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Abstract. We prove that every Gauduchon metric on an Inoue-Bombieri surface admits a
strongly leafwise flat form in its ∂∂-class. Using this result, we deduce uniform convergence
of the normalized Chern-Ricci flow starting at any Gauduchon metric on all Inoue-Bombieri
surfaces. We also show that the convergence is smooth with bounded curvature for initial
metrics in the ∂∂-class of the Tricerri/Vaisman metric.

1. Introduction

In this paper we are interested in the convergence of the normalized Chern-Ricci flow on
Inoue-Bombieri surfaces. The Chern-Ricci flow is a parabolic evolution equation for Hermitian
metrics (with associated (1, 1)-forms) ω(t) on a compact complex manifold, given by

(CRF)
∂

∂t
ω(t) = −RicCh(ω(t)), ω(0) = ω0,

where RicCh(ω)
loc
= −

√
−1 ∂∂ log detω denotes the Chern-Ricci form of ω, and ω0 is any initial

Hermitian metric. It was first studied by M. Gill in the setting of manifolds with vanishing
first Bott-Chern class [Gil11], where a parabolic proof of the non-Kähler Calabi-Yau Theorem
[TW10] was given, and then introduced and studied in general by B. Weinkove and the second-
named author [TW15]. If the initial metric is Kähler, then the Chern-Ricci flow equals the
Kähler-Ricci flow, but in general it is quite different from the Ricci flow. The behavior of the
Chern-Ricci flow on compact complex surfaces was investigated in [TW13, TWY15, FTWZ16,
Kaw16, Nie17, To18, Edw21, AS20], and further general results in all dimensions can be found in
[Gil13, GS15, KN19, Lau15, LR15, Ngu16, Nie14, SW13, Yan16, Zhe17], see also [LT20, HLT19]
for the Chern-Ricci flow on noncompact complex manifolds, and [TW22] for a survey. From
all these works it is clear that the behavior of solutions of the Chern-Ricci flow deeply reflects
the underlying complex structure. Understanding the behavior of the Chern-Ricci flow on non-
Kähler compact complex surfaces is particularly interesting, due to the fact that such surfaces
are not completely classified.

Recall (see e.g. [BHPV04]) that minimal non-Kähler compact complex surfaces can be divided
into three classes according to their Kodaira dimension, namely minimal non-Kähler properly
elliptic surfaces (Kod = 1), Kodaira surfaces (Kod = 0), and minimal surfaces of class VII
(Kod = −∞). The behavior of the Chern-Ricci flow on minimal non-Kähler properly elliptic
surfaces is described in general in [TWY15], while Kodaira surfaces are covered by [Gil11].
Minimal class VII surfaces S with b2(S) = 0 are also classified [Bog76, Bog82, LYZ90, LYZ94,
Tel94], and they are either Hopf or Inoue-Bombieri surfaces, while those with b2(S) > 0 are
not classified in general, see e.g. [Kat78, DOT03, Tel05, Tel10]. The Chern-Ricci flow on Hopf
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surfaces has been studied in [TW15, TW13, Edw21], and in this paper we focus on Inoue-
Bombieri surfaces.

More precisely, we will consider the normalized Chern-Ricci flow starting at a Hermitian
metric ω0:

(NCRF)
∂

∂t
ω(t) = −RicCh(ω(t))− ω(t), ω(0) = ω0,

where the underlying manifold will be an Inoue-Bombieri surface.
Inoue-Bombieri surfaces [Bom73, Ino74] are surfaces of class VII with second Betti number

equal to zero and with no holomorphic curves [Bog76, Bog82, LYZ90, LYZ94, Tel94]. Their
universal cover is C × H, where H denotes the upper half-plane. They are divided into three
families: SM , S+

N,p,q,r;t, and S−
N,p,q,r. They have a structure of fibre bundle over S1, where

the fibre is a 3-dimensional torus in case SM , and a compact quotient of the 3-dimensional
Heisenberg group in case S±. Furthermore, every Inoue-Bombieri surface of type S− has an
unramified double cover of type S+.

On any Inoue-Bombieri surface S, the standard metric on H (with coordinate w = x2 +√
−1 y2) induces the degenerate metric [HL83]

(1.1) α :=

√
−1

4y22
dw ∧ dw̄,

which satisfies
0 ≤ λα ∈ −cBC

1 (S),

where λ = 1 when S is of type SM and λ = 2 when S is of type S±. For convenience, let us
define

(1.2) ω∞ := λα.

Moreover, the kernel of α defines a holomorphic foliation on S by parabolic Riemann surfaces,
whose leaves are dense in the fibres of the bundle structure.

It follows from [TW15, Theorem 1.2] (cf. [TWY15, Theorem 2.1]) that the Chern-Ricci
flow starting at any Hermitian metric on an Inoue-Bombieri surface has a unique solution
for all positive time. In [TW13, §5, §6, §7], explicit solutions of the normalized Chern-Ricci
flow starting at the Tricerri, respectively Vaisman-Tricerri metric on an Inoue-Bombieri surface
SM , respectively S±, were shown to converge to S1 in the sense of Gromov-Hausdorff, [TW13,
Theorem 5.1, Theorem 6.1, Theorem 7.1]. More generally, this holds for all initial locally
homogeneous metrics, [Lau15, LR15].

This convergence result is extended to a larger class of initial metrics in [FTWZ16], where S.
Fang, the second-named author, B. Weinkove, and T. Zheng proved that the normalized Chern-
Ricci flow collapses any Hermitian metric on an Inoue-Bombieri surface to a circle, modulo an
initial conformal change. In fact, they proved that on an Inoue-Bombieri surface the solution
of the normalized Chern-Ricci flow starting at any Hermitian metric in the ∂∂-class of a (1, 1)-
form which is strongly flat along the leaves converges uniformly to ω∞ as t → +∞, [FTWZ16,
Theorem 1.1], and that this implies that the Gromov-Hausdorff limit is a circle. The convergence
is in fact in Cβ , for every 0 < β < 1, when the initial metric is in the ∂∂-class of the Tricerri,
respectively Vaisman-Tricerri metric, [FTWZ16, Theorem 1.3]. Moreover, any Hermitian metric
on an Inoue-Bombieri surface admits a Hermitian metric in its conformal class which is strongly
flat along the leaves [FTWZ16].

Here, a real (1, 1)-form ω (not necessarily a Hermitian metric) on an Inoue-Bombieri surface
S is called flat along the leaves if the restriction of ω to every leaf of the holomorphic foliation
of S is a flat Kähler metric on C in case SM , respectively C∗ in case S±. Equivalently, consider
the universal cover P : C × H → S. Then ω is flat along the leaves if and only if P ∗ω⌊C×{w}
is a flat Kähler metric for any w ∈ H. This is equivalent to asking that α ∧ ω = π∗η ω2

TV ,
for some η ∈ C∞(S1;R>0), where π : SM → S1 denotes the projection of the bundle structure,
[FTWZ16, Lemma 2.1] and ωTV denotes the Tricerri metric [Tri82] in the case SM , respectively
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the Vaisman-Tricerri metric [Vai87, Tri82] in the case S±. If moreover P ∗ω⌊C×{w} is equal to

c(Imw) ·
√
−1 dz∧dz̄ on SM , respectively c ·

√
−1 dz∧dz̄ on S±, (here z is the coordinate on C),

then ω is called strongly flat along the leaves. This is equivalent to asking that α ∧ ω = c ω2
TV ,

where c > 0 is a constant, [FTWZ16, Lemma 2.1].
The results in [FTWZ16] left open the question of the behavior of the Chern-Ricci flow

on Inoue-Bombieri surfaces when the initial Hermitian metric is arbitrary. More precisely in
Question 1 in [FTWZ16, §4] they asked whether all Hermitian metrics belong to the ∂∂-class of
a (1, 1)-form which is strongly flat along the leaves, or whether this holds at least for Gauduchon
metrics. In this paper we answer these questions.

Our first observation, see Lemma 5.3, is that it is in fact not true that all Hermitian metrics
on an Inoue-Bombieri surface belong to the ∂∂-class of a (1, 1)-form which is strongly flat along
the leaves. This follows from a simple obstruction (see (1.3) below) coming from elements in
the kernel of the leafwise Laplacian. We also observe that this obstruction vanishes for all
Gauduchon metrics.

More interestingly, our main Theorems 5.4 and 5.5 show that if this obstruction vanishes (in
particular this holds for all Gauduchon metrics) then the Hermitian metric does belong to the
∂∂-class of a (1, 1)-form which is strongly flat along the leaves. This gives:

Theorem 1.1. Let S be an Inoue-Bombieri surface. Let ω be a Gauduchon metric on S (or
more generally a Hermitian metric which satisfies (1.3)). Then there exists a smooth function
u on S such that ω +

√
−1 ∂∂u is a real ∂∂-closed (1, 1)-form which is strongly flat along the

leaves.

