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ABSTRACT: The distinctiveness of nonconcatenated ring polymers, as manifested in their fractal globular conformations and self-
similar dynamics with no long-lived entanglement network, propels the idea of using ring topology to transform the phase behavior
of block copolymers. With limited experimental studies of high-molecular-weight diblock ring polymers, large-scale molecular
simulations of symmetric diblock copolymers are used to investigate the effects of nonconcatenated ring topology on their phase
behavior. The absence of an entanglement network facilitates the phase-separation kinetics, suggesting relative ease in processing
diblock ring polymers. The more compact globular conformations of ring polymers with respect to the Gaussian random-walk
conformations require a higher enthalpic repulsion to drive the lamellar phase separation. Compared with the mean-field theory for
the order−disorder transition in Gaussian diblock ring polymers, the simulations demonstrate the necessity for a new theory
incorporating both the effects of fluctuations and the topological invariance of nonconcatenation. In the strong segregation regime,
diblock ring polymers are stretched near the lamellar interface but with the globular conformational statistics preserved at larger
length scales. The lamellar spacing d increases with enthalpic repulsion between the two blocks as well as the molecular weight of the
diblock ring. The scaling argument for d of diblock linear polymers is modified by accounting for the globular conformations and
predicts well the dependencies of d on the enthalpic repulsion and molecular weight. The lamellar interface becomes sharper as the
enthalpic repulsion increases. While the theory predicts that the intrinsic interfacial width does not depend on the polymer molecular
weight or topology, the apparent interfacial width w, which is broadened by the capillary wave, exhibits slight variation with the
molecular weight and topology.

1. INTRODUCTION
The phase behavior of block copolymers underlies many
technological applications that rely on the morphology of
block copolymers, such as lithography, water purification, gas
permeation, and ion transport in batteries.1−6 Predicting the
phase behavior of block copolymers has been celebrated as a
triumph of polymer field theory.7−22 Much of the parameter
space, including the molecular weight, block composition,
enthalpic interaction strength, and polymer architecture, has
been extensively explored. One promising direction to expand
the parameter space is to replace the conventional linear chains
with nonconcatenated rings.23−27 Such an expansion is
intriguing due to the distinctive conformations,28−35 dynam-
ics,33,36−42 and material properties43−47 revealed for homopol-
ymer rings in the past two decades and also timely because of

the advances in synthesizing and characterizing high-
molecular-weight ring polymers.48,49

Molecular simulations with precise control of ring polymer
topology and unique access to microscopic details are well
positioned to guide the expansion of the block copolymer
design space using nonconcatenated ring topology. Existing
simulations on the phase behavior of diblock ring polymers50,51
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have been limited to the chain length N smaller or moderately
larger than the entanglement length Ne of a linear polymer
melt. Nevertheless, as demonstrated in the comparisons of
linear and ring homopolymers, ring polymers differ more
distinctively from linear polymers as N becomes much larger
than Ne.

28,33,35−37,42 Specifically, the topological constraints of
nonconcatenation make the ring polymers with N/Ne ≫ 1
more compact compared to the linear polymers of the same N,
and the resulting average ring polymer size scales as N1/3 rather
than N1/2 for the linear polymers.28−35 The limited overlap of
the compact ring polymers prevents the formation of a long-
lived entanglement network, and thus the ring polymer
dynamics is faster than the dynamics of entangled linear
polymers, exhibiting no rubbery plateau in the stress relaxation
function.33,36−42

In this paper, large-scale molecular simulations are
performed to investigate the phase behavior of symmetric
diblock ring polymers with N/Ne up to (10). The simulations
reveal the effects of nonconcatenated ring topology on the
order−disorder transition and the static properties of the
ordered lamellar phase. The topology effects observed for
diblock rings are consistent with how the nonconcatenation
topological invariants transform the conformations and
dynamics of homopolymer rings. Section 2 describes the
simulation model and methods for the simulations of diblock
copolymer phase behavior. Section 3 reports the results of the
molecular simulations and the accompanying theoretical
analysis. The paper concludes with Section 4, where a
summary of key findings is presented with remarks.

2. MODEL AND METHODS
The coarse-grained bead−spring model of polymer52 is used in the
simulations. All beads of size σ and mass m interact via the truncated,
shifted, and purely repulsive Lennard-Jones (LJ) potential with the
interaction strength ϵ. ULJ(r) = 4ϵ[(σ/r)12 − (σ/r)6] + ϵ, for r smaller
than the cutoff distance rc = 21/6σ ≈ 1.12σ, and corresponds to purely
repulsive interaction. Neighboring beads along the polymer chain are
connected by a finite extensible nonlinear elastic (FENE) potential.
UFENE(r) = −(kR2/2)ln[1 − (r/R)2] + 4ϵ[(σ/r)12 − (σ/r)6] + ϵ with
k = 30ϵ/σ2 for r < R = 1.5σ. For two neighboring bonds along the
polymer chain, there is a bond-bending potential Ubend(θ) = kθ(1 +
cos θ), where θ is the angle between the two bonds and the bending
stiffness kθ = 1.5ϵ, which gives Ne = 28.53,54
M polymers, each of which consisted of N beads, were placed in a

cubic simulation box with periodic boundary conditions. Five systems
of nonconcatenated ring polymers R50, R100, R200, R400, and R800
of N = 50(1.8Ne), 100(3.6Ne), 200(7.2Ne), 400(14Ne), and
800(29Ne), respectively, were simulated. As a comparison, two linear
polymer systems L50 and L400 of N = 50(1.8Ne) and 400(14Ne),
respectively, were simulated. The values of N and M, the polymer
radius of gyration Rg, and the size of the simulation box L are listed in
Table 1. The total number of beads ranged from M × N = 8 × 104 to
6.4 × 105, which was chosen to enable large-scale simulations of

sample equilibration and phase behavior under various conditions
with the computing resources available. The number density of
monomers is ρ = 0.85σ−3 in all systems. The simulation box size L is
greater than 6Rg. Following the standard protocols,

