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Humans and other animals can maintain constant payoffs in an uncertain
environment by steadily re-evaluating and flexibly adjusting current strategy,
which largely depends on the interactions between the prefrontal cortex (PFC) and
mediodorsal thalamus (MD). While the ventromedial PFC (vmPFC) represents the
level of uncertainty (i.e., prior belief about external states), it remains unclear how
the brain recruits the PFC-MD network to re-evaluate decision strategy based on
the uncertainty. Here, we leverage non-linear dynamic causal modeling on fMRI
data to test how prior belief-dependent activity in vmPFC gates the information
flow in the PFC-MD network when individuals switch their decision strategy.
We show that the prior belief-related responses in vmPFC had a modulatory
influence on the connections from dorsolateral PFC (dIPFC) to both, lateral
orbitofrontal ((OFC) and MD. Bayesian parameter averaging revealed that only the
connection from the dIPFC to |OFC surpassed the significant threshold, which
indicates that the weaker the prior belief, the less was the inhibitory influence of
the vmPFC on the strength of effective connections from dIPFC to IOFC. These
findings suggest that the vmPFC acts as a gatekeeper for the recruitment of
processing resources to re-evaluate the decision strategy in situations of high
uncertainty.

KEYWORDS

cognitive flexibility, prefrontal cortex (PFC), mediodorsal thalamus (MD), non-linear
dynamic causal modeling, uncertainty, prior belief

Introduction

The prefrontal cortex (PFC) consists of several regions that are thought to play an important
role in flexible decision-making. The dorsolateral PFC (dIPFC) is assumed to support executive
functions (Jones and Graff-Radford, 2021), whereas the orbitofrontal cortex (OFC) appears to
be involved in the flexible adaptation of behavior (Schoenbaum et al., 2021; Wang et al., 2023).
The ventromedial PFC (vmPFC) was shown to be associated with the estimation of the value
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and saliency of sensory events and thereby guides value-based
decision-making (Dundon et al., 2021). Interactions between these
regions are thought to implement a variety of functions relevant to the
flexibility by which cognitive resources are deployed. Interaction
between medial PFC and the anterior cingulate cortex, for instance,
are thought to contribute to the updating of beliefs about higher-order
contextual associations (Botvinick et al., 1999, 2001; Sarafyazd and
Jazayeri, 2019), whereas the interplay between OFC and vmPFC
appears important for the prediction of value-based behavioral
changes (Howard et al., 2016).

Recent studies in animals (Halassa and Kastner, 2017; Saal et al,,
2017; Schmitt et al., 2017; Mukherjee et al., 2021) and humans (Hwang
et al, 2017; Wen et al, 2021) revealed compelling evidence that
cognitive flexibility also depends on interactions between distinct PFC
subregions and the mediodorsal nucleus of the thalamus (MD). These
studies have provided a complementary perspective on thalamic
function challenging the classical notion of the thalamus as a sensory
relay (Sherman, 2016). Combining hierarchical Bayesian modeling
with fMRI in humans, we recently unveiled distinct prefrontal
connections targeting the MD in relation to the participant’s prior
belief during associative learning (Wang and Pleger, 2020). The
surprise about an unexpected outcome lowered the prior belief about
the sample-target association and hence triggered a switch of the
decision strategy through modulations of connections between MD
and lateral OFC (Wang and Pleger, 2020). These findings are supported
by neuronal recordings obtained from mice. When mice decided
between different sets of learned cues that directed attention to either
visual or auditory targets, responses from the medial PFC reflected
both, the individual cue as well as its importance as a task-rule (Rikhye
et al, 2018a). The MD, on the other hand, appeared to facilitate
switching between cueing contexts by supporting or suppressing task-
associated representations in the PFC (Schmitt et al., 2017; Rikhye
etal,, 2018a; Mukherjee et al,, 2021). Importantly, clinical studies also
showed that focal lesions in associative thalamic structures can lead
to psychosis, particularly if interactions with prefrontal cortical
regions become dysfunctional (Schmitt and Halassa, 2017; Mukherjee
and Halassa, 2022; Anticevic and Halassa, 2023). Together, these
findings from mice and humans emphasize crucial prefrontal-MD
computations necessary for learning stimulus-incentive associations.

