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On the collapsing of Calabi—Yau manifolds
and Kihler—Ricci flows

By Yang Li at Cambridge and Valentino Tosatti at New York

Abstract. We study the collapsing of Calabi—Yau metrics and of Kihler—Ricci flows
on fiber spaces where the base is smooth. We identify the collapsed Gromov—Hausdorff limit
of the Kéhler—Ricci flow when the divisorial part of the discriminant locus has simple normal
crossings. In either setting, we also obtain an explicit bound for the real codimension-2 Haus-
dorff measure of the Cheeger—Colding singular set and identify a sufficient condition from
birational geometry to understand the metric behavior of the limiting metric on the base.

1. Introduction

In this paper, we study the collapsing behavior of Ricci-flat Kéhler metrics on Calabi—
Yau manifolds, and of long-time solutions of the Kéhler—Ricci flow. We first describe in detail
these two setups, which have been much studied recently, and state the main open problems
that we are interested in.

1.1. Calabi-Yau. M'™ is a projective Calabi—Yau manifold with K =~ Oy, with a
trivialization Q2 of Kjs, equipped with a holomorphic line bundle £ which is semiample and
with Titaka dimension n := «(£) that satisfies 0 < n < m. Then there is some £ sufficiently
divisible such that the linear system |££| defines a fiber space structure f: M — N (surjective
holomorphic map with connected fibers) onto a normal projective variety N with0 < n < m.
Let D C N denote the closed subvariety given by the union of the singularities of N together
with the critical values of f on N™¢, and write S = f~}(D)and D = DM U D@ where
DM is the union of all codimension-1 irreducible components of D and dim D® < n — 2.
The fibers My, = f~!(y) for y € N\D are Calabi-Yau (m — n)-folds. We will also denote
N°® = N\D, M° = M\S.

Given a Kéhler metric wy on N (in the sense of analytic spaces [48] if N is not smooth)
and a Ricci-flat Kidhler metric wps on M, we are interested in the behavior of the Ricci-flat met-
rics (t) on M cohomologous to f*wy + e ‘wy, t = 0, in the limit as 1 — oo. To identify
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the limit, one solves [51, 54] the complex Monge—Ampeére equation on N°,

In @}

Juon

where wean ' = Wy + i00¢ is a Kihler metric on N° and ¢ € C°(N) (for continuity, see
[13, 18, 30]). After earlier work in [26, 35, 36, 54, 59], it was very recently shown in [37] that
w(t) = f*wen in Clgg(Mo7 gM)-

In [53], it was proved that the metric completion (Z,dz) of (N°, wcan) is a compact
metric space and that (M, w(t)) — (Z, dz) in the Gromov—Hausdorff topology (see also [27,
61] for earlier results in this direction). The following questions, raised in [27, 55, 56, 58],
remain open in general.

(1.1) (0N +i009)" = fi(w}hy)

Conjecture 1.1. In the Calabi—Yau setup, the Gromov—Hausdorff limit is homeomor-
phic to N. Furthermore, Z\N° has real Hausdorff codimension at least 2 inside (Z,dz).

The homeomorphism statement was proved in [53] when N is smooth, and the full con-
jecture is known when N is a curve [27], or when M is hyper-Kdhler [61], or when N is
smooth and D has simple normal crossings [28].

We remark that the choice of path f*[wy] + e *[wn] in cohomology originates in [29]
and is quite analogous to what happens in the Kihler—Ricci flow setup below. Choosing a dif-
ferent path that approaches f*[wy] in general results in a different behavior [20, § 4.4.4], and
the existing estimates mostly break down.

1.2. Kihler-Ricci flow. M™ is a compact Kihler manifold with Kjs semiample and
with Kodaira dimension n = x(M) that satisfies 0 <n <m. Let f: M — N be the litaka
fibration of M, which is the fiber space determined by the linear system |{ K| with £ suffi-
ciently divisible, and N” is a normal projective variety. Define D, N°, M ° as in Section 1.1,
and again, the fibers M,,, y € N°, are Calabi—Yau (m — n)-folds. Let oy = %Q)Fs| N so that
f*wp is a smooth semipositive representative of ¢1(Kpy).

Given a Kahler metric wps on M, consider the normalized Kdhler—Ricci flow on M,

%a)(t) = —Ric(w(t)) —w(t), w(0) = wpy.

The flow exists for all £ = 0 (see e.g. [57]), and we are interested in the behavior as t — oo.
Observe that the metric w(z) is cohomologous to (1 —e™) f*wy + e Twpy.

In order to identify the limit of the flow, we fix a basis {s;} of H%(M, {Kjs) which
defines the map f, and obtain a smooth positive volume form M on M by

m2 l
M= ((—1)% Y s /\E)Z.
i
One then solves [51] the complex Monge—Ampere equation on N °,

(1.2) (wn +1009)" = € fu(M),

where wean 1= Wy + 100¢ is a Kihler metric on N° and ¢ € CO(N). After earlier work in
[21,22,35,51,59], it was recently shown in [12] that w(t) — f*@can in C2.(M°) ast — oo,
forany 0 < o < 1.
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Furthermore, in [38], it is shown that diam(M, w(¢)) < C for all ¢ = 0, and [53] shows
that the metric completion (Z, dz) of (N°, wcan) is @ compact metric space, which is homeo-
morphic to N when this is smooth.

Conjecture 1.2. [n the Kdhler—Ricci flow setup, (M, w(t)) — (Z,dz) in the Gromov—
Hausdorff topology. Furthermore, Z is homeomorphic to N and Z\N° has real Hausdorff
codimension at least 2 inside (Z,dz).

The Gromov—Hausdorff convergence is known when N is a curve and the generic fibers
of f are tori [53].

1.3. Our results. We can now state our results. In either the Calabi—Yau setup in Sec-
tion 1.1 or the K&hler—Ricci flow setup in Section 1.2, assume that N is smooth, and let (Z, dz)
be the metric completion of (N °, w¢an). Thanks to [53], this is a compact metric space homeo-
morphic to N, and in the Calabi—Yau setup in Section 1.1, it is the Gromov—Hausdorff limit of
(M,w(t)) ast — oo.

Let § C Z be the singular set in the sense of Cheeger—Colding [8], namely the set of
all x € Z such that there is some tangent cone to (Z, dz) at x which is not isometric to R?”.
We always have § C Z\N°, but this inclusion is strict in general (see Remark 2.2). Our first
result, proved in Section 2, is an explicit Hausdorff measure bound for §.

Theorem 1.3. In either the Calabi—Yau setup in Section 1.1, or the Kdihler—Ricci flow
setup in Section 1.2, assume that N is smooth and [on] € H*(N,Q), and let H>"~2 be the
real (2n — 2)-dimensional Hausdorff measure of the limit metric dz on N. Then the Cheeger—
Colding singular set & satisfies

(1.3) H2"2(8) < Cy / ol
D
where Cy, is a dimensional constant.

This estimate would be expected if the Hausdorff measure could indeed be computed
cohomologically, as in the case when the limiting metric dz is smooth. However, even the
best pointwise estimate (1.4) below cannot by itself imply this measure bound, and one needs
instead to appeal to the deep work of Liu—Székelyhidi [47] on Gromov—Hausdorff noncollapsed
limits of polarized Kihler manifolds with Ricci bounded below. The idea is to use standard
approximations w; of wc,, and study the singularities of the closed positive current Ric on N
which is the weak limit of the Ricci curvature of w;. The results in [47] characterize § as the
set of points in N where the limiting Ricci curvature current has positive Lelong number. At
almost all points x € §, the tangent cone is R2" 72 x Ca(x)» where Cg(y) denotes the standard
conical metric in C with cone angle 2760 (x) at 0. We are able to relate 8(x) to the Lelong
number of the limiting Ricci current at x, which can be estimated thanks to the asymptotics of
the volume form w(,, proved in [28], and we then estimate the Hausdorff measure using the
scalar curvature integral.

Our next result deals with the general case when N is allowed to be singular. We let
7: N — N be aresolution of singularities with N smooth and 71 (D) =:E =/, E; asimple
normal crossings divisor. In [61], the second-named author and Zhang conjectured that we can
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find such a resolution such that, on N \ E, we have the estimate

C
(1.4) 7* 0 < C (1= Y loglsily, ) @eone.
i

where s; is a defining section of E;, h; is a Hermitian metric on O (E;), and wcone is a Kéhler
metric on N \ E with conical singularities along E with cone angles 27r«; (0 < o; < 1) along
E; (we are assuming here without loss that [s;|,, < 1 on N so that the multiplying factor on
the RHS of (1.4) is bounded away from zero). Building upon [27], it was proved in [61] that
estimate (1.4) would imply the Hausdorff dimension bound in Conjecture 1.1 in full generality
(this was slightly relaxed in [7] to allow for arbitrary small extra poles along E on the RHS
of (1.4)). The conjectured estimate (1.4) was proved in [27] when dim N = 1, in [61] when
M is hyper-Kihler, and in [28] when N is smooth and D) has simple normal crossings, but
it remains open in general. Our next result identifies an algebro-geometric condition which
is sufficient to prove (1.4) and which comes from the canonical bundle formula in birational
geometry: roughly speaking, to any resolution 7: N — N as above (together with a resolution
of the pullback of f: M — N over N), we associate a Q-divisor E § on N, which is functorial
in the sense that passing to a higher model gives the pullback divisor. In Section 3, we then show
the following theorem.

Theorem 1.4. In either the Calabi—Yau setup in Section 1.1 or the Kdhler—Ricci flow
setup in Section 1.2, the conjectured estimate (1.4) holds provided that there exists a resolution
w: N — N as above such that B § is w-ample.

To prove this result, we refine the arguments in [28] and identify a key divisor E 5 on the
resolution N with the property that, whenever E 5 is w-ample, then the desired estimate (1.4)
can be shown to hold. We then describe &  explicitly using the canonical bundle formula and
the recent results of Kim [40].

Our last result, proved in Section 4, settles the Gromov—Hausdorff convergence in Con-
jecture 1.2 under a log smoothness assumption.

Theorem 1.5. Assume the Kdihler—Ricci flow setup in Section 1.2, and suppose that
N is smooth and DO is a simple normal crossings divisor. Then (M, w(t)) converges in
the Gromov—Hausdorf{f topology to the metric completion of (N°, wcan), which by [53] is
homeomorphic to N.