This theorem reduces to solving the degenerate elliptic equation

(5.1) ∆Du = G(ω),

where

∆Du :=

√
−1 ∂∂u ∧ α
ω2
TV

is the Laplacian along the leaves, and where we set

G(ω) := −ω ∧ α
ω2
TV

+

∫

S ω ∧ α
∫

S ω
2
TV

.

A necessary condition for the solvability of (5.1) is given by

(1.3) G(ω) ⊥L2(ω2

TV ) ker∆D,

and this is satisfied by Gauduchon metrics ω, Lemma 5.3. Inoue-Bombieri surfaces are bundles
over the circle with fiber T3 in the case of SM and a 3-dimensional nilmanifold in the case of S±.
Using Fourier expansion along these fibers (partial Fourier expansion in the case of nilmanifolds),
we obtain a distributional solution to (5.1) whenever (1.3) is satisfied, and we show that this
solution is in fact smooth using crucially the Liouville theorem on rational approximations of
irrational algebraic numbers.

As a consequence of Theorem 1.1, using more or less directly [FTWZ16, Theorem 1.1], we get
uniform convergence for the normalized Chern-Ricci flow starting at any Gauduchon metric on
all Inoue-Bombieri surfaces, thus answering a question in [FTWZ16, Conjecture 1, page 3183].

Corollary 1.2. Let S be an Inoue-Bombieri surface, and ω be any Gauduchon metric on S (or
more generally a Hermitian metric satisfying (1.3)). Let ω(t) be the solution of the normalized
Chern-Ricci flow (NCRF) starting at ω. Then

ω(t) → ω∞ as t→ +∞,

uniformly on S and exponentially fast, where ω∞ is defined in (1.2). Moreover,

(S, ω(t)) →
(

S1, d
)

as t→ +∞
3



in the Gromov-Hausdorff sense, where d is the standard metric on S1, of radius depending on
S.

In [FTWZ16, Conjecture 2, page 3183] it was also conjectured that in the setting of Corollary
1.2, the metrics ω(t) converge to ω∞ smoothly, and it was suggested that this could be first
approached in the case of Gauduchon metrics in the ∂∂-class of ωTV . Our final theorem confirms
the conjecture in this case, and also shows that the evolving metrics ω(t) collapse to ω∞ with
uniformly bounded curvature. Our arguments also apply to the setting of non-Kähler minimal
properly elliptic surfaces as studied in [TW13, TWY15] with initial metrics in the ∂∂-class of
the Vaisman metric [Vai87], which greatly improves the main result of [Kaw16].

Theorem 1.3. Let S be an Inoue-Bombieri surface or a non-Kähler minimal properly elliptic
surface, and let ωTV be the Tricerri/Vaisman metric on S from [Tri82, Vai87]. Let ω be a
Gauduchon metric on S which is of the form ω = ωTV +

√
−1 ∂∂ψ for some smooth function

ψ. Let ω(t) be the solution of the normalized Chern-Ricci flow (NCRF) starting at ω. Then we
have that ω(t) → ω∞ in the C∞ topology, and furthermore

sup
S

|Rm(ω(t))|ω(t) ≤ C,

for all t ≥ 0.

The main idea that we will use originates from the work of Gross-Tosatti-Zhang [GTZ13] on
collapsing Calabi-Yau manifolds fibered by abelian varieties, with the role of the abelian varieties
fibers now played by the leaves of the canonical foliation on S, and adapted to the Kähler-Ricci
flow in [Tos18, §5.14] (see also [FZ15, HT15, TZ15]). We apply a family of stretchings in the
direction of the leaves to make the PDE uniformly elliptic, and using the explicit behavior of
the Tricerri/Vaisman metric under this stretching we obtain higher order estimates for ω(t)
after stretching from standard higher-order regularity of uniformly elliptic PDEs of complex
Monge-Ampère type.

The paper is organized as follows. In Sections 2 and 3, we recall the construction of Inoue-
Bombieri surfaces of type SM , respectively S±, and their main properties. In Section 4, we study
Gauduchon metrics on Inoue-Bombieri surfaces, and show that a certain natural obstruction
for constructing strongly leafwise flat forms vanishes for such metrics (Lemmas 4.1 and 4.2). In
Section 5 we prove our main result, Theorem 1.1 (see Theorems 5.4 and 5.5 respectively), by
solving a degenerate elliptic equation on these surfaces, whenever the aforementioned obstruc-
tion vanishes, and we also deduce Corollary 1.2. And lastly in Section 6 we give the proof of
Theorem 1.3.
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the Facultad de Matemáticas of the Universidad Complutense de Madrid, and during the second-named

author’s visits to the Center for Mathematical Sciences and Applications at Harvard University and to
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2. The Inoue-Bombieri surfaces SM

2.1. Construction. Consider the Inoue-Bombieri surface [Ino74]

SM := (C×H)/Γ ,

with coordinates z = x1 +
√
−1y1 ∈ C and w = x2 +

√
−1y2 ∈ H, with y2 > 0.

Here, we are given a matrix M = (Mjk)j,k ∈ SL(3;Z) with a real eigenvalue λ > 1 and
complex non-real eigenvalues µ and µ̄. Note that λ ∈ R \Q, (indeed, λ ̸= 1 is a root of a monic
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polynomial with 0th order term equal to 1), and λ|µ|2 = 1. Denote by (ℓ1, ℓ2, ℓ3) an eigenvector
for λ, and by (m1,m2,m3) an eigenvector for µ. Since λ is irrational, it follows immediately that
at least two of the ℓj ’s must be nonzero, so at least one of the ratios {ℓi/ℓj}i ̸=j is well-defined
and is an irrational algebraic number.

Define Γ = ⟨f0, f1, f2, f3⟩ to be the subgroup of automorphisms of C×H generated by

f0(z, w) := (µz, λw), fj(z, w) := (z +mj , w + ℓj),

varying j ∈ {1, 2, 3}. The action of Γ on C × H is fixed-point free and properly discontinuos
with compact quotient, so SM is a compact complex manifold. Denote by P : C×H → SM the
projection.

2.2. Torus-bundle structure. Note that SM has a structure of T3-bundle over S1, with pro-
jection

π : SM ∋ (z, w) 7→ Imw ∈ R>0
/

⟨y2 7→ λy2⟩ ≃ S1 .

More precisely, notice that {(m1,m2,m3), (m1,m2,m3), (ℓ1, ℓ2, ℓ3)} are C-linearly indepen-
dent, whence

{(Rem1,Rem2,Rem3), (Imm1, Imm2, Imm3), (ℓ1, ℓ2, ℓ3)}
are R-linearly independent. Therefore the subgroup Γ′ := ⟨f1, f2, f3⟩ < Γ is isomorphic to Z3.

Moreover it acts properly-discontinuosly and freely on C×H, with quotient X̃ := (C×H)/Γ′ ≃
T3 × R>0. The projection π1 : X̃ → R>0 is induced by (z, w) 7→ Imw.

Since µ ·mj =
∑3

k=1Mjk ·mk and λ · ℓj =
∑3

k=1Mjk · ℓk, with Mjk ∈ Z, then f0 descends to

a map f0 : X̃ → X̃, and we have that SM = X̃/⟨f0⟩.
Note that f0 maps the torus fibre Ty := π−1(y) to the torus fibre Tλ·y := π−1(λ · y). In

particular, f0 induces the diffeomorphism Ψ: T1
≃→ Tλ. We get that SM has a structure of

mapping torus as follows:

SM ≃
(

T3 × [1, λ]
)/

((p, 1) ∼ (Ψ(p), λ)) .

2.3. Foliation. The form α :=
√
−1

4y2
2

dw ∧ dw̄ being closed, induces a foliation on SM , whose

leaves are dense in the torus fibre.
More precisely, the kernel of

√
−1

4y2
2

dw ∧ dw̄ on C×H is the integrable distribution

D := spanC

{

∂

∂z

}

,

whose leaves are of the form

Lw0
:= {(z, w0) ∈ C×H : z ∈ C} , w0 ∈ H.

It induces a holomorphic foliation D on SM , without singularities, and whose leaves P (Lw0
)

are biholomorphic to C, and Inoue [Ino74] (see also [BHPV04, Proposition V.19.1] for a simple
proof) showed that under the projection P : C × H → SM , for any w0 ∈ H, the image P (Lw0

)
is dense in the torus fibre T := π−1(Imw0) ⊂ SM .

2.4. Solvmanifold structure. The Inoue-Bombieri surface has a structure of solvmanifold
with invariant complex structure, discovered in [Wal86].

We consider the holomorphic action of the solvable Lie group (C×R)⋊R on C×H given by

(

x1 +
√
−1y1, x2 +

√
−1y2

) ((a+
√
−1b,s),t)7→

(

(µtx1 + a) +
√
−1(µty1 + b), (λtx2 + s) +

√
−1λty2

)

.

