
The Importance of Project-Scale Scaffolding for
Retention and Experience in Computing Courses
Juliana Goncalves de Souza

Computer Science
Virginia Commonwealth University

Richmond, USA
juulianags@gmail.com

David Shepherd
Computer Science

Louisiana State University
Baton Rouge, USA

davidshepherd@gmail.com

Yu Liu
Electrical and Computer Engineering

Clarkson University
Potsdam, USA

yuliu@clarkson.edu

Mikaila Flavell
Electrical and Computer Engineering

Clarkson University
Potsdam, USA

flavelmm@clarkson.edu

Jan DeWaters
Institute For Stem Education

Clarkson University
Potsdam, USA

jdewater@clarkson.edu

Daqing Hou
Electrical and Computer Engineering

Clarkson University
Potsdam, USA

dhou@clarkson.edu

Ahmad Daudu Suleiman
Electrical and Computer Engineering

Clarkson University
Potsdam, USA

suleimad@clarkson.edu

Mary Margaret Small
Institute For Stem Education

Clarkson University
Potsdam, USA

mmsmall@clarkson.edu

Abstract— Teaching students complex problem-solving skills
using large-scale, real-world problems is challenging for both
students and teachers alike. As a result, most courses use small,
well-specified, toy-like problems, which are not representative
of what students will encounter in the workforce. One
approach that allows teachers to use large-scale problems in
class is by introducing scaffolding. Scaffolding breaks a larger
problem into smaller steps, which students can solve
independently, while deemphasizing tangential concepts such
as the complex configuration files needed to compile
open-source software systems. Strong scaffolding supports
student learning, preventing them from getting bogged down
with unnecessary tasks or overwhelmed by complexity. This
work investigates a scaffolded problem-based-learning module
for computing courses, using a realistically-sized project with
characteristics representative of the industry. The project was
implemented in a computer science course with roughly 100
students, and the results speak to the importance of scaffolding
for student success. In fact, there were two student assignments
that lacked sufficient scaffolding, compared with other tasks,
and the reduction in student scoring and persistence shows
that project scaffolding is necessary when implementing these
types of assignments. Most students felt the project helped
prepare them for a job in their chosen field.

Keywords— scaffolding, project-based learning, problem-based
learning, computer science pedagogy

I. INTRODUCTION
Teaching problem-solving skills is a well-known

challenge. Students need to develop their own way of
thinking to understand and analyze problems and develop
solutions, rather than merely knowing how to regurgitate
answers. Much like writing a novel, parts of the process can
be taught, but it is ultimately up to the writer to piece the
parts together into a cohesive whole.

To help with this process, scaffolding can help.
Scaffolding is a teaching method that has been shown to be
effective in teaching complex problem-solving [1, 2].
Scaffolding reduces a problem into simpler tasks that
students can solve by themselves, while scaffolding - or
sequencing - abstract concepts that students do not need to
understand or master at that moment [3]. Students achieve

the solution by following the teacher's instructions,
completing smaller tasks using their previous knowledge,
and developing skills they will need to complete future tasks
[2, 4, 5, 6]. Applying this method in programming is
possible and has shown positive results [7, 8]. Nonetheless,
it has been used only for small examples.

In traditional Computer Science courses, students
generally work with small projects that enable them to
create programs from the beginning, implement each step,
and complete all goals [9]. While students gain experience
with software process development, the process does not
reflect industry reality. When developers start a job, they
often join teams or projects already in progress. Also, the
amount of code and tools they need to manage is enormous
compared to the academic environment they are trained in.
Students need to adapt their knowledge and understand how
the process works, generally doing this by themselves in a
short time. What if we could use scaffolding to teach them
with realistically sized projects that replicated the industry
environment?

This paper describes a mixed-methods study that
explores how students in a computing course respond to
working with scaffolding at scale. We present background
about the challenges of teaching programming, specifically
at the early undergraduate level, and then describe the
attributes and techniques of scaffolding. We describe the
details of the course project, which enabled students to work
on a large, complex project by progressing through a series
of highly supported and scaffolded tasks that were equipped
with instructions about navigating between files, changing
or adding code, and testing results. Students experience a
real-world situation in a safe environment, at the same time
improving their problem-solving and code-reading skills,
while seeing their work on individual tasks result in
improvements to the overall application.

II. BACKGROUND

A. Teaching Programming
Computer programming skills are generally taught to

students early in their undergraduate curriculum, and their



experience forms an important foundation for the rest of
their studies. At this point, students transform from being
users of technology to becoming creators. The learning
process is usually completely new and often quite difficult –
yet this first impression can dictate the way a student will
approach their relationship with computers and computer
programming in the future [9, 10, 31]. A good relationship
can be nurtured by an instructor who presents programming
in a friendly way, for example by using examples from the
students' lives and daily routines, creating a bridge between
what they know and what they will learn, and showing that
the programming logic is already used by them.
Constructivism, a widely accepted learning theory, defends
that knowledge is not independently incremented, it is an
adaptive function. New information is related to something
previously known and the student has an active role in the
learning process [11, 12]. If the instructor helps with this
connection, learning is faster and smoother. Similarly, while
students can be inspired by exposure to the seemingly
infinite potential of complex programming, too much
complexity early on can be overwhelming [13]. It’s better to
demonstrate the power of complex programming, without
getting mired in the details of how they work.

