Mapping learning objectives of project-based
undergraduate software engineering courses to
CC2020 competency model

Ahmad D. Suleiman
Electrical & Computer Eng
Clarkson University
Potsdam NY, USA
suleimad@clarkson.edu

Daqing Hou
Electrical & Computer Eng
Clarkson University
Potsdam NY, USA

dhou@clarkson.edu

Mary M Small Juliana G de Souza
Inst for STEM Education
Clarkson University
Potsdam NY, USA

mmsmall@clarkson.edu

Virginia Commonwealth Univ.
Richmond VI, USA
desouzajg@vcu.edu

Abstract—This qualitative research performs a thematic
analysis of the learning objectives in existing project-based
undergraduate software engineering courses to align them with
the competency model defined in the Computing Curricula 2020
reports (CC2020). This study identifies the trends, strengths, and
gaps in how the reviewed course learning objectives cover the
knowledge, skill, and disposition components of the CC2020
competency model. The learning objectives were categorized
according to knowledge elements, skills, and dispositions as
defined in the CC2020 competency model. Our analysis shows that
54% of knowledge elements from the reviewed learning objectives
do not have any skill level specified and overall, only two out of the
eleven dispositions in CC2020 are specified (“Collaboration” and
“Professional”). We also find that technical knowledge elements
from the software development category (e.g., software process,
software design, and software quality, verification & validation)
and systems modeling category (e.g., systems analysis & design,
and requirements analysis and specification), probably
unsurprisingly, are covered the most often. Similarly,
collaboration & teamwork, and oral & written communication are
unsurprisingly the most common professional & foundational
knowledge elements in the reviewed course's learning objectives
as they are essential to project-based learning. Although they are
essential for the completion of a successful software project,
knowledge elements such as time management, security
technology & implementation, and user experience design are
rarely mentioned. We discuss the implications of our findings on
course design.

Keywords— Learning Outcomes, Learning Objectives, Project-
based learning, Competency, CC2020, Software Engineering

L INTRODUCTION

Project-based Learning (PjBL) is a learning approach that
has been widely applied to developing the competency needed
by the industry. PjBL provides students with the opportunity to
apply their knowledge and skills in the context of authentic real-
life projects [1]. PjBL is mostly used to support learning at the
higher levels of the revised Bloom’s Taxonomy [2], from
“applying” to “creating”, and is effective in fostering higher-
order thinking skills in students [3][4][5].

Funding agency: United States National Science Foundation.

Department of Computer Science

Jan DeWaters
Inst for STEM Education
Clarkson University
Potsdam NY, USA
jdewater@clarkson.edu

Yu Liu
Electrical & Computer Eng
Clarkson University
Potsdam NY, USA
yuliu@clarkson.edu

David Shepherd

Department of Computer Science

Louisiana State University
Baton Rouge LA, USA
davidshepherd@gmail.com

Completency
/‘e& / h*««,&
(/ \ Task
Knowledge ‘ « Role
* Goal

Qispositions /

\ 4

>

* Objectives

* Constraints

Fig. 1. Conceptual structure of CC2020 competency model which defines
competency as composed of knowledge, skills, and dispositions in the context
of performing a task [6].

Building a good software project for PjBL requires a
significant effort from the course instructor. Nonetheless, it is
also crucial to design a course project in a way that aligns with
and supports the course's set learning objectives. If the project
fails to align with and support these objectives, the purpose of
using a project-based approach becomes futile. Thus, it is
imperative for educators to understand the commonly used
learning objectives in software engineering project courses and
to better design projects that effectively target the course
learning objectives.

On the other hand, ACM and IEEE Computer Society have
issued the Computing Curricula 2020 (CC2020) [6] that
advocates for a transition of computing learning and education
from the current knowledge-based one [7] to a competency-
based one. CC2020 defines competency as composed of four
dimensions, i.e., knowledge, skills, dispositions, and task,
where the former three are observed within the performance of
a specific task. Knowledge is the “know-what” dimension of
competency. It is proficiency in core concepts and content and

the application of learning to new situations. Skills are the
“know-how” dimension of competency that defines the ability
to carry out tasks with determined results. Dispositions are the
“know-why” dimension of the competency that defines one's
intellectual, social, or moral tendencies. Fig. 1 illustrates the
conceptual structure of the competency model. CC2020
presents suggested elements of each of these dimensions that
encompass all curricula in computing educational programs.
Crucially the purpose/goals of a course are expressed through
statements of learning objectives/outcomes. In contrast to a
competency approach, the learning outcomes in knowledge-
based learning tend to be expressed in terms of knowledge units
and skills only. They thus fall short when we are faced with
challenges like assessing the development of professional
graduate attributes or performing comparisons of educational
programs [8].