We get an action of the lattice Γ := Z3 ⋊M Z on C×H, and then

SM = C×H/Γ.
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The forms on C×H defined by

e1 :=
1√
y2

∂

∂x1
, e2 :=

1√
y2

∂

∂y1
, e3 := y2

∂

∂x2
, e4 := y2

∂

∂y2
,

are invariant, and give a global frame on SM . Its dual co-frame is

e1 :=
√
y2 dx1, e2 :=

√
y2 dy1, e3 :=

1

y2
dx2, e4 :=

1

y2
dy2.

The structure equations are

de1 = −1

2
e1 ∧ e4, de2 = −1

2
e2 ∧ e4, de3 = e3 ∧ e4, de4 = 0.

The complex structure on SM induced by the invariant complex structure on C×H is given
by

Je1 := e2, Je3 := e4.

So a global co-frame of (1, 0)-forms on SM is given by

φ1 := e1 +
√
−1e2 =

√
y2 dz, φ2 := e3 +

√
−1e4 =

1

y2
dw,

with structure equations

dφ1 =

√
−1

4
φ1 ∧ φ2 −

√
−1

4
φ1 ∧ φ̄2, dφ2 =

√
−1

2
φ2 ∧ φ̄2.

2.5. Tricerri metric. Consider the degenerate metric [HL83]

(1.1) α :=

√
−1

4y22
dw ∧ dw̄ =

√
−1

4
φ2 ∧ φ̄2,

namely, the pull-back of the Poincaré metric on H.
Consider the Tricerri metric [Tri82]

ωT := 4α+
√
−1φ1 ∧ φ̄1 =

√
−1φ1 ∧ φ̄1 +

√
−1φ2 ∧ φ̄2.

Note that the Tricerri metric is an lcK metric on SM , with Lee form

ϑ :=
1

2
φ2 − 1

2
φ̄2.

Notice that SM does not contain any curve, as proven in [Ino74]. Indeed, since b2(SM ) = 0,
the closed (1, 1)-form α is exact. If there were a curve C, then

∫

C α = 0. Since α ≥ 0, then

TC ⊆ D, that is, C is contained in a leaf of D, which is dense in a torus T3 as mentioned above.
This is impossible.

3. The Inoue-Bombieri surfaces S±

3.1. Construction. Consider the Inoue-Bombieri surface

S+ := S+
N,p,q,r,t := (C×H)/Γ ,

with coordinates z = x1 +
√
−1y1 ∈ C and w = x2 +

√
−1y2 ∈ H, with y2 > 0. Here, we choose

N = (nkj )j,k ∈ SL(2;Z) with two real eigenvalues γ and γ−1 with γ > 1 (it follows that γ is

irrational), and p, q, r ∈ Z such that r ̸= 0, and t ∈ C. Let (a1, a2) and (b1, b2) be two real
eigenvectors corresponding to the eigenvalues γ and γ−1. Let (c1, c2) ∈ R2 be a solution of the
linear equation

(3.1) (c1, c2) = (c1, c2) ·N t + (e1, e2) +
b1 · a2 − b2 · a1

r
· (p, q),

where, for j ∈ {1, 2},

ej :=
1

2
· nj1 · (nj1 − 1) · a1 · b1 +

1

2
· nj2 · (nj2 − 1) · a2 · b2 + nj1 · nj2 · b1 · a2.
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Whence define Γ = ⟨f0, f1, f2, f3⟩ to be the subgroup of automorphisms of C×H generated by

f0(z, w) := (z + t, γ · w), fj(z, w) := (z + bj · w + cj , w + aj),

varying j ∈ {1, 2}, and
f3(z, w) :=

(

z +
b1 · a2 − b2 · a1

r
, w

)

.

The action of Γ on C×H is fixed-point free and properly discontinuous with compact quotient,
so S+ is a compact complex manifold.

The Inoue-Bombieri surface S− is constructed similarly (see [Ino74]), but the important point
for us is that it has an unramified double cover of type S+.

Remark 3.1. For later use, let us remark here that neither the slope of (a1, a2) nor the slope
of (b1, b2) (which are clearly algebraic numbers) can be rational numbers. If this was true, then
(1, a2/a1) (or (a1/a2, 1)), or (1, b2/b1) (or (b1/b2, 1)) would be eigenvectors of N = (njk)j,k with
rational entries. This means that, for example, n11 + n12

a2
a1

= γ would be rational.

3.2. Nilmanifold-bundle structure. On S+, as in the case of SM , we consider the subgroup
Γ′ := ⟨f1, f2, f3⟩ < Γ, which acts properly-discontinuosly and freely on C × H, with quotient

X̃ := (C×H)/Γ′ which is described as follows:

(3.2) X̃ =











1 y1 x1
y2 x2

1



 : x1, y1, x2 ∈ R, y2 ∈ R>0







/Γ′′,

where Γ′′ ≃ Γ′ is the discrete group generated by the matrices

g1 =





1 b1 c1
1 a1

1



 , g2 =





1 b2 c2
1 a2

1



 , g3 =





1 0 c3
1 0

1



 ,

acting by left multiplication, where

c3 =
b1 · a2 − b2 · a1

r
.

Indeed, setting z = x1 +
√
−1y1 and w = x2 +

√
−1y2, the action of the matrix gj is identical

to the action of fj , for j = 1, 2, 3. The projection π1 : X̃ → R>0 is induced by (z, w) 7→ Imw,

with fibers Xy2 = π−1
1 (y2), and we have that X̃ is diffeomorphic to X × R>0 where X = X1 is

the compact 3-dimensional nilmanifold

X1 = H(3;R)/Γ′′ =











1 y1 x1
1 x2

1



 =: (x2, y1, x1) : x1, y1, x2 ∈ R







/Γ′′,

where H(3;R) is the Heisenberg group. Since f0 lies in the normalizer of Γ′ by [Ino74, p. 276],

it follows that f0 induces a diffeomorphism Ψ : X1
≃→ Xγ and we have

S+ = X̃/⟨f0⟩ ≃ X × [1, γ]/ ((p, 1) ∼ (Ψ(p), γ)) .

The projection
π : S+ ∋ (z, w) 7→ y2 ∈ R>0

/

⟨y2 7→ γ · y2⟩ ≃ S1

yields a structure of X-bundle over S1.

3.3. Foliation. The form
√
−1

4y2
2

dw ∧ dw̄ being closed, it induces a foliation on S+, whose leaves

are dense in the X-fibre.
More precisely, the kernel of

√
−1

4y2
2

dw ∧ dw̄ on C×H is the integrable distribution

D := spanC

{

∂

∂z

}

,
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whose leaves are of the form

Lw0
:= {(z, w0) ∈ C×H : z ∈ C} , w0 ∈ H.

It induces a holomorphic foliation D on S+, without singularities, and whose leaves P (Lw0
) are

biholomorphic to C∗, and under the projection P : C × H → S+, for any w0 ∈ H, the image
P (Lw0

) is dense in the X-fibre π−1(Imw0) ⊂ S+ (see e.g. [TW13, Lemma 6.2] or [Bru13,
Proposition 2.1]). Indeed, if they were not dense, then (1, 0, 0) and (0, 1, 0) would be elements
of the lattice generated by (a1, b1, c1), (a2, b2, c2), and (0, 0, c3), which would contradict Remark
3.1.

3.4. Solvmanifold structure. See [Has05]. Write Im t = m log γ, for some m ∈ R, and
consider the global co-frame on S+ given by

e1 := dx1 −
y1 −m log y2

y2
dx2, e2 := dy1 −

y1 −m log y2
y2

dy2,

e3 :=
1

y2
dx2, e4 :=

1

y2
dy2,

In terms of the corresponding dual frame:

e1 =
∂

∂x1
, e3 = (y1 −m log y2)

∂

∂x1
+ y2

∂

∂x2
,

e2 =
∂

∂y1
, e4 = (y1 −m log y2)

∂

∂y1
+ y2

∂

∂y2
.

The structure equations are

de1 = −e2 ∧ e3 −me3 ∧ e4, de2 = −e2 ∧ e4,
de3 = e3 ∧ e4, de4 = 0.

The complex structure is
Je1 := e2, Je3 := e4,

in terms of the frame; in terms of the co-frame, Je1 = −e2, Je3 = −e4, so a global co-frame of
(1, 0)-forms on S+ is given by

φ1 := e1 +
√
−1e2 = dz − y1 −m log y2

y2
dw,

φ2 := e3 +
√
−1e4 =

1

y2
dw,

with structure equations

dφ1 =

√
−1

2
φ1 ∧ φ2 +

√
−1

2
φ2 ∧ φ̄1 −m

√
−1

2
φ2 ∧ φ̄2,

dφ2 =

√
−1

2
φ2 ∧ φ̄2.

3.5. Vaisman-Tricerri metric. Consider the degenerate metric

(1.1) α :=

√
−1

4y22
dw ∧ dw̄ =

√
−1

4
φ2 ∧ φ̄2.

Consider the Vaisman-Tricerri metric

ωV := 4α+
√
−1φ1 ∧ φ̄1 =

√
−1φ1 ∧ φ̄1 +

√
−1φ2 ∧ φ̄2.