Still, programming – like nearly any type of
problem-solving – is extremely difficult to teach because it
is a creative and often individualized process. Students must
be introduced to tools and how to use them, and then rather
than the instructor explaining or modeling a solution, the
students need to develop their own solutions. We can
compare teaching programming with teaching how to paint,
for instance. The teacher can explain painting methods, how
to use colors, tools for painting and brushes, kinds of ink,
and even how to reproduce some famous paintings, but in
the end, the students need to create their own work. Like
painting, it is impossible to teach everything in a few
months. Students learn by doing – beginning with simple
tasks and moving into more complex tasks as they practice
and develop their abilities, eventually finding and
organizing a solution. The teacher must choose appropriate
tools and techniques for the student's level and goals.

The difficulties of teaching programming have long been
recognized. Ismail [14] investigated the most common
problems in the teaching of computer programming in
Malaysia. They found the following four main issues, which
they defended are the same in other countries: (i) lack of
skills in analyzing problems; (ii) ineffective use of problem
representation techniques for problem-solving; (iii) failure
to understand and master programming syntax and
constructs; and (iv) ineffective use of teaching strategies for
problem-solving and coding.

The first issue can be addressed by introducing the
concepts of logic, planning, discrete mathematics, and other
skills at the appropriate level of the student. This will
familiarize students with the idea of analyzing problems,
and allow them to use their skills on problems at an
appropriate level of difficulty. Giving students the
opportunity to be successful at simple tasks will bolster their
confidence to pursue more difficult problems. The second
issue relates to the different paradigms that are used. Mayer
[15] affirmed as early as 1981 that a concrete model is
effective for providing a familiar context and goal that the
student will try to enact. It is necessary to change the
models of the solution representation while working in

different paradigms. The pseudo-code, for instance, is not a
good first representation when the teacher is explaining an
object-oriented approach [14]. An earlier review by Dalbey
and Linn [16] found that sharing many examples and
exposing students to the possibility of seeing complete
programs can help them write their own.

The third issue identified by Ismail et al. [14] relates to
students’ insufficient contact with programming syntax and
constructs in the classes. While students spend a lot of time
understanding concepts and representations of programming
in the classroom, they do most of the exercises outside of
the classroom, without supervision or real-time orientation.
Students need to develop two skills simultaneously –
rational logic, the more visible skill of understanding
line-by-line text, as well as the less recognized skill of text
interpretation. Students need to fully understand what they
are being asked to do, and often the examples in the
classroom are not enough to cover the needed knowledge.

The fourth issue identified by Ismail et al. [14] relates
most closely to this work. Lin et al. [7], in 2021, emphasized
that many students dropped computer science courses
because of a lack of problem-solving skills. Students tend to
give up when facing hard tasks. Ismail et al. [14] suggest
that teaching students structured or procedural languages
will better prepare them to learn more complex approaches,
for example, object-oriented programming. Providing
students the skills and knowledge they need to successfully
accomplish simpler tasks, and working progressively toward
more complex and difficult tasks, is a solution proposed by
this work. Students have different levels of instructional
needs to achieve the same goals – this was affirmed years
earlier by Dalbey and Linn [16] who found that students at
the University of California at Berkeley enrolled in
self-paced programming courses earned higher grades
compared with those enrolled in the lecture version. This
finding demonstrates the importance not just of teaching
strategies but of student engagement. If students are not
motivated to complete the proposed activities, the learning
outcomes will not be achieved. Improved teaching strategies
will thus help achieve learning outcomes by improving
student engagement and motivation [17]. One important
way to do this is to provide scaffolding and support [14, 18],
so students are able to approach complex, real-world
problems in a stepwise fashion where they successfully
accomplish simpler tasks and proceed to more difficult tasks
as they gain the necessary knowledge and skills [2, 3, 30].
Active learning practices including project-based-learning,
or PBL, also have been shown to help raise examination
scores and reduce failure rates [13, 19, 32, 33].

B. Scaffolding Process
The idea of scaffolding was first discussed by Wood,

Bruner, and Ross [20] almost fifty years ago. The authors
defined scaffolding as a "process that enables a child or
novice to solve a problem, carry out a task or achieve a goal
which would be beyond his unassisted efforts". Parts of the
work that are not necessary for the student to do, or are
beyond the student’s capacity, are done by the tutor so
students can focus their efforts where they are most needed
[3]. Wood et al. investigated problem-finding, not
problem-solving. In the latter case, it is important to note
that scaffolding only works when students are able to
comprehend the solution.



Van de Pol et al. [1] analyzed 66 articles about
scaffolding in teacher-student interactions and found two
common characteristics. The first is adapting the task to the
student's level, which requires the teacher to be aware of
students' ability levels. The second is the idea of reducing
the tutor's influence over time to transfer the responsibilities
from teacher to student. The steps of the scaffolding process
according to Wood et al. [20] are: (i) explain the goal and
get the student's interest; (ii) simplify the task by reducing
the problem into manageable parts; (iii) keep the student on
track; (iv) mark relevant tasks; (v) provide help to minimize
frustration; and (vi) show the solution in some way to the
student so that they can imitate it. In this approach, the
teacher/tutor and student are both active elements in the
learning process, with the degree of influence by the tutor
dependent on the situation [6].

