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On the collapsing of Calabi–Yau manifolds
and Kähler–Ricci flows

By Yang Li at Cambridge and Valentino Tosatti at New York

Abstract. We study the collapsing of Calabi–Yau metrics and of Kähler–Ricci flows
on fiber spaces where the base is smooth. We identify the collapsed Gromov–Hausdorff limit
of the Kähler–Ricci flow when the divisorial part of the discriminant locus has simple normal
crossings. In either setting, we also obtain an explicit bound for the real codimension-2 Haus-
dorff measure of the Cheeger–Colding singular set and identify a sufficient condition from
birational geometry to understand the metric behavior of the limiting metric on the base.

1. Introduction

In this paper, we study the collapsing behavior of Ricci-flat Kähler metrics on Calabi–
Yau manifolds, and of long-time solutions of the Kähler–Ricci flow. We first describe in detail
these two setups, which have been much studied recently, and state the main open problems
that we are interested in.

1.1. Calabi–Yau. Mm is a projective Calabi–Yau manifold with KM Š OM , with a
trivialization � of KM , equipped with a holomorphic line bundle L which is semiample and
with Iitaka dimension n´ �.L/ that satisfies 0 < n < m. Then there is some ` sufficiently
divisible such that the linear system j`Lj defines a fiber space structure f WM ! N (surjective
holomorphic map with connected fibers) onto a normal projective variety N n with 0 < n < m.
Let D � N denote the closed subvariety given by the union of the singularities of N together
with the critical values of f on N reg, and write S D f �1.D/ and D D D.1/ [D.2/, where
D.1/ is the union of all codimension-1 irreducible components of D and dimD.2/ 6 n � 2.
The fibers My D f

�1.y/ for y 2 NnD are Calabi–Yau .m � n/-folds. We will also denote
N ı D NnD, M ı DMnS .

Given a Kähler metric !N on N (in the sense of analytic spaces [48] if N is not smooth)
and a Ricci-flat Kähler metric !M onM , we are interested in the behavior of the Ricci-flat met-
rics !.t/ on M cohomologous to f �!N C e�t!N , t > 0, in the limit as t !1. To identify
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the limit, one solves [51, 54] the complex Monge–Ampère equation on N ı,

(1.1) .!N C i𝜕N𝜕'/n D f�.!mM /
R
N !

n
NR

M !mM
;

where !can ´ !N C i𝜕N𝜕' is a Kähler metric on N ı and ' 2 C 0.N / (for continuity, see
[13, 18, 30]). After earlier work in [26, 35, 36, 54, 59], it was very recently shown in [37] that
!.t/! f �!can in C1loc .M

ı; gM /.
In [53], it was proved that the metric completion .Z; dZ/ of .N ı; !can/ is a compact

metric space and that .M;!.t//! .Z; dZ/ in the Gromov–Hausdorff topology (see also [27,
61] for earlier results in this direction). The following questions, raised in [27, 55, 56, 58],
remain open in general.

Conjecture 1.1. In the Calabi–Yau setup, the Gromov–Hausdorff limit is homeomor-
phic to N . Furthermore, ZnN ı has real Hausdorff codimension at least 2 inside .Z; dZ/.

The homeomorphism statement was proved in [53] when N is smooth, and the full con-
jecture is known when N is a curve [27], or when M is hyper-Kähler [61], or when N is
smooth and D.1/ has simple normal crossings [28].

We remark that the choice of path f �Œ!N �C e�t Œ!N � in cohomology originates in [29]
and is quite analogous to what happens in the Kähler–Ricci flow setup below. Choosing a dif-
ferent path that approaches f �Œ!N � in general results in a different behavior [20, § 4.4.4], and
the existing estimates mostly break down.

1.2. Kähler–Ricci flow. Mm is a compact Kähler manifold with KM semiample and
with Kodaira dimension n D �.M/ that satisfies 0 < n < m. Let f WM ! N be the Iitaka
fibration of M , which is the fiber space determined by the linear system j`KM j with ` suffi-
ciently divisible, and N n is a normal projective variety. Define D;N ı;M ı as in Section 1.1,
and again, the fibers My , y 2 N ı, are Calabi–Yau .m � n/-folds. Let !N D 1

`
!FSjN so that

f �!N is a smooth semipositive representative of c1.KM /.
Given a Kähler metric !M on M , consider the normalized Kähler–Ricci flow on M ,

𝜕
𝜕t
!.t/ D �Ric.!.t// � !.t/; !.0/ D !M :

The flow exists for all t > 0 (see e.g. [57]), and we are interested in the behavior as t !1.
Observe that the metric !.t/ is cohomologous to .1 � e�t /f �!N C e�t!M .

In order to identify the limit of the flow, we fix a basis ¹siº of H 0.M; `KM / which
defines the map f , and obtain a smooth positive volume form M on M by

M D
�
.�1/

`m2

2

X
i

si ^ si

� 1
`
:

One then solves [51] the complex Monge–Ampère equation on N ı,

(1.2) .!N C i𝜕N𝜕'/n D e'f�.M/;

where !can ´ !N C i𝜕N𝜕' is a Kähler metric on N ı and ' 2 C 0.N /. After earlier work in
[21, 22, 35, 51, 59], it was recently shown in [12] that !.t/! f �!can in C ˛loc.M

ı/ as t !1,
for any 0 < ˛ < 1.
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Furthermore, in [38], it is shown that diam.M;!.t// 6 C for all t > 0, and [53] shows
that the metric completion .Z; dZ/ of .N ı; !can/ is a compact metric space, which is homeo-
morphic to N when this is smooth.

Conjecture 1.2. In the Kähler–Ricci flow setup, .M;!.t//! .Z; dZ/ in the Gromov–
Hausdorff topology. Furthermore, Z is homeomorphic to N and ZnN ı has real Hausdorff
codimension at least 2 inside .Z; dZ/.

The Gromov–Hausdorff convergence is known when N is a curve and the generic fibers
of f are tori [53].

1.3. Our results. We can now state our results. In either the Calabi–Yau setup in Sec-
tion 1.1 or the Kähler–Ricci flow setup in Section 1.2, assume thatN is smooth, and let .Z; dZ/
be the metric completion of .N ı; !can/. Thanks to [53], this is a compact metric space homeo-
morphic to N , and in the Calabi–Yau setup in Section 1.1, it is the Gromov–Hausdorff limit of
.M;!.t// as t !1.

Let S � Z be the singular set in the sense of Cheeger–Colding [8], namely the set of
all x 2 Z such that there is some tangent cone to .Z; dZ/ at x which is not isometric to R2n.
We always have S � ZnN ı, but this inclusion is strict in general (see Remark 2.2). Our first
result, proved in Section 2, is an explicit Hausdorff measure bound for S .

Theorem 1.3. In either the Calabi–Yau setup in Section 1.1, or the Kähler–Ricci flow
setup in Section 1.2, assume that N is smooth and Œ!N � 2 H 2.N;Q/, and let H2n�2 be the
real .2n � 2/-dimensional Hausdorff measure of the limit metric dZ on N . Then the Cheeger–
Colding singular set S satisfies

(1.3) H2n�2.S/ 6 Cn

Z
D

!n�1N ;

where Cn is a dimensional constant.

This estimate would be expected if the Hausdorff measure could indeed be computed
cohomologically, as in the case when the limiting metric dZ is smooth. However, even the
best pointwise estimate (1.4) below cannot by itself imply this measure bound, and one needs
instead to appeal to the deep work of Liu–Székelyhidi [47] on Gromov–Hausdorff noncollapsed
limits of polarized Kähler manifolds with Ricci bounded below. The idea is to use standard
approximations !j of !can and study the singularities of the closed positive current Ric on N
which is the weak limit of the Ricci curvature of !j . The results in [47] characterize S as the
set of points in N where the limiting Ricci curvature current has positive Lelong number. At
almost all points x 2 S , the tangent cone is R2n�2 �C�.x/, where C�.x/ denotes the standard
conical metric in C with cone angle 2��.x/ at 0. We are able to relate �.x/ to the Lelong
number of the limiting Ricci current at x, which can be estimated thanks to the asymptotics of
the volume form !ncan proved in [28], and we then estimate the Hausdorff measure using the
scalar curvature integral.

Our next result deals with the general case when N is allowed to be singular. We let
� W zN !N be a resolution of singularities with zN smooth and ��1.D/µE D

S
i Ei a simple

normal crossings divisor. In [61], the second-named author and Zhang conjectured that we can
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find such a resolution such that, on zNnE, we have the estimate

(1.4) ��!can 6 C
�
1 �

X
i

logjsi jhi
�C
!cone;

where si is a defining section of Ei , hi is a Hermitian metric on O.Ei /, and !cone is a Kähler
metric on zNnE with conical singularities along E with cone angles 2�˛i (0 < ˛i 6 1) along
Ei (we are assuming here without loss that jsi jhi 6 1 on zN so that the multiplying factor on
the RHS of (1.4) is bounded away from zero). Building upon [27], it was proved in [61] that
estimate (1.4) would imply the Hausdorff dimension bound in Conjecture 1.1 in full generality
(this was slightly relaxed in [7] to allow for arbitrary small extra poles along E on the RHS
of (1.4)). The conjectured estimate (1.4) was proved in [27] when dimN D 1, in [61] when
M is hyper-Kähler, and in [28] when N is smooth and D.1/ has simple normal crossings, but
it remains open in general. Our next result identifies an algebro-geometric condition which
is sufficient to prove (1.4) and which comes from the canonical bundle formula in birational
geometry: roughly speaking, to any resolution � W zN ! N as above (together with a resolution
of the pullback of f WM ! N over zN ), we associate a Q-divisor„ zN on zN , which is functorial
in the sense that passing to a higher model gives the pullback divisor. In Section 3, we then show
the following theorem.

Theorem 1.4. In either the Calabi–Yau setup in Section 1.1 or the Kähler–Ricci flow
setup in Section 1.2, the conjectured estimate (1.4) holds provided that there exists a resolution
� W zN ! N as above such that „ zN is �-ample.

To prove this result, we refine the arguments in [28] and identify a key divisor„ zN on the
resolution zN with the property that, whenever „ zN is �-ample, then the desired estimate (1.4)
can be shown to hold. We then describe „ zN explicitly using the canonical bundle formula and
the recent results of Kim [40].

Our last result, proved in Section 4, settles the Gromov–Hausdorff convergence in Con-
jecture 1.2 under a log smoothness assumption.

Theorem 1.5. Assume the Kähler–Ricci flow setup in Section 1.2, and suppose that
N is smooth and D.1/ is a simple normal crossings divisor. Then .M;!.t// converges in
the Gromov–Hausdorff topology to the metric completion of .N ı; !can/, which by [53] is
homeomorphic to N .

This is the first time that this conjectural Gromov–Hausdorff convergence is proved for
base spaces N of dimension greater than 1 (as mentioned earlier, it was only previously known
under the stringent assumptions that N is a curve and the generic fibers of f are tori [53]),
and our assumptions that N is smooth and D.1/ is snc can be thought of as generic since, for
example, they are Zariski open in families. One major difference between our result and those
in [53] is that, when N is a curve, thenD is a discrete set, and in this case, it follows from [27]
that a small tubular neighborhood of D has very small !can-diameter (which is used in [53]),
while this is clearly false when N is higher-dimensional. To prove our result, we make use
of the fact proved in [53] that .N ı; !can/ is “almost-convex”, and the bulk of our work lies
in establishing an analogous statement for .M ı; !.t//, uniformly in t . This in turn requires



Li and Tosatti, On the collapsing of Calabi–Yau manifolds and Kähler–Ricci flows 159

new ideas, combining results of Perelman [49] with estimate (1.4) to analyze the behavior
of L-geodesics which have endpoints away from S D f �1.D/ but which may venture quite
close to S .