To illustrate the process for developing a competency-based
curriculum, Clear et al. [8] demonstrate how to design computer
science competency statements from the CS2013 [9]
curriculum model.

The disposition dimension of CC2020 is needed to satisfy
the professional expectations of a modern workplace. Bowers
et al. [10] make the first formal attempt to link CC2020 attitudes
to an existing employer-centered skills framework, i.e., the
Skills Framework for the Information Age (SFIA) [11]. SFIA
is a widely adopted competency framework with users all over
the world. SFIA defines professional skills and competencies
required across the broad field of computing. Bowers et al. [10]
confirmed that the CC2020 dispositions cover all these
behavioral and professional qualities in the SFIA framework.

This paper presents a case study by applying thematic
analysis for mapping existing project-based software
engineering courses to the CC2020 model. This paper for the
first time presents a summary of the learning objectives that are
commonly used in existing software engineering project
courses as well as discusses the implications of the identified
trend and gaps in the coverage of CC2020 model, on course
design. To our best knowledge, there has been no previous
study that maps the learning objectives of existing courses to
the CC2020 competency model.

The rest of the paper is organized as follows. Section II
describes our research methodology and process. Section 111
presents our results with discussion. Lastly, Section IV
concludes the paper.

1I. RESEARCH METHODOLOGY AND PROCESS

We use thematic analysis as our research methodology to
map learning objectives in existing project courses to the
CC2020 competency model. In this section, we start by stating
our research question, then we explain the process of search,
selection, and analysis of learning objectives of existing
courses. Finally, we highlight our initial codes and the coding
process employed. The results of our thematic analysis are
presented in Section III.

A. Research Question

Our qualitative research process is guided by the research
question “To what extent do the learning objectives of current

software engineering project courses cover the three

components of the CC2020 competency model?”

B. Search

To find the software engineering courses, we use two
approaches: (a) we performed Google search with the following
keywords: ‘software engineering’, ‘course’, ‘syllabus’, and
‘class’; and (b) to find more courses, we searched the course
catalog of a non-exhaustive list of universities with the
keywords ‘software engineering’. A further search was also
required for individual course titles to get the most recent
syllabus and for other publicly available course information.

C. Selection

From the search result, courses were selected based on the
following criteria: (a) the course must be a higher education
course; (b) the course must have publicly available information,
at least a course name, and a course description, (c) the course
title must contain “software engineering” to indicate it’s a
software engineering course and (d) the course must have a
major project. The selection process yielded a total of 31 syllabi
in software engineering, 29 of which were gathered via an
online search in various university course catalogs, and 2 were
from other educational research papers.

D. Analyses

Thematic analysis [12] was used to analyze the data
collected from the search process. This process includes six
phases, namely, familiarization with the data, generating initial
codes, searching for themes, reviewing potential themes,
defining, and naming themes, and finally producing a report
[13].

In addition to the “learning objective” section of a course,
course learning objectives were also inferred from other
publicly available materials such as course descriptions, project
descriptions, instruction topics, etc. The inferring process
follows a careful textual reading for any emphasis, expectation,
or achievement of learning. 8 out of 31 courses were inferred.
All data, including the raw materials and the inferred
objectives, can be made available upon request to the first
author.

E. Initial Codes

The learning objectives were coded according to knowledge
elements, skills, and dispositions as defined in the CC2020
competency model.

1) Knowledge Element: Knowledge is the “know-what”
dimension of competency as a factual understanding. This
dimension reflects the enumerated subject matter that teachers
catalog as topics in their syllabi. An element of knowledge
designates a core concept essential to competency. CC2020
competency model encompasses concepts that are technical
(computing concepts), foundational and professional
(indicative of a workplace), and domain-specific (the task
setting). Six categories of technical knowledge elements and
thirteen foundational & professional knowledge elements are
highlighted in Table I and Table II respectively.