A recent trend in scaffolding has been to use tools and
technologies to help or, in some cases, replace the instructor
[4, 34, 35, 36, 37]. In this case, the word `scaffold' can be
used to represent the tools used to help a student complete a
task. In other situations, particularly where student-teacher
ratios are high, scaffolding techniques can be used to
overcome limitations in the instructor’s sensitivity to
individual students’ learning needs and capacities.
Peer-to-peer learning, for example, allows one student to
help another and complete the needed knowledge for each
task. Even in an unconscious way, students and instructors
are using a scaffolding process. Tutor interactions, scaffolds,
and other strategies combine to create a distributed
scaffolding [4].

Computer-based scaffolding is a well-known teaching
strategy. Belland et al. [8] presented a meta-analysis of
computer-based scaffolding in STEM education, analyzing
144 studies with 333 outcomes in total. They found that a
major difference between scaffolding and traditional
teaching methods is that, in computer-based scaffolding, the
teacher needs to organize all of the detailed activities before
applying them to students. There is no possibility of
adjusting the messages once they are applied. This does not
allow the instructor to adapt tasks depending on the
student's response. Nevertheless, the results of using this
strategy were positive. Students with computer-based
scaffolding performed better on cognitive tests compared to
students who did not use scaffolding. Another good result is
that scaffolding is effective in all education levels, from
primary school through adult. Although the idea began at
the primary education level, the best results are shown at the
graduate and adult levels.

III. METHODS

A. Scaffolded Project
We created a course project using xFig, an "interactive

drawing tool" written in C [5]. This choice was made based
on three criteria:

1. Free and open source code: the students and
instructors can access the code as needed.

2. Complete software application: we used software
that was a complete program, as opposed to a library,
including a user interface and a backend, so that we could
implement a variety of tasks typical in software projects.

3. Visible results: because the software has a user
interface, most changes are easy to verify if implemented
properly, without extensive formal test development.

Although testing is a necessary skill, it was outside the
scope of this project and course.

Prior to this work, the xFig project, and the
corresponding tasks, were used in Fall 2021 (described in
detail in [21]). Tasks were prepared with increasing
difficulty; the first task required only a few minutes to
complete, while the last was relatively complex, requiring
somewhat extensive work and building on knowledge from
completing the previous tasks. Tasks were assigned during
class and hints were released each following day until the
task was due. The hints included descriptions of the
functionality, explanations of code chunks, and files or
specific code lines that should be changed. Most students
completed the tasks but had difficulty following the project
flow and instructions. The programming environment was
also an issue, as students experienced problems compiling
and debugging the code. During this first iteration extensive
feedback was collected and major updates were made to the
project scaffolding.

We used feedback from the first iteration to create
HITCH (Hashtags, Information, Targets, Challenges, and
Hints), our scaffolded approach for realistic tasks. This
approach uses code comments to direct the students. These
comments are semi-structured with elements thought to
increase the scaffolding level. The hashtags are used for
searching, identifying the places in the code that should be
changed. The pieces of information describe the code and
include necessary concepts. Targets define what the student
should do in that part of the task. Challenges introduce
optional activities. The hints guide students in the right way
to complete what is needed. We created a GitHub repository,
adding the original xFig code, creating a different branch for
each task, and inserting comments - found by searching for
the task hashtag - in each file that should be changed. A
pre-prepared VM (Virtual Machine) was included on AWS
(Amazon Web Service), further reducing the configuration
problems. It included the xFig program ready to be
compiled, a script that starts the compilation process, one
IDE (Integrated Development Environment) to edit the
code, and the GitHub Desktop program to get the tasks in
their repository. The instructions included a detailed tutorial
with videos about configuring this VM and executing the
tasks.

Each task has a file "Assignment Information.txt" that
has: (i) the name of the task; (ii) the task goal; (iii) the link
for a GitHub page in the main repository with more
explanation about the goal; (iv) orientation about what and
how to do; (v) a written description of a test; and (vi) a link
for a video with a general explanation about xFig and the
project. Item (iii) is for students that did not understand the
problem. On the cited page are helpful examples and
figures. The orientation of item (iv) is almost the same for
all tasks. It shows how to open the code, find the file where
to work, and compile the code. We provide different types
of information to accommodate different ways of learning.
Some students can understand better by reading a tutorial,
others by watching a video. Some students like to explore
the GitHub repository, and others feel more confident
having a direct link to access the information.

As before, in each task, we increase the difficulty in two
aspects: knowledge about the xFig code and the complexity
of programming concepts. Part of scaffolding is adapting the
activities to students' level and observing the evolution to



continue adapting, which is complicated when working with
a big group of students with previously-prepared tasks. Each
task included challenges and optional instructions to
maintain the students' engagement. Students with less
programming ability can complete just the obligatory
instructions to finish the task's main objective. Those with
more knowledge or problem-solving skills can improve the
solutions. In some tasks, the challenge is just to make the
added function more user-friendly, others involve changing
the code to make it more efficient, adding different ways to
use the new function, or even creating a new optimization
algorithm.

Students could locate the places they need to change by
searching for hashtags. The IDE indicates the files that have
the hashtags and all occurrences of them. The kind of
information was separated using uppercase words as tags,
like INFO and HINT, for example. The files to be changed
have comments with: (i) the task hashtag; (ii) delimitations
of the changing scope; (iii) the goal in that file and why; (iv)
hints; (v) foreshadowing; and (vi) challenges. Item (iv) is
created with open questions that make the students think
about topics that will be used in future tasks.

