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ABSTRACT. We construct examples of canonical closed positive currents
on projective K3 surfaces that are not fully supported on the complex
points. The currents are the unique positive representatives in their
cohomology classes and have vanishing self-intersection. The only pre-
viously known such examples were due to McMullen on non-projective
K3 surfaces and were constructed using positive entropy automorphisms
with a Siegel disk. Our construction is based on a Zassenhaus-type
estimate for commutators of automorphisms.
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1. Introduction

Let X be a complex projective K3 surface and let T: X — X be an auto-
morphism with positive topological entropy h > 0. Thanks to a foundational
results of Cantat [Can01], there are closed positive currents 4 which satisfy

THne = ey,

and are normalized so that their cohomology classes satisfy [n4] - [n-] = 1.
The classes [n+] belong to the boundary of the ample cone of X and have
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vanishing self-intersection. These eigencurrents have Holder continuous local
potentials [DS05], and their wedge product p = n4 A n— is well-defined by
Bedford—Taylor theory, and is the unique T-invariant probability measure
with maximal entropy.

When (X, T) is not a Kummer example, it was shown by Cantat-Dupont
[CD20] (with a new proof by the authors [FT21] that also covers the non-
projective case) that p is singular with respect to the Lebesgue measure
dVol; therefore there exists a Borel set of zero Lebesgue measure carrying
the entire mass of . The authors conjectured (see [Tos21, Conjecture 7.3])
that the topological support supp p should nonetheless be equal to all of
X, see also Cantat’s [Canl8, Question 3.4]. If this were true, it would also
imply the same for each of the currents: suppn+ = X.

In [FT23] the authors showed that, under mild assumptions on X, the
eigencurrents 7+ fit into a continuous family of closed positive currents with
continuous local potentials whose cohomology classes sweep out the boundary
of the ample cone, perhaps after blowing up the boundary at the rational
rays. We called the corresponding closed positive currents the canonical
currents. It is then natural to wonder whether all such canonical currents
are fully supported on X.

In this note we show that this is in fact not the case. Namely, we show in
Theorem 2.3.5 below:

Theorem 1 (Gaps in the support). There exists a projective K3 surface X
of type (2,2,2), and an uncountable dense Fy set of rays F C 0 Amp(X)
in the boundary of its ample cone, such that for every f € F the topological
support of the unique canonical current 1y is not all of X.

Note that because the rank of the Picard group of a very general K3 surface
of type (2,2,2) is 3, there is no need to blow up the rational directions on the
boundary. Moreover, the canonical currents in the rational directions (i.e.
those where the ray spanned by f intersects H?(X, Q) nontrivially) have full
support, see Remark 2.3.6.

The above result can be strengthened to show that there exist K3 surfaces
defined over R, such that the supports of certain canonical currents are
disjoint from the (nonempty) real locus (see Theorem 2.4.2):

Theorem 2 (Full gaps in the real locus). There exists a projective K3 surface
X of type (2,2,2) defied over R with X (R) # (), and an uncountable dense
F, set of rays F C 0 Amp(X) in the boundary of its ample cone, such that
for every f € F the topological support of the unique canonical current ny
is disjoint from X (R).

In the examples we construct, X (R) is homeomorphic to a 2-sphere.

McMullen [McMO02, Thm. 1.1] constructed nonprojective K3 surfaces with
automorphisms whose eigencurrents 7+ are not fully supported. In fact, his
examples have a Siegel disc: an invariant neighborhood of a fixed point on
which the dynamics is holomorphically conjugate to a rotation, and where
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N+ thus vanish. Let us also note that Moncet [Mon13, Thm. A] constructed
a birational automorphism of a rational surface X defined over R, with
positive dynamical degree and Fatou set containing X (R).