2. Hausdorff measure bound for the singular set

In this section, we prove Theorem 1.3. Throughout this section, we assume that N is
smooth and furthermore that Œ!N � 2 H 2.N;Q/ (this is automatic in the Kähler–Ricci flow
setup). By the Kodaira embedding theorem, this means that Œ!N � D c1.L/, where L! N is
an ample line bundle, which is needed to apply the results of [47].

2.1. The approximation procedure. For ease of notation, in the Calabi–Yau setup in
Section 1.1, we denote

M D

R
N !

n
NR

M !mM
!mM

so that, in both setups, Sections 1.1 and 1.2, we can write the Monge–Ampère equations (1.1)
and (1.2) on N ı D NnD as

(2.1) .!N C i𝜕N𝜕'/n D e�'f�.M/;

where � D 0 in the Calabi–Yau setup and � D 1 in the Kähler–Ricci flow setup.
As shown in [28, Proposition 3.1], !can extends to a smooth Kähler metric across D.2/,

so without loss, we may assume thatD D D.1/ is a divisor (not necessarily with simple normal
crossings).

Recall from the introduction that we have defined .Z; dZ/ to be the metric completion of
.N ı; !can/, which by [53] is a compact metric space homeomorphic to N (using here that N is
smooth).

We then define a smooth positive function F on N ı by

f�.M/

!nN
D F ;

which as shown in [51] (see also [54], [57, Proposition 5.9]) satisfies

(2.2) �!N C Ric.!N / � i𝜕N𝜕 log F D !WP > 0;

where !WP is a semipositive form of Weil–Petersson type. As shown e.g. in [28, Lemma 4.1],
we have F > C�1 on N ı, so by Grauert–Remmert [25], � log F extends to a quasi-psh func-
tion on N , still denoted by � log F , which satisfies (2.2) weakly on N , and in general, it may
have values �1 along D. Also, as shown in [51, Proposition 3.2] (see also [19, Lemma 2.1],
[17, Proposition 4]), there is p > 1 such that F 2 Lp.N; !nN /.

We can then apply Demailly’s regularization [14, Theorem 9.1] and obtain a sequence of
smooth functions vj onN which decrease pointwise to� log F as j !1, and satisfy vj 6 C

for all j and

(2.3) �!N C Ric.!N /C i𝜕N𝜕vj > �C!N
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for all j . The lower bound here cannot be taken arbitrarily small in general because � log F

can have positive Lelong number at points inD. Furthermore, as the construction of vj shows,
we have vj ! � log F smoothly on every given compact subset of N ı.

By Yau’s theorem [62] (and also Aubin [2] when � D 1), we can find Kähler metrics
!j D !N C i𝜕N𝜕'j on N which satisfy

(2.4) !nj D .!N C i𝜕N𝜕'j /
n
D cj e

�'j�vj!nN ;

where

cj D

8̂<̂
:
1 if � D 1;R

N !
n
NR

N e
�vj!nN

if � D 0;

and by construction, we haveZ
N

e�vj!nN !

Z
N

F !nN D

Z
N

f�.M/ D

Z
M

M;

which is strictly positive when � D 1 and equals
R
N !

n
N when � D 0 so that, in particular,

cj ! 1 as j !1. When � D 0, we also normalize 'j by supN 'j D 0. When � D 1, we can
apply the maximum principle to get

sup
N

'j 6 sup
N

vj 6 C;

independent of j . Also, in this case, we have !nj 6 esupN 'j�vj!nN , and integrating this gives

esupN 'j >
R
N !

n
NR

N e
�vj!nN

> C�1 > 0:

We thus conclude that, when � D 1, we have jsupN 'j j 6 C independent of j . Then, for
� D 0; 1, since as we said

R
N F p!nN 6 C for some p > 1, it follows that

c
p
j

Z
N

ep.�'j�vj /!nN 6 C

for all j , and so Kołodziej [42] gives us

(2.5) sup
N

j'j j 6 C

for all j . When � D 0, we have that cj e�vj ! F in L1.N; !nN /, and so Kołodziej’s stability
theorem [43] gives us that

(2.6) k'j � 'kL1.N/ ! 0;

where ' is as in (2.1). For � D 1, we can still conclude that

(2.7) k'j � 'kL1.N;!nN /
! 0

by arguing as in [6, Theorem 4.5].
The following proposition is contained in [23, Lemma 2.2] and [53, Proposition 2.3], but

we include the proof for convenience.
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Proposition 2.1. The approximating metrics !j on N satisfy

Ric.!j / > �C!j ;(2.8)

diam.N; !j / 6 C;(2.9)

Vol!j B!j .x; r/ > C�1r2n(2.10)

for all 0 < r 6 1, x 2 N and j . The distance functions dgj defined by .N; !j / satisfy

(2.11) dgj .p; q/ 6 CdgN .p; q/
˛

for some C; ˛ > 0 and for all p; q 2 N , j > 0. We also have !j ! !can locally smoothly on
N ı, and .N; !j /! .Z; dZ/ in the Gromov–Hausdorff topology.

Proof. From (2.4) and (2.3), we get

(2.12) Ric.!j / D Ric.!N /C i𝜕N𝜕vj � �i𝜕N𝜕'j > �C!N � �!j ;

so to prove (2.8), it suffices to show that

(2.13) !j > C�1!N :

This follows from the usual Schwarz lemma argument: the Chern–Lu inequality gives

�!j log tr!j !N >
1

tr!j !N

�
gk`j g

pq
j Ric.!j /kq.gN /p` � gk`j g

pq
j .Rm.!N //k`pq

�
> �C tr!j !N � �

using (2.12), and so taking A large enough but uniform, we have

�!j .log tr!j !N � A'j / > tr!j !N � C;

and so the maximum principle and (2.5) give tr!j !N 6 C , which proves (2.13).
Next, applying [23, Theorem 1.1] directly proves (2.9), and then Bishop–Gromov volume

comparison gives us (2.10). The Hölder estimate (2.11) for the distance function of .N; !j /
follows from Kołodziej’s uniform Hölder bound (see [44])

k'j kC2˛.N;!N / 6 C

for some ˛ > 0, together with the first-named author’s argument in [46, Theorem 4.1] that
deduces (2.11) from this.

To prove locally smooth convergence, observe that, for every given K b N ı, we have in
particular that supK.cj e

�'j�vj / 6 CK for all j , and combining this with (2.4) and (2.13), we
see that, on K, we have

C�1K !N 6 !j 6 CK!N

for all j , and by now standard local higher-order estimates for (2.4) (on a slightly larger open
set) give us uniform estimates k!j kCk.K;!N / 6 CK;k for all j; k. Thanks to (2.6) and (2.7),
this gives that 'j ! ' smoothly on K, and so !j ! !can locally smoothly on N ı.

Lastly, the Gromov–Hausdorff convergence of .N; !j / to .Z; dZ/ follows by combining
the arguments in the proofs of [53, Proposition 2.3, Step 3] and [53, Proposition 2.2 (3)].
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2.2. The measure bound (1.3). In this section, we still have as standing assumption
thatN is smooth. Define S � Z as the singular set in the sense of Cheeger–Colding [8], namely
the set of all x 2 Z such that there is some tangent cone at x which is not isometric to R2n,
and for 0 6 k 6 2n, let Sk be the set of all x 2 Z such that no tangent cone at x splits off an
RkC1 factor. Then, thanks to Proposition 2.1, by [8], we have S D S2n�2 and dimH Sk 6 k.
In particular, if we define

† D SnS2n�3 D S2n�2nS2n�3;

then for every point x 2 †, there is some tangent cone at x which splits off R2n�2, and
dimH .Sn†/ 6 2n � 3. Furthermore, thanks to [9] up to removing a subset of † with zero
.2n � 2/-dimensional Hausdorff measure (which we will do without changing notation), the
tangent cone at any x 2 † is unique and isometric to R2n�2 �C�.x/, where 0 < �.x/ < 2�
denotes the cone angle at x. The function �.x/ can be interpreted as the monotone limit of the
volume ratio at x,

�.x/ D lim
r#0

VolB.x; r/
!2nr2n

;

whence it is upper-semicontinuous.
As in [8], for any " > 0, we define R" as the set of all points x 2 Z such that the

Gromov–Hausdorff distance between B.x; r/ and the r-ball in R2n is less than "r for all
sufficiently small r > 0. Then their complements

(2.14) S" D ZnR"

are closed subsets and S D
S
">0 S".

Recall in [53, Proposition 2.3] it is shown the inclusion N ı ,! N extends to a homeo-
morphism F WZ ! N , which maps bijectively Zn�.N ı/ onto D � N (here �WN ı ,! Z is the
canonical inclusion). We will use F to identify Z with N , suppressing F from the notation, so
for example dZ will be a distance function on N , etc. It is important to note that the Hausdorff
measures and dimensions that we will use on N are those of dZ (and not those of a smooth
metric on N ), unless otherwise specified.

Remark 2.2. Since !can is a smooth Kähler metric on N ı and !j ! !can locally
smoothly there, it follows that S � D. This inclusion is strict in general, as can be seen for
example in the case when f WM ! N is an elliptic fibration of K3 surfaces with 24 singular
fibers of type I1, which is the setup considered by Gross–Wilson [29]: in this case,D is a finite
set of points in N Š P1, and from their work, it follows that the metric !can has tangent cone
C at all points of D (indeed, !can has an explicit asymptotic behavior at points in D, see e.g.
[34, Table 1]), so in this case, S is empty even though the metric is not smooth at the points
in D. This was extended in [27] to arbitrary elliptically fibered K3 surfaces, and the tangent
cone of !can at any point p 2 D can be precisely determined from the Kodaira type of the
singular fiber f �1.p/, see [34, Table 1] (in particular, the tangent cone is C if and only if the
singular fiber is of type Ib , b > 0).

Thanks to [47, Proposition 4.1], there is a weak limit Ric of Ric.!j /, which is a closed
.1; 1/-current on N , smooth on N ı, which locally differs from a positive current by i𝜕N𝜕 of
a continuous function; hence its Lelong numbers are well-defined. They also show that S is



Li and Tosatti, On the collapsing of Calabi–Yau manifolds and Kähler–Ricci flows 163

equal to the set of points x 2 N where �.Ric; x/ > 0. By [47, Theorem 4.1], this is an at most
countable union of closed analytic subsets ofN , contained in the discriminant locusD, and so,
in particular, the number of divisorial components of S is finite. Passing to the limit in (2.8) on
N ı shows that Ric > �C!can holds pointwise on N ı and weakly on all of N .

On the other hand, differentiating (2.4) gives

(2.15) Ric.!j / D Ric.!N /C i𝜕N𝜕.vj � �'j /;

where 'j ! ' uniformly on N and vj decreases pointwise to � log F , and thus, from the
construction in [47], we see that we have

(2.16) Ric D Ric.!N / � i𝜕N𝜕.�' C log F /

as currents on N , where recall that ' 2 C 0.N / \ C1.N ı/.
We writeD D

S
i Di for the decomposition into irreducible components (which are divi-

sors since, as mentioned earlier, we are assuming without loss that D D D.1/ as !can extends
smoothly acrossD.2/ by [28, Proposition 3.1]) and consider a composition of smooth blowups
� W zN ! N such that E D ��1.D/ has simple normal crossings. Write zD for the proper trans-
form of D and E D ��1.D/ D zD [ F , where F is �-exceptional. Then ��Ric has a Siu
decomposition (see [50])

(2.17) ��Ric D
X
i

�.Ric;Di /Œ zDi �C
X
i

�.��Ric; Fi /ŒFi �C fRicsm;

where �.Ric;Di / D �.��Ric; zDi / and �.��Ric; Fi / are the generic Lelong numbers (which
may be zero), and fRicsm is a closed .1; 1/-current on zN , smooth on zNnE, which satisfies

fRicsm > �C��!can;

weakly on zN , and whose generic Lelong number along the Di ’s and Fi ’s vanish. In fact, we
can say a lot more.

