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Abstract. The NHERI SimCenter is a nine-year research project that aims to ad-
vance the simulation of natural hazard impact on the built environment and com-
munities. The SimCenter is developing several open-source workflow applica-
tions and an underlying scientific application framework. All applications built
on this framework provide an OpenSees interface that enables users to use their
existing models in advanced simulation studies, such as local and regional per-
formance assessment, and uncertainty quantification (UQ). SimCenter applica-
tions provide researchers an opportunity to explore different extensions of their
models by lowering the interdisciplinary barrier and encouraging collaboration.
Among the applications, quoFEM provides access to UQ analyses with an easy-
to-use, standardized interface. This work demonstrates the research enabled by
quoFEM through the example of model calibration using PM4Sand, a soil con-
stitutive model available in OpenSees. After an initial sensitivity analysis, the
model is calibrated using Bayesian inference based on observations of hysteretic
soil response from cyclic direct simple shear tests. The uncertainty in the model
parameters is used in forward propagation to explore plausible lateral spreading
scenarios due to seismic liquefaction. The results demonstrate the utility of quo-
FEM to the OpenSees community as a UQ-enabling tool.
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1 Introduction

Although uncertainties in computer simulation models can have substantial influence
on the accuracy and bias of model predictions [1], the uncertainty in model parameters
and outputs are rarely quantified and characterized in natural hazards engineering re-
search and practice. This is only partly explained by the computational resource de-
mands: uncertainty quantification (UQ) typically requires hundreds or thousands of
model evaluations. Another important challenge is implementing efficient algorithms
that support state-of-the-art techniques for sensitivity analyses, calibration, and



propagation of uncertainties and combining these algorithms with applications used in
natural hazards engineering, e.g. finite element applications. These implementations
often involve sophisticated tuning schemes that are tailored to the context and type of
model being used, with researchers sometimes needing to develop robust interfaces be-
tween tasks. For example, investigating the liquefaction of a site subjected to earth-
quake excitation involves at least two steps: (1) uncertainty reduction by optimizing
parameters using a measurement model; (2) uncertainty propagation by simulating site
response using a system prediction model. Such series of tasks is commonly applied in
natural hazards engineering (NHE) [2].

The NHERI SimCenter is an NSF-funded nine-year research project aiming to build
a collaborative simulation platform for researchers in the NHE community. This plat-
form connects various models, data, and UQ algorithms to facilitate the design and
execution of complex workflows which solve various user-specific problems using
computational simulation [3]. The SimCenter develops a collection of open-source
desktop applications built on top of one shared underlying application framework. Each
desktop application is specialized to support a particular context and the corresponding
problem types and scales in NHE, e.g. from the response of an individual building to
response of all the buildings in a region. The SimCenter’s cloud-enabled application
framework encompasses every step in the broad natural hazard impact assessment
workflow, from source/asset description to regional loss/recovery simulation. Each step
of the workflow is covered by one or more available workflow applications. Since, the
workflow applications responsible for structural response estimation support user-de-
fined OpenSees [4] models, such models can be imported and used in every SimCenter
desktop application with minimal effort.

quoFEM (Quantified Uncertainty with Optimization for the Finite Element Method)
is a SimCenter desktop application that focuses on providing practical and robust UQ
algorithms that can be readily applied to user-defined simulation models [5]. The ap-
plication provides an interface with OpenSees and other simulation applications. It con-
nects users with the high-performance computing resources at the Texas Advanced
Computing Center through the DesignSafe cyberinfrastructure to support the resource-
intensive UQ calculations. The graphical user interface facilitates setting up a UQ anal-
ysis and testing different plausible characterizations for the random variables to better
understand the model behavior under uncertainty.

This paper first provides a brief overview of quoFEM followed by a case study to
demonstrate the utility of the application through a probabilistic soil model calibration
problem. Parameters of the PM4Sand liquefaction-capable constitutive model [6,7] in
OpenSees are calibrated using Cyclic Direct Simple Shear (CyDSS) lab test data [8,9].
Given the model and the dataset, quoFEM was used to perform a series of probabilistic
analyses: (1) global sensitivity analysis to identify the primary/trivial model parameters
that influence the onset of liquefaction [10]; (2) Bayesian calibration of model param-
eters using the transitional Markov chain Monte Carlo (TMCMC) algorithm [11]; and
(3) forward analysis to propagate the remaining uncertainties in the material model
through an OpenSees simulation of the lateral spreading of a soil-column under an
earthquake scenario.