We recently refined a previously developed computational
prefrontal-MD model, inspired by cell recordings obtained from
mice (Rikhye et al, 2018a), and trained it on human empirical data
to test whether the re-evaluation and adjustment of the decision
strategy in both species follow the same computational principles
(Hummos et al., 2022). We found that the MD learned abstract
representations of its cortical inputs through biologically plausible
Hebbian learning rules. Direct feedback from MD to prefrontal
cortex supported switching between behavioral strategies, while
lateral OFC (IOFC) constantly accumulated evidence for a strategy
switch based on rapid Bayesian estimation. Following these
computational rules, our human fMRI results revealed that IOFC
directed its outputs to MD, rendering MD as the brain site which
dynamically integrates crucial inputs relevant for forming the
behavioral strategy. These abstract MD representations and their
ability to reorganize prefrontal computations describes an efficient
way how the brain utilizes the MD to integrate inputs from other
brain regions and to dynamically select between competing
behavioral strategies (Hummos et al., 2022).
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Another prefrontal region, the vmPFC, was shown to encode the
beliefs about outcome values, which represents an intermediate signal
required for efficient prefrontal-MD computations underpinning the
re-evaluation of decision strategy. In our prefrontal-MD model
(Hummos et al., 2022), we directed the vimPFC output on the
executive dIPFC, as the most relevant receiver of value-related
information, but this dIPFC-vmPFC interaction was not directly
supported by empirical evidence. Using bilinear Dynamic Causal
Modeling (DCM), we could not directly model the vmPFC as an
additional hub in the prefrontal-MD network since the vmPFC was
not among the regions involved in decision switches. In the present
study, we therefore applied non-linear DCM, which allowed us to
capture the non-linear history of prior synaptic activity (Stephan et al.,
2008), and hence the modulatory (second-order) effects of prior
belief-dependent responses in vmPFC on the gain of activity within
the prefrontal-MD network. We re-analyzed our previously collected
fMRI dataset and combined Bayesian hierarchical modeling with
non-linear DCM on fMRI data to test how prior belief-related activity
in the vimPFC tunes functional couplings in the dIPFC-IOFC-MD
network during the adjustment of the decision strategy.

Materials and methods
Participants and associative learning task

The analyses in this study were based on the previously collected
dataset from 28 healthy human participants (mean age+SD:
25.3+3.9years, only male participants). The study was approved by
the local ethics committee of the Ruhr-University Bochum. All
participants gave written informed consent prior to participation.
Demographics and the experimental design were described in more
detail elsewhere (Supplementary Figure S1; Wang et al., 2020; Wang
and Pleger, 2020; Hummos et al., 2022).

In each trial, participants first received one out of two tactile cues
for 500ms to the tip of their right index finger using an
MRI-compatible Braille piezo stimulator with 8-pins (2x 4 array)
(Metec, Stuttgart, Germany). Subsequently, they had to predict (within
1,300 ms) whether the following tactile stimulus (i.e., target) will show
the same pattern (e.g., 4 upper pins lifted) or the alternative pattern (4
lower pins lifted) by pressing one of two buttons (LumiTouch keypads,
Photon Control) with the index or middle finger of the left hand. After
an interval of 500-1500 ms (jitter), the target was presented for 500 ms
which indicated whether the preceding prediction was correct or
incorrect. A variable delay of 1,500-3000ms separated trials. The
predictability of the target stimulus was modulated by the strength of
the sample-target contingency over time [i.e., strongly predictive
blocks (90 and 10%), moderately predictive (70 and 30%), and
non-predictive (50%) blocks; either 30 or 40 trials per block to avoid
predictability of the block onsets]. The order of blocks was
pseudorandomized and fixed across participants to ensure inter-
subject comparability of the learning process. The fMRI experiment
consisted of 350 trials in total, which were split into three runs, each
lasting about 10 min.

In order to examine the flexibility in decision-making, we tested
the adjustment of the decision strategy, i.e., whether the statistical
property of the environment (sample stimulus matches or
mismatches target stimulus) has been changed or not. To this end,
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we separated the trials across all sample-target associations into
two conditions: (1) Switching condition (122 + 10 trials): trials with
decision switches across two successive trials, and (2) Staying
condition (211 + 17 trials): trials without decision switches across
two trials.