Lemma 2.3. For any x 2 E, there are a neighborhood U of x in zN and a constant CU
so that, on U , we can write fRicsm D i𝜕N𝜕 , where  satisfies

(2.18) �CU log
�
� log dg zN .z; E/

�
6  .z/ 6 CU

for all z 2 U nE.

Proof. From (2.16), we have

��Ric D ��Ric.!N / � i𝜕N𝜕.���' C log��F /;

and since ' 2 C 0.N / \ C1.N ı/, it suffices to understand the singularities of ��F along E.
This is a consequence of results proved in [28] (generalizing earlier results in [27] when

n D 1) as follows. Define J� > 0 by ��!nN D J�!
n
zN

. Choosing defining sections s zDi ; sFi and
metrics h zDi ; hFi for the line bundles corresponding to the irreducible components of zD and F ,
we have that J� is comparable toY

j

jsFj j
2bj
hFj

with bj 2 N>0
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(recall thatN is smooth). Then [28, Theorems 2.3, 7.1 and Lemma 4.1] (also [40, Remark 1.6])
give, on zNnE,

C�1

Q
j jsFj j

2 ǰ
hFjQ

i js zDi j
2.1�
i /
h zDi

6 J��
�F 6 C

Q
j jsFj j

2 ǰ
hFjQ

i js zDi j
2.1�
i /
h zDi

.� log dg zN . � ; E//
C ;

where ǰ 2 R and 0 < 
i 6 1, and we must also have bj > ǰ . Thus

C�1
1Q

j jsFj j
2.bj� ǰ /
hFj

Q
i js zDi j

2.1�
i /
h zDi

6 ��F 6 C
.� log dg zN . � ; E//

CQ
j jsFj j

2.bj� ǰ /
hFj

Q
i js zDi j

2.1�
i /
h zDi

;

which shows that we can take  equal to the sum of a local continuous function plus

� log
�
��F

Y
j

jsFj j
2.bj� ǰ /
hFj

Y
i

js zDi j
2.1�
i /
h zDi

�
;

and it satisfies (2.18) as claimed.

Next, recall that !can has continuous potentials onN ; hence the Bedford–Taylor products
!
j
can, 2 6 j 6 n, are well-defined closed positive .j; j /-currents onN by [5], whose cohomol-

ogy class agrees with Œ!jN � by [16, Corollary 9.3]. Also, since the unbounded locus of the
local potentials of RicC C!can is contained inD, which has gN -Hausdorff dimension at most
2n � 2, the wedge product .RicC C!can/ ^ !

n�1
can is a well-defined positive Borel measure

on N by [16, Theorem 2.5], whose total mass equalsZ
N

.Ric.!N /C C!N / ^ !n�1N ;

again by [16, Corollary 9.3]. Furthermore, from (2.15), (2.16), and since 'j ! ' uniformly
and vj decreases to � log F , [16, Proposition 2.9] shows that

(2.19)
�
Ric.!j /C C!j

�
^ !n�1j ! .RicC C!can/ ^ !

n�1
can

weakly as measures on N .
The pullbacks currents ��Ric and ��!can are defined in the usual way (pulling back

𝜕N𝜕-potentials), the measure ��.RicC C!can/ ^ .�
�!can/

n�1 on zN is defined as above using
[16, Theorem 2.5], and since � is a modification, one easily checks that we have

��
�
��.RicC C!can/ ^ .�

�!can/
n�1

�
D .RicC C!can/ ^ !

n�1
can :

Using (2.17), on zN , we have

��.RicC C!can/ ^ .�
�!can/

n�1

D

X
i

�.Ric;Di /Œ zDi � ^ .��!can/
n�1

C

X
i

�.��Ric; Fi /ŒFi � ^ .��!can/
n�1

C .fRicsm C C�
�!can/ ^ .�

�!can/
n�1

D

X
i

�.Ric;Di /Œ zDi � ^ .��!can/
n�1

C .fRicsm C C�
�!can/ ^ .�

�!can/
n�1

(2.20)

because each term ŒFi � ^ .�
�!can/

n�1 vanishes as Fi is �-exceptional.
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Let now Ur � N be the r-neighborhood of D with respect to !N . We then have the
following claim.

Lemma 2.4. For any continuous nonnegative function h on N , we have

lim
r!0

Z
Ur

h.RicC C!can/ ^ !
n�1
can D

X
i

�.Ric;Di /
Z
Di

h!n�1can :

Proof. Let zUr D ��1.Ur/ (a shrinking family of open neighborhoods of E) and let
zh D ��h. Then, using (2.20), we have

lim
r!0

Z
Ur

h.RicC C!can/ ^ !
n�1
can D lim

r!0

Z
zUr

zh��.RicC C!can/ ^ .�
�!can/

n�1

D

X
i

�.Ric;Di /
Z
zDi

zh��!n�1can

C lim
r!0

Z
zUr

zh.fRicsm C C�
�!can/ ^ .�

�!can/
n�1

D

X
i

�.Ric;Di /
Z
Di

h!n�1can

C lim
r!0

Z
zUr

zh.fRicsm C C�
�!can/ ^ .�

�!can/
n�1;

and so, since zh is continuous, it suffices to show that .fRicsm C C�
�!can/ ^ .�

�!can/
n�1 puts

no mass on E. Since !can has continuous potentials and fRicsm has local potentials with at
worst log-log singularities (by Lemma 2.3), this is then a well-known fact: let � be a smooth
form on zN cohomologous to fRicsm C C�

�!can, and write fRicsm C C�
�!can D � C i𝜕N𝜕u > 0,

where by Lemma 2.3 the function u satisfies the bounds in (2.18). As a consequence of
Demailly’s regularization [15, Corollary 6.4], the cohomology class Œ� � is thus nef, and so,
for any " > 0, we can find a smooth function '" such that � C "! zN C i𝜕N𝜕'" is a Kähler met-
ric on zN . Since ��!can has continuous potentials, it follows from Bedford–Taylor [5] that
! zN ^ .�

�!can/
n�1 puts no mass on E. Thus, to prove our claim, it suffices to show that

.� C "! zN C i𝜕N𝜕u/ ^ .��!can/
n�1 puts no mass on E, and this follows e.g. from [31, Theo-

rem 1.3] since u � '" belongs to E1. zN; � C "! zN C i𝜕N𝜕'"/ as it has at worst log-log singular-
ities, e.g. by [32, Proposition 2.3].

The following proposition uses ideas similar to [47, Proposition 5.1].

Proposition 2.5. For any continuous nonnegative function h on N ,Z
†

h.2� � �.x// dH2n�2 6 Cn
X
i

�.Ric;Di /
Z
Di

h!n�1can :

Proof. Given a small " > 0, we consider the closed subset S" � S defined in (2.14) and
let †" D S"nS

2n�3 (and again remove a further subset of vanishing H2n�2 so that tangent
cones at all points of †" are unique). Given also a small ı > 0, it suffices to proveZ

†"

h.2� � �.x// dH2n�2 6 Cn
X
i

�.Ric;Di /
Z
Di

h!n�1can C Cı;
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where C does not depend on "; ı but is allowed to depend on h, as taking the limit ı ! 0 and
"! 0 gives the claim. Given an arbitrarily small r depending on ı, since S"n†" has Hausdorff
codimension at least 3, we can take a cover with

(2.21) S"n†" �
[
i

B.yi ; r
0
i /;

X
i

r 02n�2i � ı; r 0i < r;

where, here and for the rest of this section, B.x; r/ denotes the dZ-geodesic ball centered
at x with radius r , while Bj .x; r/ will denote the !j -geodesic ball, and Uj;r will be the r-
neighborhood of D with respect to !j . Since S" is compact, so is the closed subset

K D S"n
[
i

B.yi ; r
0
i /:

For every x 2 K, by semicontinuity, we can find a small ball B.x; rx/ with rx � r such that

2� � �.y/ 6 .2� � �.x//.1 � ı/ for all y 2 B.x; 10rx/:

Choosing rx sufficiently small, we can make the rescaled ball r�1x B.x; rx/ arbitrarily close
to the tangent cone at x in the Gromov–Hausdorff sense. Using [47, Proposition 3.3], for j
sufficiently large depending on x,Z

Bj .x;�rx/

R.!j /
!nj

nŠ
> !2n�2.2� � �.x//.1 � ı/.�rx/

2n�2 for all
1

10
< � < 10;

whence Z
Bj .x;�rx/

R.!j /
!nj

nŠ
> !2n�2.1 � 2ı/.�rx/

2n�2 sup
B.x;10rx/

.2� � �/:

By compactness, we can cover K with finitely many such balls B.xi ; ri / with ri D rxi so
that the inequalities hold for j large enough independent of xi 2 K. Taking a Vitali sub-
cover, we may further assume that B.xi ; ri=3/ are mutually disjoint, so for large enough j ,
we have Bj .xi ; ri=4/ mutually disjoint. Using also the continuity of h, for r sufficiently small
depending on ı (and on h), and j large enough,X

i

!2n�2.1 � 3ı/
�ri
4

�2n�2
sup

B.xi ;ri /

h.2� � �/

6
X
i

Z
Bj .xi ;ri=4/

h
�
R.!j /C nC

�!nj
nŠ

6
Z
Uj;r

h
�
Ric.!j /C C!j

�
^

!n�1j

.n � 1/Š

6
Z
Ur

h.RicC C!can/ ^
!n�1can

.n � 1/Š
C ı

using (2.19). Combining this with (2.21) and taking the limit r ! 0 using Lemma 2.4 gives

42�2n
Z
†"

h.2� � �.x// dH2n�2 6 lim
r!0

Z
Ur

hRic ^
!n�1can

.n � 1/Š
C Cı

D

X
i

�.Ric;Di /
Z
Di

h
!n�1can

.n � 1/Š
C Cı;

as required.
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Recall that the singular set satisfies

S D ¹x 2 N j �.Ric; x/ > 0º � D

is an at most countable union of closed analytic subvarieties of N . Write S D
S
i 0 Di 0 [ S>2

where
S
i 0 Di 0 is the (finite) union of divisorial components of S (which are necessarily also

divisorial components of D, so equal to a subset of the Di ’s, which we have indexed by i 0 for
clarity) and S>2 is an at most countable union of closed irreducible analytic subvarieties of N
of complex codimension at least 2.

Lemma 2.6. If W � S is an at most countable union of closed irreducible analytic
subvarieties of N of complex codimension at least 2, then H2n�2.W / D 0, where as usual H

is the Hausdorff measure of dZ .

Proof. It suffices to show that H2n�2.V / D 0 for any irreducible component V of W ,
and we can also implicitly remove S2n�3 since it has vanishing Hausdorff measure so that we
can pretend that V � †. Let h" > 0 be a family of smooth cutoff functions, with h" supported
in BgN .V; 2"/ and h" � 1 on BgN .V; "/, and applying Proposition 2.5 givesZ

V

.2� � �.x// dH2n�2 6
Z
†

h".2� � �.x// dH2n�2

6 Cn
X
i

�.Ric;Di /
Z
Di

h"!
n�1
can

6 Cn
X
i

�.Ric;Di /
Z
BgN .V;2"/

!n�1can ! 0

as "! 0. This shows that Z
V

.2� � �.x// dH2n�2
D 0;

but since �.x/ < 2� for all x 2 †, this gives H2n�2.V / D 0.