To show an example of our approach, we present the
entire second task scaffolding here. Users start with an
informational file. The following code is the "Assignment
Information.txt" file content for the second task.
#taskDefaultDepth

---------- Instructions Start Here -----------

TASK DEFAULT DEPTH

DETAILED INSTRUCTIONS:

https://github.com/VCU-ERB/xfig-3.2.8a/issues/2

GOAL: This project's goal is to increment the
depth of new objects when added to the drawing.
When an object is added, it does not have depth
properties. As a result, all elements are on
the same Z-axis. It makes the drawing
confusing. It is not clear which object was
added first and last. You will need to change the
properties of the objects in xFig to increment
their depth when added. You must add
"w_indpanel.h" to every file you edit. That is
the file that has the depth value properties for
every object.

STEPS:

1. Open Visual Studio Code or your choice of IDE
(open it from GitHub).

2. Check if you have opened the whole xFig
folder.

3. Click on the search icon on the left toolbar
and search "#taskDefaultDepth". You should see
eight files to edit.

4. Use the directions provided as comments to
work on the assignment. Try to work in the
alphabetical order you see in VS Code.

5. Go to the desktop and compile your code by
double-clicking the 'compile.sh' file to check if
your solution works.

If you are confused at any point with xFig or
Linux environment, check the youtube video at
https://www.youtube.com/watch?v=Csxk165L358.

------------ Instructions End Here -----------

Fig 1 shows this file (right) and the result from the
search for the hashtag #taskDefaultDepth (left). To view all

the relevant files the user can click on the file names on the
left. If the user opened the first file (“d_arc.c”) they would
see the following code, also shown in Fig 2. In this simple
task, they would have to adapt the code on line 302 in
Figure 2. Notice how the rest of the code, above and below
this line, is composed of comments that explain the task
inline, guiding the student through the two main subtasks,
which in this case are incrementing depth and refreshing the
user interface. Advanced users can add boundary-checking
code to ensure the validity of the input.
// #taskDefaultDepth

//------------ Code Starts Here --------------

/* INFO: XFig works with objects (NOT
object-oriented programming, but objects to
draw, like arcs, ellipses, and boxes). This code
is inside the method to create a new arc. What
is the method's name? What is the file's
name? Is there something similar between the
names of the files to edit?

* GOAL: The current code doesn't increment the
value when a new object is added. How would
you modify the code so that the default depth
increases by 1 anytime a new object is added?

* HINT: use post-increment.

* CHALLENGE: Valid the boundaries. The depth
cannot be more than 999.
*/

arc->depth = cur_depth;

/* INFO: After incrementing the current depth,
the line of code above only updates the depth of
the object internally (i.e., the model).

* GOAL: Call the 'show_depth' method and pass
in 'depth_button' as the argument to update
the toolbar at the bottom.
*/

// GOAL: Save your work and continue to the
second file.

//—------------- Code ends Here --------------

B. Implementation
The project was tested during the class CMSC 355

Introduction to Software Engineering at Virginia
Commonwealth University in Fall 2022. The classes had
approximately 100 students in different majors and years (1
to 5). The majority of students are taking second or third
years of Computer Science major. It is a 3 credits class with
one hour of lecture three times a week (Monday,
Wednesday, and Friday).

Fig. 1. Assignment Information file and hashtag searching.



Fig. 2. Part of ‘d_arc.c’ file with instructions.

In Fall 2022, a detailed tutorial about configuring the
VM and executing the tasks was presented to the students
on the first day. The instructor released tasks on Fridays,
using the one-hour class to answer questions about the
previous task and to present the next one. The due date was
the following Friday or Monday.

In the first four tasks, we slightly increased the difficulty
but maintained the same level of scaffolding. In the first task
(#taskEnhancedRotation) 2 files needed to be changed. In
the second task (#taskDefaultDepth), students needed to
change 6 files, changing the depth of an object when it was
created. In the third task (#taskUndoShortcut), students
needed to change 3 files, including adding a button to undo
the last action. In the fourth task (#taskToggleUnit), students
needed to change 5 files, including adding a button to
change between imperial and metric units. In the fifth task
(#taskSendBack), 9 files should be changed to create a
button to change the depth of an object, sending it to the
back or bringing it to the front. The students needed to
create the button and the function as in the last task, but now
they needed to create the functions in new files. In the sixth
task (#taskQuickColoring), 9 files should be changed to
create a button to change the objects' fill/border. In the
seventh task (#taskFreeSelection), 6 files should be changed
to create a button that selects many objects simultaneously.

C. Assessment
A combination of students’ project completion data,

pre/post Likert-type questionnaires, and open-response
reflection questions were used to explore the project’s
impact on student competencies. For the first one, two key
measures were considered for the evaluation: the percentage
of students who successfully completed each task and the
average grades they achieved. In addition to student
performance data, we chose motivation as a key indicator of
project success because of established links between
academic success and student motivation, engagement,
self-confidence, and self-efficacy [22, 23, 24]. 24 items
from the Motivated Strategies for Learning Questionnaire
(MSLQ) [25] were adapted for the pre/post questionnaire,
supplemented with 9 self-efficacy items adapted from
previous research by the authors [26] and 11 items added to
the post-survey to gauge student satisfaction with the
project. The reliability of the survey, as measured by
Cronbach’s alpha, ranged from 0.79 to 0.94 for each of the

three subscales, all well above the generally accepted cutoff
of 0.70 [27, 28]. Two free-response questions were also
included in the post-survey.