28,37 each system
was equilibrated at temperature T = 1.0ϵ/kBT using a Nose−́Hoover
thermostat with a characteristic damping time m1 1 /= . The
time step for integrating the equations of motion was 0.01τ.
To simulate symmetric diblock copolymers, monomers in two

halves of a polymer are assigned two different types, A and B. The
strength of the LJ interaction between two monomers of the same
type is identical, and ϵAA = ϵBB = ϵ. The strength of the repulsive LJ
interaction ϵAB between two monomers of different types is increased
above ϵ to introduce incompatibility, as in previous simulations of
heterogeneous polymer systems.55−58 ( )/2 /AB AA BB= [ + ]
quantifies the strength of the enthalpic repulsion and may be mapped
to the χ parameter in the classical Flory−Huggins theory.59 The
model-independent universality in the phase behavior of symmetric
block copolymer melts has been demonstrated by Glaser et al.60

At each ϵ,̃ a diblock copolymer melt was equilibrated through a
two-step process. In the first step, the temperature T = 1.0ϵ/kB was
maintained via a Nose−́Hoover thermostat with a characteristic
damping time of 1τ, and the volume of the simulation box was
constant. The ordered lamellar phase emerged at sufficiently large ϵ.̃
The phase separation in the simulations did not always result in
lamellar domains, with the interface lying in the xy-plane. In some
cases, the x, y, and z coordinates were permutated to allow the phase
separation to be in the z-direction. For diblock linear polymers, to
accelerate the phase separation with respect to pure molecular
dynamics, pairs of bonds may be swapped via the Monte Carlo (MC)
rules with the Boltzmann acceptance criterion.61 The bond-swapping
process permits the crossing of linear polymer chains and thereby
accelerates the polymer dynamics with respect to the slow entangled
dynamics, where the chains cannot cross each other. This acceleration
algorithm is known as “double bridging” and is realized by the “fix
bond/swap” command in the LAMMPS package.62 In the second step
of the equilibration process, the dimensions of the melt sample after
the first step were adjusted by applying a constant pressure along the
z-direction and an independent constant pressure within the xy-plane.
The box size Lz varied at Pz = 5.1ϵ/σ3, while the box sizes Lx and Ly
were coupled to vary simultaneously at Px = Py = 5.1ϵ/σ3. The
strength of the pressure was chosen to maintain the monomer density
at 0.85σ−3. The pressure control was performed using a Nose−́
Hoover barostat with a characteristic damping time of 10τ.
Meanwhile, the temperature was kept at T = 1.0ϵ/kB using the
same thermostat. In the second step of equilibration, the pressure
component normal to the lamellar interface is controlled independ-
ently from the other two components within the interface. Without
the first step, where the symmetry of the three axes is broken, one
would not know which direction lies normal to the lamellar interface
and thus could not apply the pressure control to adjust the box
dimensions appropriately. After the two-step equilibration, the
lamellar spacing d for strongly segregated diblock copolymers was
calculated as ⟨Lz⟩/2n, where ⟨Lz⟩ is the average box size along a
dynamics trajectory of 104τ at constant pressure and n is the number
of periods. All simulations were performed using the LAMMPS
package.62

Primitive path analysis (PPA)53 was used to analyze the topology of
simulated polymers. In the original PPA of homopolymer linear
chains, the two ends of a chain are fixed, while bond tension is
introduced to reduce the chain contour length as much as possible
without crossing nearby chains. This protocol leads to the emergence
of the chain’s primitive path, as defined in the tube model of
entangled polymer dynamics. For diblock copolymers in this work,
PPA was performed by fixing the two ends of each block in space,
corresponding to four fixed beads per copolymer.

3. RESULTS
3.1. Phase-Separation Kinetics. The phase separation

from a disorder melt of symmetric diblock copolymers to a

Table 1. Parameters for Simulation Samples

chain
length N

number of
chains M

radius of
gyration Rg(σ)

simulation box
size L(σ)

R50 50 4000 3.0 61.7
R100 100 800 4.1 45.4
R200 200 200 5.6 36.1
R400 400 200 7.3 45.4
R800 800 400 9.4 72.1
L50 50 2000 4.6 48.9
L400 400 1600 13.4 90.9
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periodic lamellar structure is observed during the first step of
the two-step equilibration when ϵ̃ is sufficiently large. Figure 1a
illustrates the evolution of the melt morphology for R400 at ϵ̃
= 3.0. There is a transition from the disordered state with well-
mixed A (red) and B (blue) monomers to the lamellar phase
with separated red and blue domains. To characterize the
m o r p h o l o g y , t h e o r d e r p a r a m e t e r

z z z z z( ) ( ) ( ) / ( ) ( )A B A B= [ ] [ + ], where z( )A and
z( )B are the volume fractions of A and B monomers,

r e s p e c t i v e l y , i s c a l c u l a t e d a s a f u n c t i o n o f
z z z z z( )/( )min max min= , where zmax and zmin are the
upper and lower bounds of the z-coordinates, respectively.
Figure 2a shows the time evolution of z( ) for R400 at ϵ̃ = 3.0,
which parallels the snapshots in Figure 1a. The snapshots for
morphology evolution and the corresponding order parameter
plots for L400 at ϵ̃ = 3.0 are shown in Figures 1b and 2b,
respectively. Comparing the phase separations in R400 and
L400, one sees that the separation kinetics are faster in the