Proposition 2.7. Let x 2 † be a point with tangent cone R2n�2 �C�.x/. Then the
Lelong number of Ric at x is at most 2� � �.x/.

We believe that the Lelong number of Ric at x is actually equal to 2� � �.x/, but this
does not seem to follow from our arguments below.

Proof. We will write � D �.x/. By assumption, the rescaled balls r�1B.x; r1=4/ con-
verge in the pointed Gromov–Hausdorff sense to the tangent cone Cn�1

z1;:::;zn�1
� .C� /zn as

r ! 0. The metric on the tangent cone is written as

g1 D

n�1X
iD1

jdzi j
2
C jznj

�2.1��=2�/
jdznj

2:

Using [47, Proposition 3.2], we can find holomorphic coordinatesw1; : : : ; wn (depending on r)
on r�1B.x; r1=3/ converging to z1; : : : ; zn as r ! 0. We can regard wi also as holomorphic
coordinates for the smooth approximating metrics !j because, as we know, the Gromov–
Hausdorff limit Z is homeomorphic to N .
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Given any small ı > 0, our goal is to show the Lelong number of Ric at

x 2 r�1B.x; r1=2/

is at most 2� � � C ı. By the monotonicity of the Lelong number, it suffices that, for r � 1,

1

!2n�2.n � 1/Š

Z
P
jwi j2<1

.RicC C!can/ ^ !
n�1
Cn 6 2� � � C ı;

where

!Cn D

p
�1

2

nX
iD1

dwi ^ d Nwi :

Since Ric.!j /! Ric, !j ! !can weakly, and Ric.!j /C C!j > 0, this reduces to showing,
for j � 1 depending on ı; r ,

(2.22)
1

!2n�2.n � 1/Š

Z
P
jwi j2<1

�
Ric.!j /C C!j

�
^ !n�1Cn 6 2� � � C ı:

As in [47], we use the Cheng–Yau gradient estimate [10] for the holomorphic functions zi ,
i D 1; : : : ; n, which on ¹

P
jwi j

2 < 1º gives

(2.23) !Cn 6 Cr�2!j :

Using (2.23) together with the Bishop volume comparison inequality Vol!j Bj .x;10r/6Cr2n
(for all 0 < r 6 1), we can boundZ

P
jwi j2<1

!j ^ !
n�1
Cn 6 C

Z
Bj .x;10r/

r2�2n!nj 6 Cr2:

Thus, to establish (2.22), it suffices to show that, as r ! 0 and j !1 fast enough (depending
on r),

(2.24)
1

!2n�2.n � 1/Š
lim

Z
P
jwi j2<1

Ric.!j / ^ !n�1Cn D 2� � �:

We know r�2gj converge in the pointed Gromov–Hausdorff sense to Cn�1 �C� , and
the coordinates wi converge to zi . Write sj D dw1 ^ � � � ^ dwn and s D dz1 ^ � � � ^ dzn, so

Ric.!j / D
p
�1𝜕N𝜕 logjsj j2gj ;

Ric.g1/ D
p
�1𝜕N𝜕 logjsj2g1 :

From the proof of [47, Proposition 3.3],

lim
Z
P
jwi j2<10

ˇ̌
logjsj jgj � logjsjg1

ˇ̌
.r�2!j /

n
D 0:

Using again (2.23),

lim
Z
P
jwi j2<10

ˇ̌
logjsj jgj � logjsjg1

ˇ̌
!nCn D 0:
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Given any smooth cutoff function h.z1; : : : ; zn/, we can regard it as a function of w1; : : : ; wn.
Thus

1

!2n�2.n � 1/Š
lim

Z
P
jwi j2<1

hRic.!j / ^ !n�1Cn

D
1

!2n�2.n � 1/Š
lim

Z
P
jwi j2<1

logjsj j2gj
p
�1𝜕N𝜕h ^ !n�1Cn

D
1

!2n�2.n � 1/Š

Z
P
jwi j2<1

logjsj2g1
p
�1𝜕N𝜕h ^ !n�1Cn

D
1

!2n�2.n � 1/Š

Z
P
jwi j2<1

h
p
�1𝜕N𝜕 logjsj2g1 ^ !

n�1
Cn

D
2� � �

!2n�2.n � 1/Š

Z
P
jwi j2<1;wnD0

h!n�1Cn :

We let h approach the characteristic function on ¹
P
jwi j

2 < 1º to obtain (2.24) as required.

Proof of Theorem 1.3. For each fixed i 0, let h" > 0 be a family of smooth cutoff func-
tions supported in BgN .Di 0 ; 2"/ and h" � 1 on BgN .Di 0 ; "/, and applying Proposition 2.5
gives Z

Di0

.2� � �.x// dH2n�2 6
Z
†

h".2� � �.x// dH2n�2

6 Cn
X
i

�.Ric;Di /
Z
Di

h"!
n�1
can

6 Cn
X
i

�.Ric;Di /
Z
BgN .Di0 ;2"/\Di

!n�1can ;

and since the RHS converges to Cn�.Ric;Di 0/
R
Di0

!n�1can as "! 0, this gives

(2.25)
Z
Di0

.2� � �.x// dH2n�2 6 Cn�.Ric;Di 0/
Z
Di0

!n�1can

for all i 0. But recall that
† D

�[
i 0

Di 0 [ S>2

�
nS2n�3:

Let Dıi 0 be points x of the irreducible component Di 0 where �.Ric; x/ D �.Ric;Di 0/, so by
Siu [50], we know that Di 0nDıi 0 is an at most countable union of closed irreducible analytic
subvarieties of N of complex codimension at least 2. Lemma 2.6 shows that

H2n�2.S>2/ D H2n�2.Di 0nD
ı
i 0/ D 0:

Thus

(2.26) H2n�2.†/ 6
X
i 0

H2n�2.Dıi 0/

and

(2.27)
Z
Di0

.2� � �.x// dH2n�2
D

Z
Dı
i0

.2� � �.x// dH2n�2:
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On the other hand, Proposition 2.7 gives, for each i 0,

(2.28)
Z
Dı
i0

.2� � �.x// dH2n�2 > �.Ric;Di 0/H2n�2.Dıi 0/;

and combining (2.25), (2.27) and (2.28), we deduce that, for each i 0,

H2n�2.Dıi 0/ 6 Cn

Z
Di0

!n�1can D Cn

Z
Di0

!n�1N ;

and with (2.26), we finally deduce that

H2n�2.†/ 6 Cn
X
i 0

Z
Di0

!n�1N 6 Cn

Z
D

!n�1N ;

where D is regarded as a reduced divisor.

3. Collapsing and the canonical bundle formula

3.1. Volume form asymptotics. We now discuss estimate (1.4). We again work in the
unified setting (2.1), where � D 0 in the Calabi–Yau setup and � D 1 in the Kähler–Ricci flow
setup.

It was shown in [28] that estimate (1.4) holds if N is smooth and D is a simple normal
crossings divisor. We thus assume that this is not the case, and let � W zN ! N be a sequence of
blowups with smooth centers such that zN is smooth and E D ��1.D/ is a divisor with simple
normal crossings. Following the construction in the proof of [28, Theorem 2.3], we consider
a resolution of singularities zM !M �N zN (birational onto the main component of the target
space) and obtain the commutative diagram

zM M �N zN M

zN N;

zf

p

f

�

where zMm is smooth. Since M is also smooth, we can write K zM � p
�KM C zD, where zD

is an effective p-exceptional divisor, which can be assumed to have simple normal crossings
support. The volume form zM´ p�M on zM is smooth and in general has zeros along zD. If
we define z' D ��' 2 C 0. zN/ \ C1. zNnE/, then on zNnE, we have

��!ncan D e
�z' zf�. zM/ D ��

�
e�'f�.M/

�
;

and the asymptotic behavior of the volume form ��!ncan was obtained in [28, Theorems 2.3
and 7.1] using Hodge theory (and in [40] with a different method, which also extends to the
case when the morphism f is Kähler but not projective, see [40, Remark 1.6]): on zNnE,
we have

(3.1) C�1
pY
jD1

jsj j
2 ǰ
hj
!ncone 6 ��!ncan 6 C

pY
jD1

jsj j
2 ǰ
hj

 
1 �

�X
iD1

logjsi jhi

!d
!ncone;
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where ǰ 2 Q>0 and where !cone is a Kähler metric with conical singularities along the Ei ’s
with cone angles 2�
i , 0 < 
i 6 1, which we will take of the form !cone D ! zN C i𝜕N𝜕�, where

(3.2) � D C�1
X
i

jsi j
2
i
hi

for some C > 0 sufficiently large. In particular, we have

C�1Q
i jsi j

2.1�
i /
hi

6
!ncone

!n
zN

6
CQ

i jsi j
2.1�
i /
hi

:

Let us write
H D

Y
j

jsj j
2 ǰ
hj
;

and define a smooth function  on zNnE by

(3.3)  D
��!ncan

Q
i jsi j

2.1�
i /
hi

e�z'H!n
zN

;

which depends on the choice of Hermitian metrics hi and which by (3.1) and the boundedness
of z' satisfies

(3.4) C�1 6  6 C

 
1 �

�X
iD1

logjsi jhi

!d
:

3.2. The canonical bundle formula. The exponents ǰ ; 
i in (3.1) can be determined
by applying the canonical bundle formula in birational geometry [1, 21, 21, 24, 39, 40, 45] to
the map zf . Following the notation in [40], we define divisors zR D � zD on zM and M D �K zN
on zN so that we have the equality as Q-divisors

K zM C
zR D zf �.K zN CM/:

We also define zB D ��1.D/� zN and note that zRC zf � zB has snc support and zf .Supp zR/� zB
(so in particular zR is vertical, with the terminology of [40]). It then follows that zf satisfies the
conditions in [40, Definition 4.3], and thus, thanks to [40, (16)], [45, Theorem 8.3.7], there is
a well-defined Q-divisor zB zR on zN supported on zB , the boundary part of the canonical bundle
formula for zf , which satisfies

zRC zf �. zB � zB zR/ 6 red. zf � zB/

and is the smallest such divisor. Writing

(3.5) zB zR D
X
i

ai zBi ;

it follows from [40, (16)] that ai 2 .�1; 1/.
Then zM is a volume form on zM with “poles along R” in the terminology of [40] (i.e.

zeros along zD D �R), so [40, Corollary 1.3] applies (beware that there is a typo in [40, (4)],
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and the exponents ai there should be replaced by �ai ) and shows that ��!ncan D e
�z' zf�. zM/

on zNnE satisfies

C�1
Y
i

jsi j
�2ai
hi

 6
��!ncan

!n
zN

6 C
Y
i

jsi j
�2ai
hi

 

(using again the boundedness of z'), where si is a defining section of O. zBi /, the coefficients ai
are given by (3.5) and  is as in (3.4). Comparing this with (3.1) shows that the exponents ǰ

in (3.1) are just equal to �ai for those ai < 0, and the exponents .1 � 
i / in (3.1) are equal to
ai for those ai > 0.

Given thus Hermitian metrics hi on O. zBi / (which we will choose precisely later), we
define  as in (3.3) by

 D
��!ncan

Q
i jsi j

2ai
hi

e�z'!n
zN

so that, on zNnE,

i𝜕N𝜕 log.1= / D Ric.��!can/ � Ric.! zN /C
X
i

aiRhi C ��
�i𝜕N𝜕'

D ��!WP � ��
�!can � Ric.! zN /C

X
i

aiRhi C ��
�i𝜕N𝜕'

D ��!WP � ��
�!N � Ric.! zN /C

X
i

aiRhi

> ����!N � Ric.! zN /C
X
i

aiRhi

(3.6)

since !WP > 0 on N ı. Observe that all terms on the last line of (3.6) are smooth forms on all
of zN , and the term

P
i aiRhi is cohomologous to zB zR.