This is the first time that this conjectural Gromov—Hausdorff convergence is proved for
base spaces N of dimension greater than 1 (as mentioned earlier, it was only previously known
under the stringent assumptions that N is a curve and the generic fibers of f are tori [53]),
and our assumptions that N is smooth and D) is snc can be thought of as generic since, for
example, they are Zariski open in families. One major difference between our result and those
in [53] is that, when N is a curve, then D is a discrete set, and in this case, it follows from [27]
that a small tubular neighborhood of D has very small @w¢,,-diameter (which is used in [53]),
while this is clearly false when N is higher-dimensional. To prove our result, we make use
of the fact proved in [53] that (N°, wean) is “almost-convex™, and the bulk of our work lies
in establishing an analogous statement for (M °, w(¢)), uniformly in ¢. This in turn requires
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new ideas, combining results of Perelman [49] with estimate (1.4) to analyze the behavior
of £-geodesics which have endpoints away from S = f~!(D) but which may venture quite
close to S.

2. Hausdorff measure bound for the singular set

In this section, we prove Theorem 1.3. Throughout this section, we assume that N is
smooth and furthermore that [wy] € H2(N, Q) (this is automatic in the Kihler—Ricci flow
setup). By the Kodaira embedding theorem, this means that [wy] = ¢1(L), where L — N is
an ample line bundle, which is needed to apply the results of [47].

2.1. The approximation procedure. For ease of notation, in the Calabi—Yau setup in
Section 1.1, we denote
= 1)
Ju i M
so that, in both setups, Sections 1.1 and 1.2, we can write the Monge—Ampere equations (1.1)
and (1.2) on N° = N\D as

2.1) (wn +i009)" = e*? fi (M),

where A = 0 in the Calabi—Yau setup and A = 1 in the K&hler—Ricci flow setup.

As shown in [28, Proposition 3.1], w¢ay extends to a smooth Kéhler metric across D@,
so without loss, we may assume that D = D) is a divisor (not necessarily with simple normal
crossings).

Recall from the introduction that we have defined (Z, dz) to be the metric completion of
(N°, wean), which by [53] is a compact metric space homeomorphic to N (using here that N is
smooth).

We then define a smooth positive function ¥ on N ° by

fulh)

" ¥
N

which as shown in [51] (see also [54], [S57, Proposition 5.9]) satisfies
(2.2) Awy + Ric(wy) —i00log F = wwp = 0,

where wwp is a semipositive form of Weil-Petersson type. As shown e.g. in [28, Lemma 4.1],
we have ¥ > C~! on N°, so by Grauert-Remmert [25], —log ¥ extends to a quasi-psh func-
tion on N, still denoted by — log #, which satisfies (2.2) weakly on NV, and in general, it may
have values —oo along D. Also, as shown in [51, Proposition 3.2] (see also [19, Lemma 2.1],
[17, Proposition 4]), there is p > 1 such that ¥ € L? (N, a);’v).

We can then apply Demailly’s regularization [14, Theorem 9.1] and obtain a sequence of
smooth functions v; on N which decrease pointwise to —log ¥ as j — 00, and satisfy v; < C
for all j and

(2.3) Aoy + Ric(oy) 4 i00v; = —Coy
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for all j. The lower bound here cannot be taken arbitrarily small in general because — log ¥
can have positive Lelong number at points in D. Furthermore, as the construction of v; shows,
we have v; — —log ¥ smoothly on every given compact subset of N°.

By Yau’s theorem [62] (and also Aubin [2] when A = 1), we can find Kihler metrics
wj = wy + i00p; on N which satisfy

2.4) wi = (oN + i00¢;)" = Cje’l‘/’-i_”-/ W
where
1 ifA =1,
GEN IOk
[y e Yol A=
N N

and by construction, we have

ot [ For= [ roo=[ x

which is strictly positive when A = 1 and equals [ @}, when A = 0 so that, in particular,
c¢j = las j — oco. When A = 0, we also normalize ¢; by supy ¢; = 0. When A = 1, we can
apply the maximum principle to get

supg; <supv; < C,
N N
independent of j. Also, in this case, we have a)]” < e®PNV 9T o', and integrating this gives

; fN w?v -1
EPNY > S S > C7 > 0.
[y e v o
N N

We thus conclude that, when A = 1, we have |supy ¢;| < C independent of j. Then, for
A =0, 1, since as we said fN 371’@7\, < C for some p > 1, it follows that

7 / PRI < C
N
for all j, and so Kotodziej [42] gives us

(2.5) suplgj| < C
N

for all j. When A = 0, we have that cje™% — ¥ in L1(N, w};), and so Kotodziej’s stability
theorem [43] gives us that

(2.6) loj —@llLeovy — O,
where ¢ is as in (2.1). For A = 1, we can still conclude that
2.7 loj —¢llLiwv.ws) =0

by arguing as in [6, Theorem 4.5].
The following proposition is contained in [23, Lemma 2.2] and [53, Proposition 2.3], but
we include the proof for convenience.
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Proposition 2.1.  The approximating metrics w; on N satisfy

(2.8) Ric(w;) = —Cuwj,
(2.9) diam(N, w;) < C,
(2.10) Voly; By, (x.r) = C~'r?"

forall0 <r <1, x € N and j. The distance functions dg; defined by (N, w;) satisfy

(2.11) dg;(p.q) < Cdgy (p.9)*

for some C,a > 0 and for all p,q € N, j = 0. We also have w; — wcan locally smoothly on
N°, and (N,w;) — (Z,dz) in the Gromov—Hausdorff topology.

Proof. From (2.4) and (2.3), we get

(2.12) Ric(w;) = Ric(wy) + id0v; — Aiddg; = —Cwyn — Aw;,
so to prove (2.8), it suffices to show that

(2.13) wj = C oy,

This follows from the usual Schwarz lemma argument: the Chern—Lu inequality gives

1 7 phe. 7 pa
Ay, logtry, oy = m(gfegqulc(wj)ka(gN)pf - gj]'cegfq(Rm(wN))kqu)
@j

= —Ctry, oy — A
using (2.12), and so taking A large enough but uniform, we have
Aw; (logtry;, ony — Agj) = try, oy — C,

and so the maximum principle and (2.5) give try, wy < C, which proves (2.13).

Next, applying [23, Theorem 1.1] directly proves (2.9), and then Bishop—Gromov volume
comparison gives us (2.10). The Holder estimate (2.11) for the distance function of (N, w;)
follows from Kotodziej’s uniform Holder bound (see [44])

lojllcre(Nwy) < C

for some « > 0, together with the first-named author’s argument in [46, Theorem 4.1] that
deduces (2.11) from this.

To prove locally smooth convergence, observe that, for every given K € N°, we have in
particular that supg (c;e*®/~%) < Ck for all j, and combining this with (2.4) and (2.13), we
see that, on K, we have

CEIa)N Swj < Cxon

for all j, and by now standard local higher-order estimates for (2.4) (on a slightly larger open
set) give us uniform estimates ||; [|ck (ko) < Ck k for all j, k. Thanks to (2.6) and (2.7),
this gives that ¢; — ¢ smoothly on K, and so w; — wcan locally smoothly on N°.

Lastly, the Gromov—Hausdorff convergence of (N, w;) to (Z, dz) follows by combining
the arguments in the proofs of [53, Proposition 2.3, Step 3] and [53, Proposition 2.2 (3)]. o



162 Li and Tosatti, On the collapsing of Calabi—Yau manifolds and Kihler—Ricci flows

2.2. The measure bound (1.3). In this section, we still have as standing assumption
that N is smooth. Define § C Z as the singular set in the sense of Cheeger—Colding [8], namely
the set of all x € Z such that there is some tangent cone at x which is not isometric to R?",
and for 0 < k < 2n, let 8¥ be the set of all x € Z such that no tangent cone at x splits off an
R¥*1 factor. Then, thanks to Proposition 2.1, by [8], we have § = § 2n=2 and dimy § k<k.
In particular, if we define

- 8\82n_3 — 82'1_2\82”_3,

then for every point x € X, there is some tangent cone at x which splits off R?"~2, and
dimg (§\X) < 2n — 3. Furthermore, thanks to [9] up to removing a subset of ¥ with zero
(2n — 2)-dimensional Hausdorff measure (which we will do without changing notation), the
tangent cone at any x € ¥ is unique and isometric to R?%~2 x Co(x)» where 0 < 0(x) < 27
denotes the cone angle at x. The function 6(x) can be interpreted as the monotone limit of the
volume ratio at x,
O(x) = lim Vol Blx.r) B();’ r)
rl0  waur"

whence it is upper-semicontinuous.

As in [8], for any ¢ > 0, we define R, as the set of all points x € Z such that the
Gromov—Hausdorff distance between B(x,r) and the r-ball in R?” is less than er for all
sufficiently small » > 0. Then their complements

(2.14) 8 = Z\ R,

are closed subsets and 8 = |, 8.

Recall in [53, Proposition 2.3] it is shown the inclusion N° < N extends to a homeo-
morphism F: Z — N, which maps bijectively Z\t(N°) onto D C N (here t: N° — Z is the
canonical inclusion). We will use F to identify Z with N, suppressing F' from the notation, so
for example dz will be a distance function on N, etc. It is important to note that the Hausdorff
measures and dimensions that we will use on N are those of dz (and not those of a smooth
metric on N), unless otherwise specified.

Remark 2.2. Since wc,, is a smooth Kihler metric on N° and w; — wcan locally
smoothly there, it follows that & C D. This inclusion is strict in general, as can be seen for
example in the case when f: M — N is an elliptic fibration of K3 surfaces with 24 singular
fibers of type /7, which is the setup considered by Gross—Wilson [29]: in this case, D is a finite
set of points in N = P!, and from their work, it follows that the metric wca, has tangent cone
C at all points of D (indeed, w,, has an explicit asymptotic behavior at points in D, see e.g.
[34, Table 1]), so in this case, & is empty even though the metric is not smooth at the points
in D. This was extended in [27] to arbitrary elliptically fibered K3 surfaces, and the tangent
cone of w¢y, at any point p € D can be precisely determined from the Kodaira type of the
singular fiber £ ~!(p), see [34, Table 1] (in particular, the tangent cone is C if and only if the
singular fiber is of type I, b = 0).