TABLE I. TECHNICAL KNOWLEDGE ELEMENTS [6]

Category Computing Knowledge Area
Code Name
1. Usersand [K(C1.1) |[Social Issues and Professional Practice
Organizations | K(C1.2) |Security Policy and Management
K(C1.3) [IS Management and Leadership
K(C1.4) |Enterprise Architecture
K(C1.5) [Project Management
K(C1.6) |User Experience Design
2. Systems K(C2.1) |[Security Issues and Principles
Modeling K(C2.2) |[Systems Analysis and Design
K(C2.3) [Requirements Analysis and Specification
K(C2.4) |Data and Information Management
3. Systems K(C3.1) [Virtual Systems and Services
Architecture |K(C3.2) |Intelligent Systems (AI)
and K(C3.3) |Internet of Things
Infrastructure [K(C3.4) [Parallel and Distributed Computing
K(C3.5) [Computer Networks
K(C3.6) |Embedded Systems
K(C3.7) |Integrated Systems Technology
K(C3.8) |[Platform Technologies
K(C3.9) |[Security Technology and Implementation
4. Software |K(C4.1) |Software Quality, Verification, and Validation
Development |K(C4.2) |Software Process
K(C4.3) |[Software Modeling and Analysis
K(C4.4) |[Software Design
K(C4.5) |Platform-Based Development
5. Software |K(C5.1) |[Graphics and Visualization
Fundamentals | K(C5.2) |Operating Systems
K(C5.3) |Data Structures, Algorithms, and Complexity
K(C5.4) |Programming Languages
K(C5.5) |Programming Fundamentals
K(C5.6) |Computing Systems Fundamentals
6. Hardware [K(C6.1) |Architecture and Organization
K(C6.2) |Digital Design
K(C6.3) |Circuits and Electronics
K(C6.4) |Signal Processing

2) Skill Level: Skills introduce the capability of applying
knowledge to actively accomplish a task. Hence, a skill
expresses an element of knowledge as acted upon with
proficiency to define the ‘“know-how” dimension of
competency. CC2020's definition of competency has adopted
the 2001 revision of Bloom’s Taxonomy of six levels of the
cognitive process [2] to specify the degree of skill expected in
successful task accomplishment. Table III summarizes an
ordered sequence of six cumulative levels of skill (cognitive
skill) together with abbreviated definitions. For instance,
students create new software components or modules that
extend the functionality of existing systems or introduce
entirely new capabilities at the “Creating” level. They combine
their programming skills to build innovative features, modules,
or libraries. As another example, requirement validation and
quality assurance require activities that are usually performed
at the “Evaluating” and “Analyzing levels respectively.

3) Disposition: Dispositions frame the “know-why”
dimension of competency and prescribe a temperament of
quality of character in task performance. Dispositions moderate
the behavior of applying “know-what” that becomes “know-
how”. Dispositions control whether and how an individual is
inclined to use his/her skills. Dispositions can denote the values
and motivations that guide applying knowledge while

designating the quality of knowing indicative of a standard of
professional performance [14]. Table IV displays the eleven
dispositions of CC2020, which were derived from the literature
by the CC2020 task force [6]. For instance, students
demonstrate a “Collaborative” disposition by active
participation in a team project, sharing knowledge and
expertise, giving or receiving feedback, task allocation and
coordination, effective communication, etc. Another example
is a “Responsive” disposition, which is all about respecting the
timing constraints for communication and activities required to
accomplish the project's goals. As a final example, the
“Meticulous” disposition is marked by precise attention to
details, which helps achieve thoroughness and accuracy when
accomplishing a task. For example, students testing edge cases
and providing quality documentation can be considered as

being “Meticulous”.

TABLE IL PROFESSIONAL & FOUNDATIONAL KNOWLEDGE
ELEMENTS [6]
Professional &
Foundational X
Knowledge Element Meaning
Code Name
K(P1) |[Oral Conveying a message orally using real-time
Communication |presentations with visual aids related to
& Presentation audience interests and goals
K(P2) |Written Use of a written form of interaction between
Communication |people and organizations that provides an
effective way of messaging
K(P3) |[Problem Solving |A logical and orderly search for the source of
and a unit problem and making the unit
Troubleshooting |operational again
K(P4) |[Projectand Task |A process to provide decisions about a project
Organization and |concerning the organization and planning to
Planning achieve a successful result
K(P5) |[Collaboration and | Apportion challenging tasks into simpler ones
Teamwork and then work together to complete them
efficiently
K(P6) |[Research and Someone who begins or undertakes work or a
Self- project without needing direction or
Starter/Learner | encouragement to do so
K(P7) |[Multi-Task Processing several issues or tasks at once
Prioritization and |while arranging them according to importance
Management to do a specific one first
K(P8) |Relationship A strategy to maintain an ongoing level of
Management engagement usually between a business and
its customers or other businesses
K(P9) [Analytical and A mental process of simplifying complex
Critical Thinking |information into basic parts and evaluating
results to make proper decisions
K(P10) [Time An ability to use a person’s time in an
Management effective or productive manner to work
efficiently
K(P11) |Quality Use of techniques, methods, and processes to
Assurance / identify and prevent defects according to
Control defined quality standards
K(P12) [Mathematics and |Use of numbers and theories abstractly
Statistics especially in the collection and analysis of
numerical data
K(P13) |Ethical and Ethical perspectives of the different
Intercultural viewpoints someone uses to view a problem
Perspectives in the context of individual human values