3.3. Vanishing orders. In this section, we will use repeatedly the notion of a Kähler
metric !N on a singular (reduced, irreducible) compact complex analytic space N , as in [48];
see also [4, Chapter XII.3]. This has the property that if � W zN ! N is a resolution of singu-
larities, then ��!N is a smooth semipositive .1; 1/-form on zN . Furthermore, the resolution zN
can be chosen to be a Kähler manifold, and if ! zN is any fixed Kähler metric on zN , then

��!nN
!n
zN

is a smooth semipositive function on zN which vanishes precisely along the exceptional locus
Exc.�/. We may assume without loss that Exc.�/ D

S
k Fk is a simple normal crossings

divisor, and we can find real numbers bk 2 R>0 such that the ratio

��!nNQ
kjsFk j

2bk
hFk

!n
zN

is a smooth strictly positive function on zN (for any smooth Hermitian metrics hFk on O.Fk/).
By Yau’s theorem [62], we can pick our reference Kähler metric ! zN such that we have

(3.7)
��!nN
!n
zN

D

Y
k

jsFk j
2bk
hFk

:
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Observe that the coefficients bk are unchanged if we replace !N by another Kähler metric
on N since the pullbacks of these metrics to zN are uniformly equivalent: indeed, given two
Kähler metrics !N ; !0N on N , given any x 2 N , we can find an open set U 3 x in N and
embeddings �WU ,! CN , �0WU ,! CN 0 and smooth strictly psh functions '; '0 defined in some
neighborhoods of the images �.U /; �0.U 0/ such that !N jU D ��i𝜕N𝜕', !0N jU D �

0�i𝜕N𝜕'0. Then
[4, Lemma XI.1.3.2] shows that, up to shrinking our neighborhoods, we may assume that the
embeddings � and �0 are equal, and then it is clear that i𝜕N𝜕' and i𝜕N𝜕'0 are locally uniformly
equivalent, and pulling back via � and � shows that ��!N and ��!0N are uniformly equivalent,
proving the claim. We can thus define a �-exceptional R-divisor on zN ,

I zN=N D
X
k

bkFk;

which does not depend on the choice of !N . WhenN is smooth, we have I zN=N D K zN=N , but
this equality does not hold in general (say when N is Q-Gorenstein so that KN is Q-Cartier)
since the discrepancies of � can be negative, while the vanishing orders bk are always positive.

If
yN
y�
�! zN

�
�! N

is a higher model, then fixing a Kähler metric ! yN on yN , we have

y����!nN
!n
yN

D y��
�
��!nN
!n
zN

�
y��!n

zN

!n
yN

;

and so

(3.8) I yN=N D y�
�I zN=N CK yN= zN :

3.4. A functorial divisor. We then define a Q-divisor on zN by

„ zN ´ zB zR C I zN=N :

If we are now given a higher model y� W yN ! zN and construct yf W yM ! yN as above, then
we have (see e.g. [40, Lemma 4.10])

(3.9) yB yR D y�
� zB zR �K yN= zN ;

and combining (3.8) and (3.9), we obtain the functorial relation

„ yN D yB yR C I yN=N D y�
� zB zR �K yN= zN C y�

�I zN=N CK yN= zN D y�
�„ zN :

3.5. Collapsing. Having introduced the divisor „ zN , we now come to the proof of
Theorem 1.4, which we restate here.

Theorem 3.1. Suppose that there is a resolution � W zN ! N as above such that „ zN is
�-ample. Then the conjectured estimate (1.4) holds on zNnE.

Proof. We start the proof by using the method of [28]. From (3.4), log.1= / is bounded
above near E, so by Grauert–Remmert [25], it extends to a global quasi-psh function on zN
which satisfies (3.6) in the weak sense. Thanks to (3.4), the extension has vanishing Lelong
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numbers, so we can approximate it using Demailly’s regularization theorem [14] by a decreas-
ing sequence of smooth functions uj with arbitrarily small loss of positivity, i.e.

(3.10) i𝜕N𝜕uj > ����!N � Ric.! zN /C
X
i

aiRhi �
1

j
! zN

on all of zN . We use this to obtain a partial regularization of ��!can, which we denote by
!j D �

�!N C
1
j
! zN C i𝜕N𝜕'j . These are Kähler metrics on zNnE solving

(3.11) !nj D cj e
�'j�uj

!n
zNQ

i jsi j
2ai
;

with the normalization sup zN 'j D 0 if � D 0, and where cj D 1 for � D 1, while for � D 0,
the constant cj is defined by integrating the equation, and satisfies cj ! 1 as j !1. This
equation is solved via a standard approximation procedure (see e.g. [28, § 5]), and we obtain
'j which is smooth on zNnE and continuous on zN , and as in Section 2, we have the properties
that !j ! ��!can locally smoothly on zNnE,

sup
zN

j'j j 6 C and k'j � �
�'kL1. zN;!n

zN
/ ! 0:

Crucially, it is also shown in [28, Proposition 5.1] that, for each j , there is a constant Cj such
that, on zNnE, we have

(3.12) tr!cone !j 6 Cj ;

so these partial regularizations are not worse than conical (the proof in [28, Proposition 5.1] is
written with � D 0, but it extends immediately to the case � D 1). Also, differentiating (3.11)
and using (3.10), we see that, on zNnE, we have

Ric.!j / D ��i𝜕N𝜕'j C i𝜕N𝜕uj C Ric.! zN / �
X
i

aiRhi

> ��!j C ���!N C
�

j
! zN � ��

�!N �
1

j
! zN

> ��!j �
C

j
!cone:

(3.13)

Our goal is then to show there are C;A > 0 such that, on zNnE,

(3.14) tr!cone !j 6 Ce�Auj

holds for all j sufficiently large since then, passing to the limit in j , this gives

tr!cone �
�!can 6 C A

on zNnE, which is our desired estimate (1.4).
First, following [33], we define ‰ D C

P
i jsi j

2�
hi

for some small � > 0 and large C > 0,
which can be chosen so that, on zNnE, the curvature of !cone satisfies

Rm.!cone/ > �.C!cone C i𝜕N𝜕‰/˝ IdI

see [33, (4.3)].
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To prove (3.14), we apply the maximum principle to

Q D log tr!cone !j C n‰ C Auj � A
2
�
'j �

�

j

�
C Ab�C " logjsE j2;

where A is large (to be determined), b > 0 is small and 0 < " 6 1
j

, � was defined in (3.2), and
j will be taken larger than A (once the value of A is fixed). The terms

n‰ C Auj � A
2
�
'j �

�

j

�
C Ab�

are all bounded on zN (with bounds independent of j except for uj ), while the term log tr!cone !j
is bounded above on zNnE (depending on j ) by (3.12). Since the term " logjsE j2 goes to �1
on E, the quantityQ achieves a global maximum on zNnE. All the following computations are
at an arbitrary point of zNnE.

First, from [28, (5.17)], we have

�!j .log tr!cone !j C n‰/ > �C tr!j !cone �
tr!cone Ric.!j /

tr!cone !j
;

while differentiating (3.11) gives

�!juj D ��!j 'j C tr!j Ric.!j / � tr!j Ric.! zN /C tr!j
�X
i

aiRhi

�
D �n � � tr!j �

�!N �
�

j
tr!j ! zN C tr!j Ric.!j /

� tr!j Ric.! zN /C tr!j
�X
i

aiRhi

�
> �n � � tr!j �

�!N �
C

j
tr!j !cone C tr!j Ric.!j /

� tr!j Ric.! zN /C tr!j
�X
i

aiRhi

�
;

and as in [28, (5.20)], we observe that

�
tr!cone Ric.!j /

tr!cone !j
C tr!j Ric.!j / D �

tr!cone.Ric.!j /C C
j
!cone C �!j /

tr!cone !j

C tr!j
�

Ric.!j /C
C

j
!cone C �!j

�
C

tr!cone.
C
j
!cone C �!j /

tr!cone !j
�
C

j
tr!j !cone � �n

> �
C

j
tr!j !cone � �n;

using that Ric.!j /C C
j
!cone C �!j > 0 by (3.13), so the quantity in the second line is non-

negative. Therefore, using again (3.13),

�!j .log tr!cone !j C n‰ C Auj /(3.15)

> �
�
C C

C

j

�
tr!j !cone � �nC A�n � A� tr!j �

�!N

�
CA

j
tr!j !cone C .A � 1/ tr!j Ric.!j /

� A tr!j Ric.! zN /C A tr!j
�X
i

aiRhi

�
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> �
�
C C

CA

j

�
tr!j !cone � A� tr!j �

�!N

� A tr!j Ric.! zN /C A tr!j
�X
i

aiRhi

�
;

and taking i𝜕N𝜕 log of (3.7) on zNnE gives

(3.16) Ric.! zN / D ��Ric.!N / �
X
k

bkRFk :

To bound the term ��Ric.!N /, we use the following lemma.

Lemma 3.2. There is a constant C such that, on zN , we have

(3.17) Ric.! zN / 6 C��!N �
X
k

bkRFk :

Proof. In (3.16), the terms Ric.! zN /,
P
k bkRFk and ��!N are smooth on all of zN ,

so it suffices to show that, on N ı, we have Ric.!N / 6 C!N . This is of course clear if N is
smooth, while for singular N , recall that, by definition, we can cover N by open subsets Ui
with embeddings Ui ,! B � CN as analytic subsets of the unit ball in Euclidean space, and
on each Ui , the metric !N equals the restriction of some Kähler metric on B . Since bisectional
curvature decreases in submanifolds, on Ui \N reg � Ui \N

ı, we have that the bisectional
curvature of !N is bounded above, and hence so is its Ricci curvature.

Inserting (3.16) and (3.17) in (3.15) then gives

�!j .log tr!cone !j C n‰ C Auj /

> �
�
C C

CA

j

�
tr!j !cone � CA tr!j �

�!N

� A�nC A tr!j
�X
k

bkRFk C
X
i

aiRhi

�
;

(3.18)

where
P
k bkRFk C

P
i aiRhi is the curvature of a Hermitian metric on our divisor „ zN .

By assumption, „ zN is �-ample, and so we can choose the metrics hFk ; hi so that

y! zN ´ A0�
�!N C

X
k

bkRFk C
X
i

aiRhi

is a Kähler metric on zN for some (in fact all) A0 sufficiently large. We also choose A in the
quantity Q so that A > 2A0.

Using (3.18), we can then compute

�!jQ > �
�
C C

CA

j

�
tr!j !cone � CA tr!j �

�!N C A tr!j
�X
k

bkRFk C
X
i

aiRhi

�
� A�nC A2 tr!j

�
��!N C

1

j
!cone

�
C Ab tr!j i𝜕N𝜕� � A

2n � " tr!j RE

> �
�
C C

CA

j

�
tr!j !cone C A tr!j

�X
k

bkRFk C
X
i

aiRhi

�
� A�n

C
A2

2
tr!j �

�!N C
A2

j
tr!j !cone C Ab tr!j i𝜕N𝜕� � A

2n �
C

j
tr!j !cone
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> �C tr!j !cone C A tr!j
�
A0�

�!N C
X
k

bkRFk C
X
i

aiRhi C bi𝜕N𝜕�
�

� A�n � A2n;

assuming without loss that A is large so that A
2

2
> CA and also that j > A. Then we choose

b > 0 small so that y! zN C bi𝜕N𝜕� D y!cone is a conical Kähler metric with y!cone > c!cone for
some c > 0 so that

A tr!j
�
A0�

�!N C
X
k

bkRFk C
X
i

aiRhi C bi𝜕N𝜕�
�

> Ac tr!j !cone;

and finally, we can choose A sufficiently large so that Ac tr!j !cone > .C C 1/ tr!j !cone, and
so we obtain �!jQ > tr!j !cone � C . Therefore, at a maximum of Q (which is not on E), we
have tr!j !cone 6 C , and so also tr!cone !j 6 CHe�uj , hence

log tr!cone !j C Auj 6 C logH C .A � 1/uj 6 C;

and so also Q 6 C , which must hold everywhere on zNnE. The constants do not depend on ",
so we can let "! 0, and this gives tr!cone !j 6 Ce�Auj , which is (3.14).