Despite our Theorem 1 above, we do maintain hope that on projective
K3 surfaces, the measure of maximal entropy (and therefore also 74) is fully
supported.
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2. Gaps in the support of canonical currents

Outline. We recall some constructions and estimates, originally based on
an idea of Ghys [Ghy93], itself inspired by the Zassenhaus lemma on commu-
tators of small elements in Lie groups. In brief, the idea is that if two germs
of holomorphic maps near the origin are close to the identity, then their
commutator is even closer, and the estimates are strong enough to allow for
an iteration argument.

The precise estimates that we need for Theorem 1 are contained in Pro-
position 2.1.7, and we follow Rebelo-Roeder [RR21] to establish the needed
bounds. We then recall some basic facts concerning the geometry of K3
surfaces in §2.2, and establish the existence of gaps in the support of some
of their canonical currents in §2.3.

2.1. Commutator estimates

In this section we introduce notation and collect some results, stated and
proved by Rebelo-Roeder [RR21] but which have also been known and used
in earlier contexts, e.g. by Ghys [Ghy93]. The results are concerned with
commutators of germs of holomorphic maps in a neighborhood of 0 € C¢.

2.1.1. Derived series and commutators. Fix a set S, whose elements we
regard as formal symbols which can be juxtaposed to form words. Assume
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that S is equipped with a fixed-point-free involution s — s~!, ie. any

element has a unique corresponding “inverse” in the set. Define the “derived
series” of sets by

SO0 .— g gt . [5(n>, 5(n>}

where [A, B] denotes the set of commutators [a,b] := aba='b~! with a €
A,b € B, and we omit the trivial commutators [a,a~!]. Denote the disjoint
union by S*® :=[[,>0 S (") We will use the same notation in the case of a
pseudogroup. We also collect the next elementary result:

2.1.2. Proposition (Fast ramification). Let Fy, denote the free group on k
generators ay, ... ,ap. Set SO :={ay,... ap,a7’,... ,a,;l}.
Then the (g) elements [a;, a;] € S with i < j, generate a free subgroup
of rank (l;) inside F,.

Proof. Observe that [a;,a;]~! = [a;, a;]. Therefore, it suffices to check that
any word of the form

[aiu a’jl] T [ainajl] e [aiN7 a’jN]
is never trivial, subject to the condition that for any ! the consecutive pairs
don’t obviously cancel out. Equivalently, we assume that for any [ either
aq # 54, OT Gy # Aiyyr-
But this can be immediately verified by writing out the expression in
the generators a., and observing that the only cancellations can occur if

aj, = a;,,. However, the next cancellation is excluded by assumption so
the reduced word has at least 4N — 2(N — 1) = 2N + 2 letters and is
nonempty. [l

Later on, we will apply iteratively this proposition, starting with k > 4,
an inequality which is preserved by k (g)

2.1.3. Pseudogroup of transformations. Let By(e) C C? denote the
ball of radius € > 0 centered at the origin in C%. Let 71,..., v be injective
holomorphic maps v;: By(¢) — C¢, which are thus biholomorphisms onto
their ranges R, := v;(Bo(¢)).

Let S denote the set with 2k symbols v1, ..., V&, 7{17 e ,7,;1. With S° as
in §2.1.1, assign to any element v € S®, whenever possible, the holomorphic
map also denoted by v: D, — R, with open sets D,,, R, C C¢ by expressing
v in reduced form in the letters from S, and shrinking the domains/ranges
according to the word. For certain elements -, these might well be empty
sets.

Denote by 1 the identity transformation and by || f]| co(k) the supremum
norm of a function or map f on a set K.

2.1.4. Theorem (Common domain of definition). For any given 0 < e <1,

if
‘%ﬂ—l‘ , fori=1,...,k

€
< —
C%(Bo(e)) — 32
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then for every n > 0 and every v € S, its domain D, contains By(e/2)
and furthermore it satisfies
€
17 = Loy (e/2)) < o 39"

This result is proved as in [RR21, Prop. 7.1] or [RR17, Prop. 3.1], which state
it for £ = 2. Indeed, the estimates in the proof only involve the estimates
on the “seed” transformations ~;, and not their cardinality. We include the
proof for the reader’s convenience.