Thanks to [47, Proposition 4.1], there is a weak limit Ric of Ric(w;), which is a closed
(1, 1)-current on N, smooth on N°, which locally differs from a positive current by 90 of
a continuous function; hence its Lelong numbers are well-defined. They also show that § is



Li and Tosatti, On the collapsing of Calabi—Yau manifolds and Kihler-Ricci flows 163

equal to the set of points x € N where v(Ric, x) > 0. By [47, Theorem 4.1], this is an at most
countable union of closed analytic subsets of N, contained in the discriminant locus D, and so,
in particular, the number of divisorial components of & is finite. Passing to the limit in (2.8) on
N° shows that Ric = —C w,, holds pointwise on N © and weakly on all of N.

On the other hand, differentiating (2.4) gives

(2.15) Ric(w;) = Ric(wy) +i00(v; — Ag)),

where ¢; — ¢ uniformly on N and v; decreases pointwise to —log ¥, and thus, from the
construction in [47], we see that we have

(2.16) Ric = Ric(wy) — i00(Agp + log %)

as currents on N, where recall that ¢ € CO(N) N C®(N°).

We write D = | J; D; for the decomposition into irreducible components (which are divi-
sors since, as mentioned earlier, we are assuming without loss that D = DM ag Wean €Xtends
smoothly across D@ by [28, Proposition 3.1]) and consider a composition of smooth blowups
n:N — N suchthat E = 7~ (D) has simple normal crossings. Write D for the proper trans-
form of D and E = 7~ 1(D) = D U F, where F is sr-exceptional. Then 7 *Ric has a Siu
decomposition (see [50])

(2.17) m*Ric = Y v(Ric, Di)[Di] + Y v(x*Ric, F)[Fi] + Ricm.
i i
where v(Ric, D;) = U(T[*RIC D; ) and v(7*Ric, F;) are the generlc Lelong numbers (which
may be zero), and Ricgn is a closed (1, 1)-current on N, smooth on N \ E, which satisfies

__ .
Ricgn = —C ™ wean,

weakly on N, and whose generic Lelong number along the D;’s and F;’s vanish. In fact, we
can say a lot more.

Lemma 2.3. Forany x € E, there are a neighborhood U of x in N and a constant Cy
so that, on U, we can write Ricyy, = 100V, where \ satisfies

(2.18) —Cy log(—logdex(z. E)) S ¥(2) < C

forall z € U\E.

Proof. From (2.16), we have
7*Ric = n*Ric(wy) —i00(An*¢ + logn*F),

and since ¢ € CO(N) N C*(N°), it suffices to understand the singularities of 7* ¥ along E.

This is a consequence of results proved in [28] (generalizing earlier results in [27] when
n = 1) as follows. Define J; = 0 by Jr*a);’v = Jr L. Choosing defining sections Sﬁi;SFi and
metrics i j;, h f, for the line bundles corresponding to the irreducible components of D and F,
we have that J; is comparable to

[ [1sF;13%  withb; € Nog
j J
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(recall that N is smooth). Then [28, Theorems 2.3, 7.1 and Lemma 4.1] (also [40, Remark 1.6])
give, on N\ E,
28; 28;
bl g o TUPEI, (—log dgy (-, £))C
== 20—y > JaT SCUEoas,y T 08dgg -, .
[ilsB, 2379 1155, {47

where B; € R and 0 < y; < 1, and we must also have b; = B;. Thus

1 —logdys (-, E)C
B 5B o g ST TS (2(;%’_;6;( 3) 20—
Hj|st|hFjj J Hi|sDi|h5i i 1_[]|SFJ|hFjj J 1_[[|SDl'|h5i i

which shows that we can take v equal to the sum of a local continuous function plus

—tog(7*# [ JIss; 3= [ Tis5, 4 ):
J i

and it satisfies (2.18) as claimed. D

~ Next, recall that wc,, has continuous potentials on N ; hence the Bedford-Taylor products
W, 2 < j < n,are well-defined closed positive (/, j)-currents on N by [5], whose cohomol-
ogy class agrees with [a)jjv] by [16, Corollary 9.3]. Also, since the unbounded locus of the
local potentials of Ric + Cwcyy is contained in D, which has g -Hausdorff dimension at most
2n — 2, the wedge product (Ric + Cwean) A @1 is a well-defined positive Borel measure

on N by [16, Theorem 2.5], whose total mass equals

/ (Ric(wy) + Coy) Ao L,
N

again by [16, Corollary 9.3]. Furthermore, from (2.15), (2.16), and since ¢; — ¢ uniformly
and v; decreases to —log ¥, [16, Proposition 2.9] shows that

(2.19) (Ric(w)) + Cwj) A" — Ric + Corean) A 0fly!

can

weakly as measures on N.

The pullbacks currents 7 *Ric and 7*w¢a, are defined in the usual way (pulling back
aé—potentials), the measure 7 *(Ric + Cwean) A (T*®ean)” ! on N is defined as above using
[16, Theorem 2.5], and since 7 is a modification, one easily checks that we have

7 (7% (Ric + Cwean) A (n*a)can)”_l) = (Ric + Cwean) A 0yt
Using (2.17), on ]V, we have
(2.20) 7*(Ric + Cean) A (1% Ocan)" ™!
=Y v(Ric, Dj)[Di] A (*wean)" "

i
+ Z v(r*Ric, F)[Fi] A (T*wean)” 1
i
+ (R‘fésm + Cn*a)can) /\ (ﬂ*wcan)n_l

= Z V(Ric, Dl)[ﬁl] A (ﬂ*a)can)n_1
" 4 (Ricem + C*wean) A (T can)™ !

because each term [F;] A (7 *wcan)™ ! vanishes as F; is w-exceptional.
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Let now U, C N be the r-neighborhood of D with respect to wp. We then have the
following claim.

Lemma 2.4. For any continuous nonnegative function h on N, we have

hn}) h(Ric + Cwegn) A 0l = E v(Ric, D;) / hol 1,
U,
i

_ Proof. Let U, = 7~ 1(U,) (a shrinking family of open neighborhoods of E) and let
h = m*h. Then, using (2.20), we have

lim / h(Ric + Cwean) A 01 = lim /~ hr* (Ric + Cwean) A (0 @can) !
b,

r—0 r—0

= ZU(RIC D; )/ h* =1

i

r—0

= ZU(RIC D, )/ hol-!

+ lim h(RICsm + C”*a)can) N (n*a)can)n_l,
r—0 fjr

+ lim /~ h(Ricen 4 C7*0can) A (¥ Wean)™ ™!

and so, since his continuous, it suffices to show that (f{\iJcsm + C*wean) A (0¥ 0an)* ! puts
no mass on E. Since wc,, has continuous potentials and li\i/cgm has local potentials with at
worst log-log singularities (by Lemma 2. 3) this is then a well-known fact: let 6 be a smooth
form on N cohomologous to Ricyy 4+ C 77 * wean, and write Ricgy + C*wean = 6 + i0ou = 0,
where by Lemma 2.3 the function u satisfies the bounds in (2.18). As a consequence of
Demailly’s regularization [15, Corollary 6.4], the cohomology class [0] is thus nef, and so,
for any ¢ > 0, we can find a smooth function ¢, such that 0 + ewf + iaé% is a Kédhler met-
ric on N. Since 7*wean has continuous potentials, it follows from Bedford-Taylor [5] that
ojy A (r* a)can)”_ puts no mass on E. Thus, to prove our claim, it suffices to show that
(0 + ewfy + 100u) A (T* Wean)* ! puts no mass on E, and this follows e.g. from [31, Theo-
rem 1.3] since u — @, belongs to & (N.0 + cof + i00¢;) as it has at worst log-log singular-
ities, e.g. by [32, Proposition 2.3]. O

The following proposition uses ideas similar to [47, Proposition 5.1].

Proposition 2.5. For any continuous nonnegative function h on N,

/h(Zn—Q(x))dJ(’Z” 2 <Gy ) v(Ric, D)/ ho™ 1.

i

Proof. Given a small & > 0, we consider the closed subset §; C § defined in (2.14) and
let ¥, = 8.\ 82" 3 (and again remove a further subset of vanishing 2”2 so that tangent
cones at all points of 3, are unique). Given also a small § > 0, it suffices to prove

/ hQr —6(x)dH*" 2 < Cp Y v(Ric, D)/ ho -1 + C8,

i
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where C does not depend on ¢, § but is allowed to depend on £, as taking the limit § — 0 and
& — 0 gives the claim. Given an arbitrarily small r depending on &, since 8.\ X, has Hausdorff
codimension at least 3, we can take a cover with

2.21) 8:\Ze C | BGir)), Y PP <s i<,
i i

where, here and for the rest of this section, B(x,r) denotes the dz-geodesic ball centered
at x with radius r, while B, (x,r) will denote the w;-geodesic ball, and U; , will be the r-
neighborhood of D with respect to w;. Since &, is compact, so is the closed subset

K =38\ BGi ).

For every x € K, by semicontinuity, we can find a small ball B(x, ry) with ry < r such that
27 —0(y) < 2r —6(x))(1 —5) forall y € B(x, 10ry).

Choosing ry sufficiently small, we can make the rescaled ball ;! B(x, ry) arbitrarily close
to the tangent cone at x in the Gromov—Hausdorff sense. Using [47, Proposition 3.3], for j
sufficiently large depending on x,

n

w 1
/ R(a)j)—]' > wan_2(2m — 0(x))(1 — 8)(nry)*" ™2 forall — < n < 10,
B (x.nrx) n! 10

whence
n

[ R@) > wana =290 sup (- 6)

Bj(x,nrx) n! B(x,10ry)

By compactness, we can cover K with finitely many such balls B(x;,r;) with r; = ry; so
that the inequalities hold for j large enough independent of x; € K. Taking a Vitali sub-
cover, we may further assume that B(x;,r;/3) are mutually disjoint, so for large enough j,
we have Bj(x;, r;/4) mutually disjoint. Using also the continuity of /, for r sufficiently small
depending on § (and on /), and j large enough,

sz,,_z(l—%)(%)z"_z sup h(2w —6)
i

B(x;,r;)
<X/,

R(a)/)—i-nC)—J'

(-x[ ri/4)
n—1

. J

< /jr ]’l(RIC(a)j) + Cwj) A T

wn—l

< / h(Ric + Cwean) A —2— +§

U, (I’l - 1)!
using (2.19). Combining this with (2.21) and taking the limit » — 0 using Lemma 2.4 gives
n—1
42=2n f hQ2m —6(x))dH>"2 < < lim thc A-Lean 4 g
Be r—0 (n— )'

_ZV(RIC D; )/ h( Tnl)' Cs,

as required. m)
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Recall that the singular set satisfies
8 ={xeN|v(Ric,x) >0} C D

is an at most countable union of closed analytic subvarieties of N. Write § = ;s D;» U 8>»
where | J;, D;- is the (finite) union of divisorial components of & (which are necessarily also
divisorial components of D, so equal to a subset of the D;’s, which we have indexed by i’ for
clarity) and &>, is an at most countable union of closed irreducible analytic subvarieties of N
of complex codimension at least 2.