diblock rings. The lamellar phase is well developed after 6 ×
105τ and 2.85 × 106τ for R400 and L400 at ϵ̃ = 3.0,
respectively. Note that the snapshots at intermediate stages
correspond roughly to 1/8, 1/4, and 1/2 of the entire
trajectory of phase separation.
The faster phase separation in diblock rings agrees with the

faster dynamics of homopolymer rings,33,36,37,42 both arising
from the absence of a long-lived entanglement network. The
time scale for the lamellar phase separation in the simulations
is comparable to the diffusion time τD of the corresponding
homopolymers, which is 2.38 × 105τ and 5.97 × 106τ for the
rings and linear chains of N = 400, respectively.37 Additional
use of the bond-swap MC algorithm accelerates the phase
separation in diblock linear polymers. As shown in Figures 1c
and 2c, with a bond-swap, the lamellar phase is well developed
after a much shorter time of 1.75 × 105τ for L400 at ϵ̃ = 3.0,
which is even faster than the phase separation in R400.
The contrasting topology of diblock polymers in L400 and

R400 is demonstrated by PPA. Consider PPA of the disorder

Figure 1. Morphologies of (a) R400, (b) L400 without bond-swap, (c) L400 with bond-swap, (d) R50, (e) L50 without bond-swap, and (f) L50
with bond-swap at different stages of the phase-separation simulations. ϵ ̃ = 3.0 for N = 400, while ϵ ̃ = 5.0 for N = 50. Red and blue indicate the
monomers of types A and B, respectively.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.3c02473
Macromolecules XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/acs.macromol.3c02473?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02473?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02473?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02473?fig=fig1&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.3c02473?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


state at ϵ̃ = 0 first. For a diblock linear chain, with two ends of
each block fixed, the reduction to straight segments connecting
the four fixed beads is hindered by nearby linear chains due to
the strong mutual overlap in a well-entangled system. By
contrast, the reduction to straight segments connecting the
four fixed beads, which essentially are the two fixed junctions
between A and B blocks, is less hindered by nearby rings, as
their mutual overlap is limited due to the nonconcatenation
constraints. As a result, more contour lengths are removed
after the PPA of diblock rings, leading to more unfilled space in
the post-PPA simulation box. See the comparison shown in
Figure 3a,b. The post-PPA snapshots of L400 and R400 at ϵ̃ =
3 show an even higher contrast. For a diblock linear chain in
the lamellar phase, two of the four fixed beads are located at an
interface between lamellar domains, while the other two are
away from the interface. The post-PPA snapshot in Figure 3c
shows that the primitive paths are well entangled as in Figure

3a, but the blue and red primitive paths are segregated. For a
diblock ring in the lamellar phase, all four fixed beads are
located at an interface. As a result, the primitive paths are
confined to the two interfaces, as illustrated in Figure 3d. The
contour length reduction in this case resembles pulling taut
shoelaces over the array of holes on a sneaker, visualizing the
consequence of nonconcatenation.
While there is only one lamellar period in the simulation box

for N = 400, multiple lamellar periods develop for N ≤ 100
with the selected simulation box dimensions. Figures 1d and
2d show the phase separation in R50 at ϵ̃ = 5.0. The lamellar
phase with four periods is well developed after 3 × 105τ.
Previous simulations37 have determined the diffusion time to
be τd = 7 × 103τ for the homopolymer rings of N = 100 in the
melt state. τd for the homopolymer rings of N = 50 is expected
to be smaller than 7 × 103τ. As a result, the time it takes to
complete the phase separation in R50 at ϵ̃ = 5.0 is much longer

Figure 2. Profiles of the order parameter z( ) for the same systems as in Figure 1.

Figure 3. Post-PPA snapshots of L400 and R400 in the disorder state with ϵ ̃ = 0 and the strongly segregated state with ϵ ̃ = 3.0. Red and blue
indicate the two types of monomers. In each case, the original and post-PPA conformations of one diblock polymer are highlighted.
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than τD of the corresponding homopolymer rings. This is in
contrast to the result that the two time scales are comparable
for the phase separation in R400 at ϵ̃ = 3.0. The difference
arises from the need to accommodate multiple lamellar periods
in the simulations of shorter diblock polymers. The phase
separation in L50 is also affected by the accommodation of
multiple lamellar periods. Figures 1e and 2e show that the
phase separation in L50 at ϵ̃ = 5.0 involves two lamellar
periods and is not completed by 2 × 107τ. The longest time in
the simulation is much longer than the diffusion time τd of the
homopolymer linear chains of N = 50 in the melt state, which
is expected to be smaller than τd = 4.8 × 104τ for N = 100.37

This long simulation time is demanding from the perspective
of computing resources. Therefore, the use of the bond-swap
MC algorithm is necessary to complete phase separation. As
shown by Figures 1f and 2f, with the acceleration algorithm,
the lamellar phase in L50 at ϵ̃ = 5.0 is well developed after 1.55
× 105τ, saving much computing time.
The results in Figures 1 and 2 for phase-separation kinetics

are limited to only four samples, but they reflect the faster
kinetics of nonconcatenated diblock rings with respect to
diblock linear chains, as well as the effects of multiple lamellar
periods on the kinetics. A systematic study of the phase-
separation kinetics, particularly with multiple lamellar periods,
is out of the scope of this study using molecular simulations.
Computational methods63 beyond molecular simulation would
be needed to tackle the larger length scales and longer time
scales of the phase separation with multiple lamellar periods.
The simulation data reported in the following subsections are
for the samples after the two-step equilibration process.
Specifically, pure molecular dynamics were performed for the
diblock ring polymers, while molecular dynamics coupled with
the bond-swap MC algorithm were performed for the diblock
linear chains in the first step of the equilibration.
3.2. Order−Disorder Transition Point. To determine the

order−disorder transition (ODT) point, ϵ̃ is systematically
varied in the simulations. The systems R50, L50, R400, and
L400 are studied in detail below. Following scattering
experiments and field theories of ODT, the structure factor
S(q) in the simulations is examined. The structure factor is
computed as