Proof. We will show by induction on n > 0 that for every v € S its domain
D., contains By(e,) where

Ep =€ —

=] m

n—1
S 2>
=0 2

and that
€

||’7 - 1||C’0(Bo(£n)) < on .39

The base case n = 0 is obvious, and for the induction step the key result
that we need is the following improvement [LR03, Lemma 3.0] of a result of
Ghys [Ghy93, Prop. 2.1]: given constants 0 < r, 0,7 < 1 with 46 + 7 < r, if
f,9: Bo(r) — C? are two injective holomorphic maps which satisfy

(2.1.5) 1f = Llcomory <6 g = Loy <9,

then their commutator [f,g] is defined on By(r — 49 — 7) and satisfies

2
(2.1.6)  [[fs 9] = LlcoBy(r—as—ry) < ;||f — 1oyl — Lllco(Bo(r))-

We use this to prove the case n + 1 of the induction by taking
€ €
b T = )
21 . 32 2m . 8
and applying it to two arbitrary f, g € S(™. These satisfy (2.1.5) by induc-
tion hypothesis, and so [f, g] is defined on the ball centered at the origin of
radius

ri=¢g,, 0:=

9 9

TR TR T A
and by (2.1.6) it satisfies
2, 0 €
1L, 9] = HieoBo(ensny) < 20" = 5 = gug 390
as desired. (]

The next result, appearing in [RR21, Lemma 7.2], will be useful in ex-
hibiting explicit examples satisfying the assumptions of Theorem 2.1.4. We
will denote by 1 both the identity map and the identity matrix acting on
C?, and by ||~ ||y the matrix norm on n x n matrices.
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2.1.7. Proposition (Fixed points with small derivative). For any 0 < gg <
1 and holomorphic map ~ : Bo(eg) — C¢ satisfying

1
7(0) =0 and [|Dv(0) = Llyat < g5

there exists €1, depending on -y, with the following property. For any
e € (0,e1), the map restricted to By(e) satisfies

£
(2.1.8) 17 = oy o)) < 32"

Proof. For 0 < & < 1 (where €7 is to be determined), let A.(z1,...,2,) =
(¢21,...,€2,) be the scaling map, and let 7. := A-' o~y o A.. This is a
holomorphic map on By(1) that satisfies

1
7(0) = 0 and [[D7:(0) = Llyae < g5

An application of the Taylor formula gives

1
17e = lcosyay) < 1D7(0) = Llypag + Cre < a1 T

for some constant Cy that depends on the size of the Hessian of . Thus, it
suffices to choose €1 = ﬁ, and we have

1
1ve = Llleozo ) < 357
which is equivalent to (2.1.8). O

2.2. (2,2,2)-surfaces and canonical currents

For basic background on K3 surfaces, see [BBD85, Huyl6] and, for an in-
troduction to complex automorphisms of K3 surfaces see [Fil23]. Our main
examples, the (2,2, 2)-surfaces, were first noted by Wehler [Weh88].

2.2.1. Setup. We work over the complex numbers. Consider the 3-fold
(P1)3, with its family of smooth anticanonical divisors given by degree (2,2, 2)-
surfaces, i.e. let U C C?” denote the parameter space of coefficients of an
equation
Z cijpr'y’2¥ =0 in (A')?
0<i,5,k<2

that yield smooth surfaces when compactified in (P')3. We will call these
(2,2, 2)-surfaces. We consider for simplicity the full set of equations, without
identifying surfaces equivalent under the action of (PGLs)3.