Lemma 2.6. If W C & is an at most countable union of closed irreducible analytic
subvarieties of N of complex codimension at least 2, then J?"~2(W) = 0, where as usual J
is the Hausdorff measure of dz.

Proof. It suffices to show that #2"~2(V') = 0 for any irreducible component V of W,
and we can also implicitly remove 82”73 since it has vanishing Hausdorff measure so that we
can pretend that V' C X. Let h, = 0 be a family of smooth cutoff functions, with 4, supported
in Bg, (V,2¢) and hy = 1 on Bg,, (V. ¢), and applying Proposition 2.5 gives

f Qm —0(x)dH>*"2 < / he(Qm — 0(x)) d H>"2
14 X

< Cy Y _v(Ric, D;) /D hew!—1

1

<Gy ZU(RiC, D;) w1 50
i By, (V,2¢)
as ¢ — 0. This shows that
/ Qr —0(x))dH*" 2 =0,
14

but since §(x) < 27 for all x € X, this gives #2"2(V) = 0. |

Proposition 2.7. Let x € ¥ be a point with tangent cone R?"~2 x Co(x)- Then the
Lelong number of Ric at x is at most 2w — 6(x).

We believe that the Lelong number of Ric at x is actually equal to 2w — 6(x), but this
does not seem to follow from our arguments below.

Proof. We will write § = 6(x). By assumption, the rescaled balls 7~ B(x, r'/#) con-

verge in the pointed Gromov—Hausdorff sense to the tangent cone C;’l_l x (Cp)g, as

----- Zn—1
r — 0. The metric on the tangent cone is written as
n—1
2 —2(1-6/2 2
oo = Y _dzi|* + |z 20702 dz, 2.
i=1
Using [47, Proposition 3.2], we can find holomorphic coordinates wy, . . . , w, (depending on r)
on r!B(x, r1/3) converging to z1,...,2z, as r — 0. We can regard w; also as holomorphic

coordinates for the smooth approximating metrics w; because, as we know, the Gromov—
Hausdorff limit Z is homeomorphic to N.
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Given any small § > 0, our goal is to show the Lelong number of Ric at
X € r_lB(x,rl/z)

is at most 27t — € 4 §. By the monotonicity of the Lelong number, it suffices that, for r < 1,

1

—[ (Ric—i—CwCan)Aw('éZl <27 —0 +6,
wap—2(n —1)! Slw;i2<1
where

v—1 .
wcn = 5 Zdwi Adw;.
i=1
Since Ric(w;) — Ric, w; — wcan Weakly, and Ric(w;) + Cw; = 0, this reduces to showing,
for j > 1 depending on §, r,

1
2.22 - - Ric(o; Cor il or s
( ) @2n—2(n — D! /lei2<1( ic(w)) + w-/) N g Y4 +

As in [47], we use the Cheng—Yau gradient estimate [10] for the holomorphic functions z;,
i =1,...,n, which on {> |w;|?> < 1} gives

(2.23) wcn < Cr%w;.

Using (2.23) together with the Bishop volume comparison inequality Vol Bj(x,10r) < C r2n
(forall0 < r < 1), we can bound

/ w; /\a)é’jﬁl < C/ rz_zna)}’ < Cr2.
Ylwil?<1 B; (x,10r)

Thus, to establish (2.22), it suffices to show that, as r — 0 and j — oo fast enough (depending
onr),

1
(2.24) —  lim Ric(w;) A w5t =27 — 6.
w2 =D Jyp<a T E

We know r~2g; converge in the pointed Gromov—Hausdorff sense to C"*~1 x Cy, and
the coordinates w; converge to z;. Write s; = dwy A--- Adwy and s = dzy A--- Adzy, so

Ric(w;) = v/—190log|s;3 .
Ric(geo) = «/—18510g|s|§00.

From the proof of [47, Proposition 3.3],
lim/ }10g|sj|gj —10g|s|goo‘(r_2a)j)” =0.
> lw;?<10
Using again (2.23),

lim log|s;j|g, —log|s|g., |@¢n = 0.
Z|wi|2<10‘ J18j g | C
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Given any smooth cutoff function i(zy, ..., z,), we can regard it as a function of wy, ..., wy.
Thus
1 : . n—1
—— lim hRic(w;) A wgn
wap—2(n —1)! Ylw;|2<1
1 -
= lim log|s; |2 ~/—100h A wity?
a2 =D S ¢
1 / 2 3 -1
= log|s|5 v —100h A wfy
wan—2(n = D!y p<t 5 c
1 / = _
= h+/—100log|s|?> A wy!
wap—2(n —1)! Slw;i2<1 goo c

2 — 0
__ o / hooar.
wap—2(n —1)! 3 lw;|2<1,w, =0

We let h approach the characteristic function on {>"|w;|? < 1} to obtain (2.24) as required. 0

Proof of Theorem 1.3. For each fixed i/, let h, > 0 be a family of smooth cutoff func-
tions supported in By, (D;s,2¢) and hy = 1 on Bg, (D;’, ¢), and applying Proposition 2.5
gives

Qr —0(x))dH*"2 < / he(2m — 0(x)) d JH>"2
D/ z

1

< Cy Y v(Ric, D,-)/D hewly!

< Cp ) v(Ric, Dy) Ol

i BgN (Dl'/,28)le‘

n—1
can

and since the RHS converges to C,v(Ric, D;/) [ o as ¢ — 0, this gives

(2.25) / (27 — (x)) dH>" < Cyv(Ric. Div) / ot
Di/ Di/

for all i’. But recall that
Y= (U D; U 8;2)\52’1_3.
l'/

Let D7, be points x of the irreducible component D;s where v(Ric, x) = v(Ric, D;’), so by
Siu [50], we know that D,-/\Dl‘-’, is an at most countable union of closed irreducible analytic
subvarieties of N of complex codimension at least 2. Lemma 2.6 shows that

H"2(822) = H2"TH(Dy\Df) = 0.
Thus
(2.26) H(E) < Y HTA(DP)

l'/

and

(2.27) / Qn —0(x))dH?" 2 = / (2r — 0(x)) d FH>" 2.
D, D;’,
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On the other hand, Proposition 2.7 gives, for each i,

(2.28) /D _@r—6(x)) dH* 2 = y(Ric, D) H>""2(Dy),
and combining (2.25), (2.27)1 and (2.28), we deduce that, for each i’,

2n—2 o n—1
H (D;) < Cn/ w1 Cn/ oy .
D;/ D/

i

and with (2.26), we finally deduce that

HP (D) < CHZ/ oy < c,,/ ol
i’ il

D

where D is regarded as a reduced divisor. m)

3. Collapsing and the canonical bundle formula

3.1. Volume form asymptotics. We now discuss estimate (1.4). We again work in the
unified setting (2.1), where A = 0 in the Calabi—Yau setup and A = 1 in the Kdhler—Ricci flow
setup.

It was shown in [28] that estimate (1.4) holds if N is smooth and D is a simple normal
crossings divisor. We thus assume that this is not the case, and let 7: N —> Nbea sequence of
blowups with smooth centers such that N is smooth and E = 7! (D) is a divisor with simple
normal crossings. Following the construction in the proof of [28, Theorem 2.3], we consider
a resolution of singularities M — M xy N (birational onto the main component of the target
space) and obtain the commutative diagram

p
/\

if

where M™ is smooth. Since M is also smooth, we can write Ky~ p*Km + D, where D
is an effective p-exceptional divisor, which can be assumed to have simple normal crossmgs
support. The volume form M = p*M on M is smooth and in general has zeros along D.If
we define § = n*¢ € CO(N) C°°(N\E), then on N\E, we have

ol = e fu(M) = 7* (e fi(M)),

S

2<—§

’

Can

and the asymptotic behavior of the volume form 7 *w[, was obtained in [28, Theorems 2.3
and 7.1] using Hodge theory (and in [40] with a different method, which also extends to the
case when the morphism f is Kéhler but not projective, see [40, Remark 1.6]): on N\ E,
we have

d
3.1 -1 H|s]|h ol <ol < C l_[|sj|23/ (1 — Zlog|s,|h ) Olnes

i=1
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where B; € Q>0 and where wcone is a Kéhler metric with conical singularities along_ the E;’s
with cone angles 2 y;, 0 < y; < 1, which we will take of the form weone = wy + 1007, where

(3.2) 12}#”

for some C > 0 sufficiently large. In particular, we have

c1 o’ C
< <

cone

—V; ~ ~ p—y *
Hi|si|i§1 vi) w;lV I |Si|il(.1 Vi)

Let us write

H = rwm@

and define a smooth function v on N \E by

(33) g = O LT
’ N e)W’Ha)ﬁ ’

which depends on the choice of Hermitian metrics /; and which by (3.1) and the boundedness
of ¢ satisfies

d
j
(3.4) Cl'syscC (1 - Zloglsz-lhi) :

i=1

3.2. The canonical bundle formula. The exponents ;, y; in (3.1) can be determined
by applying the canonical bundle formula in birational geometry [1,21, 21, 24,39, 40, 45] to
the map f . Following the notation in [40], we define divisors R=—-DonMand M = —K N
on N so that we have the equality as Q-divisors

Kg + R= f*(K§g +M).