Estimating the prior belief with the
Hierarchical Gaussian Filter

Human behavioral data were applied to a three-level Hierarchical
Gaussian Filter (HGF) model using the HGF toolbox (v5.2) as
implemented in TAPAS (Translational Algorithms for Psychiatry-
Advancing Science, https://www.tnu.ethz.ch/en/software/tapas,
Frissle et al., 2021), to calculate the individual trial-wise prior belief
about external states at different levels. The first level of the HGF
represents a sequence of inputs about the environmental states (i.e.,
whether the sample stimulus matches the target stimulus or not), the
second level represents the sample-target contingency (ie., the
conditional probability, in logit space, of the target stimulus given the
sample cue), and the third level represents the log-volatility of the
environment. Each of these hidden states is assumed to evolve as a
Gaussian random walk, such that its variance depends on the state at
the next higher level (Mathys et al., 2011).

In the HGF, at any level i of the hierarchy, the prior belief about
the external state on trial k ( }&i(k) ) is evolved from the posterior belief
of the previous trial (k-1)

P = .

The posterior belief on trial t (,U;{ )) is updated based on the

prediction error from the level below {5{k)) weighted by the precision
of prediction (q,{k))

) =i 4o w6 @

The precision of prediction (p{ ) is updated with every trial and
can be regarded as equivalent to a dynamic learning rate in reward
learning models, as follows:

| ____ 1 (3

(%) =ﬁr(;_tl—1) [1—;“:,.(;"1‘1]) (4)
"(k) = @,(k R 'ttm(aw("r D w) (5)

where w is a free parameter of the perceptual model in HGE, which
determines the step size between consecutive time steps. The
prediction error 5i{f1)’ which drives learning at the second level of our
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HGF model, is defined as the difference between the actual outcome
and its estimated probability before the outcome:

s®) — yh)

_ 8 e

— i (6)

FMRI data processing

FMRI data were collected on a Philips Achieva 3.0 T X-series
scanner using a 32-channel head coil. For functional imaging, we used
a T2*- weighted echoplanar imaging (EPI) sequence (voxel size,
2mm x 2mm x3 mm; field of view, 224 mmx 224 mm; interslice gap,
0.6mm; TR=2,800ms; TE=36ms) to acquire 36 transaxial slices
covering the whole brain. Pre- and post-processing of the fMRI data
was done using the Statistical Parametric Mapping software SPM12
(Wellcome Department of Imaging Neuroscience, University College
London, London, UK') implemented in MATLAB R2022a
(MathWorks). All fMRI images were first applied to slice time
correction, spatial realignment, and normalization to the MNI
template using the unified segmentation approach (Ashburner and
Friston, 2005). Finally, normalized images were spatially smoothed
using a Gaussian filter with a full-width half-maximum kernel of
6mm. Data were high pass filtered at 1/128 Hz. For each participant,
we conducted a first level general linear model (GLM). Events were
time-locked to the onset of the presentation of the cue stimulus using
stick functions and split into two regressors, one for Staying (no
strategy switches) and the other one for Switching trials. For each of
these two regressors, two parametric modulators of prior belief were
defined. The first parametric modulator was prior belief about the
sample-target contingency ( ,Hgk) ). The second modulator was prior
belief about the volatility ( pgk] ), orthogonalized with respect to ‘ug )
. Notably, the sign of the prior belief depends on the sample-target
contingency due to the arbitrarily chosen coding of a binary input (i.e.,
trials in which the sample matched the target were coded as 1, samples
that mismatched the target were coded as 0). Given that the current
study’s focus was on the effect of different level of predictabilities
rather than different contingencies, we employed the unsigned prior
belief (ie., absolute value) as parametric modulators for the
GLM. Invalid trials (ie., missing or late responses) were modeled
separately. Furthermore, six head motion parameters, as estimated
during the realignment procedure, were added as regressors of no
interest to minimize false-positive activations due to task-
correlated motion.

Using the GLM, we investigated prefrontal and thalamic responses
when switching the decision strategy using the contrast
“Switching> Staying’ The detailed data analysis for this comparison and
corresponding results have been reported in our recent paper
(Hummos et al., 2022). In current study, we primarily analyzed the
mam effect of parametric modulation by prior belief (both [k) and
,u3 ) for all trials using the GLM. The respective t-contrast i unages of
the modulatory effect for each subject were applied to the group-level

1 http://www fiLlion.ucLac.uk/spm
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one-sample f test (p < 0.05, family-wise error (FWE) corrected for the
whole brain).