Questionnaires were administered using the Qualtrics
platform, before and after the project (beginning/end of
semester). Data was downloaded into Excel for analysis.
Likert-type responses were converted to a numerical rating
scale according to the preferred direction of response,
ranging from 1 (least preferred) to 5 (most preferred), and
were used to calculate average mean values for each item
and each subscale.

The open-ended questions aimed to provide a better
perspective of how the students saw the project and its value
to their futures. The questions are:

● QO1: From your perspective as a future member of
the workforce, do you feel this project/assignment
has helped prepare you for a job in your chosen
field?

● QO2: Do you have any other comments or
feedback to share about the course or the project?

To explore the impact of our scaffolded project (HITCH)
on student outcomes, we analyzed the responses from the
open-ended questions using Reflexive Thematic Analysis,
as described by Braun & Clarke [29], in an inductive and
semantic way, where the coding and theme development
reflected and were directed by the content of the data.

Responses were first grouped by question in a
spreadsheet. An open coding process was used, where every
answer was analyzed, and one or more codes were attributed
when applicable. New codes were created whenever
necessary, as determined by the answer’s content. Several of
the most interesting themes are presented in the results
section, with representative quotes.

IV. RESULTS

Results are described from the class point of view,
considering the project completion and grades, followed by
quantitative and qualitative survey results.

A. Grades and Project Completion
Table 1 describes the number and percent of students

that finalized each task, and the average grades, based on
the initial enrollment of 102 students in the Fall of 2022.

TABLE I. COMPLETION AND GRADES FOR EACH TASK

Task Students Percent % AVG Grades

1 89 87.3 99

2 90 88.2 99

3 86 84.3 93

4 78 76.5 92

5 64 62.7 77

6 57 55.9 79

7 55 53.9 94

In the first three tasks, the results were as expected, with
most students successfully using the scaffolding to complete
the tasks on a realistic project. However, in the fourth task,
the number of students who finalized the task decreased



significantly. We believe that several factors contributed to
this, which we discuss below. We presumed that students
had a working knowledge of C language before starting the
class. During tasks 4–6 they needed to define and use
functions, making these functions visible to other files, but
some students did not have experience with functions.
Nevertheless, the students that finished task 4 got good
grades, indicating that if they were familiar with functions
this task was not too difficult.

In the fifth and sixth tasks, we had a decrease in
completion percentage and average grade. Upon reflection,
we believe that the main difficulty students faced during
these tasks that were not present in previous tasks was the
required changes in build files (i.e., make files). The
students had problems compiling the program since the
errors in the make file are not as intuitive as other types of
errors, and thus are harder to correct. The scaffolding we
provided for these tasks was insufficient for all students to
understand how to proceed. The functions to change and
implement also were not simple. A possible solution for this
problem is to divide the fifth task into two: include new files
in the first week, then create the functions to solve the
problem in the next. Including the recompilation in a more
extensive task was a step too big for students to be confident
doing it.

Most students who had given up by task 6 did not return
to complete the seventh task; those who continued
performed well.

B. Quantitative Analyses
In all we collected 77 pre and 73 post-surveys in fall

2022. Fig 3 presents average student responses to each of
the three instrument subscales (self-efficacy, motivation, and
post-only project satisfaction) for these three sample groups.
Among the data set we were able to match pre and
post-surveys for 42 students.

Student outcomes were mixed on the quantitative survey
items. Average responses to the self-efficacy items rose
slightly from an average mean of 4.07 (pre) to 4.12 (post),
with the percentage of students who somewhat agree or
strongly agree to questions in this subscale remaining high
at 80%. Student responses to individual questions were
mostly unchanged, but increased significantly to two
questions about their ability to debug, compile, and run
software programs (avg response 3.78 pre, 4.01 post,
p=0.04). There was a significant decline in the average
mean response to the motivation subscale, from 3.89 pre to
3.62 post (p=0.001), with the % who strongly or somewhat
agree with items in this subscale decreasing from 71% to
65%. Despite a general decrease in intrinsic and extrinsic
motivation and willingness to persist with complex tasks,
there were slight increases in student responses to items
related to students’ belief that the class material challenged
them to learn new things, their desire to get a good grade,
and their confidence in understanding the most complex
topics.

Overall, most students were satisfied with the project,
with an average mean response of 3.31 and 56% strongly or
somewhat agreeing with items in this subscale. However,
the portion of students who disagreed or strongly disagreed
with this group of questions was the highest among all three
subscales, at 23%. This indicates that there were some

issues with the project still to be addressed in the next
iteration.

Fig. 3. Pre-post survey responses to three survey subscales

C. Qualitative Analyses
QO1 sought to identify whether students felt the project

was of value to their futures and QO2 gave students the
opportunity to share more about their general perception of
the project. Considering students with a major or minor in
Computer Science, 57 responded to the questions. For QO1,
36 responses were positive, 14 were negative, and 7 were
inconclusive.