S q b b iq r r b( ) exp ( ) /
i j

M N

i j i j
i

M N

i
, 1 1

2= [ · ]
=

×

=

×

(1)

where bi and ri are the scattering length and the position of
m o n om e r i , r e s p e c t i v e l y . T h e w a v e v e c t o r
q L n n n(2 / )( , , )x y z= , where nx, ny, and nz are integers. bi
= 1 for all monomers of type A, while bi = −1 for type B. For
one simulation sample at a given ϵ ̃, S(q) is averaged over

(10 )3 frames along a trajectory at constant temperature and
constant volume, and the time interval between two frames is
1000τ.
S0(q) is the structure factor in the disorder phase with ϵ̃ = 0.

S0(q) for the simulation samples R50, L50, R400, and L400 are
shown in Figure 4 and compared with the predictions of the
mean-field theory based on the random phase approximation
(RPA). For diblock linear polymers, Leibler’s RPA theory8

predicted

S q N F qR N( )/ 1/ ( ) 2L L g= [ ] (2)

where

F x x

x x x

( ) ( /8)

/4 exp( /2) exp( )/4 3/4
L

4

2 2 2 1

=
[ + ]

(3)

The RPA prediction for NS0−1(q) at χ = 0 is shown by the
solid line in Figure 4a. The peak value of S0(q)/N is S0(q*)/N
= 0.19 at q*Rg = 1.95. Compared with the RPA prediction, the
peak position of S0(q)/N is also around q*Rg = 1.95 for both
L50 and L400. However, the numerical result of S0(q)/N
deviates from the RPA prediction. The deviation may be
accounted for by the non-mean-field renormalization-one-loop
(ROL) theory,18 but a detailed evaluation of the ROL theory is
outside the scope of this work.
For diblock ring polymers, Marko’s RPA theory13 predicted

S q N F qR N( )/ 1/ ( ) 2R R g= [ ] (4)

where

F x x x x x x( ) 4 1 exp( /4) / / exp( /4)erfi( /2)R
2 2 2 2 1= { [ ] }

(5)

As shown by the dashed line in Figure 4b, the RPA theory
predicts that the peak value of S0(q)/N is S0(q*)/N = 0.11 at
q*Rg = 2.88. By contrast, S0(q)/N in the simulations peaked at
q*Rg ≈ 2 < 2.88. Moreover, the exact shape of S0(q)/N
deviates from the RPA prediction. The topological constraints
of nonconcatenation are absent in Marko’s RPA theory, which

Figure 4. S0(q)/N as a function of qRg for (a) L50 and L400 and (b) R50 and R400. The solid and dashed lines are the predictions of Leibler’s and
Marko’s RPA theories for diblock linear and ring polymers, respectively.
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models ring polymers simply as “phantom” Gaussian random-
walk rings that can cross one another. The nonconcatenation
topological constraints force the rings to adopt globular
conformations, which are more compact than the Gaussian
random-walk rings. Such a globular conformation has been
theoretically described as a self-similar fractal loopy globule33

and confirmed by recent scattering experiments.35,42 New
analytical theories need to be developed to capture the S0(q)/
N of nonconcatenated diblock rings.

The peak value of S(q)/N at q* rises with increasing ϵ̃ and
diverges at ODT. The decrease of NS

−1(q*) toward 0 is used to
estimate ϵ̃. As shown in Figure 5, NS−1(q*) first decreases
linearly with increasing ϵ̃, and then the decrease slows as the
ODT is approached. For diblock linear polymers, the linear
decrease of NS−1(q*) is predicted by the RPA theory. The
slowdown in the decrease toward ODT may be described by
including the effects of non-mean-field fluctuations, as in the
Fredrickson−Helfand theory and the ROL theory.18 For
diblock ring polymers, there is also a linear decrease followed

Figure 5. NS−1(q*) as a function of ϵ̃ for (a) R50 and L50 and (b) R400 and L400.

Figure 6. (a) Snapshots of diblock ring polymers of N = 50 at different ϵ ̃ with red and blue indicating two types of monomers. The profiles of the
order parameter z( ) at indicated interaction strength ϵ ̃ for (b) diblock ring polymers and (c) diblock linear polymers of N = 50. The insets are
enlarged views of the profiles at ϵ ̃ = 0 and near the ODT. For clarity, there is a consecutive vertical shift by 0.05 in the insets.