This was discovered in [Tri82] when t is real and in [Vai87] in general. This metric is lcK if and
only if t is real.
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4. Gauduchon metrics on Inoue-Bombieri surfaces

Consider an arbitrary Hermitian metric on an Inoue-Bombieri surface S (either of type SM
or S+), which must be of the form

(4.1) ω :=
√
−1r φ1 ∧ φ̄1 +

√
−1sφ2 ∧ φ̄2 + uφ1 ∧ φ̄2 − ū φ2 ∧ φ̄1

where r, s ∈ C∞(S;R) and u ∈ C∞(S;C) are such that r > 0, s > 0, and rs− |u|2 > 0, at every
point. In this section, we investigate the Gauduchon condition for ω, namely,

∂∂ω = 0.

4.1. Gauduchon metrics on Inoue-Bombieri surfaces of type SM . If ω is Gauduchon,
then

d

∫

π−1(y2)
∂ω = 0,

therefore the function τ(y2) :=
∫

π−1(y2)
∂ω is constant on S1.

We compute

∂ω =

(√
−1 · y2 · ∂w̄r −

1

2
· r − 1√

y2
· ∂z̄u

)

φ1 ∧ φ̄1 ∧ φ̄2

+

(

−
√
−1√
y2
∂z̄s− y2 · ∂w̄ū+

√
−1

4
· ū
)

φ2 ∧ φ̄1 ∧ φ̄2.

Therefore, by straightforward computations,

τ(y2) =

∫

π−1(y2)

(

2 · y2 · ∂w̄r +
√
−1 · r + 2

√
−1√
y2

· ∂z̄u
)

e1 ∧ e2 ∧ e3

=

∫

π−1(y2)

(

y2 · ∂x2
r − 1√

y2
· ∂y1u

)

e1 ∧ e2 ∧ e3

+
√
−1 ·

∫

π−1(y2)

(

y2 · ∂y2r + r +
1√
y2

· ∂x1
u

)

e1 ∧ e2 ∧ e3

=

∫

π−1(y2)
dr ∧ e1 ∧ e2 +

∫

π−1(y2)
du ∧ e1 ∧ e3

+
√
−1 ·

∫

π−1(y2)
(y2 · ∂y2r + r) e1 ∧ e2 ∧ e3 +

∫

π−1(y2)
du ∧ e2 ∧ e3

=
√
−1 ·

∫

π−1(y2)
(y2 · ∂y2r + r) e1 ∧ e2 ∧ e3

=
√
−1 · (y2 · ∂y2R+R) ,

where

R(y2) :=

∫

π−1(y2)
r dx1 ∧ dy1 ∧ dx2 =

∫

π−1(y2)
r volωT ⌊π−1(y2).

By acting with y2
∂

∂y2
on the constant quantity τ(y2), we get the ordinary differential equation

∆y−2

2
(dy2)2

R := y22 · R̈+ y2 · Ṙ = 0,

where Ṙ = dR
dy2

, and ∆y−2

2
(dy2)2

is the Laplace-Beltrami operator on S1 with respect to the metric

y−2
2 (dy2)

2. Therefore, it has no solution on S1 except than constants.
Therefore we get that

Lemma 4.1. On an Inoue-Bombieri surface of type SM , if the Hermitian metric ω as in (4.1)
is Gauduchon, then R :=

∫

π−1(y2)
r volωT ⌊π−1(y2) does not depend on y2.
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4.2. Gauduchon metrics on Inoue-Bombieri surfaces of type S+. If ω is Gauduchon,
then

d

∫

π−1(y2)
∂ω = 0,

therefore the function τ(y2) :=
∫

π−1(y2)
∂ω is constant on S1.

We compute

∂ω =

(√
−1 · ∂z̄r · (y1 −m log y2) +

√
−1 · ∂w̄r · y2 − ∂z̄u− 1

2
· r
)

φ1 ∧ φ̄1 ∧ φ̄2

+

(

−
√
−1 · ∂z̄s− ∂z̄ū · (y1 −m log y2)− ∂w̄ū · y2 −

m

2
· r +

√
−1

2
· u
)

φ2 ∧ φ̄1 ∧ φ̄2.

Therefore, by straightforward computations,

τ(y2) =

∫

π−1(y2)

(

2 · ∂z̄r · (y1 −m log y2) + 2 · ∂w̄r · y2 + 2
√
−1∂z̄u+

√
−1 · r

)

e1 ∧ e2 ∧ e3

=

∫

π−1(y2)
(∂x1

r · (y1 −m log y2) + ∂x2
r · y2 − ∂y1u) · e1 ∧ e2 ∧ e3

+
√
−1 ·

∫

π−1(y2)
(∂y1r · (y1 −m log y2) + ∂y2r · y2 + ∂x1

u+ r) e1 ∧ e2 ∧ e3

=

∫

π−1(y2)
dr ∧ e1 ∧ e2 +

∫

π−1(y2)
du ∧ e1 ∧ e3 +

√
−1 ·

∫

π−1(y2)
(∂y2r · y2 + r) e1 ∧ e2 ∧ e3

−
√
−1 ·

∫

π−1(y2)
(y1 −m log y2) · dr ∧ e1 ∧ e3 +

√
−1 ·

∫

π−1(y2)
du ∧ e2 ∧ e3

=
√
−1 ·

∫

π−1(y2)
∂y2r · y2 · e1 ∧ e2 ∧ e3

=
√
−1 · y2 · ∂y2R,

where

R(y2) :=

∫

π−1(y2)
r · e1 ∧ e2 ∧ e3 =

∫

π−1(y2)
r
1

y2
dx1 ∧ dy1 ∧ dx2.

Hence we get the ordinary differential equation

y2 · R̈+ Ṙ = 0,

where Ṙ = dR
dy2

. It has no solution on S1 except than constants.

Therefore we get that

Lemma 4.2. On an Inoue-Bombieri surface of type S+, if the Hermitian metric ω as in (4.1)
is Gauduchon, then R :=

∫

π−1(y2)
r volωV ⌊π−1(y2) does not depend on y2.

5. Strongly leafwise flat forms on Inoue-Bombieri surfaces

5.1. Strongly leafwise flat forms. Recall that a real (1, 1)-form η on an Inoue-Bombieri
surface S is called strongly leafwise flat if

η ∧ α
ω2
TV

∈ R>0,

where the constant equals
∫
S η∧α∫
S ω2

TV
, and where ωTV denotes either the Tricerri or the Vaisman-

Tricerri metric according to the type of S.
The ∂∂-class of ω is given by

ωu := ω +
√
−1∂∂u > 0

varying u ∈ C∞(S;R)/R .
10



Looking for u as above such that ω +
√
−1∂∂u, in the ∂∂-class of ω, is a strongly leafwise

flat (1, 1)-form is equivalent to solving the equation

(5.1) ∆Du = G(ω),

where

∆Du :=

√
−1 ∂∂u ∧ α
ω2
TV

is a degenerate elliptic operator on C∞(S;R), and where we set

G(ω) := −ω ∧ α
ω2
TV

+

∫

S ω ∧ α
∫

S ω
2
TV

.

More precisely, we have that

∆Du =
1

8y2
∂zz̄u in case SM ,

∆Du =
1

8
∂zz̄u in case S±,

is the Laplacian along the leaves with respect to the Tricerri, respectively Vaisman-Tricerri
metric.

For any given Hermitian metric ω on S, which we can write in the form (4.1), we have

(5.2) G(ω) = −1

8
r +

1

8
−
∫

S
rω2

TV .

5.2. Gauduchon obstruction. Consider

ker∆D = π∗C∞(S1;R)

=
{

ψ = ψ(y2) ∈ C∞(R>0;R) : ψ(Λ · y2) = ψ(y2) for any y2
}

,

where Λ = λ in case SM , and Λ = γ in case S+. Indeed, if u ∈ C∞(S;R) is in the kernel of
∆D, then the restriction of u to each leaf is a bounded harmonic function on C or C∗, whence
constant. Since each leaf is dense in a fibre of π : S → S1, then u is the pull-back of a smooth
function over S1. Conversely, each such function is in the kernel of ∆D.

Lemma 5.1. Given any Hermitian metric ω on S, if there is a smooth function u such that
ω +

√
−1 ∂∂u is strongly leafwise flat, then we must have that

(5.3)

∫

S
ψG(ω)ω2

TV = 0,

for all ψ ∈ ker∆D.

Proof. Indeed, for ψ ∈ ker∆D, we have
∫

S
ψG(ω)ω2

TV =

∫

S
ψ∆Duω

2
TV =

∫

S
ψ
√
−1 ∂∂u ∧ α

=

∫

S
u
√
−1 ∂∂ψ ∧ α =

∫

S
u∆Dψω

2
TV = 0,

yielding the statement. □

It is clear that every invariant metric on S satisfies (5.3), since by invariance we have G(ω) = 0
in this case.