Non-linear dynamic causal models

In our previous study (Hummos et al., 2022), the fMRI GLM
analyses revealed two prefrontal regions, i.e., right dIPFC and 10FC,
together with the MD thalamus, which were all significantly
modulated by decision switches (Figure 1A). The Bayesian parameter
averaging (BPA) across participants revealed that connections from
10FC to MD, from dIPFC to lOFC, as well as between dIPFC and MD
in both directions were all significantly strengthened by strategy
switches (Figure 1B). In the current study, we show that the vmPFC
reflects the value of the prediction, ie., the prior belief about the
sample-target contingency (see results section). Based on these
findings, we next questioned how increased BOLD responses in the
vmPFC, which were positively related to stronger prior belief,
modulated the connection strength of the prefrontal-MD network,

10.3389/fnins.2023.1278096

thus enhancing its computational efficiency and facilitating strategy
switches. To test this, we constructed a non-linear DCM including
right dIPFC, right IOFC, right MD and vinPFC, and compared several
alternative vmPFC modulations. For each brain region, subject-
specific time series were extracted from the nearest local maximum
within a sphere with a radius of 8 mm centered on each node’s group
maximum. The first Eigenvariate was extracted across all voxels
surviving p=0.05, uncorrected, within a 4 mm sphere centered on the
individual peak voxel. The resulting BOLD time series were adjusted
for effects of no interest (e.g., invalid trials, and movement parameters).

The basic architecture of the model, shown in Figure 1B and in
Hummos et al. (2022), included the driving sensory (i.e., tactile) input
directed to the dIPFC, as well as the four connections that were all
significantly strengthened by strategy switches (i.e., dIPFC to lOFC,
10FC to MD, as well as between dIPFC and MD in both directions).
With the non-linear DCM we extended this model by the modulation
of these connections through the activity in the vmPFC, which was
driven by the trial-by-trial prior belief derived from the HGF model
(Figure 1D). We specified the model space with the modulatory

dIPFC

Switching > Staying

Bilinear DCM
PFC

Inputs —-r —

——>» Connections modulated by Switching
D

1

Inputs(green dots), sample-target contingency (black), and prior belief (red) 5

Nonlinear DCM

g%i

bt

PFC

\JNO

Prior belief H2

L

100 150 200 250

Trial number

300

FIGURE 1

The fMRI activity and dynamic causal modeling (DCM). (A) Strategy switches (Switching > Staying) entailed significant BOLD activity in right dIPFC, right
IOFC and right MD (Hummos et al., 2022). (B) The bilinear DCM revealed that four connections (orange), i.e., from IOFC to MD, from dIPFC to IOFC, as
well as between dIPFC and MD in both directions were significantly strengthened by strategy switches (Switching > Staying) (Hurmmos et al., 2022). The
black connections indicate endogenous connections between brain areas. (C) Upper panel: The prior beliefs over the course of the experiment. The
red shaded area indicates the standard error of the mean (SEM) of prior beliefs over time. Lower panel: Prior belief-related vimPFC activity is projected
on sagittal and axial MRI brain slices (p < 0.05, whole brain-FWE corrected). (D) The non-linear DCM, which we used to test how prior belief-related
activity in the vmPFC (blue) gated the information flow in the dIPFC-IOFC-MD network. (dIPFC—dorsolateral prefrontal cortex; (OFC-lateral
orbitofrontal cortex; MD—thalamic mediodorsal nucleus; vimPFC-ventromedial prefrontal cortex).
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influence of the vmPFC on different connections. More specifically,
we tested the modulatory influence of prior belief related vmPFC on
two out of the four significant connections within the dIPFC-
IOFC-MD network, resulting in six models that were compared to
each other (Supplementary Figure 52A). The fixed-effects Bayesian
model selection (BMS) was used to assess the most likely model
among the six competing models. Parameters of the winning model
were then summarized by Bayesian parameter averaging (BPA), which
computes a joint posterior density for the entire group by combining
the individual posterior densities. A posterior probability criterion of
90% was considered to reflect significant modulatory effect on
the connections.