TABLE IIL. LEVELS OF COGNITIVE SKILLS BASED ON BLOOM’S
TAXONOMY [6]
Skill Level
Definition Verbs
Code | Name
B-I |Remembering |Exhibit memory of [Choose, Define, Find,
previously learned |How, Label, List, Match,
materials by recalling [Name, Omit, Recall,
facts, terms, basic Relate, Select, Show, Spell,
concepts, and Tell, What, When, Where,
answers. ‘Which, Who, and Why

B-II |Understanding |Demonstrate Classify, Compare,
understanding of Contrast, Demonstrate,
facts and ideas by Explain, Extend, Illustrate,
organizing, Infer, Interpret, Outline,
comparing, Relate, Rephrase, Show,
translating, Summarize, and Translate
interpreting, giving
descriptions.

B-1II [Applying Solve problems in |Apply, Build, Choose,
new situations by Construct, Develop,
applying acquired Experiment, with, Identity,
knowledge, facts, Interview, Make,
techniques, and rules |use, of, Model, Organize,
in a different way. |Plan,

Select, Solve, and Utilize

B-IV |Analyzing Examine and break [Analyze, Assume,
information into parts|Categorize,
by identifying Classify, Compare,
motives or causes. [Conclusion, Contrast,
Make inferences and (Discover, Dissect,
find evidence to Distinguish, Divide,
support solutions. Examine,

Function, Inference,
Inspect, List, Motive,
Relationships, Simplify,
Survey, Take part in, Test
for, Theme

B-V |Evaluating Present and defend |[Agree, Appraise, Assess,
opinions by making |Award, Choose, Compare,
judgments about Conclude, Criteria,
information, validity |Criticize, Decide, Deduct,
of ideas, or quality of [Defend, Determine,
material. Disprove, Estimate,

Evaluate, Explain,
Importance, Influence,
Interpret, Judge, Justify,
Mark, Measure, Opinion,
Perceive, Prioritize, Prove,
Rate, Recommend, Rule
on, Select, Support, Value

B-VI |Creating Compile information |Adapt, Build, Change,
together in a different [Choose, Combine,
way by combining (Compile, Compose,
elements in a new Construct, Create, Delete,
pattern or by Design, Develop, Discuss,
proposing alternative (Elaborate, Estimate,
solutions. Formulate, Happen,

Imagine, Improve, Invent,
Make up, Maximize,
Minimize, Modify,
Original, Originate, Plan,
Predict, Propose, Solution,
Solve, Suppose, Test,
Theory

F. Coding Process

competency model component. An excerpt could be mapped to
more than one competency component. In the rest of this
subsection, we illustrate how each CC2020 component was
coded with examples.

1) Coding Knowledge Elements: As illustrated in Fig. 2,
excerpts from the course’s learning objectives were mapped to
both initial knowledge elements. The first excerpt “software
development processes” was mapped to technical knowledge
element K(C4.2), i.e., “Software Process”. The sixth excerpt
“Quality assurance” was mapped to technical knowledge
element K(P11), i.e., “Quality Assurance/Control”.

TABLEIV. LEARNING DISPOSITIONS [6]

Disposition Element
Code
D-1 |Proactive

Elaboration
Name

With Initiative/Self-Starter Shows
independence. Ability to assess and start
activities independently without needing to be
told what to do. Willing to take the lead, not
waiting for others to start activities or wait for
instructions.

Self-motivated/ Self-Directed Demonstrates
determination to sustain efforts to continue
tasks. Direction from others is not required to
continue a task toward its desired ends.

D-2 |Self-Directed

D-3 |Passionate With Passion/Conviction Strongly committed
to and enthusiastic about the realization of the
task or goal. Makes the compelling case for the
success and benefits of task, project, team, or
means of achieving goals.

Purposefully engaged / Purposefulness Goal-
directed, intentionally acting and committed to
achieving organizational and project goals.
Reflects an attitude towards the organizational
goals served by decisions, work, or work
products. e.g., Business acumen.

With Professionalism / Work Ethic. Reflecting
qualities connected with trained and skilled
people: Acting honestly, with integrity,
commitment, determination, and dedication to
what is required to achieve a task.