2.2.2. Definition (Strict (2,2,2) example). We will say that a (2,2,2)-
surface is strict if the rank of its Néron—Severi group (over C) is the minimal
possible, i.e. 3.
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Note that a countable dense union of codimension-one subsets in I/ consists
of non-strict (2,2, 2)-surfaces. For strict (2,2, 2)-surfaces, the Néron—Severi
group equipped with its intersection form is isometric to R%? (after extension
of scalars to R).

2.2.3. Some recollections from topology. Recall that F,-sets are count-
able unions of closed sets, while Gs-sets are countable intersections of open
ones. It follows from standard results in the moduli theory of K3 surfaces
that strict (2, 2,2)-surfaces form a dense Gs-set in U, which in fact has full
Lebesgue measure. Indeed, parameters giving strict (2,2, 2)-surfaces are the
complement of countably many divisors in the full parameter space, see e.g.
[Ogu03].

2.2.4. Involutions. For any u € U, denote the associated surface by X, C
(P1)3. The projection onto one of the coordinate planes X, — (P!)? is two-
to-one and so X, admits an involution exchanging the two sheets. Denote
by 0,0y, 0. the three involutions obtained in this manner.

2.2.5. Canonical currents. We can apply [FT23, Thm. 1] to any strict
(2,2,2)-surface X, with u € Y. In that theorem a certain space 0° Amp_(X,)
appears, which on strict (2,2,2)-surfaces reduces to the boundary of the
ample cone 0 Amp(X,), so it consists of nef cohomology classes [n] €
NSg(X,) C HYY(X,) satisfying [7)?> = 0. Since NSg(X,) equipped with
the intersection pairing is isometric to R, the space  Amp(X,,) is isomor-
phic to one component of the null-cone in this Minkowski space. Note that
in the general form of the result, one needs to replace the rational rays in
0 Amp(X,) by their blowups; since in the case of a rank 3 Néron—Severi
group it would mean blowing up rays on a surface, no extra points need to
be added.

Next, [FT23, Thm. 1] shows that each cohomology class [n] € 9 Amp(X,)
has a canonical positive representative 7, which additionally has C° po-
tentials. The representative is unique when the class is irrational, and a
preferred representative in the rational (also called parabolic) classes exists
that makes the entire family of currents continuous in the C°-topology of
the potentials for the currents.

We will show in Theorem 2.3.5 below that some of the canonical represen-
tatives do not have full support in X,,. Specifically, we will show that there
exists an open set Uy C U and a dense G set of u € Uy for which some of
the canonical currents 1 do not have full support in X,,.

But first, we will show that the set of cohomology classes [n] for which the
gaps in the support are constructed contain, after projectivization, a closed
uncountable set.

2.2.6. Free subgroups of automorphisms. We will consider subgroups
of automorphisms of X, freely generated by five elements. Specifically,
0z,0y, 0, generate a group I'y C Aut(X,,) isomorphic to (Z/2)*(Z/2)*(Z/2),

in other words there are no relations between them except that o2 = 1 for
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i = x,y, z. This can be verified by considering the action on the hyperbolic
space inside the Néron—Severi group of X,, (see for instance [Fill9, Prop.6.1]
for the explicit matrices corresponding to the action in the upper half-space
model).

2.2.7. Proposition (Free group on five generators). Consider the surjective
homomorphism Ty — (Z/2)%3 sending o, 0y, 0 to (1,0,0),(0,1,0),(0,0,1)
respectively.

Then its kernel K, is a free group on five generators.

The above homomorphism corresponds to evaluating the derivatives of
the transformations at the common fixed of the transformations described
in §2.3.4.

Proof. We will divide our analysis by looking at the homomorphisms I';, —
(Z/2)®3 — 7,/2 where the last map sends each generator of a summand to
the unique nonzero element.

Now the kernel of T';, — Z/2 sending each o; to 1 € Z/2 is the free group
on two letters, generated by a := 0,0y and b := oy0.. Indeed this kernel is
the fundamental group of the Riemann sphere with 3 points removed.