We also define B = 7~1(D) C N and note that R + f f* B has snc support and f (Supp R)yc B
(so in particular R is vertical, with the terminology of [40]). It then follows that f satisfies the
conditions in [40, Definition 4.3], and thus, thanks to [40, (16)], [45, Theorem 8.3.7], there is
a well-defined Q-divisor Bgon N supported on B, the boundary part of the canonical bundle
Jformula for f , which satisfies

R+ f*(B — BR) <red(f*B)
and is the smallest such divisor. Writing

(3.5) Bg = Y aiBi.
i

it follows frogl [40, (16)] that a; € (—o0, 1).
Then M is a volume form on M with “poles along R” in the terminology of [40] (i.e.
zeros along D = —R), so [40, Corollary 1.3] applies (beware that there is a typo in [40, (4)],
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and the exponents a; there should be replaced by —a;) and shows that 7*w[,, = = AP ﬁ(ﬂ)

on N\ E satisfies

ca

*

b/
ll_llS |h2a,w < ncan C l_lls |h12a,w

(using again the boundedness of ¢), where s; is a defining section of O (Bi), the coefficients a;
are given by (3.5) and v is as in (3.4). Comparing this with (3.1) shows that the exponents f3;
in (3.1) are just equal to —a; for those a; < 0, and the exponents (1 — y;) in (3.1) are equal to
a; for those a; > 0.

Given thus Hermitian metrics /; on (9(5,-) (which we will choose precisely later), we
define v as in (3.3) by

21

2
T wcan Hl |Sl| “

e)Wa),.,
N
so that, on N\ E,

(3.6)  i00log(l/y) = Ric(r*wean) — Ric(wF) + Y _ ai Ry, + Amw*iddg
= 1 owp — AT * Wean — Ric(a)ﬁl/) + ZaiRhi + A7*i00¢
= 7*wwp — An*wy — Ric(wfy) + ZlaiRhi
—An*wy — Ric(wF) + ZaiRhl.l
i
sincf: wwp = 0 on N°. Observe that all terms on thj: last line of (3.6) are smooth forms on all
of N, and the term Zi aj Ry, is cohomologous to BR.

3.3. Vanishing orders. In this section, we will use repeatedly the notion of a Kéhler
metric wy on a singular (reduced, irreducible) compact complex analytic space N, as in [48];
see also [4, Chapter XII.3]. This has the property that if 7: N — N is a resolution of smgu—
larities, then 7 *wp is a smooth semipositive (1, 1)-form on N . Furthermore, the resolution N
can be chosen to be a Kihler manifold, and if wy is any fixed Kdhler metric on N, then

* N
JTC()N

n
'
N

is a smooth semipositive function on N which vanishes precisely along the exceptional locus
Exc(m). We may assume without loss that Exc(w) = | J Fy is a simple normal crossings
divisor, and we can find real numbers by € R~ such that the ratio

* n

T C()N

2b
nklst| kwﬁ

is a smooth strictly positive function on N (for any smooth Hermitian metrics &, on O (Fy)).
By Yau'’s theorem [62], we can pick our reference Kdhler metric w# such that we have

(3.7) 7 wN ]_[| Zbk
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Observe that the coefficients by are unchanged if we replace wy by another Kihler metric
on N since the pullbacks of these metrics to N are uniformly equivalent: indeed, given two
Kihler metrics wy, ) on N, given any x € N, we can find an open set U > x in N and
embeddings 1: U < CV,/:U — CN " and smooth strictly psh functions ¢, ¢’ defined in some
neighborhoods of the images ¢(U), //(U’) such that wy |y = 1*i90¢, wylu = /*i90¢’. Then
[4, Lemma XI.1.3.2] shows that, up to shrinking our neighborhoods, we may assume that the
embeddings ¢ and ¢/ are equal, and then it is clear that i00¢ and i00¢’ are locally uniformly
equivalent, and pulling back via ¢ and 7 shows that 7 *wy and 7 *w), are uniformly equivalent,
proving the claim. We can thus define a w-exceptional R-divisor on N,

IN/N = Zbka,
k

which does not depend on the choice of wy. When N is smooth, we have d 5,y = K, but
this equality does not hold in general (say when N is Q-Gorenstein so that K is Q-Cartier)
since the discrepancies of 7 can be negative, while the vanishing orders b are always positive.
It R
NEZNIZN

is a higher model, then fixing a Kédhler metric w5 on N, we have

*__% 1 * N
Jrna)N_ﬁ*na)NﬂwN
™ - o noc
N N N
and so
(3.8) IN/N =7?*JA7/N+K[\}/]\7.

3.4. A functorial divisor. We then define a Q-divisor on N by

EN := BR +Ji/n-

If we are now given a higher model 7: N — N and construct f M — N as above, then
we have (see e.g. [40, Lemma 4.10])

(3.9) Br =#*BR— K5/

and combining (3.8) and (3.9), we obtain the functorial relation

*

[x]

B8 = BR+Jdy/n =7"BR - K/§ + *§/n + Ki/§ = T°ER.
3.5. Collapsing. Having introduced the divisor E 4, we now come to the proof of
Theorem 1.4, which we restate here.

Theorem 3.1. Suppose that there is a resolution m: N — N as above such that 2§ is
m-ample. Then the conjectured estimate (1.4) holds on N\E.

Proof. 'We start the proof by using the method of [28]. From (3.4), log(1/) is bounded
above near E, so by Grauert—Remmert [25], it extends to a global quasi-psh function on N
which satisfies (3.6) in the weak sense. Thanks to (3.4), the extension has vanishing Lelong
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numbers, so we can approximate it using Demailly’s regularization theorem [14] by a decreas-
ing sequence of smooth functions u; with arbitrarily small loss of positivity, i.e.

- 1
(3.10) i00uj = —Am*wy — Ric(wF) + Y _ai Ry, — ~0F
. J
1
on all of N. We use this to obtain a partial regularization of 77 * Wean, Which we denote by
wj =n*on + %a)ﬁ + i00¢; . These are Kihler metrics on N\ E solving

n

[1; 18129 ’

with the normalization supg ¢; = 0 if A = 0, and where ¢; = 1 for A = 1, while for A = 0,

(3.11) o = cjeri T

the constant ¢; is defined by integrating the equation, and satisfies ¢; — 1 as j — oo. This
equation is solved via a standard approximation procedure (see e.g. [28, §5]), and we obtain
¢; which is smooth on N \ £ and continuous on N, and as in Section 2, we have the properties
that @; — 7 *wcan locally smoothly on N \E,

suplg;| <€ and  |lg; — 7 ¢|lL1(F 02) — 0.
N

Crucially, it is also shown in [28, Proposition 5.1] that, for each j, there is a constant C; such
that, on N\ E, we have

(312) tI‘wcone a)] S CJ ’

so these partial regularizations are not worse than conical (the proof in [28, Proposition 5.1] is
written with A = 0, but it extends immediately to the case A = 1). Also, differentiating (3.11)
and using (3.10), we see that, on N\ E, we have

(3.13) Ric(w;) = —Aiddg; + id0u; + Ric(wF) — Y _ ai Ry,
i

* A’ ~ * 1 ~

= —Awj + An*oN + 0N — AT oy — 7a)N

—Awj — 7wcone.

Our goal is then to show there are C, A > 0 such that, on N \E,
(3.14) oy, 0 < Ce™ A4
holds for all j sufficiently large since then, passing to the limit in j, this gives
Faogone 77 Ocan < CY A

on N \ E, which is our desired estimate (1.4).
First, following [33], we define W = C ), |s; |2p i for some small p > 0 and large C > 0,
which can be chosen so that, on N \ E, the curvature of Weone Satisfies

Rm(a)COIlC) Z _(CwCOHC + laé‘lj) ® Id’

see [33, (4.3)].
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To prove (3.14), we apply the maximum principle to

0 =logtry,, w;j +n¥Y + Au; — Az((pj - ]2) + Abn + eloglsg|?,

where A is large (to be determined), b > 0 is small and 0 < & < %, n was defined in (3.2), and
j will be taken larger than A (once the value of A is fixed). The terms

nW + Au; —AZ((pj — 2) + Abn
J

are all bounded on N (with bounds independent of j except for u 7), while the term log trg,, . @
is bounded above on N\ E (depending on ;) by (3.12). Since the term ¢ log|s g | goes to —oo
on E, the quantity Q achieves a global maximum on N \ E. All the following computations are
at an arbitrary point of N\ E.
First, from [28, (5.17)], we have
tr Ric(w;
Ay, (logtre,, @; +nW) = —C try; cone — wc"“e—(]),

. . tI‘(Ucone: a)]

while differentiating (3.11) gives
Ap;uj = Ay, @; + try; Ric(w)) — try; Ric(wf) + try, (Z aiRh,.)
i
=An— Atry, T 0N — < try, OF + try,; Ric(w))

— ttg, Ric(0F) + tra, (Z a,-Rhl.)

1

= An — Ay, 0N — — trey; Weone + tre; Ric(w))
— try; Ric(wf) + try, (Z a; Rhi),
i

and as in [28, (5.20)], we observe that

e RiC(@))

. trwcone (RIC(COJ) + %wcone + A,a)])
+ tra)j RIC(COJ) —

terOﬂe a)j trwcone wj
. C
+ try, (Rlc(a)j) + 7wcone + )La)j)

C
Uopigne (5 Wcone + Awj) €
— — tTy; Wcone — AN

tra)cone a)j
= _7 re; Weone — An,

using that Ric(w;) + %wcone + Awj = 0 by (3.13), so the quantity in the second line is non-
negative. Therefore, using again (3.13),

(3.15) Ay; (log tre,,,, wj +nVY + Auj)

C
> —(C + — )trwl. Weone — A + AAn — Adtry,, T 0N
7 . .

CcA .
- T tra)j Wcone + (A — 1) tra)j RlC(Cl)j)

— Atry; Ric(o§) + Atry, (Z CliRhi)
i
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CA
> —(C + —) try; Weone — A try, T WN
J
— Atry; Ric(wy) + Atry, (Z a,-Rhl.),
i

and taking i 90 log of (3.7) on N\ E gives
(3.16) Ric(wf) = m*Ric(wn) — > be R,
k

To bound the term 7 *Ric(wp ), we use the following lemma.