4. Collapsing of the Kähler–Ricci flow

In this section, we give the proof of Theorem 1.5. The setup was described in detail in
Section 1.2 in the introduction, and we will not repeat it here.

4.1. Review of some recent results. We first collect some recent results from the
literature that will be used in the course of our proof.

First, by [59, Theorem 1.2], we have that

(4.1) !.t/! f �!can

in C 0loc.M
ı/, while [52] shows that the scalar curvature of !.t/ is uniformly bounded, i.e.

(4.2) sup
M

jR.!.t//j 6 C

for all t > 0, and also that the volume form of !.t/ satisfies

(4.3) C�1e�.m�n/t!mM 6 !.t/m 6 Ce�.m�n/t!mM

on M � Œ0;1/, as well as the “parabolic Schwarz lemma” estimate [52, Proposition 2.2] (and
also [60, (3.5)] for the case when N is singular)

(4.4) !.t/ > C�1f �!N

on M � Œ0;1/.
Next, using the results in [3], in [38, Theorem 1.1], it was very recently proved that

diam.M; g.t// 6 C
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uniformly for all t > 0. Also, in [38, Corollary 1.1], it is shown that there is a uniform C such
that, for all x 2M , 0 < r < diam.M; g.t//, t > 0, we have

(4.5) C�1e�.m�n/t 6
Volg.t/Bg.t/.x; r/

r2n
6 Ce�.m�n/t :

We also have information about the collapsed limit space .N ı; !can/. Thanks to our
assumptions that N is smooth and D.1/ has simple normal crossings, we can apply [28, Theo-
rem 1.4], which gives us that, on NnD.1/,

(4.6) C�1!cone 6 !can 6 C

 
1 �

�X
iD1

logjsi jhi

!A
!cone

holds, where !cone is a Kähler metric with conical singularities along D.1/ D
S
i Di . Also, in

[28, Proposition 3.1], it is shown that !can extends to a smooth Kähler metric across D.2/, so
without loss, we may assume that D D D.1/ is a simple normal crossings divisor.

If we denote by dcan the associated distance function onN ı, then it is shown in [28, Theo-
rem 6.1] (using [61, (2.7)]) and also in [53, Proposition 2.2] that .N ı; dcan/ has finite diameter,
and so its metric completion .Z; dZ/ is a compact metric space which by [53, Proposition 2.3]
is homeomorphic to N (here we use that N is smooth). Also, [53, Proposition 2.2] shows that,
for every p; q 2 N ı and ı > 0, there is a path 
 in N ı joining p and q with

(4.7) Lgcan.
/ 6 dZ.p; q/C ı:

We can call this the “almost-convexity” of .N ı; dcan/ inside its metric completion.
There is also a more localized version of this almost-convexity. Let us introduce the

following notation: for any " > 0, let U" � N be the "-neighborhood of D with respect to
the fixed metric !N on N , and let zU" D f �1.U"/ �M . Then, in [53, Proposition 2.2], it
is shown that, given any ı; "0 > 0 sufficiently small, there is 0 < " < "0 such that, for every
p0; q0 2 NnU"0 , there is a path 
 inNnU" joining p0 and q0 such that (4.7) holds. But thanks to
the upper bound in (4.6), it follows that, for every p 2 NnU", there is p0 2 NnU"0 which can be
joined to p by a path which is contained inNnU" and with gcan-length at most ı. Concatenating
this path, the path 
 and the analogous path joining q and q0 inside NnU", we conclude that,
given ı > 0, there is " > 0 such that, for every p; q 2 NnU", there is a path 
 in NnU" joining
them such that (4.7) holds. We will call this the almost-convexity of .NnU"; dcan/.

It is also possible to avoid using (4.6) as follows: using (2.11) and passing to the limit on
NnU" shows that dcan has a local Hölder bound there (with respect to gN ), and we conclude
the localized almost-convexity statement since the gN -distance from p to 𝜕U"0 is O."0/.

4.2. Reduction of Theorem 1.5 to Proposition 4.1.

Proof of Theorem 1.5. From the volume form bound (4.3), we see that, for any given
ı > 0, there are " D ".ı/ < ı; T > 0 such that, for all t > T , we have

(4.8)
Vol. zU"; !.t//
Vol.M;!.t//

6 ı:

We can also assume that " is small enough so that the above-mentioned almost-convexity prop-
erty of NnU" holds, and we fix this value of ".ı/ for the rest of the proof. Also, in all of the
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following, ı0 > 0 will be a positive number that depends on ı and satisfies ı0.ı/! 0 as ı ! 0,
which may change from line to line.

Claim 1. For every p 2 U", we have

(4.9) dZ.p; 𝜕U"/ 6 ı0:

Recall here that .Z; dZ/ denotes the metric completion of .N ı; dcan/. Claim 1 follows
easily from the upper bound for !can in (4.6); however, we can also argue in a different way
without using (4.6) as follows. We employ the family of metrics !j in Proposition 2.1 that reg-
ularize !can and have the property that .N; !j /! .Z; dZ/ in the Gromov–Hausdorff sense.
Thanks to Cheeger–Colding’s extension of Colding’s volume convergence theorem [8, Theo-
rem 5.9], the volume noncollapsing bound in (2.10) implies that there is C such that, for all
x 2 Z and 0 < r < diam.Z; dZ/, we have

(4.10) H2n.BdZ .x; r// > Cr2n;

where here H2n denotes the 2n-dimensional Hausdorff measure. By definition, we have an
isometric embedding �W .N ı; dcan/ ,! .Z; dZ/, and it is shown in [61, p. 758] that

(4.11) H2n.Zn�.N ı// D 0:

On the other hand, by [61, p. 758], on N ı, the renormalized limit measure � is proportional to
!ncan, and since this is proportional to e'f�.M/ with ' bounded, it follows that

(4.12)
Z
U"nD

!ncan 6 C

Z
zU"

!mM 6 ı0;

and so, if we identify U" with its image in Z under the homeomorphism N Š Z, it follows
from (4.11) and (4.12) that

(4.13) H2n.U"/ 6 ı0;

and Claim 1 follows from (4.10) and (4.13).

Claim 2. We have

dGH
�
.Z; dZ/; .NnU"; dcan/

�
6 ı0; where ı0.ı/! 0 as ı ! 0:

We emphasize that here .NnU"; dcan/ denotes the restriction of the metric dcan from N ı

to the subset NnU". However, by the almost-convexity property of NnU", this differs from the
distance induced by the metric !can on NnU" by at most ı, so these two distances on NnU"
can be safely interchanged in our arguments.

To prove Claim 2, we use Claim 1 that allows us to define a map F WZ Š N ! NnU"
(in general discontinuous) which is the identity on NnU" and inside U" it maps p to a point
q 2 𝜕U" with dZ.p; q/ 6 ı0 (which is not unique, but we just choose any one of them). Let
GWNnU" ! N Š Z denote the inclusion. It is elementary to check that F and G are a 3ı0-
GH approximation, using the almost-convexity property (4.7) and the fact that replacing p
by q only distorts the dZ-distance function by ı0. For the reader’s convenience, we spell out
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the details since a similar argument will also be used later. We need to show the following
properties:

dZ.x;G.F.x/// 6 ı0; x 2 N;(4.14)

dcan.y; F.G.y/// 6 ı0; y 2 NnU";(4.15)

jdZ.x; x
0/ � dcan.F.x/; F.x

0//j 6 3ı0; x; x0 2 N;(4.16)

jdcan.y; y
0/ � dZ.G.y/;G.y

0//j 6 ı0; y; y0 2 NnU":(4.17)

Estimate (4.14) is trivial when x 2 NnU", and follows from (4.9) when x 2 U". Estimate (4.15)
is trivial. Next, given any x; x0 2 NnU", using (4.7), we see that

(4.18) dZ.x; x
0/ 6 dcan.x; x

0/ 6 dZ.x; x
0/C ı0:

This immediately implies (4.17), so it remains to check (4.16), and for this, we consider three
cases. First, if x; x0 2 NnU", then (4.16) follows from (4.18). Second, suppose x 2 NnU",
x0 2 U". Then, using the almost-convexity in (4.9), we have

(4.19) dZ.x
0; F .x0// 6 ı0;

and using this and (4.18), we obtain

dZ.x; x
0/ 6 dZ.x; F.x

0//C ı0 D dZ.F.x/; F.x
0//C ı0 6 dcan.F.x/; F.x

0//C ı0

and also

dcan.F.x/; F.x
0// 6 dZ.F.x/; F.x

0//C ı0

6 dZ.x; x
0/C dZ.x

0; F .x0//C ı0

6 dZ.x; x
0/C 2ı0;

proving (4.16) in this case. Third, suppose x; x0 2 U", and use again (4.18) and (4.19) to bound

dZ.x; x
0/ 6 dZ.x; F.x//C dZ.x

0; F .x0//C dZ.F.x/; F.x
0//

6 dZ.F.x/; F.x
0//C 2ı0

6 dcan.F.x/; F.x
0//C 2ı0;

dcan.F.x/; F.x
0// 6 dZ.F.x/; F.x

0//C ı0

6 dZ.x; F.x//C dZ.x
0; F .x0//C dZ.x; x

0/C ı0

6 dZ.x; x
0/C 3ı0;

completing the proof of (4.16) and of Claim 2.
Next, recall from (4.1) that, away from S , we have locally uniform convergence of !.t/

to f �!can. Since f WM ı ! N ı is a C1 fiber bundle, it follows easily that, up to making T
larger, we have

dGH
�
.NnU"; !can/; .Mn zU"; !.t//

�
6 ı

for all t > T ; see e.g. [57, Theorem 5.23]. But, as a consequence of almost-convexity, the
distance function given by .NnU"; !can/ differs from .NnU"; dcan/ by at most ı, so we also
have

(4.20) dGH
�
.NnU"; dcan/; .Mn zU"; !.t//

�
6 2ı

for all t > T . Lastly, we have the following claim.
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Claim 3. Up to making T larger, we have

dGH
�
.Mn zU"; !.t//; .M;!.t//

�
6 ı0; where ı0.ı/! 0 as ı ! 0;

for all t > T .

Combining Claims 2 and 3 with (4.20), we conclude that .M;!.t//! .Z; dZ/ in the
Gromov–Hausdorff topology as t !1, which will complete the proof of Theorem 1.5.

The proof of Claim 3 relies heavily on the following statement, which can be thought of
as an almost-convexity of .Mn zU"; !.t// inside .M;!.t// uniformly in t > T . Denote by dt
the distance function of .M;!.t// and by ydt the distance function of .Mn zU"; !.t// so that we
trivially have dt .x; x0/ 6 ydt .x; x0/ for all x; x0 2Mn zU". Then we have the following result.