2 quoFEM

2.1 SimCenter workflows

The workflows supported by SimCenter tools are a series of interconnected workflow
applications that can be illustrated with the jigsaw puzzle pieces in Fig. 1 that are based
on the main components of the performance-based engineering (PBE) paradigm [12].
Each SimCenter desktop application uses different subsets of the available workflow
applications to create workflows. The R2D Tool (Region Resilience Determination),
for example, spans the full range from asset and hazard description to recovery simula-
tion, while WE-UQ (Wind Engineering with UQ) covers only the (wind) event simula-
tions, structural modeling and response estimation, and corresponding uncertainty
quantification (UQ) parts. Response estimation and UQ are the common core that is
used across all desktop applications. quoFEM is the fundamental SimCenter application
that is built on this common core as shown in the right side of Fig. 1.
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Fig. 1. The SimCenter application framework and quoFEM

2.2 Supported UQ algorithms

quoFEM is designed to facilitate UQ analyses on a wide range of deterministic/black-
box simulation models. The currently implemented UQ methods are selected consider-
ing their utility in the natural hazards engineering context and the demand and feedback
received from NHE researchers. quoFEM (v3.1.0) currently supports global sensitivity
analysis, reliability analysis, Bayesian parameter calibration, surrogate modeling, along
with Monte Carlo-type forward propagation and deterministic optimization techniques.
Each type of UQ analysis is supported by different methods. The developers of novel
UQ algorithms can use the custom-UQ option to incorporate their techniques into quo-
FEM. This makes the tool a collaborative research platform that connects UQ experts
and engineering model developers.

2.3  Interfacing with Finite Element Codes

Currently, four model engine interfaces are supported: (1) OpenSees using Tcl files to
describe the model [4]; (2) Generic Python scripts that support OpenSeesPy as well as
Python wrappers around any other executable [13], (3) FEAPpv [14], and (4) Surrogate



models. A fifth, custom driver option allows researchers to write their own interface.
Using the built-in OpenSees interfaces involves only the following two steps:

(1) Define input random variables: The random variables of the model are iden-
tified by using a pset command instead of the typical set command in the model
script. The probability distributions corresponding to the random variables can
be specified through the graphical user interface.

(2) Process outputs and prepare quantities of interest: A post-processing script
needs to be prepared that reads the recorder outputs of OpenSees and calculates
the response quantities of interest. These values need to be written as an array
in a results.out text file.

2.4 High Performance Computing through DesignSafe

All SimCenter applications provide convenient access to high performance computing
resources through the DesignSafe cyberinfrastructure, hosted at the Texas Advanced
Computing Center (TACC, 2020). quoFEM analyses can run either locally at the user’s
computer or remotely at DesignSafe. The same user interface of the desktop application
is used to set up both types of analyses and users can switch to run a remote calculation
by simply selecting the remote running option. After specifying the desired number of
processors to use, the input files are automatically prepared and sent to one of the HPCs
at TACC and the job is immediately submitted to the queue. The built-in parallelized
UQ algorithms efficiently utilize multiple processing cores and the scaling potential
provided by the HPC cluster.
There are also other, advanced options available to launch remote jobs.

Fig. 2 provides a summary of these options: (1) The desktop application is accessible
through a web browser using graphical remote application streaming and the NICE
DCV client in DesignSafe. This service provides the user experience of a desktop ap-
plication without installing anything on the local machine. (2) The Jupyter Hub envi-
ronment on DesignSafe allows researchers to control runs through Python scripts that
specify job variables and submit the job through the Tapis system at DesignSafe. In
such a Jupyter notebook, the remote UQ analysis through quoFEM can be treated as
one function in a larger routine, e.g., reliability-based optimizations. This approach is
provided for advanced users who seek to extend the tool or use pre-defined scripts to
run a large number of analyses.
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Fig. 2. Running quoFEM analysis using remote computing resources at DesignSafe



3 Sensitivity Analysis and Bayesian Calibration of a
Constitutive Soil Model using quoFEM

3.1 Problem description

This illustrative example demonstrates several UQ techniques using the parameters of
the PM4Sand constitutive model [6,7], a liquefaction-capable soil model in OpenSees.
This complex material model is often calibrated using a small number of experimental
results which yields imperfect information about its parameters, and this leads to un-
certain model predictions. Quantifying such uncertainties and inspecting the uncer-
tainty bounds of model predictions can provide more information about the importance
of each model parameter. Recognizing these uncertainties can incentivize more sophis-
ticated modeling and calibration techniques that can better utilize the available data
from experiments to reduce these bounds and provide more robust and higher fidelity
simulations.