Lemma 3.2. There is a constant C such that, on N , we have

(3.17) Ric(w§) < C*on — Y brRp,.
k

Proof. In (3.16), the terms Ric(w# ), Y  bx RF, and m*wy are smooth on all of N,
so it suffices to show that, on N°, we have Ric(wy) < Cwp. This is of course clear if N is
smooth, while for singular N, recall that, by definition, we can cover N by open subsets U;
with embeddings U; < B C C¥ as analytic subsets of the unit ball in Euclidean space, and
on each U;, the metric wp equals the restriction of some Kéhler metric on B. Since bisectional
curvature decreases in submanifolds, on U; N N™ D U; N N°, we have that the bisectional
curvature of wpy is bounded above, and hence so is its Ricci curvature. O

Inserting (3.16) and (3.17) in (3.15) then gives
(3.18) Ay, (log tre,,, wj +nV + Au;)

CA *
= —(C + _) Ty ; Weone — CA trey; TN
j . .
— AAn + Atry, (Z bxRF, + ZaiRh,»)’
k i

where ) ", b R Fr + >oiai Ry, is the curvature of a Hermitian metric on our divisor E 5.
By assumption, E 5 is w-ample, and so we can choose the metrics & g, , h; so that

O = Aon*on + ZkaFk + ZaiRhi
k i
is a Kihler metric on N for some (in fact all) A sufficiently large. We also choose A in the

quantity Q so that A = 2A,.
Using (3.18), we can then compute

CA
ij 0= —(C + T) try; Weone — CA tre, 7*oy + Atrwj (Z bxRF, + ZaiRhi)
k i
1 _
— AAn + Aztrwj (n*a)N + —,a)wne) + Ab try,,; i00n — A%n — etry; RE
J

CA
> —(C + 7) tf,; Weone + A tre; (Z b RF, + ZaiRhi) — AAn
3 i

A? . A? = , C
+ - try; 7 wN + T tTey; Weone + Ab trgy; 100N — An — 7 Tey; Wcone
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> —C tr, @cone + Atra, (Ao7* 0N + 3 bR, + Y a; Ry, + biddy)
k i
— Aln — A%n,

. . . 2 .
assuming without loss that A4 is large so that AT > CA and also that j > A. Then we choose
b > 0 small so that ®F + bi00n = @Deone i a conical Kihler metric with @cope = C®cone for
some ¢ > 0 so that

Atry, (Aoyr*a)N + ZkaFk + ZaiRhl- + biBén) = Ac try; Weone,
k i

and finally, we can choose A sufficiently large so that Ac try, ; Weone = Cc+1 tre; Weones and
so we obtain Ay, Q = try; Weone — C. Therefore, at a maximum of Q (which is not on E), we
have trey; Weone < C, and so also tr,,,,, w; < CHe™ ™/, hence

log tre,,,. wj + Auj < ClogH + (A—1)u; <C,

and so also Q < C, which must hold everywhere on N \ E. The constants do not depend on &,
so we can let ¢ — 0, and this gives try, , ®; < Ce=4%/ which is (3.14). O

4. Collapsing of the Kéhler—Ricci flow

In this section, we give the proof of Theorem 1.5. The setup was described in detail in
Section 1.2 in the introduction, and we will not repeat it here.

4.1. Review of some recent results. We first collect some recent results from the
literature that will be used in the course of our proof.
First, by [59, Theorem 1.2], we have that

4.1) w(t) — f*wcan

inC?

1oc(M ©), while [52] shows that the scalar curvature of w(?) is uniformly bounded, i.e.

4.2) sup|R(w(t))| < C
M

for all t = 0, and also that the volume form of w(¢) satisfies
4.3) C_le_(m_”)ta)ﬂ"} <o) < Ce_(m_")ta)ﬁ

on M x [0, 00), as well as the “parabolic Schwarz lemma” estimate [52, Proposition 2.2] (and
also [60, (3.5)] for the case when N is singular)

(4.4) w(t)=C oy

on M x [0, c0).
Next, using the results in [3], in [38, Theorem 1.1], it was very recently proved that

diam(M, g(t)) < C
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uniformly for all # = 0. Also, in [38, Corollary 1.1], it is shown that there is a uniform C such
that, forall x € M, 0 < r < diam(M, g(t)), t = 0, we have

Volg () Bg(t)(x, r) -

—(m—n)t
o Ce~\m—mit,

(4.5) Clemlm=—mt <

We also have information about the collapsed limit space (N°, wcan). Thanks to our
assumptions that N is smooth and DD has simple normal crossings, we can apply [28, Theo-
rem 1.4], which gives us that, on N \D(l),

A
m
(46) C_la)cone < Wean < C (1 - Zlog|si|hi) Weone

i=1

holds, where w¢ope 1s a Kéhler metric with conical singularities along DM = U; Di. Also, in
[28, Proposition 3.1], it is shown that w¢,, extends to a smooth Kéhler metric across D(z), SO
without loss, we may assume that D = D! is a simple normal crossings divisor.

If we denote by d.., the associated distance function on N °, then it is shown in [28, Theo-
rem 6.1] (using [61, (2.7)]) and also in [53, Proposition 2.2] that (N °, dcan) has finite diameter,
and so its metric completion (Z, dz) is a compact metric space which by [53, Proposition 2.3]
is homeomorphic to N (here we use that N is smooth). Also, [53, Proposition 2.2] shows that,
for every p,q € N° and § > 0, there is a path y in N° joining p and ¢ with

4.7 Lg..(y) <dz(p.q)+§.

We can call this the “almost-convexity” of (N °, d.an) inside its metric completion.

There is also a more localized version of this almost-convexity. Let us introduce the
following notation: for any ¢ > 0, let U C N be the e-neighborhood of D with respect to
the fixed metric wy on N, and let U, = f~Y(Us) C M. Then, in [53, Proposition 2.2], it
is shown that, given any &, ¢ > 0 sufficiently small, there is 0 < & < &’ such that, for every
P'.q" € N\Uy, there is a path y in N\ U, joining p’ and ¢’ such that (4.7) holds. But thanks to
the upper bound in (4.6), it follows that, for every p € N\Uk, there is p’ € N \Ug which can be
joined to p by a path which is contained in N \ U and with g.,,-length at most §. Concatenating
this path, the path y and the analogous path joining g and ¢’ inside N \U,, we conclude that,
given § > 0, there is ¢ > 0 such that, for every p,q € N\U,, there is a path y in N\ U, joining
them such that (4.7) holds. We will call this the almost-convexity of (N \Ug, dcan).

It is also possible to avoid using (4.6) as follows: using (2.11) and passing to the limit on
N\U, shows that d.,, has a local Holder bound there (with respect to gn ), and we conclude
the localized almost-convexity statement since the gy -distance from p to 0U, is O(¢’).

4.2. Reduction of Theorem 1.5 to Proposition 4.1.

Proof of Theorem 1.5. From the volume form bound (4.3), we see that, for any given

6 > 0, there are ¢ = £(6) < 8, T > 0 such that, forall t = T, we have
4.8) Vol(Ug, w(t)) <s
Vol(M, w(t))

We can also assume that ¢ is small enough so that the above-mentioned almost-convexity prop-
erty of N\U, holds, and we fix this value of £(§) for the rest of the proof. Also, in all of the
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following, 8’ > 0 will be a positive number that depends on § and satisfies §'(§) — 0 as § — 0,
which may change from line to line.

Claim 1. For every p € U,, we have

(4.9) dz(p,oU;) < 6.

Recall here that (Z, dz) denotes the metric completion of (N°, dcan). Claim 1 follows
easily from the upper bound for w¢,, in (4.6); however, we can also argue in a different way
without using (4.6) as follows. We employ the family of metrics @; in Proposition 2.1 that reg-
ularize wcan and have the property that (N, ;) — (Z,dz) in the Gromov-Hausdorff sense.
Thanks to Cheeger—Colding’s extension of Colding’s volume convergence theorem [8, Theo-
rem 5.9], the volume noncollapsing bound in (2.10) implies that there is C such that, for all
x € Zand 0 < r < diam(Z, dz), we have

(4.10) J2"(BY% (x,r)) = Cr?",

where here J2" denotes the 2n-dimensional Hausdorff measure. By definition, we have an
isometric embedding ¢: (N°, dcan) < (Z,dz), and it is shown in [61, p. 758] that

(4.11) HE(Z\((N°)) = 0.

On the other hand, by [61, p. 758], on N°, the renormalized limit measure v is proportional to

w!,,» and since this is proportional to e? fi (M) with ¢ bounded, it follows that

(4.12) / ol <C /L oy <8,
Us\D &

and so, if we identify U, with its image in Z under the homeomorphism N = Z, it follows
from (4.11) and (4.12) that

(4.13) H2M(Ug) < 8,

and Claim 1 follows from (4.10) and (4.13).

Claim 2. We have

deu((Z.dz). (N\Ue.dcan)) <8'.  where §'(§) - 0 as § — 0.

We emphasize that here (N \Ug, dcan) denotes the restriction of the metric dcay from N°
to the subset N \U,. However, by the almost-convexity property of N \U,, this differs from the
distance induced by the metric w¢yn on N\U, by at most §, so these two distances on N\ U,
can be safely interchanged in our arguments.

To prove Claim 2, we use Claim 1 that allows us to define amap F:Z =~ N — N\U;
(in general discontinuous) which is the identity on N \U, and inside U, it maps p to a point
q € 0U; with dz(p,q) < & (which is not unique, but we just choose any one of them). Let
G:N\U; — N = Z denote the inclusion. It is elementary to check that F and G are a 3§’-
GH approximation, using the almost-convexity property (4.7) and the fact that replacing p
by ¢ only distorts the dz-distance function by §’. For the reader’s convenience, we spell out
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the details since a similar argument will also be used later. We need to show the following
properties:

4.14) dz(x,G(F(x))) <8, x€N,

(4.15) dean(y, F(G(y))) <8,y € N\Us,
(4.16) |dz (x,x") — dean(F(x), F(x'))| <38, x,x' €N,
(4.17) |dean(y.¥") —dz(G(y).GOY'NI < 8. y.y' € N\Us.

Estimate (4.14) is trivial when x € N \Ug, and follows from (4.9) when x € U,. Estimate (4.15)
is trivial. Next, given any x, x" € N\Ug, using (4.7), we see that

(4.18) dz(x,x") <dean(x,x") <dgz(x,x") + 8.