Figure 7. (a) Snapshots of diblock ring polymers of N = 400 at different ϵ̃ with red and blue indicating two types of monomers. The profiles of the
order parameter z( ) for the diblock (b) ring and (c) linear polymers of N = 400 at indicated interaction strength ϵ.̃ The insets are enlarged views
of the profiles in the disordered phase and near the ODT. For clarity, there is a consecutive vertical shift by 0.08 and 0.24 in the insets of (b,c),
respectively.
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by a slowdown in the decrease as ODT is approached. New
theories need to be developed to describe the decrease of
NS−1(q*) with increasing ϵ̃ in diblock ring polymers. From the
vanishing of NS−1(q*) in Figure 5, ODT is estimated to be 1.3,
0.475, 0.13, and 0.045 for R50, L50, R400, and L400,
respectively. As the onset of the ODT is approached by
increasing ϵ ̃ from 0 in the simulations, there is a metastability
of the disorder phase that retards the emergence of the lamellar
order. Therefore, the estimate of ODT above is the upper
bound of the actual ODT.
The lower bound of ODT in the simulations is obtained by

reducing ϵ̃ from a sufficiently large value, where a well-
separated lamellar phase exists, and then monitoring the decay
of the order parameter profile z( ). This approach gives the
lower bound because the metastability of the lamellar phase
slows down the decay of z( ) as ODT is approached.
Snapshots of R50 and R400 at selected ϵ̃ are shown in Figures
6a and 7a. As ϵ ̃ decreases, there is a transition from the lamellar
phase to the disorder phase. Figure 6b,c shows z( ) for R50
and L50. Each line of z( ) is the average of 100 instantaneous
frames separated with an interval of 1000τ in the equilibrated
state. z( ) exhibits a periodic structure that indicates the
lamellar order at sufficiently large ϵ̃. z( ) is almost flat at ϵ̃ = 0,
indicating no order. z( ) near ODT is shown in the insets of
Figure 6b,c. The breakdown of the periodic features of z( ) is
observed by 0.8ODT = and 0.425 for R50 and L50,
respectively. Similarly, Figure 7b,c shows z( ) for R400 and
L400 with enlarged views of z( ) near ODT in the insets. The
lower bound of ODT is estimated as 0.09 and 0.03 for R400
and L400, respectively.
Combining the estimated upper and lower bounds, ODT is

located in (0.8, 1.3), (0.425, 0.475), (0.09, 0.13), and (0.03,
0.045) for R50, L50, R400, and L400, respectively. The result

ODT
ring

ODT
linear> indicates that a stronger enthalpic repulsion

between A and B monomers is needed to induce the order−
disorder transition in diblock ring polymers. The ratio

/ 2.3 0.6sim
ODT
ring

ODT
linear= = ± for N = 50, while it is 2.9 ±

0.8 for N = 400. Leibler’s RPA theory predicts (χN)ODTlinear = 10.5,
and Marko’s RPA theory predicts (χN)ODTring = 17.8. As such, the
RPA theory predicts the ratio γRPA = (χN)ODTring /(χN)ODTlinear =
17.8/10.5 = 1.7. The simulation results deviate from the RPA
theory prediction. Origins of the deviation include the non-

mean-field fluctuations near the ODT and the nonconcatena-
tion topological constraints, both absent in the RPA theory.
γsim for N = 400 is higher than that for N = 50 because the
more compact globular conformations of large rings (Rg ∼
N1/3) with respect to the Gaussian random-walk rings (Rg ∼
N1/2) lead to more translational entropy loss per chain during
phase separation. As a result, a higher χN is required to
compensate for the translational entropy loss. Note that the
conformational entropy of a block does not affect the ODT, as
the conformation of the block is not perturbed much at the
transition point.
Systematic uncertainty is associated with the two methods of

estimating ϵ̃. However, the ODTs for the diblock ring and
linear polymers are studied using the same two methods,
allowing a consistent comparison of their ODTs. The precise
location of ODT may be determined using methods with
reduced systematic uncertainties, such as well-tempered
metadynamics simulations.64

The results of γsim are limited to N = 50 and N = 400,
preventing us from systematically studying the N-dependence.
However, they represent the short rings in Gaussian random-
walk conformations and the long rings in more compact
globular conformations. A comparison of the two is sufficient
to demonstrate the effects of nonconcatenation on the phase-
separation behavior of high-molecular-weight ring polymers.
Simulations with more values of N are needed to clarify the N-
dependence of γsim and stimulate the development of new
theories as well.
3.3. Structure of Strongly Segregated Diblock

Polymers. 3.3.1. Lamellar Spacing. As ϵ̃ further increases
above ODT, there is a strong segregation of the two blocks into
their respective lamellar domains. The order parameter z( ) in
the strong segregation regime reaches +1 or −1, indicating
regions with pure A or B monomers. Strong segregation results
in the extension of a polymer chain with respect to the
unperturbed conformation at ϵ̃ = 0. As a result, there is an
increase of the lamellar spacing d with increasing ϵ̃, as
visualized in Figure 6a for R50 and Figure 7a for R400.
The lamellar spacing d in the strong segregation regime

increases with ϵ ̃ for both the diblock ring and linear polymers,
as shown in Figure 8. The values of d for each point in Figure 8
are listed in Tables S1−S6, Supporting Information. The
increase with ϵ̃ follows a power law d with the exponent
α = 0.16 ± 0.01, 0.17 ± 0.01, and 0.16 ± 0.01 for L400, R800,
and R400, respectively. Theoretically, d is determined by

Figure 8. Lamellar spacing d as functions of (a) ϵ̃ and (b) N for the diblock polymer samples in the strong segregation regime. Solid lines in (a,b)
indicate the best fit to the power-law functions d and d , respectively. Dashed lines indicate the corresponding predictions of scaling
theory. (c) Snapshots of R400, R800, and L400 at ϵ ̃ = 3.0, where an enlarged view of one selected diblock copolymer is shown in each case. The
dashed line indicates the midplane of the lamellar interface.
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balancing the enthalpic repulsion at the lamellar interface
Fenthalpic and the entropic deformation energy of an extended
diblock polymer Fentropic.

