207Uk(372,y1) = gr(z2,11), for k € Z,
3

which are linear ordinary differential equations of second order in ;.

Consider first the case k € Z\ {0}. It is clear that gj is smooth and bounded on R?, indeed it
satisfies the periodicity conditions (5.14). Then, for any fixed z2 € R, we get a unique solution
ug (22, ) for (5.15) which is smooth in (z2,y;) € R? and bounded in y1, see [Cop78, Proposition
8.2]. To apply the latter cited Proposition, one requires that the homogeneous equation

(Y = (o % - (1)

has bounded growth and exponential dichotomy on the real line, as defined in [Cop78, pages
8 and 10]. The bounded growth condition is readily verified, and since the above equation is
autonomous, exponential dichotomy amounts to checking that the matrix has one eigenvalue
with strictly positive real part and the other with strictly negative real part, see [Cop78, pages
10 and 19]. This is indeed true, the eigenvalues being £27 - k/c; € R\ {0}.

The coefficients of the equation being real, then wu; clearly satisfies the reality conditions
(5.13). Moreover, since

9 \2 b )
<> <uk(3:2 + aj, y1 + y2bj) exp <27r\/—1 <Jw2 + cj) k)>
o c3 c3

2

—4r? ]2 <uk(x2 + aj,y1 + y2bj) exp <27r\/ (3: + C]> k‘))

3 C3 C3
G

ZEQ—F* k :9(x27?/1)7
Cc3

for j € {1,2}, and by uniqueness of the bounded solution of (5.15), we get that the solution wu
satisfies the periodicity conditions (5.14).
Look at Reug, and let y1*** be a maximum point for Re ug(z2, ), once fixed zo € R. Then

= gr(z2 + aj,y1 + y2b;) exp (277\/—1 <j

C3

maxReuk(xg,zn) = Rewy (w2, y1"™)

y1€ER
1 C% 6 2 max max
T 42 k2 <<0y1> Reup (22, y1"™) — Regr(z2, y1 ))

1 1 3
S T2 k2 Regk($2>y1 ) < yrCET) S max |g|-
The same argument applies for Imuy, as well as at the minima points. This yields
2

(5.16) max |ug| < max |g|.

a
An2 k2

Consider now the case k = 0. The differential equation (5.15) reduces to a system of algebraic
equations:

2
na; — mas
5.17 —4r? = f 7.
( ) T HOmn (3/2(6“62 — a2b1)> Go.m.n: ormm <

Since @1 /a, is irrational by Remark 3.1, then na; —mas # 0 for any (m,n) € Z?\ {(0,0)}. Then,
for (m,n) # (0,0), we get the formal solution

1 <y2(alb2 - azbl)>2
Uomn = —7 5 gom,n-

472 na; — mas
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Since @1 /a, is algebraic irrational, say of degree d > 2, then by the Liouville theorem we have

al m

lain — agm| = |ag| - |— — —| - |n| > C - |as] - ’n‘Q—Qd
as n

where C' is a positive constant depending on @1/a,. We get the estimate

1 |yz(aiby —aby)|* 41

5.18 <
( ) ’uO,m,n‘ = 4n202 \(12]2

“|90,m.n

Since the datum ¢ is smooth, then, for |k| — 400 and for all N > 0, the Fourier coefficients
gr, decay faster than |k|~2V at any point, which implies that max |g;| decay faster than |k| =2V,
respectively, the Fourier coefficients gg ., decay faster than (m?+n?)~". By (5.16) and (5.18),
the same decay property holds for uj and g, . By this, and by the smoothness of the Fourier
coefficients, we therefore get that

z
w(we,y1,w1) =Y up(2,y1) exp <27TV —1clk>
k0 3
2my/—1 2my/—1
+ Z U0, m,n €XP (

boxo — a m +
y2(a1be — azby) (y2bowz = azyn) y2(a1by — agby

) (—yebrz2 + a1y1) ”)

(m,n)#(0,0)
is a smooth function on X,,. (Note that the role of Liouville theorem to get smoothness here
is less strong than before: compare with the “greater regularity” discussed in [Ric82, page 309]
for solutions of first order equations on the Heisenberg group with respect to the torus.)