This immediately implies (4.17), so it remains to check (4.16), and for this, we consider three
cases. First, if x, x" € N\Ug, then (4.16) follows from (4.18). Second, suppose x € N\Ug,
x" € Uy. Then, using the almost-convexity in (4.9), we have

(4.19) dz(x',F(x")) < ¢,
and using this and (4.18), we obtain
dz(x,x") <dz(x, F(x) + 8 = dz(F(x), F(x) + 8 < dean(F(x), F(x")) + 6§
and also
dean (F (x), F(x")) < dz(F(x), F(x")) + &'
<dz(x,x) +dz(x', F(x")) +¢&
<dgz(x,x")+ 2§,
proving (4.16) in this case. Third, suppose x, x’ € U,, and use again (4.18) and (4.19) to bound
dz(x,x") < dz(x, F(x)) +dz(x', F(x")) + dz(F(x), F(x"))
<dz(F(x), F(x")) + 28
< dean(F(x), F(x")) + 28,
dean(F (x), F(x")) < dz(F(x), F(x")) + ¢
Sdz(x, F(x)) +dz(x', F(x")) + dz(x,x") + &
<dgz(x,x") + 38,
completing the proof of (4.16) and of Claim 2.
Next, recall from (4.1) that, away from S, we have locally uniform convergence of w(¢)
to f*wean. Since f: M° — N° is a C fiber bundle, it follows easily that, up to making 7’
larger, we have
dGH((N\US’ Wean)s (M \Ug, CU(I))) <4

for all + = T; see e.g. [57, Theorem 5.23]. But, as a consequence of almost-convexity, the
distance function given by (N\Ug, wcan) differs from (N \Ug, dcan) by at most §, so we also
have

(4.20) da(N\Us, dean), (M\Us, (1)) < 28

for all r = T'. Lastly, we have the following claim.
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Claim 3. Up to making T larger, we have
don((M\Ue, (1)), (M, 0(1))) <8, where §'(§) — 0as§ — 0,

forallt = T.

Combining Claims 2 and 3 with (4.20), we conclude that (M, w(t)) — (Z,dz) in the
Gromov—Hausdorff topology as ¢t — oo, which will complete the proof of Theorem 1.5.

The proof of Claim 3 relies heavily on the following statement, which can be thought of
as an almost-convexity of (M \Us, (1)) inside (M, w(t)) uniformly in ¢t = T'. Denote by d;
the distance function of (M (t)) and by d, ; the distance function of (M \U,, (7)) so that we
trivially have d;(x, x") < d; (x,x") for all x, x’ € M\U,. Then we have the following result.

Proposition 4.1. Given § > 0, there are §', T > 0, with §'(§) — 0 as § — 0, such that,
forall x,x’ € M\Ug and allt = T, we have

4.21) di(x,x") < dyp(x,x') < de(x,x") + 6.

Indeed, assuming Proposition 4.1, the proof of Claim 3 is completely analogous to the
proof of Claim 2, and we briefly outline it. First, we have the analog of Claim 1, namely that,
up to enlarging 7', forallt > T and x € Ug, we have

(4.22) di(x,00,) <&, whered'(§) = 0as§ — 0.

To see this, we use the volume estimates (4.3) and (4.5) which imply that, for all x € M,
0 <r <diam(M,g(t)),t =0,

Vol(BED (x, r), w(t)) S C—1,2n
Vol(M, w(t)) - T

and so (4.22) follows from this together with (4.8).

Using (4.22), for each ¢t = T', we define a discontinuous map Fy: M — M \Us which is
the identity on M\U‘9 and inside U, it maps p to some point g € oU, with d;(p,q) < &'. One
defines then G: M \178 — M to be the inclusion, and using (4.21), one checks exactly as in
Claim 2 that F; and G give a 36’-GH approximation between (M, d;) and (M \178, Jt), thus
proving Claim 3. The proof of Theorem 1.5 is thus reduced to proving Proposition 4.1.

4.3. Proof of Proposition 4.1. The only nontrivial inequality to prove is
di(x,x) < dg(x,x') + 6.

For this, we first observe that, given any p,q € M \ﬁg, we know from the almost-convexity
property of (N\Usg, dcan) that their images f(p), f(q) € N\Ue can be joined by a path y in
N\U; with

Lgw(v) < dean(f(p), f(q)) + 8.

Since f is a smooth fiber bundle over N\U,, we can easily find a path 7 in M\U, joining
p and g with f oy = y; see e.g. [57, Theorem 5.23]. Thanks to the uniform convergence in
(4.1) and the fact that dean(f(p), f(g)) < C for some C independent of p, g, we see that (up
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to increasing T'), for allz = T, we have

di(p,q) < Lg,(¥) < Lypsg,,(¥) +8 = Lg,,(y) + ¢
< dean(f(p). f(q)) + 28,

so to complete the proof of (4.21), we are left with proving the following.

Claim 4. Up to making T larger, we have

dean(f(p). f(@)) < di(p.q) + &

forallt = T and all p,q € M\ljg.

We will sometimes tacitly replace §' by C4’, and without loss, we may assume that
dean(f(p), f(q)) = &'. The rough idea to prove Claim 4 is to first replace the distance by
a version of Perelman’s reduced distance and then use a smearing argument to show these two
are roughly the same.

First, we shall reparametrize the flow. Let 7" be a given large time, whose precise value
will be determined at the end of the argument. Recall that our Kihler metrics satisfy the Kéhler—
Ricci flow

%a)(l) = —Ric(w(t)) —w(t), w(0) = wpy.

If, as usual, we let g(¢) denote their associated Riemannian metrics, then the Riemannian
metrics

1
Fo)=e"Tet=T), s=_("""-1),
solve the standard Ricci flow
0 e 1 _r
—g(s) = —2Ric(g(s)), s=s0:= (" —1),
os 2
with g(0) = g(T), and we can convert back from g(s) to g(t — T') by

g(s)

{—T)=
g =T) =175

, t=T+log(l + 2s).

The scalar curvature bound (4.2) translates to

4.23 sup|R(g(s))] <
(4.23) Mp| (8(s))] 725
for all s = s¢.

As in [49], we let T = —s, and letting g(7) be the metrics g(s) with parameter s = —t,
then these solve the backwards Ricci flow

0 . e~
5.8 = Ric(@).  &lr=o = g(T).

T
We will work with 0 < 7 < 7 < 1, where the choice of T depends on §, to be specified. In
particular, since 7 is small, it follows from (4.1) that g(7) is uniformly close to f*gc., on
M\U; for0 <t < 1.
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Following Perelman [49, § 7], the &£-length of a curve y(t) in spacetime is defined by

£() = [ VER@E©) + 0oyl d

The £-distance between two points in spacetime is the infimum of such. Given p,q € M \(78,
following Perelman, we will denote by L (g, T) the £-distance between (p, t = 0), (¢, 7 = 7).

To start, using the almost-convexity of (N\Ug, dcan), we can join f(p) and f(g) by
a path y inside N\ U, with length

Lg...(y) < dean(f(p). f(q)) + §

and let ¥ be a lift to a path in M\U, joining p and g.
We then parametrize y by © € [0, T] so that

A
0V |3y = — e
| 1:)/|g(1:) 2&

forall 0 < v < 7, where

A= /0 071500 d7 < dean (£ (P). £ (@) + 6.

using that g(7) is close to f*gcan On M\ﬁg for 0 < 7 < 7, and that dean(f(p), f(q)) < C
by the diameter bound for (N °, dcan)- Then, using the scalar curvature bound (4.23), we can
estimate

L(g.7) < 2(G) = [0 VE(RE@) + 10:7 ) d
A2
27

W
NI

T
0

[S][o9)

1 2%
+ Z—ﬁ(dcan(f(pL f(@) +34 ) ’

- . L -
and we can absorb the term with T2 into the term with §’ by choosing T < §’, thus obtaining

<Crt

(4.24) L(g.7) < £(7) < (dean(f(p), f(q)) + C8')>.

271/2

The same is true if ¢ is replaced by any point ¢’ with f(g¢’) € B8 ( f(q),?’).
We wish to show the almost matching lower bound

425) L. ) > 5o (dean(2). f(@) — C8)’.

By the triangle inequality and up to a small modification of 7 to T(1 + O(8)), it is enough to
prove

1
(4.26) L7 2 Sy (dean( £ (). f(9)) = €8

for some ¢’ with f(q’) € B8 (f(q),d’). The main enemy is that the £-geodesics can go into
the region U, where we do not have much control of the metric.
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On any minimal £-geodesic y from (p,0) to (¢, 7), thanks to (4.24) (applied with ¢
replaced by ¢’) and the diameter bound for (N°, d.,,), we see that

@2 L) =L@\ < CT 2 (dan(f (). fla) + C8) < CT2

Fix a gean-ball B € N\ U, centered at f(p) of some radius » > O (which depends only on &),
let B= f~!1(B)andlet 0 < T < T be the first time when the curve y exits B. Since g(7) is
uniformly close to f*gc. along y(7) for 0 < v < 7', using (4.27), we have

=/

z
r < C/ |af)/|§(t)dt
0

T . 3007 3
§C/ﬁa 5 d‘L’) (/ —dr)
([ o) ([

.E/
<C#i (Cf’g +/O VT(R(E(D) + Iaryli:(,))df)

<CPH(CT2 +C172)

1

1 _1
S CT47 4,

Wl

i.e.
(4.28) 7 >C7 1.

Perelman [49, § 7.1] showed that =" exp(—[(7))J () is nonincreasing in t along an
£-geodesic, where /(q, 7) = 2L{L(q, 7) is the reduced length and J is the Jacobian of the
£L-exponential. Thanks to (4.27), we have

C
(4.29) I(q' 7)< —.
T

Thus, Perelman’s monotonicity together with (4.28) and (4.29) gives that, for T/ < t < 7, we
have

(4.30) J(1) = (%)mel(r)_lﬁ)J(f) > c e S 5(D)

on M.
Consider the set " of all the minimal £-geodesics from (p, 0) to (¢’, T) with ¢’ such that
f(q") € B8 (f(q),8"), and consider the subset E C [t/,T] x M defined by

E=|J{@.y@) |7 <t <7}

yel

Writing E; = E N ({t} x M) (viewed as a subset of M), the spacetime volume of the region

E is defined by .
T
Vol(E) :=/ [ o(t)"dr.
v JE;

Let £Lexp, .1 TpM — M be the £-exponential map based at p with parameter 7. Then we
have E; = £exp, . (F), where F C Tp M is a t-independent open subset, and up to sets of
measure zero, l’expp’, is a diffeomorphism between F and E; see the discussion in [41, § 17]
or [11, § 8]. Equipping 7, M with the Euclidean metric g,(0) and letting dv be its volume
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/Té(t)m :/FJ(r)dv,

and thanks to (4.30), for all 0 < 7 < 7, we can estimate
/ J(t)dv=C e % / J@) dv = c—le—?f E)™,
F F E:

but up to sets of measure zero, E; equals ! (B8« (f(g),8)), whose volume with respect to
wyy is at least C —1§72n Using the volume form bound (4.3), we thus see that

element, we can write

/ 5(,[)m > C—le—%812ne—(m—n)T’