Proposition 4.1. Given ı > 0, there are ı0; T > 0, with ı0.ı/! 0 as ı ! 0, such that,
for all x; x0 2Mn zU" and all t > T , we have

(4.21) dt .x; x
0/ 6 ydt .x; x0/ 6 dt .x; x

0/C ı0:

Indeed, assuming Proposition 4.1, the proof of Claim 3 is completely analogous to the
proof of Claim 2, and we briefly outline it. First, we have the analog of Claim 1, namely that,
up to enlarging T , for all t > T and x 2 zU", we have

(4.22) dt .x; 𝜕 zU"/ 6 ı0; where ı0.ı/! 0 as ı ! 0:

To see this, we use the volume estimates (4.3) and (4.5) which imply that, for all x 2M ,
0 < r < diam.M; g.t//, t > 0,

Vol.Bg.t/.x; r/; !.t//
Vol.M;!.t//

> C�1r2n;

and so (4.22) follows from this together with (4.8).
Using (4.22), for each t > T , we define a discontinuous map Ft WM !Mn zU" which is

the identity on Mn zU" and inside U" it maps p to some point q 2 𝜕 zU" with dt .p; q/ 6 ı0. One
defines then GWMn zU" !M to be the inclusion, and using (4.21), one checks exactly as in
Claim 2 that Ft and G give a 3ı0-GH approximation between .M; dt / and .Mn zU"; ydt /, thus
proving Claim 3. The proof of Theorem 1.5 is thus reduced to proving Proposition 4.1.

4.3. Proof of Proposition 4.1. The only nontrivial inequality to prove is

ydt .x; x
0/ 6 dt .x; x

0/C ı0:

For this, we first observe that, given any p; q 2Mn zU", we know from the almost-convexity
property of .NnU"; dcan/ that their images f .p/; f .q/ 2 NnU" can be joined by a path 
 in
NnU" with

Lgcan.
/ 6 dcan.f .p/; f .q//C ı
0:

Since f is a smooth fiber bundle over NnU", we can easily find a path z
 in Mn zU" joining
p and q with f ı z
 D 
 ; see e.g. [57, Theorem 5.23]. Thanks to the uniform convergence in
(4.1) and the fact that dcan.f .p/; f .q// 6 C for some C independent of p; q, we see that (up
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to increasing T ), for all t > T , we have

dt .p; q/ 6 Lgt .z
/ 6 Lf �gcan.z
/C ı
0
D Lgcan.
/C ı

0

6 dcan.f .p/; f .q//C 2ı
0;

so to complete the proof of (4.21), we are left with proving the following.

Claim 4. Up to making T larger, we have

dcan.f .p/; f .q// 6 dt .p; q/C ı
0

for all t > T and all p; q 2Mn zU".

We will sometimes tacitly replace ı0 by Cı0, and without loss, we may assume that
dcan.f .p/; f .q// > ı0. The rough idea to prove Claim 4 is to first replace the distance by
a version of Perelman’s reduced distance and then use a smearing argument to show these two
are roughly the same.

First, we shall reparametrize the flow. Let T be a given large time, whose precise value
will be determined at the end of the argument. Recall that our Kähler metrics satisfy the Kähler–
Ricci flow

𝜕
𝜕t
!.t/ D �Ric.!.t// � !.t/; !.0/ D !M :

If, as usual, we let g.t/ denote their associated Riemannian metrics, then the Riemannian
metrics

zg.s/ D et�T g.t � T /; s D
1

2
.et�T � 1/;

solve the standard Ricci flow

𝜕
𝜕s
zg.s/ D �2Ric.zg.s//; s > s0´

1

2
.e�T � 1/;

with zg.0/ D g.T /, and we can convert back from zg.s/ to g.t � T / by

g.t � T / D
zg.s/

1C 2s
; t D T C log.1C 2s/:

The scalar curvature bound (4.2) translates to

(4.23) sup
M

jR.zg.s//j 6
C

1C 2s

for all s > s0.
As in [49], we let � D �s, and letting zg.�/ be the metrics zg.s/ with parameter s D �� ,

then these solve the backwards Ricci flow

𝜕
𝜕�
zg D 2Ric.zg/; zgj�D0 D g.T /:

We will work with 0 6 � 6 N� � 1, where the choice of N� depends on ı, to be specified. In
particular, since N� is small, it follows from (4.1) that zg.�/ is uniformly close to f �gcan on
Mn zU" for 0 6 � 6 N� .
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Following Perelman [49, § 7], the L-length of a curve 
.�/ in spacetime is defined by

L.
/ D

Z
p
�.R.zg.�//C j𝜕�
 j2zg.�// d�:

The L-distance between two points in spacetime is the infimum of such. Given p; q 2Mn zU",
following Perelman, we will denote by L.q; N�/ the L-distance between .p; � D 0/, .q; � D N�/.

To start, using the almost-convexity of .NnU"; dcan/, we can join f .p/ and f .q/ by
a path 
 inside NnU" with length

Lgcan.
/ 6 dcan.f .p/; f .q//C ı
0

and let z
 be a lift to a path in Mn zU" joining p and q.
We then parametrize z
 by � 2 Œ0; N�� so that

j𝜕� z
 jzg.�/ D
A

2
p
� N�

for all 0 6 � 6 N� , where

A D

Z N�
0

j𝜕� z
 jzg.�/ d� 6 dcan.f .p/; f .q//C ı
0;

using that zg.�/ is close to f �gcan on Mn zU" for 0 6 � 6 N� , and that dcan.f .p/; f .q// 6 C

by the diameter bound for .N ı; dcan/. Then, using the scalar curvature bound (4.23), we can
estimate

L.q; N�/ 6 L.z
/ D

Z N�
0

p
�
�
R.zg.�//C j𝜕� z
 j2zg.�/

�
d�

6 C N�
3
2 C

Z N�
0

p
� j𝜕� z
 j2zg.�/ d� D C N�

3
2 C

A2

2
p
N�

6 C N�
3
2 C

1

2
p
N�

�
dcan.f .p/; f .q//C ı

0
�2
;

and we can absorb the term with N�
3
2 into the term with ı0 by choosing N� � ı0, thus obtaining

(4.24) L.q; N�/ 6 L.z
/ 6
1

2 N�1=2

�
dcan.f .p/; f .q//C Cı

0
�2
:

The same is true if q is replaced by any point q0 with f .q0/ 2 Bgcan.f .q/; ı0/.
We wish to show the almost matching lower bound

(4.25) L.q; N�/ >
1

2 N�1=2

�
dcan.f .p/; f .q// � Cı

0
�2
:

By the triangle inequality and up to a small modification of N� to N�.1CO.ı0//, it is enough to
prove

(4.26) L.q0; N�/ >
1

2 N�1=2

�
dcan.f .p/; f .q// � Cı

0
�2

for some q0 with f .q0/ 2 Bgcan.f .q/; ı0/. The main enemy is that the L-geodesics can go into
the region zU" where we do not have much control of the metric.
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On any minimal L-geodesic 
 from .p; 0/ to .q0; N�/, thanks to (4.24) (applied with q
replaced by q0) and the diameter bound for .N ı; dcan/, we see that

(4.27) L.
/ D L.q0; N�/ 6 C N��1=2
�
dcan.f .p/; f .q

0//C Cı0
�2 6 C N��1=2:

Fix a gcan-ball B b NnU" centered at f .p/ of some radius r > 0 (which depends only on "),
let zB D f �1.B/ and let 0 < N� 0 6 N� be the first time when the curve 
 exits zB . Since zg.�/ is
uniformly close to f �gcan along 
.�/ for 0 6 � 6 N� 0, using (4.27), we have

r 6 C

Z N� 0
0

j𝜕�
 jzg.�/ d�

6 C

�Z N� 0
0

p
� j𝜕�
 j2zg.�/ d�

� 1
2
�Z N� 0

0

1
p
�
d�

� 1
2

6 C N� 0
1
4

�
C N� 0

3
2 C

Z N� 0
0

p
�.R.zg.�//C j𝜕�
 j2zg.�// d�

� 1
2

6 C N� 0
1
4 .C N� 0

3
2 C C N��

1
2 /
1
2 6 C N� 0

1
4 N��

1
4 ;

i.e.

(4.28) N� 0 > C�1 N�:

Perelman [49, § 7.1] showed that ��m exp.�l.�//J.�/ is nonincreasing in � along an
L-geodesic, where l.q; �/ D 1

2
p
�
L.q; �/ is the reduced length and J is the Jacobian of the

L-exponential. Thanks to (4.27), we have

(4.29) l.q0; N�/ 6
C

N�
:

Thus, Perelman’s monotonicity together with (4.28) and (4.29) gives that, for N� 0 6 � 6 N� , we
have

(4.30) J.�/ >
��
N�

�m
el.�/�l. N�/J. N�/ > C�1e�

C
N� J. N�/

on M .
Consider the set � of all the minimal L-geodesics from .p; 0/ to .q0; N�/ with q0 such that

f .q0/ 2 Bgcan.f .q/; ı0/, and consider the subset E � Œ N� 0; N�� �M defined by

E D
[

2�

¹.�; 
.�// j N� 0 6 � 6 N�º:

Writing E� D E \ .¹�º �M/ (viewed as a subset of M ), the spacetime volume of the region
E is defined by

Vol.E/´
Z N�
N� 0

Z
E�

z!.�/m d�:

Let Lexpp;� WTpM !M be the L-exponential map based at p with parameter � . Then we
have E� D Lexpp;� .F /, where F � TpM is a � -independent open subset, and up to sets of
measure zero, Lexpp;� is a diffeomorphism between F and E� ; see the discussion in [41, § 17]
or [11, § 8]. Equipping TpM with the Euclidean metric zgp.0/ and letting dv be its volume
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element, we can write Z
E�

z!.�/m D

Z
F

J.�/ dv;

and thanks to (4.30), for all 0 6 � 6 N� , we can estimateZ
F

J.�/ dv > C�1e�
C
N�

Z
F

J. N�/ dv D C�1e�
C
N�

Z
E N�

z!. N�/m;

but up to sets of measure zero, E N� equals f �1.Bgcan.f .q/; ı0//, whose volume with respect to
!mM is at least C�1ı02n. Using the volume form bound (4.3), we thus see thatZ

E�

z!.�/m > C�1e�
C
N� ı02ne�.m�n/T ;

and using (4.28), we conclude that

(4.31) Vol.E/ > C�1 N�e�
C
N� ı02ne�.m�n/T :

Next, for 0 < �� 1, to be chosen later depending on ı0; N� , and for N� 0 6 � 6 N� , we have,
using (4.3), Z

zU�

z!.�/m 6 C

Z
zU�

!.T /m 6 Ce�.m�n/T
Z
zU�

!mM 6 C�e�.m�n/T ;

where we used that the gM -volume of zU� is at mostC�. Thus the subset ofE given by .�; 
.�//
with 
.�/ 2 zU� has spacetime volume bounded above by

C N��e�.m�n/T 6 C�ı0�2neC= N� Vol.E/;

using (4.31). In particular, on a typical minimal L-geodesic in � , the � -time spent inside zU� is
less than C N��ı0�2neC= N� . For each such L-geodesic 
 , we split Œ0; N�� into the subset I defined
by the property that � 2 I , 
.�/ 2 zU�, and its complement J D Œ0; N��nI . Then we have

jI j 6 C N��ı0�2neC= N� ;

and thanks to (4.28), we know that every � 2 I satisfies � > C�1 N� . The same argument that
we used to prove (4.27) shows that

(4.32) L.
/ 6 C N��
1
2 :

Splitting Z N�
0

j𝜕�
 jzg.�/ d� D
Z
I

j𝜕�
 jzg.�/ d� C
Z
J

j𝜕�
 jzg.�/ d�;

we can then estimate, using (4.23), (4.28) and (4.32),Z
I

j𝜕�
 jzg.�/ d� 6 C N��
1
4

Z
I

�
1
4 j𝜕�
 jzg.�/ d�

6 C N��
1
4

�Z
I

p
� j𝜕�
 j2zg.�/ d�

� 1
2

jI j
1
2

6 C N��
1
4 N�

1
2�

1
2 ı0�neC= N��

C N�
3
2 C

Z
I

p
�.R.zg.�//C j𝜕�
 j2zg.�// d�

� 1
2

6 C N�
1
4�

1
2 ı0�neC= N� .C N�

3
2 C C N��

1
2 /
1
2 6 C�

1
2 ı0�neC= N� ;

(4.33)
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and combining this estimate with (4.4), we see that the gN -distance traversed by f .
/ inside
U� is bounded above by

(4.34) C�
1
2 ı0�neC= N� � �ˇ

for small enough � and some fixed small positive exponent ˇ < 1
2

.
The issue now is how to use these bounds to estimate from above the gcan-length of the

curve f .
/. Outside of zU�, we have that zg.�/ is uniformly close to f �gcan (up to enlarging T ,
depending on our choice of �, which itself was chosen depending ultimately on ı), so we have

(4.35)
Z
J

j𝜕�
 jzg.�/ d� >
Z
J

j𝜕�f .
/jgcan d� � Cı
0;

which will give us the desired bound for the gcan-length of the portion of f .
/ outside U� (i.e.
when � 2 J ). On the other hand, to estimate the gcan-length of the portion of f .
/ inside U�
(i.e. when � 2 I ), we employ the metric bounds (4.6) as follows.