Results

The participants’ behavioral performance during the associative
learning task has been presented in more detail in our previous studies
{Wang et al., 2020; Wang and Pleger, 2020; Hummos et al., 2022). In
brief, we found a significant effect of learning [one-way ANOVA:
F(4,27)=256, p<0.001] and post-hoc paired t-tests revealed that
participants made significantly more correct predictions in learning
blocks with high predictability (i.e., 90%/10%) than in blocks with low
predictability [i.e., 70%/30%, #(1,27)=20.75, p<0.001, Bonferroni-
corrected] or unpredictability [ie., 50%, #(1,27)=24.70, p<0.001,
Bonferroni-corrected]. In addition, we found that the participants had
a lower prior belief and required more time to respond (p<0.001) in
trials when they changed their decision strategy (Switching), compared
to the trials where the decision strategy did not change (Staying).

In order to test whether participants’ learning behavior could
be rather explained by hierarchical learning (i.e., Bayesian HGF model),
which updates the learning rate dynamically, or by a fixed ‘ideal learning
rate as assumed by the reinforcement learning algorithm (Rescorla-
Wagner, RW), we compared the HGF with RW model using the random-
effect Bayesian model selection (BMS). The BMS result revealed that
HGF was the winning model with a posterior model probability of 90%
(posterior probability, 0.90; exceedance probability; 1.00).

To assess the parametric modulation by the prior beliefs, both
‘f;gr) and ﬁgk] derived from HGF model were included as modulatory
parameters in the GLM of fMRI data. We found that responses from
the vmPFC reflected the prior belief about the sample-target
contingency [ ;}gk) , Figure 1C, x=—6, y=62, z=—4, 1(31)=6.69,
P <0.05, FWE whole-brain corrected]. Besides the vimPFC, also the
left precuneus (x=—10, y=—56, z=26) and middle cingulate cortex
(x=2, y=—12, z=38) represented significant prior belief-related
activity (p<0.05, FWE whole-brain corrected). The analysis of
parametric effects related to prior belief about volatility ( lﬁgk)) did not
reveal any significant brain regions (p>0.05, FWE whole-
brain corrected).

As shown in our recent study (Hummos et al., 2022), the Bayesian
model comparison across different plausible bilinear dIPFC-IOFC-MD
models revealed that the adjustment of the decision strategy (Switching)
significantly modulated connections from IOFC to MD, from dIPFC
to IOFC, as well as between dIPFC and MD in both directions
(Figure 1B). In the present study, using non-linear DCM, we tested
how prior belief related response from vmPFC modulated the
connection strength in the dIPFC-IOFC-MD network (Figure 1D).
More specifically, we tested which two of the four projections were
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directly modulated by vmPFC activity. This resulted in six competing
models that were further evaluated with Bayesian model selection
(BMS) (Supplementary Figure S2A). BMS revealed that the prior belief
associated activity in vmPFC had a modulatory influence on the
projections originating in the dIPFC and targeting both, IOFC and MD
(Supplementary Figure S2B; Figure 2A). The posterior probability for
the winning model was 0.48, surpassing the posterior probabilities of
the other tested models which ranged from 0.01 to 0.25
(Supplementary Figure 52B). This winning non-linear model assumed
a direct effect of prior belief on vmPFC whose activity then mediated
the gain of the dIPFC—10FC and dIPFC—MD connections. We next
applied Bayesian parameter averaging (BPA), which computes a joint
posterior density for the entire sample and found that the prior belief-
dependent vimPFC activity significantly influenced the dIPFC—IOFC
connection (posterior probability=0.94, Figure 2B). The modulations
of the dIPFC—MD connection showed a trend into the same direction,
but the posterior probabilities failed to surpass the 90% threshold
(posterior probability=0.81, Figure 2B). The modulatory effect was
generally inhibitory, suggesting that the weaker the activity in vmPFC,
and the lower the prior belief (i.e., high task uncertainty), the stronger
was the connection strength from dIPFC to IOFC.

Discussion

In this study, we investigated how prior belief-related activity in the
vmPFC gates the information flow in the dIPFC-IOFC-MD network
underpinning the re-evaluation of decision strategy during associative
learning. We showed that the strength of connections from dIPFC to
IOFC fluctuated from trial to trial in relation to the level of task
uncertainty, i.e., the prior beliefs about the sample-target contingency,
signaled by inhibitory inputs from the vmPFC. The weaker the activity
in vmPFC, and the stronger the task uncertainty (i.e., low prior belief),
the stronger was the strength of effective connection from executive
dIPFC to IOFC. These findings suggest that in situations with high task
uncertainty, there is an increase in IOFC responses to inputs from
dIPFC, which provides direct empirical evidence for the key role of
prior belief-dependent synaptic plasticity in driving the re-evaluation
of the decision strategy during flexible decision-making.