1) Theme: Working with legacy code and real-life
experience

One theme that emerged was that the assignments helped
students understand and work with legacy code. One student
said:

“I think the Xfig assignment did help prepare me for a
job because I got to experience what it was like working on
a complex project using legacy code. This assignment
exposed me to important realizations that will come when I
will enter the workforce as a software engineer. These
include compiling and building complex projects, managing
a lot of files, and reading documentation and other code in
the project.”

Others spoke of how novel it was to work on existing
code, as exemplified by the following three responses:

“Yes it was interesting working on long pre existing
code. This is the first time I haven't had to do something
from scratch.”

“I feel that I have learned some useful skills, habits, and
principles that are important when working on existing
software.”

“I think the XFig project really gave me a taste about
how to actually work with code and integrate into
pre-existing code.”

Students seemed to understand how the project would be
relevant to what they would be asked to do as programmers.
A student said that “It gave me real world experience”. And
others said:

“I feel it did. The assignment involved modifying
existing programs by creating new code, something that
happens often when programming.”

“I was able to work on a real word application and see a
large library of code and learn to navigate through it.”



2) Theme: Challenges with Scaffolding
Not all students perceived scaffolding as helpful. For

example, one student saw the cumulative tasks as repetitive,
mentioning that “They seemed kind of redundant.” Another
student felt frustrated having to complete tasks without the
full knowledge of the code and functionalities:

“I think it somewhat helped, as a lot of software
engineering jobs require employees to work on the code of
others with little explanation. However, it was a little
frustrating to work on since I didn't really have a solid
understanding of the code. Rather, I was just following the
instructions without knowing what I was writing actually
did.”

One student was able to identify the changes in the
scaffolding level, but he saw it in a positive way, as an
opportunity to improve his problem-solving skills:

“I think the instructions were very straightforward
during some of the first few assignments. The later
assignments were more challenging and really taught me to
spend time and understand the surrounding code before
actually writing my own code.”

It was also possible to identify that the scaffolding was
helpful in guiding students to focus on important concepts
and disregard concepts that were not needed. For example:

“I believe it was useful to learn how to learn a new
language well enough to complete a task. Certain tasks may
require small amounts of code in different languages so it is
useful to be able to write this code without knowing the
language fully.”

3) Theme: The project increased confidence and
motivation

The majority of students seem to have a good feeling
from the project activities, reflecting the increase in
confidence and motivation. One student mentioned that “it
was engaging”. And a second student said:

“I feel that this project has helped prepare me for a job
in software engineering as it worked with different things I
had not seen before. I feel more confident now if I were to
encounter similar problems and issues in the real world.”

4) Theme: The instructions were enough to complete
the tasks

A frequent theme in QO2 was that the instructions were
not enough to complete tasks. A student even mentioned
that:

“The instructions were terrible for the most part, but I
understand that most of the time there will not be
instructions in the real world.”

In an opposite way, another one said that:

“I think one potential shortcoming was that in order to
teach effectively, clear instructions were given. This is
important for materials like this and should be kept, but
engineers in the workforce may not always have access to
such clear instructions or documentation, so I think there
could be consideration for teaching students how to
interpret what code is doing when documentation is poor or
unclear.”

Either way, the students seemed to understand the point
that in the “real world”, the instructions will not always be
clearly organized and sufficient to complete the task without
additional help or research.

5) Theme: The project was felt as out-of-scope
Another negative consideration was that the project was

out-of-scope or not directly related to the class, being more
complex than it was expected, especially after the third task.
One student mentioned:

“I found that most of the material exceeding the first 3
Coding assignments was out of the scope of this course and
overall went a bit too far past the amount of education in
programming that most students who have never
programmed before university contain.”

6) Theme: The environment had many issues
The two main reasons for complaints were the issues

with the environment and the compiling activities present in
tasks 5 and 6. The students mentioned that AWS was slow
and the GitHub instructions were not enough to manage the
different versions of the code. A student commented:

“Just fix the compile file and instance for next
semesters. The only reason I lost points was because of bad
setup. It could be better if xfig run on students computers
without having to create an instance on Amazon Web
Services. Or without having specific compile file for it. A bit
more organization would be much appreciated.”

7) Theme: The project was a valuable experience
Overall, the students presented issues with the

environment, but recognized the project’s value. One
student summarized the experience with:

“Xfig is old software that wasn't fun to navigate, but it
was valuable experience.”

Another said:

“I think the Xfig assignment did help prepare me for a
job because I got to experience what it was like working on
a complex project using legacy code. This assignment
exposed me to important realizations that will come when I
will enter the workforce as a software engineer. These
include compiling and building complex projects, managing
a lot of files, and reading documentation and other code in
the project.”

V. DISCUSSION

From the grades and project completion rates we can
see that the HITCH approach works well, but only when
sufficient scaffolding is provided. Students who completed
the first three tasks accomplished all goals with minimal
mistakes. The decrease in completion rates and grades for
tasks four to six suggest that the students did not have
adequate support to succeed, and that the lack of scaffolding
had a concrete impact on retention and grades. When
reviewing these tasks, and possible reasons that students felt
unsupported, it was easy to identify the gap. In these tasks,
students were asked to update complex build configuration
files, concepts that are often not taught as part of a formal
computer science education but are necessary to learn to
become a working software developer. While these skills
would be good to learn prior to graduation, they are not
necessary to achieve the goals of this particular project, and



thus adding additional scaffolding around build
configuration would likely solve this issue.