Lastly, smoothness of u in the variable yo follows directly from smoothness of the Fourier
coefficients of g with respect to y2, which implies the same smoothness for uy and ugm,n, by
smooth dependence of the solution of the ODE.

Taking yo in the interval [1,7], we have thus obtained a smooth solution u of (5.8) on the
subset of X defined by m; ! ([1,7]), which is diffeomorphic to X x [1,7]. Next we show that the
solution u descends to a smooth function on ST, or equivalently that u(p,1) = u(¥(p),~) for all
p € X, where recall that ¥ is induced by fo(z,w) = (2 +t,7 - w). Of course the function g has
this property. Let @(p,1) = u(¥(p), ), which is a smooth function on X x {1} which satisfies
(writing t = #; + /—1t2)

0? 0?
A'Da(p7 1) = ( + ) (’LL($1 +t17y1 +t277$2))

ox7 Oyt

0?u  0%u

<6x% + 6y%> (z1+t1,y1 + t2, 722)
= 9(¥(p),7) = g(p, 1) = Apu(p, 1),

and hence u(-,1) and 4(-,1) differ by a constant, which is in fact zero since both functions

have integral zero on this fiber. Therefore u descends to a smooth solution of (5.1) on S*, as

desired. O

gl Bl-

—~

Combining Theorems 5.4 and 5.5 concludes the proof of Theorem 1.1.

Lastly, we give the proof of Corollary 1.2. Given Theorem 1.1, this corollary is a more or less
direct application of [FTWZ16, Theorem 1.1]. The only thing to remark is that this latter result
assumes that w + /—100u is a Hermitian metric which is strongly flat along the leaves, but a
close inspection of its proof shows that all that is needed is that w + v/—1099du is a (1, 1)-form
which is strongly flat along the leaves (so it is positive definite in the leaves directions, but it
need not be positive definite in all directions). Indeed, if we let

Q) = (1 — e Hweo + e Hw + vV—100u),
(as in [FTWZ16, Equation (2.7)]), then it is easy to see that these are Hermitian metrics on S

for all ¢ sufficiently large (using the Cauchy-Schwarz inequality to bound the terms involving
18



dz A dw and its conjugate). While this is not exactly the same as in [FTWZ16], where @(t) are
Hermitian metrics for all ¢ > 0, this is irrelevant since we are only interested in the behavior of
w(t) for t large. Therefore, with this change, the rest of the arguments in [FTWZ16] go through
verbatim, and this proves Corollary 1.2.

6. HIGHER ORDER REGULARITY

In this section we give the proof of Theorem 1.3. In this section, S will denote either an
Inoue-Bombieri surface or a non-Kéhler minimal properly elliptic surface (we refer to [TW13,
§8] and [TWY15] for the background material on these). On each of these surfaces there is
an explicit Gauduchon metric discovered by Tricerri [Tri82] or Vaisman [Vai87], that we will
denote by wry (for Inoue surfaces, these metrics were discussed earlier).

As in the statement of Theorem 1.3 we assume that the initial metric w of the normalized
Chern-Ricci flow (NCRF) is of the form w = wry + /—199% for some smooth function 1 (in
particular it is Gauduchon), and our goal is to prove uniform a priori estimates for w(t) in
C*(w) for all k > 0, and also to show that the curvature of w(t) remains uniformly bounded for
all £ > 0. As explained in the Introduction, we will adapt an idea first introduced in [GTZ13],
following the discussion in [Tos18, §5.14] for the Kéahler-Ricci flow, which dealt with the case
of torus fibrations. Here, the role of the torus curves fibers will be played by the leaves of the
canonical foliation on Inoue-Bombieri surfaces.

Let us first discuss the case when S is of type Sy;. Let p : C x H — S be the universal
covering map, with standard coordinates (z,w) on C x H, and let

a= ﬁdw ANdw, B =+ —1ydz A dZ.
2
The Tricerri metric is then given by wry = 4a + 5.