With Judgement / Discretion / Responsible /
Rectitude Reflect on conditions and concemns,
then act according to what is appropriate to the
situation. Making responsible assessments and
taking action using professional knowledge,
experience, understanding, and common sense.
E.g., Responsibility, Professional astuteness.
Adaptable / Flexible / Agile Ability or
willingness to adjust approach in response to
changing conditions or needs.

D-4 |Purpose-
Driven

D-5 |Professional

D-6 [Responsible

D-7 |Adaptable

D-8 |[Collaborative |Collaborative Team Player / Influencing
Willingness to work with others, engaging
appropriate involvement of other persons and
organizations helpful to the task. Striving to be
respectful and productive in achieving a
common goal.

Responsive/Respectful Reacting quickly and
positively. Respecting the timing needs for
communication and actions needed to achieve
the goals of the work.

D-9 [Responsive

Coding the learning objectives and other information in
course syllabi was an iterative process and required a deep
understanding of both the initial codes and the data. Initially,
relevant information from the syllabi was fetched as excerpts.
These excerpts were then mapped to the appropriate CC2020

D-10 |Meticulous Attentive to Detail Achieves thoroughness and
accuracy when accomplishing a task through
concern for relevant details.

D-11 |Inventive Exploratory / Inventive Looking beyond simple

solutions; Examining alternative ideas and
solutions. Seeks, produces, and integrates
appropriate alternative

* |dentify the key concerns that are common to
all(software development processes.1]

* Discuss thics, sustainability andz]
dependability issues that affect a given
software product.

tsProfessional software engineering) [project]
(smanagementjand|collaborative developments |

¢6Quality assurancelincluding dependability
and [software testing?

teModelling with UML:)use cases, structure and
behavior

Fig. 2. Example showing the process of coding knowledge elements where
Technical Knowledge elements are colored in Green and Foundational and
Professional Knowledge in Yellow. Notice the excerpts (left) and their codes
(right) are matched by index numbers.

2) Coding Skill Level: After the learning objective was
mapped to a knowledge element, a verb was searched within
the excerpt to signify the skill level for the knowledge element.
When no verb could be mapped to any skill level, then the
knowledge element would have no skill level attached to it.
When multiple skill levels were found for a single knowledge
element, the maximum skill level was selected. The verbs
searched for in each skill level are highlighted in Table III. Fig.
3 shows the process of adding skill level to the previous
example.

3) Coding Dispositions: As illustrated in Fig. 4, excerpts
from the course’s learning objectives were mapped to the 11
dispositions. The excerpt “professional software engineering”
was mapped to the disposition D-5, i.e., “Professional”. As
shown by this example, an excerpt for a disposition (D-5,
Professional, Table IV) could also overlap with the excerpt of a
knowledge element (K(C1.1), Social Issues and Professional
Practices, Table I).

(*s1dentify the key concerns that are common to

all(software development processes.!

(*1Discuss)ethics, sustainability andz]
dependability issues that affect a given
software product.

K(C1.5)

3
4
5
6

f3Professional software engineering] (project] K(P5)
(smanagementjand|collaborative developments | |s(K(P11)
7K

¢sQuality assurancejincluding dependability
and [software testing7

fsModelling with UML:)use cases, structure and
behavior

Fig. 3. Example showing the process of coding skill levels which are shown
in Blue. Notice the excerpts (left) and their codes (right) are matched by index
numbers.

(e2Identify the key concerns that are common to

all(software development processes.1 |

(*10Discuss|ethics, sustainability andz

dependability issues that affect a given
software producltl.

4management|an

12
¢6Quality assurance)including dependability
and (software testing?

fsModelling with UML:Juse cases, structure and
behavior

Fig. 4. Example showing the process of coding dispositions which are shown
in Red where Excerpt colored in red are mapped to Disposition. Notice the
excerpts (left) and their codes (right) are matched by index numbers.

II1. RESULT AND DISCUSSION

The thematic analysis of the 31 courses yielded 187
technical knowledge eclement excerpts and 146
professional/foundational knowledge element excerpts. From
these we have identified the following five main themes about
software engineering project courses:

1. It’s all about “Software Development”.

2. “Software Fundamentals” are rarely covered.

3. Professional and foundational knowledge are key.

4. Skill level is often not specified.

5. Only two out of the eleven dispositions are specified.

A. Theme I: It’s All About “Software Development”

Probably unsurprisingly, the technical knowledge element
category “Software Development” is covered by all the courses.
The knowledge elements under this category covered more than
half of the technical knowledge excerpts (see Fig. 5), with all
of them occurring in nearly all courses, except for “Platform
Development” which occurs in none.