9,16 The interfacial tension is Γ ≈
χ1/2kBT/σ2, and the surface area per chain at the interface is A
≈ Nσ3/d. As a result, the enthalpic repulsion is Fenthalpic ≈ ΓA ≈
χ1/2kBTNσ/d. The extension of a polymer from the
unperturbed average size ⟨R0⟩ to a larger average size ⟨R⟩
results in F k T R R/entropic B 0

2[ ] . From Fenthalpic ≈ Fentropic,

one obtains ⟨R⟩ ∼ χ1/6. Since χ ∼ ϵ̃ and d ∼ ⟨R⟩, d 1/6.
This scaling relation is indicated by the dashed line in Figure
8a. For L400, R800, and R400 in the simulations, the values of
α all agree well with the theoretical prediction of 1/6 ≈ 0.17.
The scaling argument originally developed for diblock linear
polymers is applicable to diblock ring polymers because the
entropic deformation energy of a diblock ring is also of the
quadratic form k T R R/B 0

2[ ] , as the ring polymer size
distribution is Gaussian despite the fact that the average size
⟨R0⟩ depends on N differently from the linear polymer
counterpart.46 The theoretical value of α is not affected by the
change in chain conformations from Gaussian random-walk
coils to more compact globules. Numerically, one may use the
component of the radius of gyration in the z-direction Rg,z to
quantify ⟨R⟩. As shown in Tables S1−S6, d ≈ 3Rg,z in all cases,
agreeing with the scaling argument d ∼ ⟨R⟩.
At the same ϵ̃, d for R400 is smaller than d for L400,

consistent with the ring polymers being more compact than
the linear polymers,28,33,35 i.e., R R0

ring
0

linear< . Further-
more, d for R800 is also smaller than d for L400. The average
size of diblock rings of N = 800 is reduced compared with the

average size of diblock linear chains of N = 400, indicating that
R800 is not simply a ring that is double-folded around L400.
The additional reduction with respect to the double-folded
conformation is due to the topological constraints of
nonconcatenation. Figure 8c visualizes R400, R800, and
L400 with strong segregation at ϵ̃ = 3.0, where the relative
sizes of the diblock polymers are explicitly shown. For R100,
where the effects of nonconcatenation have not emerged
much, d is only slightly smaller than that for L50 at the same ϵ ̃
(see Figure 8a). For these shorter polymers, the increase in d
with ϵ̃ follows a weaker power law. α = 0.11 ± 0.01, 0.12 ±
0.01, and 0.14 ± 0.01 for L50, R100, and R200, respectively.
The values of α are smaller than the theoretical value of 1/6 ≈
0.17, reflecting the effects of finite chain size.
The N-dependence of d for the diblock ring polymers in the

strong segregation regime is shown in Figure 8b. The increase
follows another power law d ∼ Nν with the exponent ν = 0.63
± 0.01, 0.61 ± 0.01, 0.60 ± 0.01, 0.61 ± 0.01, and 0.60 ± 0.01
for ϵ ̃ = 1.0, 1.5, 2.0, 2.5, and 3.0, respectively. The theory based
on the balance of the enthalpic repulsion Fenthalpic at the
lamellar interface and the entropic deformation energy Fentropic
can also predict the N-dependence of d for diblock rings. The
scaling argument originally developed for diblock linear
polymers is modified to account for the more compact
globular conformations of diblock ring polymers. According to
the fractal loopy globule model, the unperturbed average size
of a diblock ring is R a N N( / )0 a

1/3, where a ≈ σNa1/2 is the
average spacing between the topological constraints imposing
on the diblock rings and equals the average size of a Gaussian

Figure 9. (a) Snapshots illustrating the conformational changes of a diblock ring polymer with increasing ϵ ̃ in the simulation sample R400. The
dashed line indicates the plane of the diblock junction points. (b) Average z-component of the distance of a monomer from the junction of a
diblock polymer R n( )z

2 1/2 as a function of the number of bonds n from the junction for N = 400 at indicated ϵ.̃ (c) Average x-component
R n( )x

2 1/2 and (d) y-component R n( )y
2 1/2 of the distance of a monomer from the junction.
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linear chain consisting of Na beads of size σ. From Fenthalpic ≈
Fentropic, R R N N0

2 1/3 5/9[ ] . The values of ν in Figure
8b are close to the theoretically predicted value of 5/9 ≈ 0.56,
which is indicated by the dashed line.
3.3.2. Chain Conformations.Molecular simulations provide

microscopic information that enables a detailed analysis of the
diblock copolymer conformations. The evolution of the
diblock ring conformation with increasing ϵ ̃ is visualized in
Figure 9a. The conformations of chain segments with one end
at the junction point of a diblock polymer are characterized by
their average end-to-end sizes in the x-, y-, and z-directions.
Figure 9b shows the increase of the average end-to-end size in
the z-direction R n( )z

2 1/2 as a function of the number of
bonds n in the segment. For diblock linear polymers at ϵ ̃ = 0,
there is a crossover from R n n( )z

2 1/2 to R n n( )z
2 1/2 1/2

as the random-walk conformation develops with increasing n.
By contrast, for diblock ring polymers at ϵ ̃ = 0,
R n n( )z

2 1/2 1/3 is developed at large n, indicating a more
compact globular conformation. For both linear and ring
polymers, as ϵ̃ increases, the initial regime R n n( )z

2 1/2 ,
which corresponds to monomers in a rod-like conformation,
extends to larger n. This change indicates the stretching of
longer chain segments at the lamellar interface with an
increasing enthalpic repulsion. The scaling R n n( )z