Lemma 5.2. The obstruction (5.3) is satisfied for all ψ ∈ ker∆D if and only if we have

(5.4)

∫

π−1(y2)
G(ω) volωTV ⌊π−1(y2) = 0,

for all y2 ∈ S1.
11



Proof. In one direction, suppose (5.4) holds and let ψ be any element of ker∆D, so ψ is the
pullback to S of a smooth function on S1. Then we have

∫

S
ψG(ω)ω2

TV = c

∫

S1
ψ

(

∫

π−1(y2)
G(ω)volωTV ⌊π−1(y2)

)

dy2
y2

= 0,

where c is a numerical positive constant.
For the converse, if we had

∫

π−1(q0)
G(ω) volωT ⌊π−1(q0) > 0 for some q0 ∈ S1, then by continuity

this would be true for all q ∈ U for some open subset U ⊂ S1 containing q0, and then if we
choose a smooth function ψ on S1 which is nonnegative, compactly supported in U and positive
at q0, we obtain that

∫

S ψG(ω)ω
2
TV > 0, contradicting (5.3). □

The following result will be crucial to us.

Lemma 5.3. Every Gauduchon metric on S satisfies (5.3), and there exist (non-Gauduchon)
Hermitian metrics on S which do not satisfy (5.3).

Proof. Given any Gauduchon metric ω on S as in (4.1), the associated function r on S satisfies
that

R(y2) :=

∫

π−1(y2)
r volωTV ⌊π−1(y2)

is a constant function of y2 ∈ S1, thanks to Lemmas 4.1 and 4.2. Thanks to (5.2), this implies
that

∫

π−1(y2)
G(ω) volωTV ⌊π−1(y2) = −1

8
·R(y2) +

1

8
· −
∫

S
R(y2) · ω2

TV = 0,(5.5)

for all y2 ∈ S1. The first statement thus follows from Lemma 5.2.

For the second statement, choose any smooth positive nonconstant function r : S1 → R, and
define

ω :=
√
−1r φ1 ∧ φ̄1 +

√
−1φ2 ∧ φ̄2.

Then if we choose ψ = r ∈ ker∆D, we have
∫

S
ψG(ω)ω2

TV = −1

8

∫

S
r2ω2

TV +
1

8

(∫

S rω
2
TV

)2

∫

S ω
2
TV

< 0,

because r is nonconstant. □

5.3. Strongly leafwise flat forms on Inoue-Bombieri surfaces SM . In this section, we
explicitly solve equation (5.1) on SM , so proving Theorem 1.1 for the case of Inoue-Bombieri
surfaces of type SM .

Theorem 5.4. Let ω be a Hermitian metric on SM which satisfies (5.3). Then there is a
smooth function u such that ω +

√
−1 ∂∂u is a strongly leafwise flat (1, 1)-form.

Proof. Recall that there is a quotient map p : T3 × [1, λ] → SM , which identifies (q, 1) with
(Ψ(q), λ) for a certain diffeomorphism Ψ of T3 induced by f0. Here T3 = R3/Λ, where we use
the coordinates x1, y1, x2 on R3, and the lattice Λ is spanned by ∂1, ∂2, ∂3 which are given by

(5.6) ∂1 :=





Rem1

Imm1

ℓ1



 , ∂2 :=





Rem2

Imm2

ℓ2



 , ∂3 :=





Rem3

Imm3

ℓ3



 ,

Pulling back G(ω) via p we obtain a smooth function g on T3 × [1, λ] which thanks to (5.4)
(which is equivalent to (5.3) by Lemma 5.2) satisfies

(5.7)

∫

T3×{y2}
gdx1 ∧ dy1 ∧ dx2 = 0,

12



for all y2 ∈ [1, λ]. The equation we wish to solve pulls back to the PDE

(5.8)
1

32y2

(

∂2u

∂x21
+
∂2u

∂y21

)

= g,

on T3 × [1, λ]. Since the differential operators ∂
∂x1

and ∂
∂y1

are in the T3 direction, it is natural

to try to solve this PDE by using the Fourier series expansion on each T3×{y2} separately. We
write ∂

∂x1
and ∂

∂y1
with respect to the basis {∂1, ∂2, ∂3} as

∂

∂x1
= A1 ∂1 +A2 ∂2 +A3 ∂3 and

∂

∂y1
= B1 ∂1 +B2 ∂2 +B3 ∂3,

where




A1 B1

A2 B2

A3 B3



 =





Rem1 Rem2 Rem3

Imm1 Imm2 Imm3

ℓ1 ℓ2 ℓ3





−1

·





1 0
0 1
0 0





=
1

ε
·





−Imm3ℓ2 + Imm2ℓ3 −ℓ3Rem2 + ℓ2Rem3

Imm3ℓ1 − Imm1ℓ3 ℓ3Rem1 − ℓ1Rem3

−Imm2ℓ1 + Imm1ℓ2 −ℓ2Rem1 + ℓ1Rem2



 ,

where

ε = det





Rem1 Rem2 Rem3

Imm1 Imm2 Imm3

ℓ1 ℓ2 ℓ3





= (−Imm3ℓ2 + Imm2ℓ3)Rem1 − (−Imm3ℓ1 + Imm1ℓ3)Rem2

+(−Imm2ℓ1 + Imm1ℓ2)Rem3.

We compute the Laplacian along the leaves in terms of the above basis:

∆D =
1

8y2
· ∂2

∂z∂z̄
=

1

32y2

(

∂2

∂x1∂x1
+

∂2

∂y1∂y1

)

=
1

32y2









∑

j

Aj∂j





2

+





∑

j

Bj∂j





2



=
1

32y2





∑

j

(

A2
j +B2

j

)

∂jj + 2
∑

j<h

(AjAh +BjBh) ∂jh





=
1

32y2
·
(

∂1 ∂2 ∂3
)

· Z ·





∂1
∂2
∂3



 ,

where

Z =





A2
1 +B2

1 A1A2 +B1B2 A1A3 +B1B3

A1A2 +B1B2 A2
2 +B2

2 A2A3 +B2B3

A1A3 +B1B3 A2A3 +B2B3 A2
3 +B2

3





=

(

A1 A2 A3

B1 B2 B3

)t

·
(

A1 A2 A3

B1 B2 B3

)

,

which is semipositive definite of rank 2, whose kernel is generated by the vector

(5.9)





A3B2 −A2B3

−A3B1 +A1B3

A2B1 −A1B2



 = −1

ε





ℓ1
ℓ2
ℓ3



 ,

where the second equality follows by direct inspection.
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We solve equation (5.8) by considering the Fourier series expansion. More precisely, consider
the Fourier series of the datum in terms of the above basis for the torus:

g(t, y2) =
∑

k∈Z3\{0}
dk(y2) · exp

(

2π
√
−1 ⟨k|t⟩

)

,

where k = (k1, k2, k3), and t = (t1, t2, t3) are the coordinates in the basis (∂1, ∂2, ∂3), and
⟨k|t⟩ = k1t1 + k2t2 + k3t3. The zero Fourier mode does not appear because of (5.7), while the
other Fourier coefficients dk(y2) ∈ C depend smoothly on y2. Consider the Fourier series of the
expected solution:

(5.10) u(t, y2) =
∑

k∈Z3\{0}
ak(y2) · exp

(

2π
√
−1 ⟨k|t⟩

)

.

Equation (5.8) is equivalent to, for any k ∈ Z3\{0},

ak(y2) =
(

2π
√
−1
)−2 · 32y2 · dk(y2)

zk
where

zk :=
(

k1 k2 k3
)

· Z ·





k1
k2
k3



 .

For this to make sense, we need to show that zk ̸= 0 for all k ∈ Z3\{0}, or equivalently that
the kernel of the 3 × 3 semipositive definite matrix Z meets Z3 in {(0, 0, 0)} only. As we said
above, the kernel of Z is 1-dimensional spanned by the vector

v =





ℓ1
ℓ2
ℓ3



 .

If we have νv ∈ Z3 for some ν ∈ R, then (νℓ1, νℓ2, νℓ3) ∈ Z3 and the relations

λνℓj =

3
∑

k=1

Mjkνℓk,

where Mjk ∈ Z, imply that ν = 0. Therefore we have shown that zk ̸= 0 for all k ∈ Z3\{0},
and so (5.10) defines a distributional solution u of (5.8) on T3 × {y2} for all y2. Recall the
well-known fact that a Fourier series on a torus of the form (5.10) defines a smooth function if
and only if its Fourier coefficients ak decay faster than any power |k|−N , N > 0, as |k| → ∞. In
particular, since our datum g is smooth, the coefficients dk(y2) satisfy this decay property, for
any fixed y2. It follows that, exactly as in [GW72], to show smoothness of u(·, y2) on each fiber
T3 × {y2}, it is sufficient to show that

(5.11) |zk| ≥
C

(k21 + k22 + k23)
M
,

for some C,M > 0 and for all |k1|, |k2|, |k3| sufficiently large.
To see this, we use the Liouville theorem on Diophantine approximation: if x ∈ R is irrational

and algebraic of degree d > 1, then there is a constant C > 0 such that for all integers (p, q),
with q > 1, we have

(5.12)

∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

≥ C

qd
.