Now K, is contained with finite index in the free group on a,b, and is
visibly given as the kernel of the surjection onto (Z/2)%®? sending a ~ (1,0)
and b +— (0,1). One can then work out the associated covering space and
rank of free group, using the techniques in [Hat02, §1.A], and determine that
K, is a free group on 5 generators.

Alternatively, the corresponding (Z/2)®2-covering space of the triply punc-
tured Riemann sphere can be visualized as a square-shaped “pillowcase” with
four punctures at the corners, and two additional punctures in the center of
the two faces. The involutive automorphisms are rotations by 180° through
an axis that goes across two opposite punctures. O

2.2.8. Largeness of the set currents with gaps. To continue, we select
V1,772,773, V4, Vs C K, to be five elements freely generating the group. Next,
the construction of §2.1.1 applies with S := {71,... ,75,71_1, .. .'y5_1} and
yields a subset S® C Aut(X,) consisting of iterated commutators. Fix a
Kihler metric wg on X, with volume normalized to [wp]? = 1, and let
H?(X,,) denote the hyperbolic plane of all nef cohomology classes satisfying
[w]? = 1.

2.2.9. Proposition (Uncountably many currents with gaps). The intersec-
tion of the closure of the set S®-[wo] C H?(X,) with the boundary OH?(X,)
is an uncountable closed set.

Proof. That the set is closed follows from its definition.

To show that the set is uncountable, we will argue on the boundary of the
free group on the five initial generators, and use that the natural map from
the boundary of the free group to the hyperbolic space is injective, except
perhaps at the countably many parabolic points.
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For this, let 7 denote the Cayley graph of the free group on five generators;
it is a 10-valent infinite regular tree. Define the sequence of finite subtrees
T, where 7o consists of the identity vertex, and 741 is obtained from 7y
by connecting the leaves of T with the elements in S**1). From Proposi-
tion 2.1.2 it follows that the number of new edges added to the leaves at
each step is at least 3. Therefore, the number of infinite paths starting at
the origin in 7 := U>07T} is uncountable, and the claim follows. O

2.3. An example with slow commutators

2.3.1. Setup. To show that the assumptions of Proposition 2.1.7 are satis-
fied in practice, we start with an explicit equation:

(2.3.2) (1+2)A+y))A+ 2% +ayz =1

Let us note that Eqn. (2.3.2) determines a singular (2,2, 2)-surface, with a
singularity at the origin 0 € C3. We will construct an open set Uy of smooth
(2,2, 2)-surfaces by taking perturbations of the above equation.

2.3.3. Automorphisms of ambient space. Let 1o € C27 denote the point
corresponding to the choice of parameters as in Eqn. (2.3.2), it lies outside
U but any analytic neighborhood of g in C?7 intersects U in a nonempty
open set. We have three explicit involutions oy 4, Tug,y» Oug,2:

- Y=z
Uuo,m(xayvz) = (1 +y2)(1 +22> -4y, 2

and similarly for oy, 0u,,>, Which we view as holomorphic maps defined in
a neighborhood of 0 € C3.

2.3.4. Fixed point and Derivatives. It is immediate from the explicit
formulas that all three involutions preserve the point 0 € C3. Furthermore,
their derivatives at that point are matrices of order two:

-1
Doy, 2(0,0,0) = 1 and analogously for oy, 4, 0w,z
1

We now consider oy 4, 0y y, 0y, for u € C?" in a sufficiently small neigh-
borhood of ug. Then we can regard the ¢’s as holomorphic maps defined in
a neighborhood of 0 € C3, preserving the intersection of X, with the fixed
neighborhood.

We can now use these observations to establish:

2.3.5. Theorem (Gaps in the support of canonical currents). There erists
a nonempty open set Uy in the analytic topology of smooth (2,2, 2)-surfaces
with the following property.