2 1/2 1/2

and R n n( )z
2 1/2 1/3 are eventually recovered for the

stretched diblock linear and ring polymers, respectively. Figure
9b shows that the stretching accompanying the strong
segregation of diblock polymers is not uniform along the
polymer contour but instead located nearby the interface
(small n) where A and B monomers can mix and interact. The
values of block size normal to the interface Rz, which is defined
as R n N( /2)z

2 1/2= and R n N( /4)z
2 1/2= for the diblock

linear and ring polymers, respectively, are shown in Tables S1−
S6. In all cases, the lamellar spacing d is comparable with 2Rz,
corresponding to the stacking of two neighboring layers of
diblock copolymers in the lamellar domain.
The sizes of the segments in the x- and y-directions

R n( )x
2 1/2 and R n( )y

2 1/2, respectively, are almost the same.
Furthermore, Figure 9c,d shows there are almost no variations
of R n( )x

2 1/2 and R n( )y
2 1/2 with increasing ϵ ̃. The crossover

from R n n( )x
2 1/2 to R n n( )x

2 1/2 1/2 for diblock linear
chains and to R n n( )x

2 1/2 1/3 for diblock rings are
preserved, as are the counterparts for R n( )y

2 1/2. The
independence of the in-plain polymer size on ϵ̃ indicates that
the strong segregation does not affect the chain conformations
parallel to the lamellar interface. See Tables S1−S6 for the in-
plane components of the radius of gyration Rg,x(y) as well as the
in-plane block sizes Rx(y) , which are defined as
R n N( /2)x y( )

2 1/2= and R n N( /4)x y( )
2 1/2= for the diblock

linear and ring polymers, respectively. Neither Rg,x(y) nor Rx(y)
varies much with increasing ϵ̃ in all systems.

3.3.3. Interfacial Width. As diblock polymers are stretched
away from the interface with increasing ϵ ̃, the interfacial region
where A and B monomers mix becomes narrower. This is seen
in the change in the interfacial region that corresponds to the
crossover from −1 to +1 in the order parameter profile. The
narrowing of the interface with increasing enthalpic repulsion
for R800 is shown in Figure 10a. The width of the interfacial
region w is extracted from the order parameter profile by fitting
it to ψ(z) = tanh[2(z − z0)/w], where z0 is the middle plane
with ϕA = ϕB = 0.5. Best-fitting results are used for plotting the
solid lines in Figure 10a. The best-fit values of w for different
samples are plotted against ϵ̃ in Figure 10b.
Theoretically, it has been shown that w ∼ χ−1/2.16 The

derivation was based on equating the enthalpic penalty gχkBT
of a g-monomer segment that enters the opposite side of the
interface and the thermal energy kBT, which results in g ∼ χ−1.
The g-monomer segment was described as a Gaussian random-
walk coil with an average size of r ∼ g1/2. The argument w ≈ r
then gave w ∼ χ−1/2. A deviation of the g-monomer segment
conformation from the Gaussian random-walk coil results in a
breakdown of the scaling argument. If the segments are
sufficiently short, they are in rod-like conformations. The
average size of the g-monomer segment is rg ∼ g ∼ χ−1, and w
≈ rg ∼ χ−1. For diblock ring polymers, if the segments are
sufficiently long, they are in fractal globular conformations.
The average size is rg ∼ g1/3 ∼ χ−1/3, and w ≈ rg ∼ χ−1/3. Based
on the two new scaling regimes, a modified theoretical
prediction is as follows:

(1) For diblock linear chains, there is a crossover from w ∼
χ−1/2 to w ∼ χ−1 as χ is large enough to make w smaller
than the persistence length lp of the polymer.

Figure 10. (a) Evolution of ψ(z) with increasing interaction strength ϵ ̃ for R800 (symbols) and the best fit to the hyperbolic tangent function
(lines). The best-fit value of z0 is used to shift the profiles horizontally. (b) Interfacial width w as a function of ϵ ̃ for the indicated diblock
copolymers. The dashed lines indicate the theoretical power-law dependence of the intrinsic interfacial width on the interaction strength in different
scaling regimes. (c) w − wave for the systems in (b). wave for each ϵ ̃ is the average of all w at the same ϵ.̃
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(2) For diblock rings, there is a second crossover from w ∼
χ−1/3 to w ∼ χ−1/2 as w drops below the average spacing
a between the topological constraints, in addition to the
crossover from w ∼ χ−1/2 to w ∼ χ−1 as w drops below lp.

The new theoretical predictions are indicated by the dashed
lines in Figure 10b and compared to the simulation data. All
simulation values of w in Figure 10b are comparable to or
smaller than a ≈ 5σ. Therefore, regime w ∼ χ−1/3 and its
crossover to regime w ∼ χ−1/2 are irrelevant to the
interpretation of the simulation data. The range w < lp ≈ 3σ
is covered by the simulations. As a result, regime w ∼ χ−1 and
the crossover to it from regime w ∼ χ−1/2 are relevant. Figure
10b shows a significantly less rapid decrease of w with
increasing χ when compared with the predicted regimes w ∼
χ−1/2 and w ∼ χ−1. Such a deviation from the theory is
attributed to the capillary-wave-induced broadening of the
interface.65−67