The property (5.12) says that x is a non-Liouville number, or strongly-dispersive in the termi-
nology of [OT21].

To deduce (5.11) from Liouville’s Theorem, first note that |zk| is comparable to the square
of the distance from the point (k1, k2, k3) to the real line spanned by v (since the other two
eigenvalues of Z are positive). Recall that at least one of the ratios {ℓi/ℓj}i ̸=j is well-defined
and is irrational, and we may assume that it is ℓ2/ℓ1. Then this distance from (k1, k2, k3) to
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the span of v is larger than or equal to the distance from (k1, k2) to the line spanned by (ℓ1, ℓ2),
which up to a fixed constant equals

∣

∣

∣

∣

k2 −
ℓ2
ℓ1
k1

∣

∣

∣

∣

= |k1|
∣

∣

∣

∣

k2
k1

− ℓ2
ℓ1

∣

∣

∣

∣

.

But the ratio ℓ2/ℓ1 is an irrational algebraic number (of degree say d), and so Liouville’s Theorem
shows that

∣

∣

∣

∣

k2
k1

− ℓ2
ℓ1

∣

∣

∣

∣

≥ C

|k1|d
,

for a fixed constant C > 0 and so we have shown that

|zk| ≥
C ′

k
2(d−1)
1

≥ C ′

(k21 + k22 + k23)
d−1

,

as claimed.
We have thus proved smoothness of u on each T3 fiber, and smoothness in the variable y2

now follows from the smoothness of the Fourier coefficients ak(y2). We have thus obtained a
smooth solution u of (5.8) on T3× [1, λ]. Next we show that the solution u descends to a smooth
function on SM , or equivalently that u(p, 1) = u(Ψ(p), λ) for all p ∈ T3, where recall that Ψ is
induced by f0(z, w) = (µz, λw). Of course the function g on the right hand side of (5.8) has
this property. Let ũ(p, 1) = u(Ψ(p), λ), which is a smooth function on T3 × {1} which satisfies
(writing µ = µ1 +

√
−1µ2 and p = (x1, y1, x2))

∆Dũ(p, 1) =
1

32

(

∂2

∂x21
+

∂2

∂y21

)

(u(µ1x1 − µ2y1, µ1y1 + µ2x1, λx2))

= |µ|2 1

16

(

∂2u

∂x21
+
∂2u

∂y21

)

(µ1x1 − µ2y1, µ1y1 + µ2x1, λx2)

=
1

16λ

(

∂2u

∂x21
+
∂2u

∂y21

)

(µ1x1 − µ2y1, µ1y1 + µ2x1, λx2)

= g(Ψ(p), λ) = g(p, 1) = ∆Du(p, 1),

and hence u(·, 1) and ũ(·, 1) differ by a constant, which is in fact zero since both functions
have integral zero on the torus. Therefore u descends to a smooth solution of (5.1) on SM , as
desired. □

5.4. Strongly leafwise flat forms on Inoue-Bombieri surfaces S±. In this section, we
explicitly solve equation (5.1) on S+, proving Theorem 1.1 for the remaining case of Inoue-
Bombieri surfaces of type S±.

Theorem 5.5. Let ω be a Hermitian metric on S± which satisfies (5.3). Then there is a smooth
function u such that ω +

√
−1 ∂∂u is a strongly leafwise flat (1, 1)-form.

Proof. As we mentioned earlier, it suffices to treat the case of S+, since the case of S− reduces
to S+ by using the double cover. Indeed, the covering involution ι of S+ (such that S− =
S+/ι) is of the form ι(z, w) = (

√
γz,−w), see e.g. [TW13, page 2130], and this preserves

the foliation. Pulling back ω to S+ gives an ι-invariant Hermitian metric ω̂ on S+ which still
satisfies (5.3), so we will find u such that ω̂ +

√
−1 ∂∂u is strongly leafwise flat. Therefore, so

is ω̂ +
√
−1 ∂∂

(

u+ι∗u
2

)

, which now descends to the desired strongly leafwise flat form on S−.
From now on, we therefore work on an Inoue-Bombieri surface of type S+. Our arguments

begin by following the same outline as in the case of SM , by looking at S+ as a nilmanifold-
bundle over S1, and then performing partial Fourier series expansion on the nilmanifold which
is a T2-bundle over S1. The proof of solvability of the ODEs that we will obtain will however
be different from the case of SM . For Fourier series on Heisenberg-type nilmanifolds, see e.g.
[AT75, DS84, Ric82] as well as the very recent [HZ22, HZ20, RS22] which also apply this to
study geometric questions.
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Again, since the operator ∆D involves only derivatives in the directions of the fibers of the
X-bundle structure π : S+ → S1, we will first solve the PDE separately on each π-fiber, and
later show that these piece together to a global solution. Since π is a smooth fiber bundle, all
fibers are diffeomorphic to the group-quotient X1 = H(3;R)/Γ′′, the fiber over y2 = 1, but now
the operator ∆D actually depends on y2. The fiber Xy2 is equal to the quotient Xy2 = R3/Γ′′ in
(3.2) with fixed value of y2, where Γ

′′ = ⟨(a1, b1, c1), (a2, b2, c2), (0, 0, c3)⟩ acts as the “y2-rescaled
product”

(a, b, c) · (x2, y1, x1) := (x2 + a, y1 + y2b, x1 + bx2 + c).

Recall that, by Remark 3.1, neither (a1, a2) nor (b1, b2) has rational algebraic slope.
An arbitrary function f on Xy2 is identified with a function f(x2, y1, x1) on R3 which satisfies

the periodicity conditions

f(x2, y1, x1) = f(x2 + a1, y1 + y2b1, x1 + b1x2 + c1)

= f(x2 + a2, y1 + y2b2, x1 + b2x2 + c2)

= f(x2, y1, x1 + c3).

By taking advantage of the periodicity in the variable x1, we take the Fourier series expansion
of f in the last variable:

f(x2, y1, x1) =
∑

k∈Z
fk(x2, y1) exp

(

2π
√
−1

x1
c3
k

)

,

where the coefficients fk are complex-valued functions such that

(5.13) fk = f−k,

and satisfying the further periodicity conditions

fk(x2, y1) = fk(x2 + a1, y1 + y2b1) exp

(

2π
√
−1

(

b1
c3
x2 +

c1
c3

)

k

)

(5.14)

= fk(x2 + a2, y1 + y2b2) exp

(

2π
√
−1

(

b2
c3
x2 +

c2
c3

)

k

)

.

In particular, for k = 0, these rewrite as

f0(x2, y1) = f0(x2 + a1, y1 + y2b1)

= f0(x2 + a2, y1 + y2b2),

that is, f0 is periodic with respect to the lattice

Z

(

a1
y2b1

)

⊕ Z

(

a2
y2b2

)

,

and we can further expand

f0(x2, y1) =
∑

m,n∈Z
f0,m,n exp

(

2π
√
−1

y2(a1b2 − a2b1)
(y2b2x2 − a2y1)m+

2π
√
−1

y2(a1b2 − a2b1)
(−y2b1x2 + a1y1)n

)

,

where f0,m,n ∈ C are such that f0,m,n = f0,−m,−n.
For simplicity of notation, we again denote the pullback of our function 32G(ω) to R3 by g,

which can then be expanded as above

g(x2, y1, x1) =
∑

k∈Z
gk(x2, y1) exp

(

2π
√
−1

x1
c3
k

)

,

where the coefficients gk satisfy (5.13) and the periodicity conditions (5.14), in particular,

g0(x2, y1) =
∑

m,n∈Z
g0,m,n exp

(

2π
√
−1

y2(a1b2 − a2b1)
(y2b2x2 − a2y1)m+

2π
√
−1

y2(a1b2 − a2b1)
(−y2b1x2 + a1y1)n

)

,
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where crucially the zero mode g0,0,0 vanishes, thanks to (5.4) (which is equivalent to the ob-
struction (5.3) by Lemma 5.2).

The equation (5.1) 32∆Du = g reduces to the system

(5.15)

(

∂

∂y1

)2

uk(x2, y1)− 4π2
k2

c23
uk(x2, y1) = gk(x2, y1), for k ∈ Z,

which are linear ordinary differential equations of second order in y1.
Consider first the case k ∈ Z\{0}. It is clear that gk is smooth and bounded on R2, indeed it

satisfies the periodicity conditions (5.14). Then, for any fixed x2 ∈ R, we get a unique solution
uk(x2, ) for (5.15) which is smooth in (x2, y1) ∈ R2 and bounded in y1, see [Cop78, Proposition
8.2]. To apply the latter cited Proposition, one requires that the homogeneous equation

(

u
v

)′
=

(

0 1

(2π · k/c3)2 0

)

·
(

u
v

)

has bounded growth and exponential dichotomy on the real line, as defined in [Cop78, pages
8 and 10]. The bounded growth condition is readily verified, and since the above equation is
autonomous, exponential dichotomy amounts to checking that the matrix has one eigenvalue
with strictly positive real part and the other with strictly negative real part, see [Cop78, pages
10 and 19]. This is indeed true, the eigenvalues being ±2π · k/c3 ∈ R \ {0}.