T

and using (4.28), we conclude that
4.31) VOI(E) = C 1o~ §2ne=(m—mT

Next, for 0 < n < 1, to be chosen later depending on ', 7, and for T’ < t < 7, we have,
using (4.3),

/~ a(r)m < C/‘~ a)(T)m < Ce—(m—n)T /; w}\n} < Cne—(m—n)T’
U, s 7,

where we used that the g;7-volume of 17,, is at most C 7. Thus the subset of E given by (z, (7))
with y(7) € U, has spacetime volume bounded above by

Cine~ M1 < Cps'~2"eC/TVol(E),

using (4.31). In particular, on a typical minimal &£-geodesic in I', the 7-time spent inside 17,, is
less than C 78’ ~2"¢€/T_ For each such £-geodesic y, we split [0, 7] into the subset I defined
by the property that T € I < y(r) € Uy, and its complement J = [0, T]\/. Then we have

|I| § C_L—_n(g/—ZneC/%,

and thanks to (4.28), we know that every t € I satisfies 7 > C ~'7. The same argument that
we used to prove (4.27) shows that

D=

(4.32) L(y)<Ct 2.
Splitting )
[ etz = [ oerize de + [ perzen v
we can then estimate, using (4.23), (4.28) and (4.32),

1 1
(4.33) /;|ary|§(t)df <Ct 4LT4|aty|g(r)dT

1
__1 201
<ce ([ vele i de) i

1 1 1., -
< Ctatap28"eC/t 1

(ct + [ Ve + |ary|§(,))dr)2

1 1 1 1

< Ctinz8eC/T(C73 + C72)z < Cn28"eClE,
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and combining this estimate with (4.4), we see that the g -distance traversed by f(y) inside
U, is bounded above by

(4.34) Cy28 et < of

for small enough 7 and some fixed small positive exponent < %

The issue now is how to use these bounds to estimate from above the g.,,-length of the
curve f(y). Outside of (7,,, we have that g(7) is uniformly close to f*gcan (up to enlarging 7',
depending on our choice of 1, which itself was chosen depending ultimately on §), so we have

(435) [ Perlee e = [ el dr-co.

which will give us the desired bound for the gcan-length of the portion of f(y) outside Uy, (i.e.
when 7 € J). On the other hand, to estimate the gcan-length of the portion of f(y) inside Uy,
(i.e. when t € I), we employ the metric bounds (4.6) as follows.

Consider the following events: f(y) enters Uy and reaches U, /, before returning to the
boundary of Uj. On the one hand, by definition, the gy -distance traversed during this whole
event is at least n, and on the other hand, we have shown in (4.34) that it is also less than 773;
the discussion is local: the event takes place in a local coordinate chart exhibiting D as a simple
normal crossings divisor. Let f(y(Zenry)) and f(y(zexit)) be the entry and exit points of one
event so that their g.,,-distance is at most

Texit
/ 19e £ ()]s d .
Tentry

By the explicit control (4.6) on gca, We have

A
"
(4.36) C ' weone < Wean < C (1 - Zloglsilhi) Wcone-

i=1

For simplicity, suppose first that D has only one component, which in our local chart is given
by {z1 = 0}. Then we can assume without loss that, in this chart, the boundary of U, is given
by {|z1]| = n}, and in our chart (4.36) reads

C_l ile /\dfl " » dz
—|21|2(1_V) + Zl zj NdZj
Jj=2

idzi ndzZ " _
< Wean < C(l _loglleA( |Z |12(1—J/)1 + Zl de A dZJ)
1 .
Jj=2

The entry and exit points are both on {|z1| = 1}, have gcan-distance at most

Texit
[0t e de
remry
and hence their g.one-distance is at most C times that. Therefore, there exists another path
joining these entry and exit points, which is contained in the boundary of Uy (in particular, it
does not come into U, ») and whose gcone-length is also at most C |, rret“ |0z f(¥)|gean d T, and
entry
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hence whose g.an-length is bounded above by

Texit
Cllog n|Cf 9er Iz .
T

entry

The general case when in our chart we see several components of D is dealt with similarly. We
perform this construction for all the events (which are disjoint). This gives a replacement y’
of f(y), staying outside U, />, agreeing with f(y) between the events, and whose gcan-length
traversed in each event is at most C|logn|€ times the corresponding integral of |0,y | F(x)-
Thus, using (4.33), (4.34) and (4.35),

(4.37) dean(f(p), f(q)) < Lgcan(y/)
< /J 19 (1)l gu d 7 + Cllog n|C /1 1By |30 dT

< /;|ar)/|§(r)d‘lf + C8 + Cllogn|€nP

T
< / |ar)/|§(t)d1’ +C¥,
0

choosing 7 small enough. Since y here is a minimal £-geodesic from (p, 0) to (¢’, T), arguing
as before, we see that

z z . /0% 1
(4.38) /O|aty|§(r)dr§(/0 ﬁ|a,y|§(,)df) (/0 fdr)

< zfi(Cf% + /0 VE(RE(D) + |aty|§(,))dr)

1
2

= VaTH(C73 + L(g. D)2,

and so, from (4.37) and (4.38) (again, we can absorb the term with %%), we get

L' D) > i (den £ (5. f(@)) — €8

as desired, for some ¢’ with f(q’) € B8« (f(q), &), which establishes (4.25) and (4.26). As
explained above, up to small modification to 7, this implies that the same statement (4.26) holds

for all ¢’ with f(¢") € B%=(f(q),?).

The main difference between this statement and Claim 4 is that we wish to compute
distance with respect to a fixed time metric, rather than evolving metrics. Again following [49],
we consider

L(q'.t) = 2J7L(q . 7).
As T — 01, the function L tends to dz0)(p, q")? (see [11, Lemma 7.47]), and according to
[49, (7.15)], we have
0 _
(E + Ag(,))L < 4m.
Recall that (4.25) gives

(4.39) L(q'.7) = (dean(f (). f(q)) — C&)?
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for ¢’ with f(q") € B%=(f(g),8’), and (4.24) gives
(4.40) Lig.t)<C
forall0 <t <.
Let y be a smooth (time-independent) cutoff function on N supported in B8« (g, §') and

equal to 1 on B8«n(g,§’/2), and denote by the same symbol its pullback to M via f. Then, by
(4.4), we have

4.41) sup|Ag x| < cs 2

M

for 0 < v < 7. Integrating the t-time evolution of
[ Aic.oamo

M
with respect to t € [0, 7], we obtain
-_— - 1_7 -_—
[ b0 o = [ leoam@+ [ [ Leoagoanode
M M 0 JM

) fo /M 1L ORE @)™ dr.

and employing (4.3), (4.23), (4.40) and (4.41), we can bound

f L(- 1)Ao@ (1) = ~C8'2 f 570
M f—1(B&ean(q,8))
> _CS/—2e—(m—n)T / a)]r‘nl
f1(B&en(q,§))

> _Ce—(m—n)TS/Zn—Z’

and similarly
—2 / AL ORE@)@ (@) = —Ce™mmTg2n,
M

and so, using also (4.39),
/ ¥L(-,00&™(0) = [ yL(-,T)3™(7) — C78*" 2~ m—mT
M M
> ([l £(0). f(@) ~ CBY? [ 437(8) = Cag2n=2e= T
M
> (el /() @) = €O = C782) [ @),
where in the last line we used that [, x&(t)™ > C~182ne=(m=mT which again comes from

(4.3). By choosing T < C 18’3, we can ignore the term with 76'72.
Now, integrating the t-time evolution of [,, @™ (v) with respect to t € [0, 7], we obtain

f &™(@) / 2™ (0) =2 / YRGB dt > —CT8 2T
M M 0
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and so

(4.42) /M AL(.0F"(0) = (den(f(p). (@) — C8')
/ x@™(0) — Cz§/ "2~ m—mT
M

Now, using C? metric convergence in the regular region, the g(7")-distance between g
and ¢’ is bounded by C§’ in the support of y, so

(443) [ L0370 = [ xdzop. 5" 0)
M M
— [ xdery(p. 5" 0)
M
2 ~
< (dg(T)(p,q) + C5/) /M x@™(0).
Combining (4.42) and (4.43) and dividing by [y, x@™(0) = C~1§2"e=m=mT gives

(dgcry(P.q) + C8)* = (dean(f (), f(q) = C8')* = C78 72172,

and taking T < C 182"+ we obtain

(4.44) dery(p.q) = dean(f(P). f(q)) — C&'.

This fixes our choice of 7, and hence of 1, which finally also fixes how large T has to be. In
summary, we have shown that (4.44) holds for sufficiently large 7', and this finally concludes
the proof of Claim 4, and hence of Proposition 4.1. |

Remark 4.2. There is only one point in the proof of Theorem 1.5 where it was essen-
tial to use estimate (4.6) (which is where we use the assumption that N is smooth and D is
snc), which is to prove (4.37). In the proof of (4.37), we had to deal with the rather artificial
possibility that the minimal £-geodesic y there wanders in and out of the neighborhood l7,7 /2
an unbounded number of times (what we called “events” in the proof). Here we want to remark
that if one can find such y such that the number of events is bounded above by a uniform
constant A, then one can prove (4.37) (and hence Theorem 1.5) dropping the snc assumption
on DO, Indeed, for each event as above, we can estimate the d.,,-distance between the entry
point P := f(y(Tenry)) and the exit point Q := f(y(zexit)) by using that, on N\U, /2,

dean(P, Q) < Cdgy (P, Q)%

for some uniform o > 0, by passing (2.11) to the limit. Since
Texit
dew (P.0) < [ o f ey d

Tentry

we see that we can join P and Q with a path whose gc.,-length is at most

Texit « Texit a
c([Toermlevar) <c([ o) .
rentry remry
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and using this path to replace the portion of f(y) with Tepry < T < Texir, and repeating this for
all the A events, we obtain a new path y’ joining f(p) and f(q) for which we have

Texit,i o
Lgcan(y/) s []|aff(Y)|gcan d’[ + C ; (/ |afy|§(r) d’[)
T

i=1 entry, i

o
§f|ar)/|§(r)d‘f+C5/+CA1_Q(/|ary|§(r)dt)
J I

A

T
< / |at)/|§(1-) dt+C8 + CAl_anaﬂ
0

T
< / |at)/|g;(t)d‘6 +C¢§
0

by choosing 7 sufficiently small, which proves (4.37).
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