® 1. Users and Organizations @ 2. Systems Modeling
3. Systems Architecture and Infrastructure

® 4. Software Development 5. Software Fundamentals

Fig. 5. Percentage of excerpts that belong to each category of technical
knowledge elements.

“Software Quality, Verification, and Validation” is the most
common knowledge element, occurring in all but one course.
This shows how project-based software engineering courses
focus on a form of software quality assurance. Several testing
types and techniques have been mentioned. An example from
the excerpts is shown below:

“Discuss various testing techniques such as white box
and black box testing, Distinguish between different
types and levels of testing (for instance, unit,
integration, systems, and acceptance)” - Course 4

Some courses mentioned giving students hands-on
experience in writing tests, bug finding, code inspection, code
reviews, etc. Another example from the excerpts is as follows:

“Gain experience writing tests, testing (functional
testing, structural testing, testing strategies), code
refactoring, and debugging.” - Course 1

“Software Process” is another knowledge element that
occurs in most courses (83%) (See Table V). Courses often
highlight giving students understanding and guidance in
various software development lifecycle (SDLC) techniques and
phases. The most common ones are agile, scrum, and waterfall.
Examples from the excerpt are:

“Describe and compare the various mainstream
software development methods, examines the software
development life cycle, Agile methodologies - Course 8

“Guide the student through the waterfall development
model” - Course 30

“Software Modeling and Analysis” and “Software Design”
are other high-occurring knowledge elements. This is probably
also not surprising in project-based courses. The learning
objectives highlight knowledge in software analysis, design,
development, and implementation. Software modeling
techniques are also covered, especially Unified Modeling
Language (UML). Here is an example from the excerpts:

“Software design... Modeling with UML... Select
appropriate process models, approaches, and
techniques to manage a given software development
process and justify the choices, Identify the key
concerns that are common to all software development

processes.” - Course 11

B. Theme II: “Software Fundamentals” Are Rarely Covered

Although technical knowledge elements under “Software
Fundamentals” such as “Programming Languages”, ‘“Data
Structures and Algorithms™ etc., are essential for a successful
software project, they are rarely found in a project-based
software engineering course. Only about 5% of the technical
excerpt maps to this category (See Fig. 4). The reason might be
that many software engineering courses have prerequisites that
cover these fundamentals. This allows students to have
sufficient prior computing fundamental knowledge needed for
a successful software project.

TABLE V. OCCURRENCE OF TECHNICAL KNOWLEDGE ELEMENTS
Computing Knowledge Area®
Category Percentage
Code Name
1. Users and K(CL1) Social Issues and Professional
Organizations "/ | Practice 41.94%
K(C1.3) | IS Management and Leadership 3.23%
K(C1.4) | Enterprise Architecture 0.00%
K(CL1.5) | Project Management 54.84%
K(C1.6) | User Experience Design 6.45%
2. Systems K(C2.1) | Security Issues and Principles 9.68%
Modeling
Requirements Analysis and
K(C23) Specification 87.10%
3. Systems K(C3.1) | Virtual Systems and Services 3.23%
Architecture
and K(C3.6) | Embedded Systems 9.68%
Infrastructure P—_ i 3
Security Technology an
K(C3.9) Implementation 9.68%
4. Software K(C4.1) Software Quality, Verification, &
Development "/ | Validation 96.77%
K(C4.2) | Software Process 83.87%
K(C4.3) | Software Modeling and Analysis 77.42%
K(C4.4) | Software Design 87.10%
Data Structures, Algorithms, &
K(C53) Complexity 9.68%
K(C5.4) | Programming Languages 9.68%
K(C5.5) | Programming Fundamentals 9.68%

& Missing knowledge elements have 0% occurrence.

Three courses highlight their learning objective to cover
computer algorithm principles. All three occurrences are at the
“Applying” skill level, indicating that students are given the
opportunity to use their previous algorithm knowledge in a
software project. An example from the excerpts is:

“Gain experience in applying various Computer
Science methods and algorithms, as learned in earlier
courses, to large-scale sofiware development.”
Course 18

Two of the three courses that cover the “Programming
Languages” knowledge element cover C++ programming and
Python scripting, which are necessary for the completion of
their respective software projects. The other course focuses on
a not-so-traditional learning language Ruby on Rails. See the
excerpt below:

“Apply the key ideas of learning a new framework to
construct and deploy simple Rails applications, Apply
the key ideas of learning a new language in order to
construct programs in Ruby” Course 7

Other programming fundamentals that are also found are
design patterns, object-oriented programming, and other
programming techniques using Java and Typescript.