Consider the following events: f .
/ enters U� and reaches U�=2 before returning to the
boundary of U�. On the one hand, by definition, the gN -distance traversed during this whole
event is at least �, and on the other hand, we have shown in (4.34) that it is also less than �ˇ ;
the discussion is local: the event takes place in a local coordinate chart exhibitingD as a simple
normal crossings divisor. Let f .
.�entry// and f .
.�exit// be the entry and exit points of one
event so that their gcan-distance is at mostZ �exit

�entry

j𝜕�f .
/jgcan d�:

By the explicit control (4.6) on gcan, we have

(4.36) C�1!cone 6 !can 6 C

 
1 �

�X
iD1

logjsi jhi

!A
!cone:

For simplicity, suppose first that D has only one component, which in our local chart is given
by ¹z1 D 0º. Then we can assume without loss that, in this chart, the boundary of U� is given
by ¹jz1j D �º, and in our chart (4.36) reads

C�1

 
i dz1 ^ dz1

jz1j2.1�
/
C

nX
jD2

i dzj ^ dzj

!

6 !can 6 C.1 � logjz1j/A
 
i dz1 ^ dz1

jz1j2.1�
/
C

nX
jD2

i dzj ^ dzj

!
:

The entry and exit points are both on ¹jz1j D �º, have gcan-distance at mostZ �exit

�entry

j𝜕�f .
/jgcan d�;

and hence their gcone-distance is at most C times that. Therefore, there exists another path
joining these entry and exit points, which is contained in the boundary of U� (in particular, it
does not come into U�=2) and whose gcone-length is also at most C

R �exit
�entry
j𝜕�f .
/jgcan d� , and
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hence whose gcan-length is bounded above by

C jlog �jC
Z �exit

�entry

j𝜕�
 jzg.�/ d�:

The general case when in our chart we see several components ofD is dealt with similarly. We
perform this construction for all the events (which are disjoint). This gives a replacement 
 0

of f .
/, staying outside U�=2, agreeing with f .
/ between the events, and whose gcan-length
traversed in each event is at most C jlog �jC times the corresponding integral of j𝜕�
 jzg.�/.
Thus, using (4.33), (4.34) and (4.35),

dcan.f .p/; f .q// 6 Lgcan.

0/

6
Z
J

j𝜕�f .
/jgcan d� C C jlog �jC
Z
I

j𝜕�
 jzg.�/ d�

6
Z
J

j𝜕�
 jzg.�/ d� C Cı0 C C jlog �jC�ˇ

6
Z N�
0

j𝜕�
 jzg.�/ d� C Cı0;

(4.37)

choosing � small enough. Since 
 here is a minimal L-geodesic from .p; 0/ to .q0; N�/, arguing
as before, we see thatZ N�

0

j𝜕�
 jzg.�/ d� 6
�Z N�

0

p
� j𝜕�
 j2zg.�/ d�

� 1
2
�Z N�

0

1
p
�
d�

� 1
2

6
p
2 N�

1
4

�
C N�

3
2 C

Z N�
0

p
�.R.zg.�//C j𝜕�
 j2zg.�// d�

� 1
2

D
p
2 N�

1
4

�
C N�

3
2 C L.q0; N�/

� 1
2 ;

(4.38)

and so, from (4.37) and (4.38) (again, we can absorb the term with N�
3
2 ), we get

L.q0; N�/ >
1

2 N�1=2

�
dcan.f .p/; f .q// � Cı

0
�2
;

as desired, for some q0 with f .q0/ 2 Bgcan.f .q/; ı0/, which establishes (4.25) and (4.26). As
explained above, up to small modification to N� , this implies that the same statement (4.26) holds
for all q0 with f .q0/ 2 Bgcan.f .q/; ı0/.

The main difference between this statement and Claim 4 is that we wish to compute
distance with respect to a fixed time metric, rather than evolving metrics. Again following [49],
we consider

NL.q0; �/ D 2
p
�L.q0; �/:

As � ! 0C, the function NL tends to dzg.0/.p; q0/2 (see [11, Lemma 7.47]), and according to
[49, (7.15)], we have � 𝜕

𝜕�
C�zg.�/

�
NL 6 4m:

Recall that (4.25) gives

(4.39) NL.q0; N�/ >
�
dcan.f .p/; f .q// � Cı

0
�2
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for q0 with f .q0/ 2 Bgcan.f .q/; ı0/, and (4.24) gives

(4.40) NL.q; �/ 6 C

for all 0 < � 6 N� .
Let � be a smooth (time-independent) cutoff function on N supported in Bgcan.q; ı0/ and

equal to 1 on Bgcan.q; ı0=2/, and denote by the same symbol its pullback toM via f . Then, by
(4.4), we have

(4.41) sup
M

j�zg.�/�j 6 Cı0�2

for 0 6 � 6 N� . Integrating the � -time evolution ofZ
M

� NL. � ; �/z!m.�/

with respect to � 2 Œ0; N��, we obtainZ
M

� NL. � ; 0/z!m.0/ D

Z
M

� NL. � ; N�/z!m. N�/C

Z N�
0

Z
M

NL. � ; �/�zg.�/�z!
m.�/ d�

� 2

Z N�
0

Z
M

� NL. � ; �/R.zg.�//z!.�/m d�;

and employing (4.3), (4.23), (4.40) and (4.41), we can boundZ
M

NL. � ; �/�zg.�/�z!
m.�/ > �Cı0�2

Z
f �1.Bgcan .q;ı 0//

z!m.�/

> �Cı0�2e�.m�n/T
Z
f �1.Bgcan .q;ı 0//

!mM

> �Ce�.m�n/T ı02n�2;

and similarly

�2

Z
M

� NL. � ; �/R.zg.�//z!.�/m > �Ce�.m�n/T ı02n;

and so, using also (4.39),Z
M

� NL. � ; 0/z!m.0/ >
Z
M

� NL. � ; N�/z!m. N�/ � C N�ı02n�2e�.m�n/T

>
�
dcan.f .p/; f .q// � Cı

0
�2 Z

M

�z!m. N�/ � C N�ı02n�2e�.m�n/T

>
�
.dcan.f .p/; f .q// � Cı

0/2 � C N�ı0�2
� Z
M

�z!m. N�/;

where in the last line we used that
R
M �z!.�/m > C�1ı02ne�.m�n/T , which again comes from

(4.3). By choosing N� 6 C�1ı03, we can ignore the term with N�ı0�2.
Now, integrating the � -time evolution of

R
M �z!m.�/ with respect to � 2 Œ0; N��, we obtainZ

M

�z!m. N�/ �

Z
M

�z!m.0/ D 2

Z N�
0

�R.zg.�//z!.�/m d� > �C N�ı0�2e�.m�n/T ;



Li and Tosatti, On the collapsing of Calabi–Yau manifolds and Kähler–Ricci flows 189

and so Z
M

� NL. � ; 0/z!m.0/ >
�
dcan.f .p/; f .q// � Cı

0
�2Z

M

�z!m.0/ � C N�ı0�2e�.m�n/T :

(4.42)

Now, using C 0 metric convergence in the regular region, the g.T /-distance between q
and q0 is bounded by Cı0 in the support of �, soZ

M

� NL. � ; 0/z!m.0/ D

Z
M

�dzg.0/.p; �/
2
z!m.0/

D

Z
M

�dg.T /.p; �/
2
z!m.0/

6
�
dg.T /.p; q/C Cı

0
�2 Z

M

�z!m.0/:

(4.43)

Combining (4.42) and (4.43) and dividing by
R
M �z!m.0/ > C�1ı02ne�.m�n/T gives�

dg.T /.p; q/C Cı
0
�2 >

�
dcan.f .p/; f .q// � Cı

0
�2
� C N�ı0�2n�2;

and taking N� 6 C�1ı02nC4, we obtain

(4.44) dg.T /.p; q/ > dcan
�
f .p/; f .q/

�
� Cı0:

This fixes our choice of N� , and hence of �, which finally also fixes how large T has to be. In
summary, we have shown that (4.44) holds for sufficiently large T , and this finally concludes
the proof of Claim 4, and hence of Proposition 4.1.

Remark 4.2. There is only one point in the proof of Theorem 1.5 where it was essen-
tial to use estimate (4.6) (which is where we use the assumption that N is smooth and D is
snc), which is to prove (4.37). In the proof of (4.37), we had to deal with the rather artificial
possibility that the minimal L-geodesic 
 there wanders in and out of the neighborhood zU�=2
an unbounded number of times (what we called “events” in the proof). Here we want to remark
that if one can find such 
 such that the number of events is bounded above by a uniform
constant A, then one can prove (4.37) (and hence Theorem 1.5) dropping the snc assumption
on D.1/. Indeed, for each event as above, we can estimate the dcan-distance between the entry
point P ´ f .
.�entry// and the exit point Q´ f .
.�exit// by using that, on NnU�=2,

dcan.P;Q/ 6 CdgN .P;Q/
˛

for some uniform ˛ > 0, by passing (2.11) to the limit. Since

dgN .P;Q/ 6
Z �exit

�entry

j𝜕�f .
/jgN d�;

we see that we can join P and Q with a path whose gcan-length is at most

C

�Z �exit

�entry

j𝜕�f .
/jgN d�
�˛

6 C

�Z �exit

�entry

j𝜕�
 jzg.�/ d�
�˛
;
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and using this path to replace the portion of f .
/ with �entry 6 � 6 �exit, and repeating this for
all the A events, we obtain a new path 
 0 joining f .p/ and f .q/ for which we have

Lgcan.

0/ 6

Z
J

j𝜕�f .
/jgcan d� C C

AX
iD1

�Z �exit;i

�entry;i

j𝜕�
 jzg.�/ d�
�˛

6
Z
J

j𝜕�
 jzg.�/ d� C Cı0 C CA1�˛
�Z
I

j𝜕�
 jzg.�/ d�
�˛

6
Z N�
0

j𝜕�
 jzg.�/ d� C Cı0 C CA1�˛�˛ˇ

6
Z N�
0

j𝜕�
 jzg.�/ d� C Cı0

by choosing � sufficiently small, which proves (4.37).
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