Representations of sensory stimuli are modulated by internal states
and beliefs about the world, which are crucial for flexibly adjusting
perception and behavior in humans and animals (Snyder et al,, 2015;
Alkrami et al,, 2018). The prior beliefs have been shown to warp neural
representations in the frontal cortex, which allows the mapping of
sensory inputs to motor outputs and to incorporate prior statistics in
accordance with Bayesian inference (Sohn et al., 2019). These results
uncover a simple and general principle whereby prior beliefs exert their
influence on behavior by sculpting cortical latent dynamics. The failure
of beliefs about the environmental state forms the prediction error and
updates expectations for upcoming stimuli and associated rewards. In a
previous study, we investigated how humans apply probabilistic
computations, following Bayesian rules, to infer on joint brain
representations of prior belief and decision switches (Wang et al., 2020).
We found, that during such switches prior belief specifically modulated
connectivity among the anterior insular cortex (AIC), the premotor
cortex (PMd), and the inferior parietal lobule (IPL). On a trial-by-trial
basis, prior belief weakened connectivity between AIC and IPL when the
sensory stimulus was expected, whereas it strengthened connectivity
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The modulatory effect on the dIPFC-IOFC-MD network by prior belief-associated vmPFC activity. (A) The Bayesian Model Selection across the possible
six models revealed the winning model in which prior belief-dependent vmPFC activity specifically influenced the connections originating in the dIPFC
and targeting both, lOFC and MD. The black connections indicate endogenous connections between brain areas. (B) Bayesian parameter averaging
revealed that the prior belief-dependent vmPFC activity significantly inhibited the dIPFC—IOFC connection (posterior probability = 0.94, solid red line)
suggesting that the higher the activity in vimPFC, and the stronger prior belief, the weaker was the connection strength from dIPFC to IOFC. The
negative numbers shown next to the projections and above the posterior probabilities index the inhibitory inputs per second (Hz). The dIPFC—MD
connection showed a trend into the same direction, but posterior probabilities failed to surpass the 90% threshold (posterior probability = 0.81, dotted
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between AIC and PMd when the stimulus was unexpected (Wang et al.,
2020). AIC has been shown to act as a core hub modulating the
interaction of bodily, attentional, and anticipatory sensory signals
(Sridharan et al., 2008; Craig, 2009; Allen et al,, 2016). Our results furnish
a picture in which AIC, in conjunction with other brain regions,
contributes not only to the coordination of expectation and sensory
inputs, but also to the integration of priors and prediction outcomes for
updating beliefs specifically supporting strategy switches during
associative learning (Ferrari et al., 2022). The present findings extend the
scope of belief-related brain functions by the vmPFC. According to our
non-linear DCM, vmPFC plays a key role in exerting modulatory
influences on prefrontal interactions, which does not directly reflect
prior belief such as the aforementioned AIC-network (Allen et al., 2016),
but which critically depends on prior belief-dependent information from
the vimPFC to flexibly guide strategy switches.

It has been shown that vmPFC plays a major role in sensory
integration to achieve abstract and conceptual interpretation of the
environment (Petrides and Pandya, 2007). The vmPFC represents signals
more suited for subject-centered, internally driven motivational
processes, whereas IOFC encodes signals for evaluating environment-
centered, externally driven motivational processes (Bouret and
Richmond, 2010). Functional interactions between vmPFC and IOFC in
humans are thought to implement important functions relevant to
cognitive flexibility and the prediction of value-based behavioral changes
(Howard et al, 2016). In primates, the dIPFC has been shown to
be anatomically (Mackey and Petrides, 2010; Saleem et al,, 2014) and
functionally (Kahnt et al., 2012) connected to the IOFC, and also in
rodents, mPFC terminals - i.e., homolog of the primate dIPFC - were
detected in the lateral and ventrolateral OFC (Dalley et al., 2004). Rodent
mPFC projection neurons furthermore target the thalamus MD to
regulate adaptive control to flexibly optimize behavioral responses in
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goal-directed behavior and receive an MD innervation (Hoover and
Vertes, 2007; Carlén, 2017). Together, these anatomical evidence from
rodents and non-human primates provide a solid anatomical basis for
our winning non-linear DCM model, in which the responses of IOFC to
the presynaptic input from dIPFC depend on the history of inputs that
they receive from vmPFC. Inconsistencies in the nomenclature and
anatomical boundaries of PFC areas have made it difficult to compare
data and interpret findings across species, especially between primates
and rodents. In addition, we cannot exclude that the modulatory effect
on the PFC interactions is implemented through an intermediate region,
for example the amygdala or the striatum, given the fact that both receive
many cortical inputs from prefrontal areas (Middleton and Strick, 2002;
Chang and Grace, 2018).