For instance, on the seventh task, which was
challenging and complex but did not require major build
configuration changes, the students that completed this task
performed well. However, many students had likely given
up on the project tasks by this point, which led to a low
completion rate, as they were frustrated by the challenges
with the earlier tasks.

The quantitative results reflect these findings. The
students completed the post-survey at the end of the
semester, a moment when they are tired and stressed with
final exams and projects. Nevertheless, the overall levels of
motivation and self-efficacy were fairly positive, averaging
between 3 and 4 on a 5-point Likert scale. The satisfaction
with the project had less positive responses, but responses
were still above neutral, confirming the good results from
the scaffolding method and the issues.

Analysis of the open-ended questions shows that,
although the students had issues compiling the program and
using the AWS server, they appreciated the helpful project
scaffolding, and importantly, they recognized the project’s
value in terms of preparing them for their future jobs.
Students indicated that the experience improved their
confidence to enter the workforce.

Alternatives for making the project more successful
would be to apply the project in a more advanced class or
define in the class specifications or pre-requisites that
knowledge in C language is required. If the same
configuration is used, it would be important for the
professor to include more explanations about C language
and complex programming concepts in the class.

VI. CONCLUSION

Completing a task inside a bigger program can be
overwhelming for inexperienced students. Nonetheless,
when the students have sufficient information to move
inside and between codes and files, their confidence grows.
This paper presents a mixed-methods study investigating
how students in a computing course respond to working
with scaffolding on a large scale. The course project allows
students to work on a complex project through a series of
well-supported and scaffolded tasks. These tasks provide
instructions on navigating between files, making changes to
code, and testing results. This approach offers students a
real-world experience in a safe environment while
enhancing their problem-solving and code-reading skills.

The project was tested with around 100 students, and the
results showed positive outcomes. Most students completed
the tasks successfully, however, some challenges were
identified, such as difficulty with build configuration files
and the AWS environment. Quantitative survey data
indicated good levels of self-efficacy and motivation.
Qualitative feedback from students highlighted the benefits
of working with legacy code and gaining real-life
experience.

The scaffolding approach HITCH was able to help
students in many cases, showing that providing effective
scaffolding can impact students' performance. Despite some
issues, the project was perceived as valuable preparation for
future careers in software engineering. In future applications
of this project, we will ensure that all tasks provide the same

level of scaffolding, ensuring a consistent experience across
the semester. Future works will include studies with
different projects and classes, and a refinement of the
evaluation criteria to incorporate more robust statistical
analyses.

ACKNOWLEDGMENT

This work is partially supported by the U.S. National
Science Foundation Awards DUE-2111318 and
DUE-2111294.

REFERENCES

[1] J. Van de Pol, M. Volman, and J. Beishuizen, “Scaffolding in
teacher–student interaction: A decade of research,” Educational psychology
review, vol. 22, pp. 271–296, 2010.
[2] K. E. Hogan and M. E. Pressley, Scaffolding student learning:
Instructional approaches and issues. Brookline Books, 1997.
[3] B. Rosenshine and C. Meister, “Reciprocal teaching: A review
of the research,” Review of educational research, vol. 64, no. 4, pp.
479–530, 1994.
[4] S. Puntambekar, “Distributed scaffolding: scaffolding students
in classroom environments,” Educational Psychology Review, vol. 34, no.
1, pp. 451–472, 2022.
[5] XFig User Manual. "Introduction" SourceForge. [Online].
Available: https://mcj.sourceforge.net/. [Accessed: July 31, 2023].
[6] C. Stone, “What is missing in the metaphor of scaffolding.
Contexts for learning: Sociocultural dynamics in children’s development”,
pp.169-183, 1993.
[7] S. Lin, N. Meng, D. Kafura, and W. Li, “PDL: scaffolding
problem solving in programming courses,” in Proceedings of the 26th
ACM Conference on Innovation and Technology in Computer Science
Education V. 1, 2021, pp. 185–191.
[8] B. R. Belland, A. E. Walker, N. J. Kim, and M. Lefler,
“Synthesizing results from empirical research on computer-based
scaffolding in STEM education: A meta-analysis,” Review of Educational
Research, vol. 87, no. 2, pp. 309–344, 2017.
[9] S. Reges and M. Stepp, Building Java Programs. Pearson, 2014.
[10] J. Bennedsen and M. E. Caspersen, “Failure rates in
introductory programming,” AcM SIGcSE Bulletin, vol. 39, no. 2, pp.
32–36, 2007.
[11] C. T. Fosnot, Constructivism: Theory, perspectives, and
practice. Teachers College Press, 2013.
[12] L. P. Steffe and J. E. Gale, Constructivism in education.
Psychology Press, 1995.
[13] P. C. Blumenfeld, E. Soloway, R.W. Marx, J.S. Krajcik, M.
Guzdial, and A. Palincsar, "Motivating project-based learning: Sustaining
the doing, supporting the learning," Educational Psychologist, vol. 26, no.
3-4, pp. 369-398, 1991.
[14] M.N. Ismail, N.A. Ngah, and I.N. Umar, "Instructional strategy
in the teaching of computer programming: a need assessment analyses,"
TOJET: The Turkish Online Journal of Educational Technology, vol. 9, no.
2, 2010.
[15] R. E. Mayer, "The psychology of how novices learn computer
programming," ACM Computing Surveys (CSUR), vol. 13, no. 1, pp.
121-141, 1981.
[16] J. Dalbey and M.C. Linn, "The demands and requirements of
computer programming: A literature review," Journal of Educational
Computing Research, vol. 1, no. 3, pp. 253-274, 1985.
[17] D.W. Shaffer and M. Resnick, ""Thick" authenticity: New
media and authentic learning," Journal of Interactive Learning Research,
vol. 10, no. 2, pp. 195-216, 1999.
[18] C.E. Hmelo and M. Guzdial, "Of black and glass boxes:
Scaffolding for doing and learning," 1996.
[19] S. Freeman, S.L. Eddy, M. McDonough, M.K. Smith, N.
Okoroafor, H. Jordt, and M.P. Wenderoth, "Active learning increases
student performance in science, engineering, and mathematics,"
Proceedings of the National Academy of Sciences, vol. 111, no. 23, pp.
8410-8415, 2014.