C. Theme IlI: Professional and Foundational Knowledge Are
Key

Knowledge of the computing discipline alone cannot
adequately educate graduates for successful careers. While
disciplinary knowledge sets computer experts apart from other
professionals, there are many additional knowledge domains
that are foundational, or normative in society and the
workplace, as opposed to only technical [6]. The result proves
just that, as professional and foundational knowledge has nearly
as much excerpt as technical knowledge excerpts (145).

In nearly all the courses, there is a focus on some kind of
communication, either “Written Communication” or “Oral
Communication & Presentation”. Written communication
usually comes in the form of a project report and
documentation. Oral communication often comes as
milestone/final presentations, meetings, and interviews. An
example excerpt is shown as follows:

“Students are expected to demonstrate the ability to
understand and document customer requirements and
design a working product within given constraints, The
ability to communicate effectively with the development
team and all stakeholders.” - Course 24

TABLE VL OCCURRENCE OF PROFESSIONAL & FOUNDATIONAL
KNOWLEDGE ELEMENTS
Professional and Foundational Knowledge
Percentage
Code Name
K(P1) |Oral Communication & Presentation 64.52%
K(P2) |Written Communication 64.52%
K(P3) |Problem-Solving and Troubleshooting 12.90%
K(P4) |Project and Task Organization and 93.55%
Planning
K(P5) |Collaboration and Teamwork 90.55%
K(P6) |Research and Self-Starter/Learner 3.23%
K(P7) |Multi-Task Prioritization and 3.23%
Management

K(P8) |Relationship Management 0%

K(P9) |Analytical and Critical Thinking 12.90%
K(P10) |Time Management 9.68%
K(P11) |Quality Assurance / Control 83.87%
K(P12) |Mathematics and Statistics 3.23%
K(P13) |Ethical and Intercultural Perspectives 23.58%

Other frequently used professional and foundation
knowledge elements include “Project and Task Organization
and Planning”, “Teamwork and Collaboration”, and “Quality
Assurance / Control”. A small number of courses focus on

problem-solving and troubleshooting skills, analytical and
critical thinking skills, and ethical & intercultural perspectives.
An example from the courses is shown below:

“Understanding of professional, ethical, legal, social
issues and responsibilities.” - Course 20

Time management is surprisingly less emphasized, having
appeared in just three courses. Software engineering requires
effective time management since it has a direct bearing on
project outcomes and team morale. One of the examples from
the excerpts is as follows:

“Gain experience in group-based software
development and develop communication, planning,
and time-management skills. ’- Course 18

D. Theme IV: Skill Level is Often Not Specified

Our thematic analysis yielded a combined 331 technical,
professional, and foundational knowledge elements. About
54% of them have no associated skill level specified (i.e., no
verb in the excerpt can be mapped to Bloom’s taxonomy) as
illustrated in Table VII.

TABLE VIL KNOWLEDGE ELEMENTS WITH SKILL LEVEL SPECIFIED
Knowledge Count | No of Skill | Percentage
Technical 186 70 37.63%
Professional/Foundational 145 80 55.17%
Total 331 150 45.32%

E. Theme V: Only Two Out of the Eleven Dispositions are

Specified.

A well-structured competency needs to have a disposition,
which distinguishes a competency from a learning outcome in
an obvious way. As a result, it significantly increases the
expressiveness of learning goals and adds language that is
typical of professional expectations [6]. Only two out of the 11
dispositions provided by CC2020 (“Collaboration” and
“Professional”) are found in the software engineering courses.

The collaboration disposition is found in nearly all (90%) of
the courses. Students perform the course project in groups of
varying sizes ranging from small to large. Because software
development is a complicated process requiring the
involvement of many stakeholders, collaboration is an essential
part of software engineering. An example from the excerpts is:

“Collaborative development: Students have worked
collaboratively in a team to implement and fully test
detailed designs and code. An ability to function
effectively on teams to accomplish a common goal.” -
Course 10

Another crucial component of software engineering is being
“Professional” since it guarantees that software engineers
uphold a high standard of quality and moral behavior.
Professionalism includes a variety of abilities and conduct, such

as effective communication, time management, moral conduct,
dedication, and determination. One-third of the courses
specified professional disposition. An example from the
excerpts is given below:

“Demonstrate appropriate professional conduct.
Discuss professional codes of conduct of Computer
Scientists and Engineers.” - Course 17

1v. CONCLUSION

As the PjBL approach becomes more widely used in
software engineering courses, it is important for educators to
understand the commonly used learning objectives in such
project-based courses and to better design projects that
effectively target the appropriate course learning objectives.
This study utilizes thematic analysis to perform a case study
where learning objectives/outcomes in existing project-based
software engineering courses were mapped to the CC2020
competency model. The learning objectives were categorized
according to knowledge elements, skills, and dispositions as
defined in the CC2020 competency model.