The coefficients of the equation being real, then uk clearly satisfies the reality conditions
(5.13). Moreover, since

(

∂

∂y1

)2(

uk(x2 + aj , y1 + y2bj) exp

(

2π
√
−1

(

bj
c3
x2 +

cj
c3

)

k

))

−4π2
k2

c23

(

uk(x2 + aj , y1 + y2bj) exp

(

2π
√
−1

(

bj
c3
x2 +

cj
c3

)

k

))

= gk(x2 + aj , y1 + y2bj) exp

(

2π
√
−1

(

bj
c3
x2 +

cj
c3

)

k

)

= g(x2, y1),

for j ∈ {1, 2}, and by uniqueness of the bounded solution of (5.15), we get that the solution uk
satisfies the periodicity conditions (5.14).

Look at Reuk, and let ymax
1 be a maximum point for Reuk(x2, ), once fixed x2 ∈ R. Then

max
y1∈R

Reuk(x2, y1) = Reuk(x2, y
max
1 )

=
1

4π2
c23
k2

(

(

∂

∂y1

)2

Reuk(x2, y
max
1 )− Re gk(x2, y

max
1 )

)

≤ − 1

4π2
c23
k2

Re gk(x2, y
max
1 ) ≤ 1

4π2
c23
k2

max |gk|.

The same argument applies for Imuk, as well as at the minima points. This yields

(5.16) max |uk| ≤
√
2

4π2
c23
k2

max |gk|.

Consider now the case k = 0. The differential equation (5.15) reduces to a system of algebraic
equations:

(5.17) −4π2u0,m,n

(

na1 −ma2
y2(a1b2 − a2b1)

)2

= g0,m,n, for m,n ∈ Z.

Since a1/a2 is irrational by Remark 3.1, then na1−ma2 ̸= 0 for any (m,n) ∈ Z2 \{(0, 0)}. Then,
for (m,n) ̸= (0, 0), we get the formal solution

u0,m,n = − 1

4π2

(

y2(a1b2 − a2b1)

na1 −ma2

)2

g0,m,n.
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Since a1/a2 is algebraic irrational, say of degree d ≥ 2, then by the Liouville theorem we have

|a1n− a2m| = |a2| ·
∣

∣

∣

∣

a1
a2

− m

n

∣

∣

∣

∣

· |n| ≥ C · |a2| · |n|2−2d

where C is a positive constant depending on a1/a2. We get the estimate

(5.18) |u0,m,n| ≤
1

4π2C2

|y2(a1b2 − a2b1)|2
|a2|2

· |n|4d−4 · |g0,m,n|.

Since the datum g is smooth, then, for |k| → +∞ and for all N > 0, the Fourier coefficients
gk decay faster than |k|−2N at any point, which implies that max |gk| decay faster than |k|−2N ,
respectively, the Fourier coefficients g0,m,n decay faster than (m2+n2)−N . By (5.16) and (5.18),
the same decay property holds for uk and u0,m,n. By this, and by the smoothness of the Fourier
coefficients, we therefore get that

u(x2, y1, x1) :=
∑

k ̸=0

uk(x2, y1) exp

(

2π
√
−1

x1
c3
k

)

+
∑

(m,n) ̸=(0,0)

u0,m,n exp

(

2π
√
−1

y2(a1b2 − a2b1)
(y2b2x2 − a2y1)m+

2π
√
−1

y2(a1b2 − a2b1)
(−y2b1x2 + a1y1)n

)

is a smooth function on Xy2 . (Note that the role of Liouville theorem to get smoothness here
is less strong than before: compare with the “greater regularity” discussed in [Ric82, page 309]
for solutions of first order equations on the Heisenberg group with respect to the torus.)

Lastly, smoothness of u in the variable y2 follows directly from smoothness of the Fourier
coefficients of g with respect to y2, which implies the same smoothness for uk and u0,m,n, by
smooth dependence of the solution of the ODE.

Taking y2 in the interval [1, γ], we have thus obtained a smooth solution u of (5.8) on the

subset of X̃ defined by π−1
1 ([1, γ]), which is diffeomorphic to X × [1, γ]. Next we show that the

solution u descends to a smooth function on S+, or equivalently that u(p, 1) = u(Ψ(p), γ) for all
p ∈ X, where recall that Ψ is induced by f0(z, w) = (z + t, γ ·w). Of course the function g has
this property. Let ũ(p, 1) = u(Ψ(p), γ), which is a smooth function on X × {1} which satisfies
(writing t = t1 +

√
−1t2)

∆Dũ(p, 1) =
1

32

(

∂2

∂x21
+

∂2

∂y21

)

(u(x1 + t1, y1 + t2, γx2))

=
1

32

(

∂2u

∂x21
+
∂2u

∂y21

)

(x1 + t1, y1 + t2, γx2)

= g(Ψ(p), γ) = g(p, 1) = ∆Du(p, 1),

and hence u(·, 1) and ũ(·, 1) differ by a constant, which is in fact zero since both functions
have integral zero on this fiber. Therefore u descends to a smooth solution of (5.1) on S+, as
desired. □

Combining Theorems 5.4 and 5.5 concludes the proof of Theorem 1.1.
Lastly, we give the proof of Corollary 1.2. Given Theorem 1.1, this corollary is a more or less

direct application of [FTWZ16, Theorem 1.1]. The only thing to remark is that this latter result
assumes that ω +

√
−1 ∂∂u is a Hermitian metric which is strongly flat along the leaves, but a

close inspection of its proof shows that all that is needed is that ω +
√
−1 ∂∂u is a (1, 1)-form

which is strongly flat along the leaves (so it is positive definite in the leaves directions, but it
need not be positive definite in all directions). Indeed, if we let

ω̃(t) = (1− e−t)ω∞ + e−t(ω +
√
−1 ∂∂u),

(as in [FTWZ16, Equation (2.7)]), then it is easy to see that these are Hermitian metrics on S
for all t sufficiently large (using the Cauchy-Schwarz inequality to bound the terms involving
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dz ∧ dw and its conjugate). While this is not exactly the same as in [FTWZ16], where ω̃(t) are
Hermitian metrics for all t ≥ 0, this is irrelevant since we are only interested in the behavior of
ω(t) for t large. Therefore, with this change, the rest of the arguments in [FTWZ16] go through
verbatim, and this proves Corollary 1.2.

6. Higher order regularity

In this section we give the proof of Theorem 1.3. In this section, S will denote either an
Inoue-Bombieri surface or a non-Kähler minimal properly elliptic surface (we refer to [TW13,
§8] and [TWY15] for the background material on these). On each of these surfaces there is
an explicit Gauduchon metric discovered by Tricerri [Tri82] or Vaisman [Vai87], that we will
denote by ωTV (for Inoue surfaces, these metrics were discussed earlier).

As in the statement of Theorem 1.3 we assume that the initial metric ω of the normalized
Chern-Ricci flow (NCRF) is of the form ω = ωTV +

√
−1∂∂ψ for some smooth function ψ (in

particular it is Gauduchon), and our goal is to prove uniform a priori estimates for ω(t) in
Ck(ω) for all k ≥ 0, and also to show that the curvature of ω(t) remains uniformly bounded for
all t ≥ 0. As explained in the Introduction, we will adapt an idea first introduced in [GTZ13],
following the discussion in [Tos18, §5.14] for the Kähler-Ricci flow, which dealt with the case
of torus fibrations. Here, the role of the torus curves fibers will be played by the leaves of the
canonical foliation on Inoue-Bombieri surfaces.

Let us first discuss the case when S is of type SM . Let p : C × H → S be the universal
covering map, with standard coordinates (z, w) on C×H, and let

α =

√
−1

4y22
dw ∧ dw, β =

√
−1y2dz ∧ dz.

The Tricerri metric is then given by ωTV = 4α+ β.
Thanks to [FTWZ16, Theorem 2.4] (which we extended in Theorem 1.1 to arbitrary initial

Gauduchon metrics) we have

(6.1) C−1(α+ e−tβ) ≤ ω(t) ≤ C(α+ e−tβ),

on S × [0,∞). We also have that

ω(t) = ωref(t) +
√
−1∂∂φ(t), ωref(t) = e−tωTV + (1− e−t)α = (1 + 3e−t)α+ e−tβ,

for some smooth functions φ(t) on S.
For t ≥ 0 let λt : C×H → C×H be given by

λt(z, w) = (zet/2, w),

which is a “stretching in the leaf directions”, analogous to the stretching first used in [GTZ13]
(with the stretching done along abelian varieties which were the fibers of a fibration). Observe
that on C×H, for all t ≥ 0 we have

(6.2) λ∗t p
∗α = p∗α, λ∗t p

∗β = etp∗β.