The weaker the prior belief related activity in vimPFC, the stronger
is the connection strength of the dIPFC projections, suggesting that
the re-evaluation of decision strategy under high task uncertainty
requires further processing resources controlled by vmPFC. This
gating mechanism agrees well with the theoretical accounts of the
free-energy principle (Friston, 2009). Accordingly, perception
optimizes predictions by minimizing free energy with respect to
perceptual inference, memory, attention and salience (Friston, 2010).
Based on these principles, the high prior belief about the
environmental state in our study may have weakened the strength of
the dIPFC-output projections to minimize the engagement of
additional cognitive resources and hence to lower the energy costs for
the decision process. The process that alters synaptic strengths with
time constants in the range of milliseconds to minutes, i.e., the
so-called “short-term synaptic plasticity” (STP), is proposed to be the
underlying neurobiological mechanisms for this non-linear
modulatory effect, including NMDA-controlled rapid trafficking of
AMPA receptors (Diering and Huganir, 2018), synaptic depression/
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facilitation (Zucker and Regehr, 2002) or “early long-term potentiation
(LTP)” (Frey and Morris, 1998). Notably, we found that the prior
belief-related responses in the vmPFC significantly gate outputs from
dIPFC to 10FC, but from dIPFC to MD only at trend level. The
thalamic circuits have been shown to play a role in differentially using
contextual information to reconfigure functional connectivity within
and across cortical areas in a task-dependent manner for perceptual
inference and behavioral flexibility (Nakajima and Halassa, 2017;
Rikhye et al., 2018b; Halassa and Sherman, 2019; Mukherjee et al.,
2020). However, based on our results, the roles of PFC-MD
interactions in switching the behavioral strategies are relatively less
affected by the prior beliefs about the environment, but more
important for the processing of decision strategy (i.e., the selection of
Stay or Switch). The relationship between thalamic circuits and the
prior beliefs should be further investigated in the future studies.

There are limitations that should be considered when interpreting
the current findings. First, single unit recording in mice are well suited
to assess how distinct neuronal populations in subregions of the PFC
and MD nuclei respond to specific task-related cues and contexts
(Rikhye et al., 2018a). FMRI recordings instead represent comparably
crude measures of neural activity capturing hemodynamic responses
only from large neuronal populations. These topographic inaccuracies,
especially for signals originating in small cortical and subcortical
structures, represent a general limitation of fMRI. Second, we did not
split the MD into its subnuclei when we constructed the network
models. A recently developed MRI-based atlas provides masks for four
of these subregions (the medial (MDm), central (MDc), dorsal (MDd),
and lateral (MDI)), created with connectivity-based methods applied
to the high-resolution data from the Human Connectome Project (Li
etal, 2022). In the current study with lower functional MRI resolution
and signal-to-noise ratio, it remained difficult to reliably capture these
subregions. Therefore, we considered the MD as a single region of
interest. Considering these topographic inaccuracies, the trend level
effect we found for the modulatory influence on the dIPFC-MD
connection should be interpreted with caution. Third, although
we focused on thalamocortical connections, other regions of the
broader PFC-MD network, including the basal ganglia or the amygdala,
could have also been involved in guiding cognitive flexibility. For
example, the cortical-basal ganglia-thalamocortical subnetworks have
been shown to be involved in impaired cognitive flexibility in patients
with obsessive-compulsive disorder (Kim et al., 2022). Given the above
limitations, it will be one of the major challenges for future decision-
making research to extend the here proposed PFC-MD network by
other key regions in the PFC, basal ganglia, and other subcortical
structures, through combining various imaging techniques and cross-
species approaches (e.g., Nakajima et al., 2019a,b).
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