Thanks to [FTWZ16, Theorem 2.4] (which we extended in Theorem 1.1 to arbitrary initial

Gauduchon metrics) we have

(6.1) CHa+eB) <w(t) < Cla+e'p),
on S x [0,00). We also have that
W(t) = wret(t) + V—=100p(t), wret(t) = e twpy + (1 —e Ha=(1+3e Ha +e'p,

for some smooth functions ¢(t) on S.
Fort>0let A\ : C x H— C x H be given by

A(z,w) = (zet/z,w),

which is a “stretching in the leaf directions”, analogous to the stretching first used in [GTZ13]
(with the stretching done along abelian varieties which were the fibers of a fibration). Observe
that on C x H, for all t > 0 we have

(6.2) Npfa =p*a, Np*B =ep*p.
These relations will give us the crucial property that the stretched reference metrics along the
flow are smoothly comparable to Euclidean, as was the case for the semi-flat metrics that had

to be carefully constructed in [GTZ13, HT15].
Then, for each ¢, fixed the metrics

wi(s) == Ap'w(s+1t), —t<s<0,
on C x H satisfy
CHN P a+ e 570N p*B) < wi(s) < C(ANpra+ e *I\fp*B),
thanks to (6.1). If we then restrict to —1 < s < 0 then this implies

(6.3) CrH\pra4 e I\ p*B) < wi(s) < C(A\fp*a + e I\ip*B),
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and using (6.2) this implies
(6.4) Cilp*wTv <wi(s) < Cp*wry,
for all t > 0,—1 < s < 0, and observe that p*wry is locally uniformly equivalent to a fixed
Euclidean metric wg on C x H. Furthermore, the metric wy(s) satisfy
0

(6.5) %wt(s) = —Ric"(wi(s)) —wi(s), —1<s<0,

and they are of the form
wi(s) = NP wret (s + 1) +V—=190(\[p"p(s + 1)),
where
ANp*wret(s + 1) = (1 +3e* Hp*a + e *p*B,
are Hermitian metrics which are uniformly smoothly bounded with respect to wg, independent
of t >0 and —1 < s < 0. We can thus apply the local higher order estimates of [SW13] and

obtain that for each given compact set K € C x H and k > 0 there are constants C  such
that

lwe(S) e ,gm) < Crc s
for all £ > 0, —% < s <0. Setting s = 0 we obtain

(6.6) AP w(B)llor (e gy < Cries

and we still have

(6.7) Npfw(t) > Clwg,

on K x [0,00), from (6.4) with s = 0. From (6.6) and (6.7) we immediately see that
(6.8) Sup IRm(Afp*w(t)) xiprwr) < C,

for all t > 0. If now U C C x H is the interior of a fundamental domain for the I'-action on
C x H (where S = (C x H)/I'), then we have that p is a biholomorphism between U and an
open dense subset of S and so
sup [Rm(w(t)) L) = sup [Rm(p*w(t))|poey = sup [RmAp w(t))nprw),
S U A (U)

where )/, is the inverse map of A;. But the compact sets Ay (U ) are all contained in a fixed
compact set K € C x H, and so from (6.8) we obtain that the curvature of w(¢) remains
uniformly bounded for all times.

Next, it is easy to check working in the coordinates (z,w) that (6.6) implies that

Ip* w(®) ek gi) < Crks
and in fact (6.6) is a much stronger bound. Therefore taking K again to be the closure of a
fundamental domain, this estimate implies
lw®llck(sw) < Chks
as desired.

We now discuss the case of ST. The universal cover map is again denoted by p: C x H — S
with standard coordinates (z,w) on C x H, and let

-1 _ 1 . 1
o=Y"Lawndw, ﬂ_ﬁ<dz_w<)gyzdw>A<d7_@Mogyzdw>.
4y; Y2 Y2

The Vaisman-Tricerri metric is then given by wry = 4a + . Defining the stretch maps \; as
before, we now have

t t
— e il — e iml
Apfa=pa, ANp'p= etv/—1 (dz _hiTe e m Ongdw) A (dz— yr—¢ *m 0gy2dw> ,
Y2 Y2
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and so if we define the reference metrics wyer(t) = e lwry + (1 — e Ha = (1 4+ 3e Ha + e '8,
then again

Nip*wret(s + 1) = (1 +3e 5 Hp*a + e *p*B,
are Hermitian metrics which are uniformly smoothly bounded with respect to wg, independent
of t > 0 and —1 < s <0, and the argument proceeds exactly as earlier. The case when S is of
type S~ is easily reduced to the case of ST by passing to a double cover (cf. [TW13, §7] and
[FTWZ16]).