These relations will give us the crucial property that the stretched reference metrics along the
flow are smoothly comparable to Euclidean, as was the case for the semi-flat metrics that had
to be carefully constructed in [GTZ13, HT15].

Then, for each t, fixed the metrics

ωt(s) := λ∗t p
∗ω(s+ t), −t ≤ s ≤ 0,

on C×H satisfy

C−1(λ∗t p
∗α+ e−s−tλ∗t p

∗β) ≤ ωt(s) ≤ C(λ∗t p
∗α+ e−s−tλ∗t p

∗β),

thanks to (6.1). If we then restrict to −1 ≤ s ≤ 0 then this implies

(6.3) C−1(λ∗t p
∗α+ e−tλ∗t p

∗β) ≤ ωt(s) ≤ C(λ∗t p
∗α+ e−tλ∗t p

∗β),
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and using (6.2) this implies

(6.4) C−1p∗ωTV ≤ ωt(s) ≤ Cp∗ωTV ,

for all t ≥ 0,−1 ≤ s ≤ 0, and observe that p∗ωTV is locally uniformly equivalent to a fixed
Euclidean metric ωE on C×H. Furthermore, the metric ωt(s) satisfy

(6.5)
∂

∂s
ωt(s) = −RicCh(ωt(s))− ωt(s), −1 ≤ s ≤ 0,

and they are of the form

ωt(s) = λ∗t p
∗ωref(s+ t) +

√
−1∂∂(λ∗t p

∗φ(s+ t)),

where
λ∗t p

∗ωref(s+ t) = (1 + 3e−s−t)p∗α+ e−sp∗β,

are Hermitian metrics which are uniformly smoothly bounded with respect to ωE , independent
of t ≥ 0 and −1 ≤ s ≤ 0. We can thus apply the local higher order estimates of [SW13] and
obtain that for each given compact set K ⋐ C × H and k ≥ 0 there are constants CK,k such
that

∥ωt(s)∥Ck(K,gE) ≤ CK,k,

for all t ≥ 0,−1
2 ≤ s ≤ 0. Setting s = 0 we obtain

(6.6) ∥λ∗t p∗ω(t)∥Ck(K,gE) ≤ CK,k,

and we still have

(6.7) λ∗t p
∗ω(t) ≥ C−1ωE ,

on K × [0,∞), from (6.4) with s = 0. From (6.6) and (6.7) we immediately see that

(6.8) sup
K

|Rm(λ∗t p
∗ω(t))|λ∗

t p
∗ω(t) ≤ C,

for all t ≥ 0. If now U ⊂ C × H is the interior of a fundamental domain for the Γ-action on
C × H (where S = (C × H)/Γ), then we have that p is a biholomorphism between U and an
open dense subset of S and so

sup
S

|Rm(ω(t))|ω(t) = sup
U

|Rm(p∗ω(t))|p∗ω(t) = sup
λ1/t(U)

|Rm(λ∗t p
∗ω(t))|λ∗

t p
∗ω(t),

where λ1/t is the inverse map of λt. But the compact sets λ1/t(U) are all contained in a fixed
compact set K ⋐ C × H, and so from (6.8) we obtain that the curvature of ω(t) remains
uniformly bounded for all times.

Next, it is easy to check working in the coordinates (z, w) that (6.6) implies that

∥p∗ω(t)∥Ck(K,gE) ≤ CK,k,

and in fact (6.6) is a much stronger bound. Therefore taking K again to be the closure of a
fundamental domain, this estimate implies

∥ω(t)∥Ck(S,ω) ≤ Ck,

as desired.
We now discuss the case of S+. The universal cover map is again denoted by p : C×H → S

with standard coordinates (z, w) on C×H, and let

α =

√
−1

4y22
dw ∧ dw, β =

√
−1

(

dz − y1 −m log y2
y2

dw

)

∧
(

dz − y1 −m log y2
y2

dw

)

.

The Vaisman-Tricerri metric is then given by ωTV = 4α + β. Defining the stretch maps λt as
before, we now have

λ∗t p
∗α = p∗α, λ∗t p

∗β = et
√
−1

(

dz − y1 − e−
t
2m log y2
y2

dw

)

∧
(

dz − y1 − e−
t
2m log y2
y2

dw

)

,
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and so if we define the reference metrics ωref(t) = e−tωTV + (1 − e−t)α = (1 + 3e−t)α + e−tβ,
then again

λ∗t p
∗ωref(s+ t) = (1 + 3e−s−t)p∗α+ e−sp∗β,

are Hermitian metrics which are uniformly smoothly bounded with respect to ωE , independent
of t ≥ 0 and −1 ≤ s ≤ 0, and the argument proceeds exactly as earlier. The case when S is of
type S− is easily reduced to the case of S+ by passing to a double cover (cf. [TW13, §7] and
[FTWZ16]).

Lastly, let S be a minimal non-Kähler properly elliptic surface. Then its universal cover
of S is again C × H but it is more convenient to work instead with C∗ × H via the map
(z, w) 7→ (e−z/2, w). Then we have a holomorphic covering p : C∗×H → S, and if we denote by

u = e−z/2 the coordinate on C∗ then the stretching maps λt as earlier become λt : C
∗ × H →

C∗ ×H, λt(u,w) = (ue
t/2
, w). Let

α =

√
−1

4y22
dw ∧ dw, β =

√
−1

(

−2du

u
+
idw

y2

)

∧
(

−2du

u
− idw

y2

)

.

The Vaisman metric is then given by ωTV = 4α+ β. We now have

λ∗t p
∗α = p∗α, λ∗t p

∗β = et
√
−1

(

−2du

u
+ e−

t
2

idw

y2

)

∧
(

−2du

u
− e−

t
2

idw

y2

)

,

and so if we define the reference metrics ωref(t) = e−tωTV + (1 − e−t)α = (1 + 3e−t)α + e−tβ,
then again

λ∗t p
∗ωref(s+ t) = (1 + 3e−s−t)p∗α+ e−s

√
−1

(

−2du

u
+ e−

t
2

idw

y2

)

∧
(

−2du

u
− e−

t
2

idw

y2

)

,

are Hermitian metrics which are uniformly smoothly bounded with respect to ωE , independent
of t ≥ 0 and −1 ≤ s ≤ 0, and the argument proceeds exactly as earlier.

Remark 6.1. Instead of the local higher order estimates of [SW13], we could have also used
those in [Chu16] (which are the parabolic version of the results of [TWWY15]). For this,
one writes the Chern-Ricci flow equation (6.5) as a scalar parabolic complex Monge-Ampère
equation on C × H for the potential λ∗t p

∗φ(s + t), which is uniformly bounded in L∞ by the
results in [FTWZ16]. Nevertheless, in either of the two approaches it is important that the
metrics λ∗t p

∗ωref(s+ t) are uniformly locally smoothly bounded for t ≥ 0,−1 ≤ s ≤ 0, and this
is not the case in general if the initial metric ω is not assumed to be in the ∂∂-class of ωTV ,
even if it is assumed to be strongly flat along the leaves.

Remark 6.2. In the case of minimal non-Kähler properly elliptic surfaces discussed above, it
is also shown in [TWY15] that for every smooth fiber Ew, we have that etω(t)|Ew converges in
the C1 topology to the unique flat metric on Ew cohomologous to ω0|Ew . This convergence can
be improved to C∞ by adapting an argument from [TZ15] as follows. Up to passing to a finite
cover, we may assume that S is an elliptic bundle, and pick a local trivialization E × B where
B is a ball in C and E is an elliptic curve. Define stretching maps µt : E ×B → E ×B by

µt(z, w) = (z, we−t/2),

and on E ×B define
ωt(s) = etµ∗tω(se

−t + t), −1 ≤ s ≤ 0,

which are Hermitian metrics that solve

(6.9)
∂

∂s
ωt(s) = −RicCh(ωt(s))− e−tωt(s), −1 ≤ s ≤ 0,

for all t ≥ 0, and they are of the form

ωt(s) = etµ∗tωref(se
−t + t) +

√
−1∂∂(etµ∗tφ(se

−t + t)),
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where ωref(t) = e−tω0 + (1 − e−t)ω∞, and ω∞ is Kähler-Einstein, and by [TWY15, Thm. 5.1]
we have

(6.10) C−1etµ∗tωref(se
−t + t) ≤ ωt(s) ≤ Cetµ∗tωref(se

−t + t), −1 ≤ s ≤ 0, t ≥ 0.

One then checks as in [TZ15, Pf. of Thm. 1.1] that etµ∗tωref(se
−t+ t) are uniformly comparable

to a fixed metric and smoothly uniformly bounded, for −1 ≤ s ≤ 0 and t ≥ 0, and hence the local
higher order estimates of [SW13] give us uniform higher order estimates for ωt(s),−1

2 ≤ s ≤ 0,
on E × B (up to shrinking B slightly). Setting s = 0 this gives higher order estimates for
etµ∗tω(t), and restricting to any fiber E × {w} the maps µt are the identity, and we are done.
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