For each strict K8 surface X, with u € Uy, there exists a dense Fy-set of
rays F' on the boundary of the ample cone of X, such that for any [n] € F,
the canonical current n provided by [FT23, Thm. 1] is supported on a
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proper closed subset of X,,. Furthermore F determines an uncountable set
of rays.

By a “ray” we mean one orbit of the Rsg-action by scaling, so that the
“set, of rays” is the projectivization of 9 Amp(X,). It is implicit in the the
statement above that the set F' is disjoint from the countably many parabolic
rays. This is justified by Remark 2.3.6 below.

Proof. We keep the notation as before the statement of the theorem and will
consider v € U in a sufficiently small neighborhood of ug.

Consider the subgroup K, C Aut(X) obtained by applying Proposi-
tion 2.2.7 to the group generated by the three involutions. At the parameter
up all elements in K, preserve the point with coordinate (0,0,0) and have
derivative equal to the identity there, see §2.3.4. Fix now the five free gener-
ators v,; € K, with ¢ =1,...,5, as per Proposition 2.2.7. Let S denote
the set of iterated commutators, as per §2.1.1.

Proposition 2.2.9 yields for any strict X,, an uncountable closed set Fy C
0 Amp(X,) with the following property. Fixing wy a reference Kéhler metric
on X,, for any f € Fj there exists a sequence {sy} of automorphisms of X,
with s, € S, and a sequence of positive scalars \,, — +oo such that

1
£=Jim (sl

Note that A, — +oo since the self-intersection of (sy)«[wp] is 1, while the
self-intersection of f is zero. Applying [FT23, Thm. 4.2.2, pts. 4,5] then
shows that in the weak sense of currents we have

= lim —(sn)
ne = n_1>I_~I_100 A, Sn )xW0,

where 77 is a canonical positive representative of the cohomology class f.
Furthermore, at this stage of the argument the cohomology class f might be
rational, but its canonical representative is in fact unique since we consider
strict (2, 2, 2)-surfaces. Nonetheless, see Remark 2.3.6 below for why, in fact,
this case does not occur.

Proposition 2.1.7 applies to the finitely many generators 7, ., so The-
orem 2.1.4 applies to them as well on a fixed ball By(g) around 0 € C3.
However, the assumptions of Theorem 2.1.4 are stable under a small pertur-
bation, so they hold for v, ; for v in a sufficiently small neighborhood of uq.
Therefore, by Theorem 2.1.4 all the maps s, are within a bounded distance
of the identity when restricted to By(e/2). However, the maps preserve the
intersection of X,, with By(¢/2) so the weak limit of ﬁ(sn)*wo vanishes in
By(e/2) N X,. We conclude that the support of 7y avoids By(e).

Finally, the action of Aut(X,) on the (projectivized) boundary of the
ample cone is minimal, i.e. every orbit is dense, and clearly the property of
having a gap in the support is invariant under applying one automorphism.
It follows that the set F':= Aut(X,) - Fp is a dense Fj-set with the required
properties. O
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2.3.6. Remark (Avoidance of parabolic points). The set F' provided by
Theorem 2.3.5 is disjoint from the countably many parabolic points. The
reason is that the canonical currents at the parabolic points have full support,
since they are obtained as the pullback of currents from the base P!(C) of
an elliptic fibration, but the corresponding currents on P!(C) have real-
analytic potentials away from the finitely many points under the singular
fibers. The last assertion can be seen from following through the proof of
[FT23, Thm. 3.2.14] with real-analytic data.

2.3.7. Remark (Zassenhausian points). Recall that relative to a lattice
I' C Isom(H") of isometries of a hyperbolic space, the boundary points in
OH"™ can be called “Liouvillian” or “Diophantine”. Specifically, a Liouvillian
point is one for which the geodesic ray with the point as its limit on the
boundary makes very long excursions into the cusps of I'\H", while Diophan-
tine points are ones for which the excursions into the cusps are controlled.
Both situations involve quantitative bounds.