One example of the broadening of a lamellar interface due to
the capillary wave is given in Figure S1, Supporting
Information. The example is for the sample R400 at ϵ̃ = 0.5.
The simulation box is divided into 10 columnar subregions,
each corresponding to (Lx/10) × Ly in the xy-plane. Each of
the 10 order parameter profiles z( ) for the 10 subregions is
well fitted to the hyperbolic tangent function. However, the
middle-plane position z0 varies from one subregion to another,
indicating the existence of a capillary wave. The average of the
individual w in each subregion is 3.9σ. It is smaller than w =
4.9σ of the average order-parameter profile for all subregions
by 1σ.
The example above is for one particular ϵ̃ at one particular

resolution of length scale along one particular direction.
Completing a similar analysis for all values of ϵ̃ and all
wavelengths along all directions would require much more
work. Note that the wavelength is cut at the finite simulation
box size, and examining longer capillary wavelengths would
require a sample with a larger interfacial area.
As a characterization of the local interfacial structure, the

interfacial width is expected to be independent of the chain
length or topology. This independence is indeed the prediction
in theory for the intrinsic interfacial width. However, the values
of w for different samples in the simulations are not identical at
the same ϵ̃, as shown in Figure 10b. This is attributed to the
effects of the capillary wave. The molecular weight dependence
of the capillary wave effects has been theoretically and
computationally studied,66,68 but the role of nonconcatenation
ring topology in a capillary wave needs future work to clarify.
Despite the variation of w with chain length and topology, the
magnitude of the variation is small. Figure 10c shows the
variation of w with respect to wave, which is the average for
different samples at the same ϵ̃, is smaller than the coarse-
grained bead size σ.

4. CONCLUDING REMARKS
Large-scale molecular simulations of diblock copolymers with
N/Ne up to (10) have been performed to examine the effects
of nonconcatenated ring topology on the phase behavior of
high-molecular-weight diblock copolymers. The nonconcaten-
ated ring topology affects both the order−disorder transition
and the structure of the ordered lamellar phase of symmetric
diblock copolymers. The key findings of the simulations are
listed below with some remarks.

(1) The relatively faster dynamics of nonconcatenated ring
polymers, which is due to the lack of a long-lived
entanglement network, facilitates the kinetics of phase
separation in the simulations. While a bond-swap MC
algorithm may be used to bypass the entanglement
network and accelerate the kinetics of phase separation
of diblock linear polymers in molecular simulations, no
such artificial moves may be achieved in real experi-
ments. As such, the faster phase separation in diblock
rings provides a topology-based pathway to facilitate the
processing of diblock polymers.

(2) The nonconcatenation topology forces the diblock ring
polymers to be in globular conformations that are more
compact than Gaussian random-walk coils. As a result,
the translational entropy lost in the transition from the
disorder phase to the lamellar phase is more than that
for Gaussian diblock ring polymers, shifting the
transition to a higher strength of enthalpic repulsion.
T h e s i m u l a t i o n s s h o w t h a t

/ 2.9 0.8sim
ODT
ring

ODT
linear= = ± for N = 400(14Ne) is

higher than γsim = 2.3 ± 0.6 for N = 50(1.8Ne).
However, both γsim are larger than the predicted γRPA =
1.7 of the mean-field RPA theory. Future development
of a phase-separation theory for diblock ring polymers
needs to incorporate the topological invariants of
nonconcatenation as well as the effects of fluctuations
in order to match the sophistication of the field theories
for linear16,22 and Gaussian ring polymers.69,70 The more
significant deviation of the structure factor S0(q) in the
disorder phase from the predictions of Marko’s RPA
theory (Figure 4b), when compared with the counter-
part for diblock linear polymers (Figure 4a), also call for
a new theory for diblock rings.

(3) In the strong segregation regime, the increases of the
lamellar spacing d with the strength of enthalpic
repulsion and the molecular weight of polymer follow
the respective power laws d and d ∼ Nν. The
theoretical argument Fenthalpic ≈ Fentropic predicts α = 1/6,
regardless of the copolymer topology. α in the
simulations of L400, R800, and R400 agree well with
the theoretical prediction, while α for L50, R100, and
R200 are noticeably smaller. Incorporating the scaling
relation for the fractal globular conformation of ring
polymers into the theoretical argument further predicts ν
= 5/9, which describes the simulation data. At the same
ϵ ̃, dR800 < dL400, reflecting the more compact
conformation of nonconcatenated diblock rings with
respect to the conformation double folded around a
Gaussian linear chain. The reduced lamellar spacing in
the lamellar phase of diblock ring polymers has been
observed experimentally.26 Future experiments may aim
for a more quantitative examination of how lamellar
spacing depends on control parameters.

(4) Strongly segregated diblock copolymers are not
uniformly stretched but localized near the interface, as
revealed by the plot of R n( )z

2 1/2. The extension normal
to the interface has no effects on the polymer
conformations within the interface plane, as quantified
by R n( )x

2 1/2 and R n( )y
2 1/2. This microscopic detail

could help to develop a theory beyond the scaling
argument to model the structure of the lamellar
interface.
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(5) For strong segregation, the order parameter profile
across the lamellar interface is fitted well by the
hyperbolic tangent function. The width of the lamellar
interface w is reduced with increasing ϵ̃ as the enthalpic
repulsion penalizes the mixing of two blocks. The
reduction in w is less rapid than predicted by the theory
because the capillary wave broadens w with respect to
the intrinsic interfacial width. At the same ϵ̃, w exhibits
slight variation with chain length and topology (smaller
than 1σ in the simulations). The subtle effects of the
capillary wave on w is a good topic for future research.

It is anticipated that the ingenious synthesis and precise
characterization of high-molecular-weight homopolymer
rings48,49 may be extended to create diblock ring polymers
and thus propel experimental research on the phase behavior
of diblock rings. The study of diblock ring polymer phase
behavior could be also stretched to help reflect on the rich
features of chromatin organization in the cell nucleus, where
abundant loops are present.71
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