[20] D. Wood, J.S. Bruner, and G. Ross, "The role of tutoring in
problem-solving," Child Psychology & Psychiatry & Allied Disciplines,
1976.
[21] D. C. Shepherd, F. Fronchetti, Y. Liu, D. Hou, J. DeWaters, and
M.M. Small, "Project-sized scaffolding for software engineering courses,"
in Proceedings of the First International Workshop on Designing and
Running Project-Based Courses in Software Engineering Education, May
2022, pp. 27-31.
[22] E. A. Cudney and J.M. Ezzel, "Evaluating the Impact of Teach
Methods on Student Motivations," Journal of STEM Education, vol. 18, no.
1, pp. 32-48, 2017.
[23] P. Pintrich and D. Schunk, "Motivation in Education: Theory,
Research, and Application, 2nd Ed.," Englewood Cliffs, NY: Merrill, 2002.
[24] M.M. Chemers, H. Li-tze, and B.F. Garcia, "Academic
self-efficacy and first-year college student performance and adjustment,"
Journal of Educational Psychology, vol. 93, pp. 55-64, 2001.
[25] P.R. Pintrich, "A manual for the use of the Motivated Strategies
for Learning Questionnaire (MSLQ)," 1991.
[26] S. Powers, J. DeWaters, M. Small, S. Grimberg, and D. Hou,
"CLICS – Integrating Data from Campus Sustainability Projects across
Disciplines," in Proceedings of the 122nd Annual ASEE Conference &
Exposition, Seattle WA, 2015.
[27] J. Benson and F. Clark, “A guide for instrument development
and validation,” The American Journal of occupational therapy, vol. 36, no.
12, pp. 789–800, 1982.
[28] R. L. Linn and N.E. Gronlund, "Measurement and assessment in
teaching (8th edition)," Englewood Cliffs, NJ: Prentice-Hall, 2000.
[29] V. Braun and V. Clarke, "Using thematic analysis in
psychology," Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101,
2006.
[30] A. Garcia-Holgado, A. Vázquez-Ingelmo, F. J. García-Peñalvo,
and M. J. Rodríguez Conde, "Improvement of learning outcomes in
software engineering: active methodologies supported through the virtual

campus," IEEE Revista Iberoamericana de Tecnologias del Aprendizaje,
vol. 16, no. 2, pp. 143-153, 2021.
[31] S. M. Souza and R. A. Bittencourt, "Sentiments and
Performance in an Introductory Programming Course Based on PBL," in
2021 IEEE Global Engineering Education Conference (EDUCON), pp.
831-840, 2021.
[32] S. Arwatchananukul, P. Singpant, N. Chondamrongkul, and N.
Aunsri, "Developing 21st century skills with project-based learning: an
experience report in the introductory course of software engineering," in
2022 Joint International Conference on Digital Arts, Media and Technology
with ECTI Northern Section Conference on Electrical, Electronics,
Computer and Telecommunications Engineering (ECTI DAMT & NCON),
pp. 451-455, 2022.
[33] C. Gupta, "The impact and measurement of today's learning
technologies in teaching software engineering course using design-based
learning and project-based learning," IEEE Transactions on Education, vol.
65, no. 4, pp. 703-712, 2022
[34] A. Ju, X. Fu, J. Zeitsoff, A. Hemani, Y. Dimitriadis, and A. Fox,
"Scalable team-based software engineering education via automated
systems," in 2018 Learning With MOOCS (LWMOOCS), Sept. 2018, pp.
144-146, IEEE.
[35] N. Piccinini and G. Scollo, "Cooperative project-based learning
in a web-based software engineering course," Journal of Educational
Technology & Society, vol. 9, no. 4, pp. 54-62, 2006.
[36] N. Wu, D. Hou, and Q. Liu, "Linking usage tutorials into API
client code," in Proceedings of the 3rd International Workshop on
CrowdSourcing in Software Engineering (CSI-SE '16), Association for
Computing Machinery, New York, NY, USA, 2016, pp. 22-28.
[37] Y. Gao and D. Hou, "ArchFLoc: Locating and explaining
architectural features in running web applications," in Proceedings of the
2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME) (ICSME '15), IEEE Computer Society, USA, 2015, pp.
333-335.