The boundary points constructed using iterated commutators as in §2.1.1,
with group elements lying deeper and deeper in the derived series of T,
could then be called “Zassenhausian”. Note that in principle, geodesics with
Zassenhausian boundary points will have good recurrence properties and
will also be Diophantine.

It would be interesting to see if canonical currents corresponding to Liou-
villian boundary points have full support or not.

2.4. An example with no support on the real locus

The above methods can be strengthened to construct an example of a current
with no support on the real locus of a real projective K3 surface. The starting
point is a construction due to Moncet [Mon12, §9.3], who constructed real
K3 surfaces with arbitrarily small entropy on the real locus. We use some
minor modifications for notational convenience, and emphasize that many
different choices are possible for the initial singular real K3 surface. Let us
also note that these examples have a “tropical” analogue given by PL actions
on the sphere, and the analogue of the finite-order action at the singular
parameter corresponds to a finite order action by reflections on the cube, see
[Fil19, §6.2].

2.4.1. Setup. Let X denote the (singular) surface
242 =1

compactified in (P')3. Its real locus Xo(R) is a real 2-dimensional sphere.

As before let U« C R?" be the subset of smooth (2, 2, 2)-surfaces, parametrized
by the possible coefficients, and normalized such that the parameter 0 € R?”
corresponds to Xo. Note that 0 ¢ U. Let next U’ C U denote the sub-
set of strict (2,2,2)-surfaces. By the discussion in §2.2.3 the set U’ is the
complement of countably many divisors in ¢/, and thus forms a dense Gy set.
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2.4.2. Theorem (Full gaps in the real locus). There exists a nonempty open

set Uy C U C R™ in the analytic topology of smooth real (2,2,2)-surfaces
with the following property.
For each strict K3 surface X, with uw € Uy, there exists a dense F,-
set of rays F' on the boundary of the ample cone of X, such that for
any [n] € F, the support of the canonical current n provided by [FT23,
Thm. 1] is disjoint from the real locus X (R). Furthermore F determines
an uncountable set of rays.

2.4.3. Subgroup of slow automorphisms. Let us first observe that the
involution o, acting on the surface Xy in §2.4.1 is given by o, (z,y,2) =
(—z,y, 2), and analogously for oy, .. Therefore, let K, C I', be the group
from Proposition 2.2.7 obtained as the kernel of this action; it is a free
group on five generators ; and acts nontrivially on any smooth and strict
(2,2, 2)-surface.

Even for smooth surfaces X,, C (P')3, we will be interested only in their
intersection with the affine chart C3, and specifically a neighborhood of
Xo(R). We will thus restrict to the locus where no additional real components
arise.

2.4.4. Good cover. Choose a finite cover of Xo(R) C R? by open sets
V; C C3 such that we have biholomorphisms ¢;: V; — Bg(1) C C3 to a ball of
radius 1 around 0, and the preimages of the smaller balls V/ := ¢; ! (BO(%))
still cover Xo(R).

Choose now a sufficiently small open neighborhood of the origin Uy C R?7
such that the following property is satisfied: For each of the five generators
7;j of K, and their inverses, we have for every chart V; that 1= $iov; oqﬁ;l
satisfies:

1

7ij: Bo (%) — By(1) is well-defined and ‘ Bo(%) < g1

’Yz{j_l‘

Require also that for any u € Uy that X, (R) is nonempty and still covered
by the sets {V}}.

Proof of Theorem 2.4.2. By Theorem 2.1.4 all the commutators in the set
S as defined in §2.1.1 are well-defined when conjugated to any of the
charts ¢;, and furthermore their distance to the identity transformation goes
to zero as n — +00.

As in the proof of Theorem 2.3.5, let s, € S(™ be any sequence of such
commutators such that the cohomology class ﬁ(sn)*[wo] converges to some
class f. Then the canonical current 7; has no support in the neighborhoods
V. Since these still cover X, (R) for u € Up, the result follows. O
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