In this study, the amount of reduction in the uncertainty in PM4Sand parameters
calibrated to Cyclic Direct Simple Shear (CyDSS) test data is inspected, and the result-
ing uncertainty is propagated in an earthquake excitation simulation of a soil column.
Three steps of UQ analyses are presented:

¢ Global sensitivity analysis to get an insight into which parameters are critical
in triggering liquefaction. This is an important first step to check if a given da-
taset is useful for calibrating the parameters of interest.

e Bayesian calibration to obtain the posterior probability distribution of the
PM4Sand parameters based on the CyDSS test dataset.

e Forward propagation to investigate how the uncertainty that remains after the
Bayesian calibration (characterized by the posterior probability distribution) af-
fects the prediction of an earthquake response.

The PM4Sand constitutive model has 24 parameters. Among the parameters, appar-
ent relative density D,, shear modulus coefficient G,, and contraction rate parameter
hpo, are known to be important for predicting liquefaction responses [6]. Therefore,
these three parameters 0={D,,G,,h,,} are considered in the UQ analyses and their prior
distributions are assumed to be uniform distributions with the ranges shown in Table 1.
These prior distributions shall capture a plausible wide range that includes all possible
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Fig. 3. Probabilistic calibration of soil model (step 2) with sensitivity analysis (step 1)
and prediction of uncertainty in seismic liquefaction (step 3)



parameter values for the target soils. The experimental data will be used to constrain
this wide range to the domain that best describes the behavior exhibited by the specimen
during the experiments. The following three analyses were set up using the quoFEM
graphical user interface and run on the HPC at DesignSafe utilizing 200 processors.

Table 1. Prior distributions of PM4Sand parameters

Parameter Distribution Range
D, Uniform 0.1-0.6
Go Uniform 200-2000
Npo Uniform 0.01-5

3.2 Step 1 — Global Sensitivity Analysis

The sensitivity analysis is performed for a simulation model that reproduces the CyDSS
test. The output quantity of interest is the number of cycles until the onset of liquefac-
tion (denoted as Y). The onset of liquefaction is defined as the time step when the shear
strain exceeds 3.5%. Liquefaction capacity is also affected by vertical compression typ-
ically characterized by the cyclic shear stress ratio (CSR; i.e., ratio of horizontal cyclic
shear stress to vertical consolidation stress). In this sensitivity analysis, a CSR of 0.175
is considered. Two variance-based global sensitivity indices are evaluated:

Var, [E&, [Y] @]]

5, =t (1)
Vary[Y]

5= E,_ [Vare’ [ BNi]J @

Var, [Y]

where 6, is the parameter of interest (i.e., one of the {D,,Go,h,,}), 0-; denotes the other

two parameters, E,[+] and Var,[+] denotes mean and variance of function over X, re-

spectively, and the vertical bar denotes ‘conditional n’ . The former index, called the
main-effect index, quantifies how much of the variance of Y is attributed to the pa-
rameter ;, while the latter index, called the total-effect index, also considers the joint
contributions of §; and other parameters [10].

The sensitivity analysis is performed using the algorithm in Weirs et al. (2012)
through the Dakota engine that interfaces with quoFEM [10]. 2500 simulations were
performed using the prior distributions in Table 1 . The resulting sensitivity is shown
in Fig. 4(a) which indicates that D, is the dominating parameter for the response Y. This
is also confirmed by inspecting the scatter plot of Fig. 4(b): D (horizontal axis) demon-
strates a stronger influence on the output (vertical axis) compared to the influence of
the other parameters shown in (c¢) and (d). Based on this, we can expect that the CyDSS
observations will help constrain the uncertainty in D,, while the reduction of uncertainty
in 4, and G, will be relatively limited. Additional, different types of experiments would
be needed to better characterize those other parameters.
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Fig. 4. (a) Sensitivity analysis results for the critical number of cycles given CSR= 0.172;
(b)-(d) Individual input-output scatter plots

3.3 Step 2 — Bayesian Parameter Calibration

Consider now the observations of the CyDSS experiment in Table 2, that are publicly
available on the DesignSafe data depot [8,9]. We assume that the observed count of
cycles at different CSR values, denoted as Y/” (i=1,...,6), is given by the simulation
model predictions and an added Gaussian noise. The latter captures various inaccura-
cies such as inherent uncertainty in the phenomenon, the imperfection of our simulation
model, and measurement error. Given the above assumptions, we can denote the rela-
tionship between the data and model prediction, ¥,(0), as