The major contributions of this study include the following:

e A summary of commonly used course learning
objectives is presented.

e We show that 54% of knowledge elements from the
reviewed course learning objectives do not have any
skill level specified.

e We highlight that only two out of the eleven CC2020
dispositions (“Collaboration” and “Professional”) are
specified in the surveyed project-based software
engineering courses.

Furthermore, the findings of this study have implications for
project and course design. For example, the summary of
commonly used course learning objectives is available for
future instructors to consider when designing their own course
projects, enabling them to target project-based software
engineering courses more effectively to learning objectives. On
the other hand, the gaps identified in this study can help
instructors construct higher-quality course learning objectives
and competency statements.

This study could be limited by the relatively small number
of courses surveyed (31). Future research could consider a
larger number of project-based courses within computing
education. This broader coverage would further increase the
validity of this study and enable comparison across different
disciplines in computing education.

ACKNOWLEDGMENT

This work is partially supported by the U.S. National
Science Foundation Awards DUE-2111318 and DUE-
2111294.

REFERENCES

[1] D. Kokotsaki, V. Menzies, and A. Wiggins, “Project-based learning: A
review of the literature,” Improving Schools, vol. 19(3), pp. 267-277,
2016. https://doi.org/10.1177/1365480216659733

[2] D. R. Krathwohl, “A Revision of Bloom's Taxonomy: An Overview,
Theory Into Practice,” Theory into Practice vol. 41(4), pp. 212-218, 24
June 2002. https://doi.org/10.1207/s15430421tip4104 2

[3] A. Churches, “Bloom's taxonomy blooms digitally,” Tech & Learning,
vol. 1, pp 1-6. 2008.

[4] J. Stayanchi, “Higher order thinking through Bloom’s taxonomy,”
Kwansei Gakuin University Humanities Review, vol. 22, pp. 117-124,
2007.

[5] Abosalem, Y., 2016. Assessment techniques and students’ higher-order
thinking skills. International Journal of Secondary Education, 4(1), pp.1-
11.

[6] CC2020 Task Force, “Computing Curricula 2020: Paradigms for Global
Computing Education,” Association for Computing Machinery, New
York, 2020.

[7] The Joint Task Force for Computing Curricula 2005, “Computing
Curricula 2005”, ACM, IEEE CS, IEEE SC, 2005.

[8] A. Clear, T. Clear, A. Vichare, T. Charles, S. Frezza, M. Gutica, B. Lunt,
F. Maiorana, A. Pears, F. Pitt, and C. Riedesel, “Designing computer
science competency statements: A process and curriculum model for the
21st century” Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education, pp. 211-246, 2020.
https://doi.org/10.1145/3437800.3439208

[9] Joint Task Force on Computing Curricula, “Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science,” Association for Computing Machinery (ACM) and
IEEE Computer Society, 2013.

[10] D. S. Bowers, M. Sabin, R. K. Raj, and J. Impagliazzo, “Computing
Competencies: Mapping CC2020 Dispositions to SFIA Responsibility
Characteristics,” [EEE Global Engineering Education Conference
(EDUCON), Tunis, Tunisia, . 428-437, 2022.
https://doi.org/10.1109/EDUCONS52537.2022.9766565

[11] The SFIA Foundation, “SFIAS8: All skills A-Z,” 2021. https:/sfia-
online.org/en/sfia-8/all-skills-a-z

[12] V. Braun, and V. Clarke, “Using thematic analysis in psychology”
Qualitative Research in Psychology, vol. 3(2), pp. 77-101, 2006.
https://doi.org/10.1191/1478088706qp0630a

[13] V. Clarke, V. Braun, and N. Hayfield, 2015. “Thematic analysis,”
Qualitative psychology: A practical guide to research methods, vol. 3, pp.
222-248.

[14] S.Frezza, T. Clear, and A. Clear, “Unpacking Dispositions in the CC2020
Computing Curriculum Overview Report,” IEEE Frontiers in Education
Conference (FIE), Uppsala, Sweden, pp. 1-8, 2020.
https://doi.org/10.1109/FIE44824.2020.9273973