Lastly, let S be a minimal non-Kéhler properly elliptic surface. Then its universal cover
of S is again C x H but it is more convenient to work instead with C* x H via the map
(z,w) — (e~*/?,w). Then we have a holomorphic covering p : C* x H — S, and if we denote by
u = e %/2 the coordinate on C* then the stretching maps \; as earlier become A\; : C* x H —
C* x H, M(u,w) = (uet/Q,w). Let

2du idw)/\( 2du zd@)
U Y2 '

v—1
o= Y""dwndw, B=-1 <—+
4y, u Y2
The Vaisman metric is then given by wry = 4a 4+ 8. We now have
2d : 1d 2du L dw
Npta=pia, Np'B=eV-1 (—u + 65“0) A (—u - 65W> :
u Y2 u Y2

and so if we define the reference metrics wyer(t) = e lwry + (1 — e Ha = (1 + 3e Ha + e B,

then again

- — € 22—
U Y2

are Hermitian metrics which are uniformly smoothly bounded with respect to wg, independent
of t >0 and —1 < s <0, and the argument proceeds exactly as earlier.

2 : 9 o
AP wret(s + 1) = (1 + 3¢ p*a + e~*/—1 <_du+e_;ldw) A< du _tzdw>,

Y2

Remark 6.1. Instead of the local higher order estimates of [SW13], we could have also used
those in [Chul6] (which are the parabolic version of the results of [TWWY15]). For this,
one writes the Chern-Ricci flow equation (6.5) as a scalar parabolic complex Monge-Ampeére
equation on C x H for the potential \p*¢(s + t), which is uniformly bounded in L by the
results in [FTWZ16]. Nevertheless, in either of the two approaches it is important that the
metrics A\ p*wret(s + t) are uniformly locally smoothly bounded for ¢ > 0, —1 < s < 0, and this
is not the case in general if the initial metric w is not assumed to be in the d0-class of wry,
even if it is assumed to be strongly flat along the leaves.

Remark 6.2. In the case of minimal non-Kéahler properly elliptic surfaces discussed above, it
is also shown in [TWY15] that for every smooth fiber E,,, we have that e'w(t)|g, converges in
the C! topology to the unique flat metric on E,, cohomologous to wp|g,. This convergence can
be improved to C*° by adapting an argument from [TZ15] as follows. Up to passing to a finite
cover, we may assume that .S is an elliptic bundle, and pick a local trivialization E x B where
B is a ball in C and F is an elliptic curve. Define stretching maps u; : £ x B — E X B by

wui(z,w) = (z,we_t/Z),

and on E x B define
wi(s) = elpfw(se ™t +1), —1<s<0,
which are Hermitian metrics that solve

(6.9) %wt(s) = —Ric“"(w(s)) — e twi(s), —1<s<0,

for all t > 0, and they are of the form
wi(s) = €' piwrer(se™" +1) +v/=190(e' i p(se ™" +1)),
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where wref(t) = e twp + (1 — e )weo, and wy is Kihler-Einstein, and by [TWY15, Thm. 5.1]
we have

(6.10) C el pfwer(se™ +1) < wi(s) < Celpfwrer(se™ +1), —1<s5<0,t>0.

One then checks as in [TZ15, Pf. of Thm. 1.1] that e’ ujwet(se™ +1t) are uniformly comparable
to a fixed metric and smoothly uniformly bounded, for —1 < s < 0 and t > 0, and hence the local
higher order estimates of [SW13] give us uniform higher order estimates for w;(s), —3 < s <0,
on F x B (up to shrinking B slightly). Setting s = 0 this gives higher order estimates for
elufw(t), and restricting to any fiber E' x {w} the maps ju; are the identity, and we are done.
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