¥ =Y0)+e, 3)

where noise ¢, is assumed to have zero-mean and unknown variance o, . Given the

six measurement values, we can use a Bayesian approach to evaluate the posterior dis-
tribution of the parameters of PM4Sand and the unknown noise variances:

m m 1 m
p®,0; | 1",..Y, )=;HP(Y,- 10,07,)p(8) p(c?) “)
i=l1

where p - denotes the (joint) probability distribution, and ¢ is the normalization con-
stant that ensures the area under the posterior distribution is one. From Eq. (3),
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Fig. 5. Comparison of calibrated model predictions
and experimental data

p(Y"|0,07) is a Gaussian distribution with mean Y, (8) and variance of ,>. The prior

distribution of 0 is in Table 1. Following best practices, inverse Gamma priors with the
shape parameter a=3 and scale parameter f=2 are introduced for the ;> measurement
variances [15]. The posterior sample of 0 in this example is obtained using the transi-
tional Markov chain Monte Carlo (TMCMC) sampling technique [11] that is available
in quoFEM through the UCSD-UQ engine. This is an expensive calculation that greatly
benefits from the available HPC resources at DesignSafe.

Fig. 5 compares the experimental data with the calibrated model predictions of the
load-cycle counts, while Fig. 6 shows the calibrated parameter sample from the joint
posterior distribution. Fig. 6 shows that uncertainty in all variables is reduced by cali-
brating to the observed data, but the reduction was most apparent in D,. This is in line
with our expectations from the earlier sensitivity analysis. The results also highlight a
strong dependency between D, and £,,, indicating that multiple combinations of D, and
hyo produce near-optimal solutions. None of these features are captured by a determin-
istic estimator that results from a conventional error-minimizing optimization approach
(e.g., red diamond marker shown in the same figure). It is also important to recognize
that a non-negligible amount of uncertainty remains in the parameter estimates, and this
produces substantial uncertainty in the model predictions. The dark blue bounds in Fig.
5 show the level of uncertainty in the estimated number of cycles to liquefaction, but
this simulation model was prepared to reproduce the experimental setup. When the cal-
ibrated constitutive model is applied in another simulation, the responses can exhibit
different scales of uncertainties. A forward propagation analysis is helpful to character-
ize such uncertainties in a simulation model. It is good practice to run such an analysis
and characterize the effect of uncertainties on application-specific quantities of interest
before practically applying these parameter values in a simulation for decision making.

3.4 Step 3 — Forward Propagation

The obtained samples of the soil parameters in Fig. 6 are used to predict the uncertainty
in the lateral spreading response of a site subjected to an earthquake (Loma Prieta Gil-
roy Array #2) with peak ground acceleration of 0.37 g. The soil column model shown
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in Fig. 3 is introduced in which the liquefiable layer in the middle is modeled using
PM4Sand and the other parts are assumed to remain elastic throughout the shaking. The
results of 500 simulations are shown in Fig. 7. The mean and standard deviation of the
residual displacement at the surface level (6 m) are 0.24 m and 0.02 m, respectively.
Depending on the application, the uncertainty in these results can be considered rea-
sonably low. The sample of the predictive distribution shown on the top of the vertical
profile can further be utilized in reliability and risk assessment workflows.

4 Concluding Remarks

The case study presented in this paper has shown how quoFEM could support a series
of different UQ analyses to inspect the uncertain characteristics of a constitutive soil
model in OpenSees. Sensitivity analysis suggested that the uncertainty in each param-
eters has a different contribution to the outputs. Consequently, we could predict that
Bayesian calibration will provide disproportionate information and reducing the uncer-
tainty in some of the parameters would require additional, different type of experiments.
The uncertainty that remains after Bayesian calibration can be propagated through the
response simulation to understand how it affects the outputs. The example has shown
that the relationship between input and output uncertainties is not trivial.

Probabilistic analysis always provides a better understanding of the model behavior
and associated physics than a deterministic approach. The SimCenter aims to accelerate
the adoption of UQ techniques in the natural hazards engineering community by mak-
ing robust and practical UQ algorithms more accessible to researchers and practitioners.
All results shown in this work were obtained solely by quoFEM to emphasize that re-
searchers can conveniently include such analyses in the scope of their work. quoFEM
also supports further extension of the research scope to other UQ analyses, such as
surrogate modeling and reliability analysis using the same model scripts.
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